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of cautious learning.
Our analyses greatly benefit from general theorems we give, for example showing that 
learners which have to obey only delayable restrictions can always be assumed total.
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1. Introduction

This paper is set in the framework of inductive inference, a branch of (algorithmic) learning theory. This branch analyzes 
the problem of algorithmically learning a description for a formal language (a computably enumerable subset of the set of 
natural numbers) when presented successively all and only the elements of that language. For example, a learner h might be 
presented more and more even numbers. After each new number, h outputs a description for a language as its conjecture. 
The learner h might decide to output a program for the set of all multiples of 4, as long as all numbers presented are 
divisible by 4. Later, when h sees an even number not divisible by 4, it might change this guess to a program for the set of 
all multiples of 2.

Many criteria for deciding whether a learner h is successful on a language L have been proposed in the literature. Gold, 
in his seminal paper [9], gave a first, simple learning criterion, TxtGEx-learning,1 where a learner is successful iff, on every 
text for L (listing of all and only the elements of L) it eventually stops changing its conjectures, and its final conjecture is a 
correct description for the input sequence. Trivially, each single, describable language L has a suitable constant function as 
a TxtGEx-learner (this learner constantly outputs a description for L). Thus, we are interested in analyzing for which classes 
of languages L there is a single learner h learning each member of L. This framework is also sometimes known as language 
learning in the limit and has been studied extensively, using a wide range of learning criteria similar to TxtGEx-learning (see, 
for example, the textbook [11]).

A wealth of learning criteria can be derived from TxtGEx-learning by adding restrictions on the intermediate conjectures 
and how they should relate to each other and the data. For example, one could require that a conjecture which is consistent 
with the data must not be changed; this is known as conservative learning and known to restrict what classes of languages 
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Fig. 1. Relation of criteria.

can be learned ([1], we use Conv to denote the restriction of conservative learning). Additionally to conservative learning, 
the following learning restrictions are considered in this paper (see Section 2.1 for a formal definition of learning criteria 
including these learning restrictions).

In cautious learning (Caut, [18]) the learner is not allowed to ever give a conjecture for a strict subset of a previously con-
jectured set. In non-U-shaped learning (NU, [3]) a learner may never semantically abandon a correct conjecture; in strongly 
non-U-shaped learning (SNU, [7]) not even syntactic changes are allowed after giving a correct conjecture.

In decisive learning (Dec, [18]), a learner may never (semantically) return to a semantically abandoned conjecture; in 
strongly decisive learning (SDec, [14]) the learner may not even (semantically) return to syntactically abandoned conjectures. 
Finally, a number of monotonicity requirements are studied [10,24,17]: in strongly monotone learning (SMon) the conjectured 
sets may only grow; in monotone learning (Mon) only incorrect data may be removed; and in weakly monotone learning 
(WMon) the conjectured set may only grow while it is consistent.

The main question is now whether and how these different restrictions reduce learning power. For example, non-U-
shaped learning is known not to restrict the learning power [3], and the same for strongly non-U-shaped learning [7]; on 
the other hand, decisive learning is restrictive [3]. The relations of the different monotone learning restriction were given in 
[17]. Conservativeness is long known to restrict learning power [1], but also known to be equivalent to weakly monotone 
learning [16,12].

Cautious learning was shown to be a restriction but not when added to conservativeness in [18,19], similarly the rela-
tionship between decisive and conservative learning was given. In Exercise 4.5.4B of [19] it is claimed (without proof) that 
cautious learners cannot be made conservative; we claim the opposite in Theorem 4.4.

This list of previously known results leaves a number of relations between the learning criteria open, even when adding 
trivial inclusion results (we call an inclusion trivial iff it follows straight from the definition of the restriction without 
considering the learning model, for example strongly decisive learning is included in decisive learning; formally, trivial 
inclusion is inclusion on the level of learning restrictions as predicates, see Section 2.1). With this paper we now give the 
complete picture of these learning restrictions. The result is shown as a map in Fig. 1. A solid black line indicates a trivial 
inclusion (the lower criterion is included in the higher); a dashed black line indicates an inclusion which is not trivial. 
A gray box around criteria indicates equality of (learning of) these criteria.

A different way of depicting the same results is given in Fig. 2 (where solid lines indicate inclusion). Results involving 
monotone learning can be found in Section 7, results on the particularly difficult relations of decisive learning in Section 5, 
all others in Section 4.

For the important restriction of conservative learning we give the characterization of being equivalent to cautious learn-
ing. Furthermore, we show that even two weak versions of cautiousness are equivalent to conservative learning. Recall that 
cautiousness forbids to return to a strict subset of a previously conjectured set. If we now weaken this restriction to forbid 
to return to finite subsets of a previously conjectured set we get a restriction still equivalent to conservative learning. If we 
forbid to go down to a correct conjecture, effectively forbidding to ever conjecture a superset of the target language, we 
also obtain a restriction equivalent to conservative learning. On the other hand, if we weaken it so as to only forbid going 
to infinite subsets of previously conjectured sets, we obtain a restriction equivalent to no restriction. These results can be 
found in Section 4.

In set-driven learning [23] the learner does not get the full information about what data has been presented in what order 
and multiplicity; instead, the learner only gets the set of data presented so far. For this learning model it is known that, 
surprisingly, conservative learning is no restriction [16]! We complete the picture for set driven learning by showing that 
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Fig. 2. Partial order of delayable learning restrictions in Gold-style learning.

Fig. 3. Hierarchy of delayable learning restrictions in set-driven learning.

set-driven learners can always be assumed conservative, strongly decisive and cautious, and by showing that the hierarchy 
of monotone and strongly monotone learning also holds for set-driven learning. The situation is depicted in Fig. 3. These 
results can be found in Section 6.

1.1. Techniques

A major emphasis of this paper is on the techniques used to get our results. These techniques include specific techniques 
for specific problems, as well as general theorems which are applicable in many different settings. The general techniques are 
given in Section 3, one main general result is as follows. It is well-known that any TxtGEx-learner h learning a language L
has a locking sequence, a sequence σ of data from L such that, for any further data from L, the conjecture does not change 
and is correct. However, there might be texts such that no initial sequence of the text is a locking sequence. We call a learner 
such that any text for a target language contains a locking sequence strongly locking, a property which is very handy to have 
in many proofs. Fulk [8] showed that, without loss of generality, a TxtGEx-learner can be assumed strongly locking, as well 
as having many other useful properties (we call this the Fulk normal form, see Definition 3.8). For many learning criteria 
considered in this paper it might be too much to hope for that they allow for learning by a learner in Fulk normal form. 
However, we show in Corollary 3.7 that we can get a weaker kind of normal form for many learning criteria: the learners 
can be assumed strongly locking, total, and what we call syntactically decisive, never syntactically returning to syntactically 
abandoned hypotheses.

The main technique we use to show that something is decisively learnable, for example in Theorem 7.3, is what we call 
poisoning of conjectures. In the proof of Theorem 7.3 we show that a class of languages is decisively learnable by simulating 
a given monotone learner h, but changing conjectures as follows. Given a conjecture e made by h, if there is no mind change 
in the future with data from conjecture e, the new conjecture is equivalent to e; otherwise it is suitably changed, poisoned, 
to make sure that the resulting learner is decisive. This technique was also used in [6] to show strongly non-U-shaped 
learnability.

Finally, for showing classes of languages to be not (strongly) decisively learnable, we adapt a technique known in com-
putability theory as a “priority argument” (note, though, that we do not deal with oracle computations). We use this 
technique to reprove that decisiveness is a restriction to TxtGEx-learning (as shown in [3]). Note that this proof is based 
on the same ideas as the proof in [3], but rephrased in terms of a priority argument. We use this rephrased proof as the 
starting point for a variation with which we show that strongly decisive learning is a restriction to decisive learning.

A previous version of this paper appeared in the proceedings of ALT’14 [15].

2. Mathematical preliminaries

Unintroduced notation follows [21], a textbook on computability theory.
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N denotes the set of natural numbers, {0, 1, 2, . . .}. The symbols ⊆, ⊂, ⊇, ⊃ respectively denote the subset, proper 
subset, superset and proper superset relation between sets; \ denotes set difference. ∅ and λ denote the empty set and 
the empty sequence, respectively. The quantifier ∀∞x means “for all but finitely many x”. With dom and range we denote, 
respectively, domain and range of a given function.

We let 〈·, ·〉 be a linear time computable, linear time invertible, pairing function [20] (a pairing function is a 1–1 and 
onto mapping N ×N → N). Whenever we consider tuples of natural numbers as input to a function, it is understood that 
the general coding function 〈·, ·〉 is used to code the tuples into a single natural number. We similarly fix a coding for finite 
sets and sequences, so that we can use those as input as well. For finite sequences, we suppose that for any σ ⊆ τ we have 
that the code number of σ is at most the code number of τ . We let Seq denote the set of all (finite) sequences, and Seq≤t
the (finite) set of all sequences of length at most t using only elements ≤ t . We let � denote concatenation on sequences. 
When σ is a non-empty sequence, we let σ− be the sequence where the last element of σ is removed. We assume a 
well-ordering on all sequences which is compatible with subsequences; similarly for all finite sets.

If a function f is not defined for some argument x, then we denote this fact by f (x)↑, and we say that f on x diverges; 
the opposite is denoted by f (x)↓, and we say that f on x converges. If f on x converges to p, then we denote this fact by 
f (x)↓ = p. We let P denote the set of all partial functions N → N and R the set of all total such functions.

P and R denote, respectively, the set of all partial computable and the set of all total computable functions (mapping 
N →N).

We let ϕ be any fixed acceptable programming system for P (an acceptable programming system could, for example, 
be based on a natural programming language such as C or Java, or on Turing machines). Further, we let ϕp denote the 
partial computable function computed by the ϕ-program with code number p. A set L ⊆ N is computably enumerable (ce)
iff it is the domain of a computable function. Let E denote the set of all ce sets. We let W be the mapping such that 
∀e :W (e) = dom(ϕe). For each e, we write We instead of W (e). W is, then, a mapping from N onto E . We say that e is an 
index, or program, (in W ) for We .

We let � be a Blum complexity measure associated with ϕ (for example, for each e and x, �e(x) could denote the 
number of steps that program e takes on input x before terminating). For all e and t we let W t

e = {x ≤ t | �e(x) ≤ t} (note 
that a complete description for the finite set W t

e is computable from e and t). The symbol # is pronounced pause and is 
used to symbolize “no new input data” in a text. For each (possibly infinite) sequence q with its range contained in N ∪ {#}, 
let content(q) = (range(q) \ {#}). By using an appropriate coding, we assume that ? and # can be handled by computable 
functions. For any function T and all i, we use T [i] to denote the sequence T (0), . . . , T (i − 1) (the empty sequence if i = 0
and undefined, if any of these values is undefined).

We will use the existence of a 1–1 padding function pad ∈R such that

∀e, i : ϕpad(e,i) = ϕe.

We will use Case’s Operator Recursion Theorem (ORT), providing infinitary self-and-other program reference [4,5,11]. ORT
itself states that, for all operators � there are f with ∀z :�(ϕz) = ϕ f (z) and e ∈R,

∀a,b : ϕe(a)(b)=�(e)(a,b).

2.1. Learning criteria

In this section we formally introduce our setting of learning in the limit and associated learning criteria. We follow [13]
in its “building-blocks” approach for defining learning criteria.

A learner is a partial computable function h ∈ P . A language is a ce set L ⊆ N. Any total function T : N → N ∪ {#} is 
called a text. For any given language L, a text for L is a text T such that content(T ) = L. Initial parts of this kind of text is 
what learners usually get as information.

An interaction operator is an operator β taking as arguments a function h (the learner) and a text T , and that outputs a 
function p. We call p the learning sequence (or sequence of hypotheses) of h given T . Intuitively, β defines how a learner can 
interact with a given text to produce a sequence of conjectures.

We define the interaction operators G, Psd (partially set-driven learning, [22]) and Sd (set-driven learning, [23]) as 
follows. For all learners h, texts T and all i,

G(h, T )(i)= h(T [i]);
Psd(h, T )(i)= h(content(T [i]), i);

Sd(h, T )(i)= h(content(T [i])).
Thus, in set-driven learning, the learner has access to the set of all previous data, but not to the sequence as in G-learning. 
In partially set-driven learning, the learner has the set of data and the length of the input sequence.

Successful learning requires the learner to observe certain restrictions, for example convergence to a correct index. These 
restrictions are formalized in our next definition.

A learning restriction is a predicate δ on a learning sequence and a text. We give the important example of explanatory 
learning (Ex, [9]) defined such that, for all sequences of hypotheses p and all texts T ,
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Conv(p, T )⇔ [∀i : content(T [i + 1])⊆W p(i)⇒ p(i)= p(i + 1)];
Caut(p, T )⇔ [∀i, j :W p(i) ⊂W p( j)⇒ i < j];

NU(p, T )⇔ [∀i, j,k : i ≤ j ≤ k ∧ W p(i) =W p(k) = content(T )⇒W p( j) =W p(i)];
Dec(p, T )⇔ [∀i, j,k : i ≤ j ≤ k ∧ W p(i) =W p(k)⇒W p( j) =W p(i)];
SNU(p, T )⇔ [∀i, j,k : i ≤ j ≤ k ∧ W p(i) =W p(k) = content(T )⇒ p( j)= p(i)];

SDec(p, T )⇔ [∀i, j,k : i ≤ j ≤ k ∧ W p(i) =W p(k)⇒ p( j)= p(i)];
SMon(p, T )⇔ [∀i, j : i < j⇒W p(i) ⊆W p( j)];

Mon(p, T )⇔ [∀i, j : i < j⇒W p(i) ∩ content(T )⊆W p( j) ∩ content(T )];
WMon(p, T )⇔ [∀i, j : i < j ∧ content(T [ j])⊆W p(i)⇒W p(i) ⊆W p( j)].

Fig. 4. Definitions of learning restrictions.

Ex(p, T )⇔ p total ∧ [∃n0∀n≥ n0 : p(n)= p(n0)∧W p(n0) = content(T )].
Furthermore, we formally define the restrictions discussed in Section 1 in Fig. 4 (where we implicitly require the learning 
sequence p to be total, as in Ex-learning ).

A variant on decisiveness is syntactic decisiveness, SynDec, a technically useful property defined as follows.

SynDec(p, T )⇔ [∀i, j,k : i ≤ j ≤ k ∧ p(i)= p(k)⇒ p( j)= p(i)].
We combine any two sequence acceptance criteria δ and δ′ by intersecting them; we denote this by juxtaposition (for 
example, all the restrictions given in Fig. 4 are meant to be always used together with Ex). With T we denote the always 
true sequence acceptance criterion (no restriction on learning).

A learning criterion is a tuple (C, β, δ), where C is a set of learners (the admissible learners), β is an interaction operator 
and δ is a learning restriction; we usually write CTxtβδ to denote the learning criterion, omitting C in case of C =P . We say 
that a learner h ∈ C CTxtβδ-learns a language L iff, for all texts T for L, δ(β(h, T ), T ). The set of languages CTxtβδ-learned 
by h ∈ C is denoted by CTxtβδ(h). We write [CTxtβδ] to denote the set of all CTxtβδ-learnable classes (learnable by some 
learner in C).

3. Delayable learning restrictions

In this section we present technically useful results which show that learners can always be assumed to be in some 
normal form. We will later always assume our learners to be in the normal form established by Corollary 3.7, the main 
result of this section.

We start with the definition of delayable. Intuitively, a learning criterion δ is delayable iff the output of a hypothesis can 
be arbitrarily (but not indefinitely) delayed.

Definition 3.1. Let �R be the set of all non-decreasing r : N → N with infinite limit inferior, i.e. for all m we have ∀∞n :
r(n)≥m.

A learning restriction δ is delayable iff, for all texts T and T ′ with content(T ) = content(T ′), all p and all r ∈ �R , if 
(p, T ) ∈ δ and ∀n : content(T [r(n)]) ⊆ content(T ′[n]), then (p ◦ r, T ′) ∈ δ. Intuitively, as long as the learner has at least as 
much data as was used for a given conjecture, then the conjecture is permissible. Note that this condition holds for T = T ′
if ∀n : r(n) ≤ n.

Note that the intersection of two delayable learning criteria is again delayable and that all learning restrictions considered 
in this paper are delayable.

As the name suggests, we can apply delaying tricks (tricks which delay updates of the conjecture) in order to achieve 
fast computation times in each iteration (but of course in the limit we still spend an infinite amount of time). This gives us 
equally powerful but total learners, as shown in the next theorem. While it is well-known that, for many learning criteria, 
the learner can be assumed total, this theorem explicitly formalizes conditions under which totality can be assumed (note 
that there are also natural learning criteria where totality cannot be assumed, such as consistent learning [11]).

Theorem 3.2. For any delayable learning restriction δ, we have [TxtGδ] = [RTxtGδ].

Proof. Let h be a TxtGδ-learner and e such that ϕe = h. We define a function M such that, for all σ ,

M(σ )= {σ ′ ⊆ σ |�e(σ
′)≤ |σ |} ∪ {λ}.
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We let h′ be the learner such that, for all σ ,

h′(σ )= h(max(M(σ )).

As h is required to have only total learning sequences, we have that h(λ)↓; thus, h′ is total computable using that M
is total computable. Let L = TxtGδ(h), L ∈ L and let T be a text for L. Let r(n) = | max(M(T [n]))|. Then we have, for 
all n, h′(T [n]) = h(T [r(n)]). Thus, if we show that r ∈ �R we get that h′ TxtGδ-learns L from T using δ delayable. From the 
definition of M we get that r is non-decreasing and, for all n, r(n) ≤ n. For any given m there are n, n′ with n′ ≥ n ≥m such 
that �e(T [n]) ≤ n′ . Thus, we have r(n′) ≥m and, as r is non-decreasing, we get ∀∞n : r(n) ≥m as desired. �

Next we define another useful property, which can always be assumed for delayable learning restrictions.

Definition 3.3. A locking sequence for a learner h on a language L is any finite sequence σ of elements from L such that h(σ )

is a correct hypothesis for L and, for sequences τ with elements from L, h(σ � τ ) = h(σ ) [2]. It is well known that every 
TxtGEx-learner h learning a language L has a locking sequence on L. We say that a learning criterion I allows for strongly 
locking learning iff, for each I-learnable class of languages L there is a learner h such that h I-learns L and, for each L ∈ L
and any text T for L, there is an n such that T [n] is a locking sequence of h on L (we call such a learner h strongly locking).

With this definition we can give the following theorem.

Theorem 3.4. Let δ be a delayable learning criterion. Then RTxtGδEx allows for strongly locking learning.

Proof. Let L and h ∈R be such that h RTxtGδEx-learns L. We define a set M(ρ, σ), for all ρ and σ such that

M(ρ,σ )= {τ | content(τ )⊆ content(σ )∧ |τ | ≤ |σ | ∧ h(ρ � τ ) �= h(ρ)}.
Thus, M contains sequences with elements from content(σ ) such that h makes a mind change on ρ extended with such a 
sequence. Additionally, we define a function f recursively such that, for all σ , x and T ,

f (λ)= λ;

f (σ � x)=
{

f (σ ), if M( f (σ ),σ � x)= ∅;
f (σ ) �min(M( f (σ ),σ � x)) � σ � x, otherwise;

f (T )= lim
n→∞ f (T [n]).

Intuitively, f searches for longer and longer sequences which are not locking sequences. We let h′ be the learner such that, 
for all σ ,

h′(σ )= h( f (σ )).

Note that f is total (as h is total), and thus h′ is total.
Let L ∈L and T be a text for L. We will show now that f (T ) converges to a finite sequence.

Claim 1. We have that f (T ) is finite.

Proof of Claim 1. By way of contradiction, suppose that f (T ) is infinite, and let T ′ = f (T ). As f (T ) is infinite we get, for 
every n, an m > n such that f (T [m]) �= f (T [n]). Then we have

content(T [n])⊆ content( f (T [m])).
As this holds for every n, we get content(T ) ⊆ content( f (T )). From the construction of f we know that content( f (T )) ⊆
content(T ). Thus, f (T ) is a text for L. From the construction of M we get that h does not TxtGEx-learns L from T ′ as h
changes infinitely often its mind, a contradiction. � (for Claim 1)

Next, we will show that h′ converges on T and h′ is strongly locking. As f (T ) is finite, there is n0 such that, for all 
n ≥ n0,

f (T [n])= f (T [n0]).
As f (T ) converges to f (T [n0]), we get from the construction of M that f (T [n0]) is a locking sequence of h on L. 

Therefore we get that, for all τ ∈ Seq(L),

f (T [n0])= f (T [n0] � τ )
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and therefore

h′(T [n0])= h′(T [n0] � τ ).

Thus, h′ is strongly locking and converges on T .
To show that h′ fulfills the δ-restriction, we let T ′ = f (T [n0]) � T be a text for L starting with f (T [n0]). Let r be such 

that

r(n)=
{
| f (T [n])|, if n≤ n0;
r(n0)+ n− n0, otherwise.

We now show

h(T ′[r(n)])= h′(T [n]).
Case 1: n ≤ n0. Then we get

h(T ′[r(n)])= h(T ′[| f (T [n])|])
= h( f (T [n])) as T ′ = f (T [n0]) � T

= h′(T [n]).
Case 2: n > n0. Then we get

h(T ′[r(n)])= h(T ′[r(n0)+ n− n0])
= h(T ′[| f (T [n0])| + n− n0])
= h( f (T [n0]) � T [n− n0]) as T ′ = f (T [n0]) � T

= h( f (T [n0])) as f (T [n0]) is a locking sequence of h

= h′(T [n]).
Thus, all that remains to be shown is that r ∈ �R . Obviously, r is non-decreasing. Especially, we have that r is strongly 
monotone increasing for all n > n0. Thus we have, for all m, ∀∞n : r(n) ≥ m. Finally we show that content(T ′[r(n)]) ⊆
content(T [n]). From the construction of f we have, for all n ≤ n0, content(T ′[| f (T [n])|]) ⊆ content(T [n]). From the con-
struction of r and T ′ we get that, for all n, content(T ′[r(n)]) ⊆ content(T [n]). �

Next we define semantic and pseudo-semantic restrictions introduced in [14]. Intuitively, semantic restrictions allow one 
to replace hypotheses by equivalent ones; pseudo-semantic restrictions allow the same, as long as no new mind changes 
are introduced.

Definition 3.5. For all total functions p ∈P, we let

Sem(p)= {p′ ∈P | ∀i :W p(i) =W p′(i)};
Mc(p)= {p′ ∈P | ∀i : p′(i) �= p′(i + 1)⇒ p(i) �= p(i + 1)}.2

A sequence acceptance criterion δ is said to be a semantic restriction iff, for all (p, q) ∈ δ and p′ ∈ Sem(p), (p′, q) ∈ δ.
A sequence acceptance criterion δ is said to be a pseudo-semantic restriction iff, for all (p, q) ∈ δ and p′ ∈ Sem(p) ∩Mc(p), 

(p′, q) ∈ δ.

We note that the intersection of two (pseudo-)semantic learning restrictions is again (pseudo-)semantic. All learning 
restrictions considered in this paper are pseudo-semantic, and all except Conv, SNU, SDec and Ex are semantic.

The next lemma shows that, for every pseudo-semantic learning restriction, learning can be done syntactically decisively.

Lemma 3.6. Let δ be a pseudo-semantic learning criterion. Then we have

[RTxtGδ] = [RTxtGSynDecδ].

2 Note that “Sem” is mnemonic for “semantic” and “Mc” for “mind change”.
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Proof. Let a TxtGδ-learner h ∈R be given. We define a learner h′ ∈R such that, for all σ ,

h′(σ )=
{

pad(h(σ ),σ ), if σ = λ or h(σ ) �= h(σ−);
h′(σ−), otherwise.

The correctness of this construction is straightforward to check. �
As SynDec is a delayable learning criterion, we get the following corollary by taking Theorems 3.2 and 3.4 and Lemma 3.6

together. We will always assume our learners to be in this normal form in this paper.

Corollary 3.7. Let δ be pseudo-semantic and delayable. Then TxtGδEx allows for strongly locking learning by a syntactically decisive 
total learner.

Fulk showed that any TxtGEx-learner can be (effectively) turned into an equivalent learner with many useful prop-
erties, including strongly locking learning [8]. One of the properties is called order-independence, meaning that on any 
two texts for a target language the learner converges to the same hypothesis. Another property is called rearrangement-
independence, where a learner h is rearrangement-independent if there is a function f such that, for all sequences σ , 
h(σ ) = f (content(σ ), |σ |) (intuitively, rearrangement independence is equivalent to the existence of a partially set-driven 
learner for the same language). We define the collection of all the properties which Fulk showed a learner can have to be 
the Fulk normal form as follows.

Definition 3.8. We say a TxtGEx-learner h is in Fulk normal form if (1)–(5) hold.

1. h is order-independent.
2. h is rearrangement-independent.
3. If h TxtGEx-learns a language L from some text, then h TxtGEx-learns L.
4. If there is a locking sequence of h for some L, then h TxtGEx-learns L.
5. For all L ∈ TxtGEx(h), h is strongly locking on L.

Fulk showed the following Theorem.

Theorem 3.9 ([8, Theorem 13]). Every TxtGEx-learnable set of languages has a TxtGEx-learner in Fulk normal form; furthermore, any 
given TxtGEx-learner can be constructively turned into an equivalent TxtGEx-learner in Fulk normal form.

4. Full-information learning

In this section we consider various versions of cautious learning and show that all of our variants are either no restriction 
to learning, or equivalent to conservative learning as is shown in Fig. 5.

Additionally, we will show that every cautious TxtGEx-learnable language is conservative TxtGEx-learnable which implies 
that [TxtGConvEx], [TxtGWMonEx] and [TxtGCautEx] are equal. Last, we will separate these three learning criteria from 
strongly decisive TxtGEx-learning and show that [TxtGSDecEx] is a proper superset.

Theorem 4.1. We have that any conservative learner can be assumed cautious and strongly decisive, i.e.

[TxtGConvEx] = [TxtGConvSDecCautEx].

Proof. Let h ∈R and L be such that h TxtGConvEx-learns L. We define, for all σ , a set M(σ ) as follows

M(σ )= {τ | τ ⊆ σ ∧ ∀x ∈ content(τ ) :�h(τ )(x)≤ |σ |}.
We let, for all σ ,

h′(σ )= h(max(M(σ ))).

Let T be a text for a language L ∈ L. We first show that h′ TxtGEx-learns L from the text T . As h TxtGConvEx-learns L, 
there are n and e such that, for all n′ ≥ n, h(T [n]) = h(T [n′]) = e and We = L. Thus, there is m ≥ n such that, for all 
x ∈ content(T [n]), �h(T [n])(x) ≤m and therefore, for all m′ ≥m, h′(T [m]) = h′(T [m′]) = e.

Next we show that h′ is strongly decisive and conservative; for that we show that, with every mind change, there 
is a new element of the target included in the conjecture which is currently not included but is included in all future 
conjectures; it is easy to see that this property implies both caution and strong decisiveness. Let i and i′ be such that 
max(M(T [i′])) = T [i]. This implies that
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T

Caut

Caut∞

CautTar CautFin

Fig. 5. Relation of different variants of cautious learning. A black line indicates inclusion (bottom to top); all and only the black lines meeting the gray line 
are proper inclusions.

content(T [i])⊆Wh′(T [i′]).
Let j′ > i′ such that h′(T [i′]) �= h′(T [ j′]). Then there is j > i such that max(M(T [ j′])) = T [ j] and therefore

content(T [ j])⊆Wh′(T [ j′]).
Note that in the following diagram j could also be between i and i′ .

h′(T [i′])= h(T [i]) h′(T [ j′])= h(T [ j])
content(T [i])⊆Wh(T [i]) content(T [ j])⊆Wh(T [ j])

i

mind change h

i′

mind change h′
j

mind change h

j′

mind change h′

no mind change h′

As h is conservative and content(T [i]) ⊆Wh(T [i]) , there exists � such that i < � < j and T (�) /∈Wh(T [i]) . Then we have, for all 
n ≥ j′ , T (�) ∈Wh′(T [n]) as T (�) ∈ content(max(M(T [ j′]))) ⊆ content(max(M(T [n]))) and content(max(M(T [n]))) ⊆Wh′(T [n]) .

Obviously h′ is conservative as it only outputs (delayed) hypotheses of h (and maybe skip some) and h is conserva-
tive. �

In the following we consider three new learning restrictions. The learning restriction CautFin means that the learner 
never returns a hypothesis for a finite set that is a proper subset of a previous hypothesis. Caut∞ is the same restriction 
for infinite hypotheses. With CautTar the learner is not allowed to ever output a hypothesis that is a proper superset of the 
target language that is learned.

Definition 4.2.

CautFin(p, T )⇔ [∀i < j :W p( j) ⊂W p(i)⇒W p( j) is infinite]
Caut∞(p, T )⇔ [∀i < j :W p( j) ⊂W p(i)⇒W p( j) is finite]

CautTar(p, T )⇔ [∀i : ¬(content(T )⊂W p(i))]

The proof of the following theorem is essentially the same as given in [19] to show that cautious learning is a proper 
restriction of TxtGEx-learning, we now extend it to strongly decisive learning. Note that a different extension was given 
in [3] (with an elegant proof exploiting the undecidability of the halting problem), pertaining to behaviorally correct learning. 
The proof in [3] as well as our proof would also carry over to the combination of these two extensions.

Theorem 4.3. There is a class of languages that is TxtGSDecMonEx-learnable, but not TxtGCautEx-learnable.

Proof. Let h be a Psd-learner as follows,

∀D, t : h(D, t)= ϕmax(D)(t),

and L = TxtPsdSDecMonEx(h). Suppose L is TxtGCautEx-learnable through learner h′ ∈R. We define, for all σ and t , the 
total computable predicate Q (σ , t) as

Q (σ , t)⇔ content(σ )⊂W t ′ .
h (σ )
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We let ind be such that, for every set D , W ind(D) = D . Using ORT we define p and e ∈R strictly monotone increasing 
such that for all n and t ,

W p = range(e);

ϕe(n)(t)=
{

ind(content(e[n+ 1])), if Q (e[n+ 1], t);
p, otherwise.

Case 1: For all n and t , Q (e[n + 1], t) does not hold. Then we have ϕe(n)(t) = p for all n, t . Thus W p ∈ L, as for any 
D ⊆W p , h(D, t) = ϕmax(D)(t) = p. But h′ does not TxtGCautEx-learn W p from the text e as, for all n and t , content(e[n]) is 
not a proper subset of W t

h′(e[n]) although W p is infinite.
Case 2: There is a minimal n and t such that Q (e[n + 1], t) holds. Then we have content(e[n + 1]) ∈ L as we will 

show now. Let T be a text for content(e[n + 1]). As e is monotone increasing we have that e(n) is the maximal element 
in content(e[n + 1]). Additionally, for all t′ ≥ t , we have ϕe(n)(t′) = ϕe(n)(t) = ind(content(e[n + 1])). As h makes only one 
mind change the restrictions of strong decisiveness and monotonicity hold. Thus, there is n0 such that, for all n ≥ n0, 
h(content(T [n]), n) = h(content(T [n0]), n0) = ind(content(e[n + 1])), i.e. content(e[n + 1]) ∈L.

The learner h′ does not TxtGCautEx-learn content(e[n +1]) since we know from the predicate Q that content(e[n +1]) ⊂
Wh′(e[n+1]) and the cautious learner h′ must not change to a proper subset of a previous hypothesis. �

The following theorem contradicts a theorem given as an exercise in [19] (Exercise 4.5.4B).

Theorem 4.4. For δ ∈ {Caut, CautTar, CautFin} we have

[TxtGδEx] = [TxtGConvEx].

Proof. We get the inclusion [TxtGConvEx] ⊆ [TxtGCautEx] as a direct consequence from Theorem 4.1. Obviously we have 
[TxtGCautEx] ⊆ [TxtGCautTarEx] and [TxtGCautEx] ⊆ [TxtGCautFinEx]. Thus, it suffices to show [TxtGδEx] ⊆ [TxtGConvEx].

Let L be TxtGδEx-learnable by a syntactically decisive learner h ∈R (see Corollary 3.7). Using the S-m-n Theorem we 
get a function p ∈R such that, for all σ ,

W p(σ ) =
⋃
t∈N

{
W t

h(σ )
, if ∀ρ ∈ (W t

h(σ )
)∗, |σ � ρ| ≤ t : h(σ � ρ)= h(σ );

∅, otherwise.

We let W p(σ ),t′ be W p(σ ) where only the union over t ≤ t′ is considered.
We let Q be the following computable predicate.

Q (σ̂ ,σ )⇔ h(σ̂ ) �= h(σ ) ∧ content(σ ) � W p(σ̂ ),|σ |−1.

For given sequences σ and τ we say τ � σ if

content(τ )⊆ content(σ ) ∧ |τ | ≤ |σ |.
This means that, for every σ , the set of all τ such that τ � σ is finite and computable. We define a learner h′ such that 
h′(σ ) is of the form p(σ̂ ) for some σ̂ satisfying content(σ̂ ) ⊆ content(σ ). For a given sequence σ �= λ let σ̂ be such that 
h′(σ−) = p(σ̂ ).

∀σ : h′(σ )=

⎧⎪⎨
⎪⎩

p(λ), if σ = λ;
p(τ � σ), else, if ∃τ , σ̂ ⊆ τ � σ : Q (σ̂ , τ ); 3

h′(σ−), otherwise.

This means h′ only changes its hypothesis if Q ensures that h made a mind change and that the previous hypothesis does 
not contain something of the new input data. We first show that h′ is conservative. Let σ and σ̂ be such that h′(σ−) = p(σ̂ )

and let τ � σ be such that Q (σ̂ , τ ) and σ̂ ⊆ τ . Suppose now, by way of contradiction, content(σ ) ⊆Wh′(σ−) =W p(σ̂ ) . We 
now have

content(τ )⊆ content(σ )⊆Wh′(σ−) =W p(σ̂ ) ⊆Wh(σ̂ ).

Let t0 be minimal such that content(τ ) ⊆W t0
h(σ̂ )

. From Q (σ̂ , τ ) we know

content(τ ) � W p(σ̂ ),|τ |−1;

3 We choose the least such τ , if existent.
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this shows t0 ≥ |τ |. Since we chose t0 minimally and content(τ ) ⊆W p(σ̂ ) , we have that, in the definition of W p(σ̂ ) the first 
case holds at least until t = t0, as otherwise we would not include all of content(τ ). This shows

∀ρ ∈ (W t0
h(σ̂ )

)∗, |σ̂ � ρ| ≤ t0 : h(σ̂ � ρ)= h(σ̂ ).

This is a contradiction to the fact that we can choose ρ such that σ̂ � ρ = τ , i.e.

τ ∈ (W t0
h(σ̂ )

)∗ ∧ |τ | ≤ t0 ∧ σ̂ ⊆ τ ∧ h(τ ) �= h(σ̂ ).

Thus, h′ is conservative.
Second, we will show that h′ converges on any text T for a language L ∈ L. Let L ∈ L and T be a text for L. Thus, 

h converges on T . Suppose h′ does not converge on T . Let (p(σi))i∈N the corresponding sequence of hypotheses. Then 
T ′ =⋃

i∈N σi is a text for L as for every i ∈N, T (i) is included once a mind change after seeing T (i) occurs. As h′ infinitely 
often changes its mind, we have that, for infinitely many σi , there is τi such that σi ⊆ τi ⊆ σi+1 with Q (σi, τi). As Q (σi, τi)

means that h(σi) �= h(τi), h diverges on T ′ , a contradiction.
Third we will show that h′ converges to a correct hypothesis. Let σ be such that h′ converges to p(σ ) on T . Thus, we 

have that, for all τ ⊇ σ with content(τ ) ⊆ L, we have ¬Q (σ , τ ), i.e.

h(σ )= h(τ ) ∨ content(τ )⊆W p(σ ),|τ |−1.

We consider the following two cases.
Case 1: For all τ ⊇ σ with content(τ ) ⊆ L, h(σ ) = h(τ ). Then σ is a locking sequence for h on L. In particular Wh(σ ) = L

and thus W p(σ ) =Wh(σ ) = L.
Case 2: There is a τ ⊇ σ with content(τ ) ⊆ L and h(σ ) �= h(τ ). Let any such τ of minimal length be fixed. For all x ∈ L we 

have, as h is syntactically decisive, h(σ ) �= h(τ � x); as ¬Q (σ , τ � x) we get content(τ � x) ⊆W p(σ ),|τ | ⊆Wh(σ ) . This shows 
L ⊆W p(σ ) ⊆Wh(σ ) and also L finite, as W |τ |h(σ )

is finite.
(a) δ = Caut. We have that the learner must not change to a proper subset of a previous hypothesis and this means that 

Wh(σ ) = L.
(b) δ = CautTar . The learner h never returns a hypothesis which is a proper superset of the language that is learned. Thus 

Wh(σ ) = L.
(c) δ = CautFin . As h must not change to a finite subset of a previous hypothesis and L is finite, we get Wh(σ ) = L.
In either case we now have

L =W p(σ ),|τ | =Wh(σ ).

Thus, W p(σ ) = L. �
From the definitions of the learning criteria we have [TxtGConvEx] ⊆ [TxtGWMonEx]. Using Theorem 4.4 and the equiv-

alence of weakly monotone and conservative learning (using G) [16,12], we get the following.

Corollary 4.5. We have

[TxtGConvEx] = [TxtGWMonEx] = [TxtGCautEx].

Using Corollary 4.5 and Theorem 4.1 we get that weakly monotone TxtGEx-learning is included in strongly decisive 
TxtGEx-learning. Theorem 4.3 shows that this inclusion is proper.

Corollary 4.6. We have

[TxtGWMonEx] ⊂ [TxtGSDecEx].

The next theorem is the last theorem of this section and shows that forbidding to go down to strict infinite subsets of 
previously conjectured sets is no restriction.

Theorem 4.7. We have

[TxtGCaut∞Ex] = [TxtGEx].

Proof. Obviously we have [TxtGCaut∞Ex] ⊆ [TxtGEx]. Thus, we have to show that [TxtGEx] ⊆ [TxtGCaut∞Ex]. Let L be a 
set of languages and h be a learner such that h TxtGEx-learns L and h is strongly locking on L (see Corollary 3.7). We 
define, for all σ and t , the set Mt

σ such that

Mt
σ = {τ | τ ∈ Seq(W t ∪ content(σ )) ∧ |σ � τ | ≤ t}.
h(σ )
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Using the S-m-n Theorem we get a function p ∈R such that

∀σ :W p(σ ) = content(σ )
⋃
t∈N

{
W t

h(σ )
, if ∀ρ ∈ Mt

σ : h(σ � ρ)= h(σ );
∅, otherwise.

We define a learner h′ as

∀σ : h′(σ )=
{

p(σ ), if h(σ ) �= h(σ−);
h′(σ−), otherwise.

We will show now that the learner h′ TxtGCaut∞Ex-learns L. Let L ∈L and a text T for L be given. As h is strongly locking 
there is n0 such that, for all τ ∈ Seq(L), h(T [n0] � τ ) = h(T [n0]) and Wh(T [n0]) = L. Thus we have, for all n ≥ n0, h′(T [n]) =
h′(T [n0]) and Wh′(T [n0]) = W p(T [n0]) = Wh(T [n0]) = L. To show that the learning restriction Caut∞ holds, we assume that 
there are i < j such that Wh′(T [ j]) ⊂Wh′(T [i]) and Wh′(T [ j]) is infinite. W.l.o.g. j is the first time that h′ returns the hypothesis 
Wh′(T [ j]) . Let τ be such that T [i] � τ = T [ j]. From the definition of the function p we get that content(T [ j]) ⊆ Wh′(T [ j]) ⊆
Wh′(T [i]) . Thus, content(τ ) ⊆ Wh′(T [i]) = W p(T [i]) and therefore W p(T [i]) is finite, a contradiction to the assumption that 
Wh′(T [ j]) is infinite. �
5. Decisiveness

In this section the goal is to show that decisive and strongly decisive learning separate (see Theorem 5.3). For this proof 
we adapt a technique known in computability theory as a “priority argument” (note, though, that we are not dealing with 
oracle computations). In order to illustrate the proof with a simpler version, we first reprove that decisiveness is a restriction 
to TxtGEx-learning (as shown in [3]).

For both proofs we need the following lemma, a variant of which is given in [3] for the case of decisive learning; it is 
easy to see that the proof from [3] also works for the cases we consider here.

Lemma 5.1 ([3]). Let L be such that N /∈L and, for each finite set D, there are only finitely many L ∈Lwith D � L. Let δ ∈ {Dec, SDec}. 
Then, if L is TxtGδEx-learnable, it is so learnable by a learner which never outputs an index for N.

Now we get to the theorem regarding decisiveness. Its proof is an adaptation of the proof given in [3] (in fact it uses the 
exact same idea), rephrased as a priority argument. This rephrased version will be modified later to prove the separation of 
decisive and strongly decisive learning.

Theorem 5.2 ([3]). We have

[TxtGDecEx] ⊂ [TxtGEx].

Proof. For this proof we will employ a technique from computability theory known as priority argument. For this technique, 
one has a set of requirements (we will have one for each e ∈N) and a priority on requirements (we will prioritize smaller e
over larger). One then tries to fulfill requirements one after the other in an iterative manner (fulfilling the unfulfilled 
requirement of highest priority without violating requirements of higher priority) so that, in the limit, the entire infinite list 
of requirements will be fulfilled.

We apply this technique in order to construct a learner h ∈P (and a corresponding set of learned sets L = TxtGEx(h)). 
Thus, we will give requirements which will depend on the h to be constructed. In particular, we will use a list of requirement 
(Re)e∈N , where lower e have higher priority. For each e, Re will correspond to the fact that learner ϕe is not a suitable 
decisive learner for L. We proceed with the formal argument.

For each e, let Requirement Re be the disjunction of the following three predicates depending on the h to be constructed.

(i) ∃x: ∀σ ∈ Seq(N \ {x}) : ϕe(σ )↑ ∨Wϕe(σ ) �=N \ {x} and h learns N \ {x}.
(ii) ∃σ ∈ Seq : content(σ ) ⊂Wϕe(σ ) and h learns Wϕe(σ ) and some D with content(σ ) ⊆ D ⊂Wϕe(σ ) .

(iii) ∃σ ∈ Seq :Wϕe(σ ) =N.

If all (Re)e∈N hold, then every learner which never outputs an index for N fails to learn L decisively as follows. For each 
learner ϕe which never outputs an index for N, either (i) of Re holds, implying that some co-singleton is learned by h but 
not by ϕe . Or (ii) holds, then there is a σ on which ϕe generalizes, but will later have to abandon this correct conjecture 
p = ϕe(σ ) in order to learn some finite set D; as, after the change to a hypothesis for D , the text can still be extended to a 
text for W p , the learner is not decisive.4

4 One might wonder why the U-shape can be achieved on a language which is to be learned: after all, those can be avoided, according to the theorem 
that non-U-shaped learning is not a restriction to TxtGEx [3]. However, the price for avoiding it is to output a conjecture for N.
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Thus, all that remains is to construct h in a way that all of (Re)e∈N are fulfilled. In order to coordinate the different 
requirements when constructing h on different inputs, we will divide the set of all possible input sequences into infinitely 
many segments, of which every requirement can “claim” up to two at any point of the algorithm defining h; the chosen 
segments can change over the course of the construction, and requirements of higher priority might “take away” segments 
from requirements with lower priority (but not vice versa). We follow [3] with the division of segments: For any set A ⊂N
we let id(A) =min(N \ A) be the ID of A; for ease of notation, for each finite sequence σ , we let id(σ ) = id(content(σ )). For 
each s, the sth segment contains all σ with id(σ ) = s. We note that id is monotone, i.e.

∀A, B ⊂N : A ⊆ B⇒ id(A)≤ id(B). (1)

The first way of ensuring some requirement Re is via (i); as this part itself is not decidable, we will check a “bounded” 
version thereof. We define, for all e, t, s,

Pe,t(s)⇔ (∀σ ∈ Seq≤t | id(σ )= s) �e(σ ) > t ∨ content(σ ) �⊂W t
ϕe(σ ).

For any e, if we can find an s such that, for all t , we have Pe,t(s), then it suffices to make h learn N \ {s} in order to fulfill 
Re via part (i); this requires control over segment s in defining h.

Note that, if we ever cannot take control over some segment because some requirement with higher priority is already 
in control, then we will try out different s (only finitely many are blocked).

If we ever find a t such that ¬Pe,t(s), then we can work on fulfilling Re via (ii), as we directly get a σ where ϕe over 
the content generalizes. In order to fulfill Re via (ii) we have to choose a finite set D with content(σ ) ⊆ D ⊂ Wϕe(σ ) . We 
will then take control over the segments corresponding to id(D) and id(W t

ϕe(σ )
) (for growing t), but not necessarily over 

segment s, and thus establish Re via (ii). Note that, again, the segments we desire might be blocked; but only finitely many 
are blocked, and we require control over id(D) and id(W t

ϕe(σ )), both of which are at least s (this follows from id being 
monotone, see Equation (1), and from content(σ ) ⊆ D ⊂ W t

ϕe(σ )); thus, we can always find an s for which we can either 
follow our strategy for (i) or for (ii) as just described.

It is tempting to choose simply D = content(σ ), this fulfills all desired properties. The main danger now comes from 
the possibility of ϕe(σ ) being an index for N: this will imply that, for growing t , y = id(W t

ϕe(σ )
) will also be growing 

indefinitely. Of course, there is no problem with satisfying Re , it now holds via (iii); but as soon as at least two requirements 
will take control over segments y for indefinitely growing y, they might start blocking each other (more precisely, the 
requirement of higher priority will block the one of lower priority). We now need to know something about our later 
analysis: we will want to make sure that every requirement Re either (a) converges in which segments to control or (b) 
for all n, there is a time t in the definition of h after which Re will never have control over any segment corresponding to 
IDs ≤ n; in fact, we will show this later by induction (see Claim 2). Any requirement which takes control over segments 
y for indefinitely growing y might be blocked infinitely often, and thus forced to try out different s for fulfilling Re , 
including returning to s that were abandoned previously because of (back then) being blocked by a requirement of higher 
priority. Thus, such a requirement would fulfill neither (a) nor (b) from above. We will avoid this problem by not choosing 
D = content(σ ), but instead choosing a D which grows in ID along with the corresponding W t

ϕe(σ ) . The idea is to start with 
D = content(σ ) and then, as W t

ϕe(σ ) grows, add more elements. For this we make some definitions as follows.

For a finite sequence σ we let id′(σ ) be the least element not in content(σ ) which is larger than all elements of 
content(σ ). For any finite sequence σ and e, t ≥ 0 we let Dt

e,σ be such that

Dt
e,σ =

{
content(σ ), if id(W t

ϕe(σ ))≤ id′(σ );
{0, . . . , id(W t

ϕe(σ ))− 2}, otherwise.

For all e, t and σ with content(σ ) ⊂Wϕe(σ ) we have

content(σ )⊆ Dt
e,σ ⊂Wϕe(σ ). (2)

Thus, we will use the sets Dt
e,σ to satisfy (ii) of Re (in place of D).

We now have all parts that are required to start giving the construction for h. In that construction we will make use of 
a subroutine which takes as inputs a set B of blocked indices, a requirement e and a time bound t , and which finds triples 
(x, y, σ) with x, y /∈ B such that

Pe,t(x) or
[
content(σ )⊂W t

ϕe(σ ) ∧ id(Dt
e,σ )= x∧ id(W t

ϕe(σ ))= y
]
. (3)

We call (x, y, σ) fulfilling Equation (3) for given t and e a t-witness for Re . The subroutine is called findWitness and is 
given in Algorithm 1.

We now formally show termination and correctness of our subroutine.

Claim 1. Let e, t and a finite set B be given. The algorithm findWitness on (B, e, t) terminates and returns a t-witness (x, y, σ)

for Re such that x, y /∈ B.
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Algorithm 1: findWitness(B, e, t).

1 Input: finite set B , e, t ∈N;
2 for s = 0 to max(B) + 1 do
3 if Pe,t (s) and s /∈ B then
4 return (s, s, 0);
5 else if ¬Pe,t (s) then
6 Let σ be minimal with id(σ ) = s and content(σ ) ⊂W t

ϕe (σ )
;

7 x ← id(Dt
e,σ );

8 y ← id(W t
ϕe (σ )

);

9 if x /∈ B and y /∈ B then
10 return (x, y, σ);

11 return error;

Algorithm 2: Priority construction Dec.

1 for t = 0 to ∞ do
2 for e = 0 to t do
3 if t = 0, we(t − 1) is undefined or we(t − 1) is not (e, t)-legal then
4 Let B be the set of IDs blocked by any e′ < e;
5 (x, y, σ) ← findWitness(B, e, t);
6 else
7 (x, y, σ) ← we(t − 1);

8 we(t) ← (x, y, σ);
9 if Pe,t (x) then

10 foreach τ ∈ Seq≤t with id(τ ) = x do
11 h(τ ) ← q(x);

12 else
13 foreach τ ∈ Seq≤t with content(τ ) = Dt

e,σ do
14 h(τ ) ← p(e, t, σ);

15 foreach τ ∈ Seq≤t with id(τ ) = y do
16 h(τ ) ← ϕe(σ );

Proof of Claim 1. From the condition in line 5 we see that the search in line 6 is necessarily successful, showing termination. 
Using the monotonicity of id from Equation (1) on Equation (2) we have that the subroutine findWitness cannot return
error on any arguments (B, e, t): for s = max(B) + 1, we either have Pe,t(s) or the x and y chosen are larger than 
id(σ ) = s > max(B). � (for Claim 1)

With the subroutine given above, we now turn to the priority construction for defining h detailed in Algorithm 2. This 
algorithm assigns witness tuples to more and more requirements, trying to make sure that they are t-witnesses, for larger 
and larger t . For each e, we(t) will be the witness tuple associated with Re after t iterations (defined for all t ≥ e). We say 
that a requirement Re blocks an ID n iff n ∈ {x, y} for the witness tuple we(t) = (x, y, σ) currently associated with Re . We 
say that a tuple (x, y, σ) is (e, t)-legal iff it is a t-witness for Re and x and y are not blocked by any Re′ with e′ < e. Clearly, 
it is decidable whether a triple is (e, t)-legal.

In order to define the learner h we will need some functions giving us indices for the languages to be learned. To that 
end, let p, q ∈R (using the S-m-n Theorem) be such that

∀n :Wq(n) =N \ {n};
∀e, t,σ :W p(e,t,σ ) = Dt

e,σ .

Since Dt
e,σ is computable in t, e, σ , we can choose p such that, for any t, t′, e, e′, σ , σ ′ with Dt

e,σ = Dt′
e′,σ ′ we have 

p(e, t, σ) = p(e′, t′, σ ′). To increase readability, we allow assignments to values of h for arguments on which h was al-
ready defined previously; in this case, the new assignment has no effect.

Regarding Algorithm 2, note that lines 3–8 make sure that we have an appropriate witness tuple. We will later show 
that the sequence of assigned witness tuples will converge (for learners never giving a conjecture for N). Lines 9–11 will 
try to establish the requirement Re via (i), once this fails it will be established in lines 12–16 via (ii).

After this construction of h, we let L = TxtGEx(h) be the target to be learned. First note that the IDs blocked by different 
requirements are always disjoint (at the end of an iteration of t). As the major part of the analysis, we show the following 
claim by induction, showing that, for each e, either the triple associated with Re converges or it grows arbitrarily in both 
its x and y value (this is what we earlier had to carefully choose the D for).
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Claim 2. For all e we have Re and, for all n, there is t0 such that either

∀t ≥ t0 : Re does not block any ID ≤ n at iteration t

or

∀t ≥ t0 : we(t)= we(t0).

Proof of Claim 2. As our induction hypothesis, let e be given such that the claim holds for all e′ < e.
Case 1: There is t0 such that ∀t ≥ t0 : we(t) = we(t0).
Then, for all t , (x, y, σ) = we(t0) is a t-witness for Re; in the case of ∀t : Pe,t(x), we have that, for all but finitely many 

τ with id(τ ) = x, h(τ ) = q(x), and index for N \ {x}; this implies N \ {x} ∈L, which shows Re .
Otherwise we have, for all t ≥ t0, Dt

e,σ = Dt0
e,σ . Furthermore we get, for all but finitely many τ with content(τ ) = Dt0

e,σ , 
h(τ ) = p(e, t, σ), and index for Dt0

e,σ ; this implies Dt0
e,σ ∈ L. Consider now all those τ with id(τ ) = y. If id(Dt0

e,σ ) = y, then 
h is already defined on infinitely many such τ , namely in case of content(τ ) = Dt0

e,σ . However, we have that Dt0
e,σ is a proper

subset of Wϕe(σ ) , which shows that, on any text for Wϕe(σ ) , h will eventually only output ϕe(σ ), which gives Wϕe(σ ) ∈ L
as desired and, thus, Re .

Case 2: Otherwise.
For each ID s there exists at most finitely many σ with id(σ ) = s and σ is used in the witness triple for Re ; this follows 

from the choice of σ in the subroutine findWitness as a minimum, where, for larger t , all previously considered σ are 
still considered (so that the chosen minimum might be smaller for larger t , but never go up, which shows convergence). 
A triple is only abandoned if it is not legal any more; this means it is either blocked or it is not a t-witness triple for 
some t . Using the induction hypothesis, the first can only happen finitely many times for any given tuple. Thus, the witness 
tuple changes infinitely many times. Also using the induction hypotheses, there is some time t0 after which all requirements 
with higher priority either do not block any elements below n or are converged. From the definition of findWitness, we 
now see that both x and y in the witness tuple found for e grow above n. For this we also use our specific choice of D as 
growing along with the ID of the associated W t

ϕe(σ ) and we use that any witness tuple with a σ with id(σ ) = s has x and 
y value of at least s, due to the monotonicity of id.

To show Re (we will show (iii)), let t1 be the maximum over all t0 existing for the e′ < e for which the limiting value 
of we′ (·) converges, by the induction hypothesis and e. Let (x, y, σ) = we(t1) be the t1-witness triple chosen for Re in 
iteration t1. Suppose, by way of contradiction, that ϕe(σ ) is not an index for N; let n = id(Wϕe(σ )). Let t2 be the maximum 
over all t0 found by the induction hypothesis for all e′ < e with the chosen n. Since the triple (x, y, σ) is (e, t)-legal for all 
t ≥ t2, we get a contradiction to the unbounded growth of the witness triple.

This shows that ϕe(σ ) is an index for N, and thus we have Re . � (for Claim 2)

With the last claim we now see that all requirement are satisfied. This implies that L cannot be TxtGDecEx-learned by 
a learner never using an index for N as conjecture.

We have that N /∈ L. Furthermore, for any ID s, there are only finitely many sets in L with that ID; this implies that, 
for every finite set D , there are only finitely many elements L ∈ L with D � L. Thus, using Lemma 5.1, L is not decisively 
learnable at all. �

While the previous theorem showed that decisiveness poses a restriction on TxtGEx-learning, the next theorem shows 
that the requirement of strong decisiveness is even more restrictive. The proof follows the proof of Theorem 5.2, with some 
modifications.

Theorem 5.3. We have

[TxtGSDecEx] ⊂ [TxtGDecEx].

Proof. We use the same language and definitions as in the proof of Theorem 5.2. The idea of this proof is as follows. 
We build a set L with a priority construction just as in the proof of Theorem 5.2, the only essential change being in the 
definition of the hypothesis p(e, t, σ): the change from ϕe(σ ) to p(e, t, σ) and back to ϕe(σ ) on texts for Wϕe(σ ) is what 
made L not decisively learnable. Thus, we will change p(e, t, σ) to be a hypothesis for Wϕe(σ ) as well – as soon as ϕe

changed its hypothesis on an extension of σ , and otherwise it is a hypothesis for Dt
e,σ as before. This will make h decisive on 

texts for Wϕe(σ ) , but ϕe will not be strongly decisive.
Furthermore, we will make sure that for sequences with ID s, only conjectures for sets with ID s are used, so that 

indecisiveness can only possibly happen within a segment. Now the last source of L not being decisively learnable is as 
follows. When different requirements take turns with being in control over the segment, they might introduce returns to 
abandoned conjectures. To counteract this, we make sure that any conjecture which is ever abandoned on a segment of ID 
s is for N \ {s}, which will give decisiveness.
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Algorithm 3: Priority construction SDec.

1 for t = 0 to ∞ do
2 for e = 0 to t do
3 if t = 0, we(t − 1) is undefined or we(t − 1) is not (e, t)-legal then
4 Let B be the set of IDs blocked by any e′ < e;
5 (x, y, σ) ← findWitness(B, e, t);
6 else
7 (x, y, σ) ← we(t − 1);

8 we(t) ← (x, y, σ);
9 if Pe,t (x) then

10 foreach τ ∈ Seq≤t with id(τ ) = x do
11 h(τ ) ← q(x);

12 else
13 if ∃τ ∈ Seq≤t (Dt

e,σ ) : ϕe(σ � τ )↓t �= ϕe(σ ) then
14 foreach τ ∈ Seq≤t with id(τ ) = y do
15 h(τ ) ← g(e, σ , y);

16 else
17 foreach τ ∈ Seq≤t with content(τ ) = Dt

e,σ do
18 h(τ ) ← p′(e, t, σ);

We first define an alternative p′ for the function p from that proof with the S-m-n Theorem such that, for all e, t, σ ,

W p′(e,t,σ ) =
{

Wϕe(σ ), if ∃τ with content(τ )⊆ Dt
e,σ : ϕe(σ � τ )↓ �= ϕe(σ );

Dt
e,σ , otherwise.

As we have Dt
e,σ ⊆ Wϕe(σ ) , this is a valid application of the S-m-n Theorem. Just as with p in the proof of the previous 

theorem, since Dt
e,σ is computable in t, e, σ , we can choose p′ such that, for any t, t′, e, e′, σ , σ ′ with Dt

e,σ = Dt′
e′,σ ′ we have 

p′(e, t, σ) = p′(e′, t′, σ ′). We also want to replace the output of h according to line 16 of Algorithm 2. To that end, let g ∈R
be as given by the S-m-n Theorem such that, for all e and σ ,

W g(e,σ ,y) =Wϕe(σ ) \ {y}.
We construct now a learner h again according to a priority construction, as given in Algorithm 3. Note that lines 1–12

are identical with the construction from Algorithm 2 and lines 3–8 again make sure that we have an appropriate witness 
tuple and lines 9–11 try to establish the requirement Re via (i). The main difference lies in the way that Re is established 
once this fails in lines 12–18 via (ii): Here we need to check for a mind change and adjust what language h should learn 
accordingly.

It is easy to check that h, on any sequence σ , gives conjectures for languages of the same ID as that of σ . Thus, 
indecisiveness of h can only occur within a segment.

Next we will modify h to avoid indecisiveness from different requirements taking turns controlling the same segment. 
With the S-m-n Theorem we let f ∈R be such that, for all σ ,

W f (σ ) =
{
N \ {id(σ )}, if ∃τ with id(σ ) /∈ content(τ ) : h(σ ) �= h(σ � τ );
Wh(σ ), otherwise.

Let h′ be such that, for all σ ,

h′(σ )=
{

h′(σ−), if σ �= λ and h(σ )= h(σ−);
f (σ ), otherwise.

We now let L = TxtGDecEx(h′). It is easy to see that h′ is decisive on all texts where it always makes an output, since 
indecisiveness can again only happen within a segment, and f poisons any possible non-final conjectures within a segment.

Let a strongly decisive learner h for L be given which never makes a conjecture for N (we are reasoning with Lemma 5.1
again). Let e be such that ϕe = h. Reasoning as in the proof of Theorem 5.2, we see that there is a triple (x, y, σ) such that 
we converges to that triple in the construction of h′ . If, for all t , Pe,t(x), then we have that N \ {x} ∈ L (on any sequences 
with ID x, h′ gives an output for N \ {x}, and it converges). Assume now that there is t0 such that, for all t ≥ t0, we have 
¬Pe,t(x).

Case 1: There is τ with content(τ ) ⊆ Dt
e,σ such that ϕe(σ � τ ) �= ϕe(σ ).

Let T be a text for L =Wϕe(σ ) . Then h′ on T converges to an index for L, giving L ∈ L. But this shows that h = ϕe was 
not strongly decisive on any text for L starting with σ � τ , a contradiction.
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Case 2: Otherwise.
Let T be a text for L = Dt

e,σ . Then h′ on T converges to an index for L, giving L ∈ L. But h = ϕe converges on any text 
for L starting with σ to ϕe(σ ), a contradiction to Dt

e,σ ⊂Wϕe(σ ) (so the convergence is not to a correct hypothesis).
In both cases we get the desired contradiction. �

6. Set-driven learning

In this section we give theorems regarding set-driven learning. For this we build on the result that set-driven learning 
can always be done conservatively [16].

First we show that any conservative set-driven learner can be assumed to be cautious and syntactically decisive, an 
important technical lemma.

Lemma 6.1. We have

[TxtSdEx] = [TxtSdConvSynDecEx].
In other words, every set-driven learner can be assumed conservative and syntactically decisive. Furthermore, we can assume the 
learner to be syntactically decisive on all texts, not just texts for learned languages.

Proof. Let a set-driven learner h be given. Following [16] we can h assume to be conservative. We define a learner h′ such 
that, for all finite sets C ,

h′(C)=
{

pad(h(C),0), if ∀D ⊆ C : h(D)= h(C)→∀D ′, D ⊆ D ′ ⊆ C : h(D ′)= h(D);
pad(h(C), |C | + 1), otherwise.

Let L = TxtSdConvEx(h). We will show that h′ is syntactically decisive and TxtSdConvEx-learns L. Let L ∈ L be given and 
let T be a text for L. First, we show that h′ TxtEx-learns L from T . As h is a set-driven learner there is n0 such that 
∀n ≥ n0 : h(content(T [n0])) = h(content(T [n])) and Wh(content(T [n0])) = L. We will show that, for all T [n] with n ≥ n0, the 
first condition in the definition of h′ holds. Let n ≥ n0 and suppose there are D and D ′ with

D ⊆ content(T [n]),
h(D)= h(content(T [n]))= h(content(T [n0]))

and

D ⊆ D ′ ⊆ content(T [n]),
h(D) �= h(D ′).

As Wh(D) = L and h is conservative, h must not change its hypothesis. Thus, for all D ′ with D ⊆ D ′ ⊆ L we get h(D ′) = h(D), 
a contradiction.

Thus we have, for all n ≥ n0,

h′(content(T [n]))= h′(content(T [n0]))
= pad(h(content(T [n0])),0)

and Wh′(content(T [n0])) =Wpad(h(content(T [n0])),0) = L, i.e. h′ TxtGEx-learns L.
Second, we will show that h′ is conservative. Whenever h makes a mind change, h′ will also make a mind change; as, 

for all n, Wh(content(T [n])) =Wh′(content(T [n])) , we have that h′ is conservative in these cases. Thus, we have to show that h′ is 
conservative whenever it changes its mind because the first condition in the definition does not hold. Let n such that

h′(content(T [n])) �= h′(content(T [n− 1]))
because the first condition in the definition of h′ is violated. Let C = content(T [n]). Thus, there are D and D ′ with D ⊆ D ′ ⊆
C such that h(D) = h(C) and h(D ′) �= h(C). We consider the case that h(T [n]) = h(T [n − 1]) as otherwise h′ is obviously 
conservative. As h is conservative we can conclude that there is x ∈ D ′ such that x /∈Wh(D) . Otherwise we could construct a 
text T ′ for L starting with elements of D on which h would not be conservative. Thus there is x ∈ D ′ ⊆ C such that

x /∈Wh(C) =Wh(T [n]) =Wh(T [n−1]) =Wh′(T [n−1])
and therefore h′ is still conservative if it changes its mind.

To show that h′ is syntactically decisive let C ⊆ D ⊆ E be such that h′(C) �= h′(D) and h′(C) = h′(E). We then know 
that h′(E) is defined by the second branch in the definition of h′ as either h(C) = h(E) �= h(D) or h(C) = h(D) = h(E). As 
there exist D ′ ⊆ D ′′ ⊆ D such that h(D ′) = h(D) �= h(D ′′) we have in both cases E ′, E ′′ witnessing that E ′ ⊆ E ′′ ⊆ E and 
h(E ′) = h(E) �= h(E ′′). We therefore get that C ⊂ E . Thus 0 �= |C | + 1 �= |E| + 1 and therefore the second component in pad is 
different for C and E . This implies that h′(C) �= h′(E) as pad is 1–1. �
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The following Theorem is the main result of this section, showing that set-driven learning can be done not just conser-
vatively, but also strongly decisively and cautiously at the same time.

Theorem 6.2. We have

[TxtSdEx] = [TxtSdConvSDecCautEx].

Proof. Following [16] we can assume a set-driven learner to be conservative. Let h and L be such that h TxtSdCon-
vEx-learns L and suppose that h is syntactically decisive on all texts using Lemma 6.1. We define a function p using the 
S-m-n Theorem such that, for every set D and e,

W p(D,e) = D
⋃
t∈N

⎧⎪⎨
⎪⎩
∅, if ∃D ′ ⊆ D ∪W t

e : D ′ < D ∧ h(D ′)= e;
W t

e, if h(D ∪W t
e)= e;

∅, otherwise.

We define a function N such that, for any finite set D ,

N(D)= {D ′ ⊆ D | h(D)= h(D ′)}.
We define h′ , for all finite sets D , as

h′(D)= p(min(N(D)),h(D)).

Let L ∈ L be given and let T be a text for L. We first show that h′ TxtSdEx-learns L from T . As h TxtSdEx-learns L we 
know that h is strongly locking on T (this was shown in [6]). Thus there is n0 such that T [n0] is a locking sequence for 
h on L. Let D ′ ⊆ L be minimal with h(D ′) = h(content(T [n0])) and n1 such that D ′ ⊆ content(T [n1]). Thus we have, for all 
n ≥ n1, min(N(content(T [n]))) = D ′ . From the construction of p and h syntactically decisive we get

W p(D ′,h(D ′)) =Wh(D ′).

This shows that h′ TxtSdEx-learns L. We proceed by showing the following claim.

Claim 1. Let i ≤ j, D0 = content(T [i]) and D1 = content(T [ j]) and suppose h′(D0) �= h′(D1). Then (D1 ∩Wh′(D1)) \Wh′(D0) �= ∅.

Proof of Claim 1. Suppose first that h(D0) �= h(D1). From the construction of h′ we get that there is B1 ⊆ D1 with h′(B1) =
h′(D1) such that h′ is consistent on B1, i.e. B1 ⊆Wh′(D1) . Additionally we have B0 =min(N(D0)) ⊆ D0 with h′(B0) = h′(D0)

and B0 ⊆ Wh′(D0) . Suppose, by way of contradiction, B1 ⊆ Wh′(B0) . Thus, there is a t such that B1 ⊆ B0 ∪ W t
h(B0)

and 
h(B0 ∪ W t

h(B0)
) = h(B0). We have that B0 ∪ B1 is a set in between B0 and B0 ∪ W t

h(B0)
, so from h being syntactically 

decisive, h(B1 ∪ B0) = h(B0). Furthermore, B0 ∪ B1 is a set in between B1 and D1, so h(B1) = h(B1 ∪ B0) = h(D1); overall 
h(D0) = h(D1), a contradiction. Thus, B1 ⊆ (D1 ∩Wh′(D1)) but B1 � Wh′(B0) =Wh′(D0) as desired.

Suppose now h(D0) = h(D1). Thus we have min(N(D0)) �=min(N(D1)); in particular, as D0 ⊆ D1, we get min(N(D1)) <
min(N(D0)). Let B1 =min(N(D1)). From the first case of the construction of p we have that B1 � W p(min(N(D0)),h(D0)) =
Wh′(D0) . As B1 ⊆ D1, h′(D1) = p(B1, h(D1)) and B1 ⊆ W p(B1,h(D1)) , we have D1 ∩ Wh′(D1) \ Wh′(D0) �= ∅ as desired. �
(for Claim 1)

From the claim we know that, for any mind change, there is a datum in the input such that any previous conjecture 
did not contain this datum, showing h′ is conservative. Furthermore, also from the claim we see that any new conjecture 
contains a datum which was not present in any previous conjecture, showing h′ to be cautious and strongly decisive. �
7. Monotone learning

In this section we show the hierarchies regarding monotone and strongly monotone learning, simultaneously for the 
settings of G and Sd in Theorems 7.1 and 7.2. With Theorems 7.3 and 7.4 we establish that monotone learnability implies 
strongly decisive learnability.

Theorem 7.1. There is a class of languages L that is TxtSdMonWMonEx-learnable but not TxtGSMonEx-learnable, i.e.

[TxtSdMonWMonEx]\[TxtGSMonEx] �= ∅.
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Proof. This is a standard proof which we include for completeness. Let Lk = {0, 2, 4, . . . , 2k, 2k + 1} and L = {2N} ∪
{Lk | k ∈N}. Let e such that We = 2N and p using the S-m-n Theorem such that, for all k,

W p(k) = Lk.

We first show that L is TxtSdMonWMonEx-learnable. We let a learner h such that, for all σ ,

h(content(σ ))=
{

e, if every x ∈ content(σ ) is even;

p(y), if y is the least odd datum in content(σ ).

Let Lk ∈ L and T be a text for Lk . Thus, there is n0 such that T (n0 − 1) = 2k + 1 and any element in content(T [n0 − 1]) is 
even. Then, we have, for all n ≥ n0, h(content(T [n0])) = h(content(T [n])) and Wh(T [n0]) = W p(k) = Lk . It is easy to see that 
h makes exactly one mind change on T and this is at n0. We have We ∩ content(T ) is a subset of W p(k) ∩ content(T ) as 
{0, 2, . . . , 2k} ⊆ Lk . Thus h is monotone. Additionally, h is weakly monotone as it change its mind only at the first time an 
odd element is presented in the text, and all previous hypotheses are for 2N.

Now suppose that there are h′ ∈R and h′ TxtGSMonEx-learns L. Let σ be a locking sequence of h′ on 2N and let k be 
such that, for all x ∈ content(σ ), x ≤ 2k + 1. We let T be a text for Lk starting with σ . As 2N � Lk we have that h′ is not 
strongly monotone on T or h does not TxtGEx-learn Lk from T . �
Theorem 7.2. There is L such that L is TxtSdWMonEx-learnable but not TxtGMonEx-learnable.

Proof. This is a standard proof which we include for completeness. Let Lk = {x | x ≤ 2k + 1} and L = {2N} ∪ {Lk | k ∈ N}. 
Let e such that We = 2N and p using the S-m-n Theorem such that, for all k,

W p(k) = Lk.

We define a learner h such that, for all σ ,

h(content(σ ))=
{

e, if every element in content(σ ) is even;

p(y), else, y is the maximal odd element in content(σ ).

Let Lk ∈ L and a T be a text for Lk . Then there is n0 such that 2k + 1 ∈ content(T [n0]) for the first time. Thus we have 
that, for all n ≥ n0, h(content(T [n0])) = h(content(T [n])) and Wh(content(T [n0])) = W p(k) = Lk . Obviously, h learns Lk weakly 
monotonically as the learner only change its mind if a greater odd element appears in the text.

Suppose now there is a learner h′ ∈R such that h′ TxtGMonEx-learns L. Let σ be a locking sequence of h′ on 2N and 
let k be such that, for all x ∈ content(σ ), x ≤ 2k + 1. Let σ ′ ⊇ σ be a locking sequence of h′ on Lk . Let σ ′′ ⊇ σ ′ be a locking 
sequence of h′ on Lk+1 and let T be a text for Lk+1 starting with σ ′′ . Then, we have

Wh′(σ ) = 2N;
Wh′(σ ′) = Lk;
Wh′(σ ′′) = Lk+1.

As the datum 2k + 2 is in 2N and in Lk+1 but not in Lk , h′ is not monotone on the text T for Lk+1. �
The following theorem is an extension of a theorem from [3], where the theorem has been shown for decisive learning 

instead of strongly decisive learning.

Theorem 7.3. Let N ∈L and L be TxtGEx-learnable. Then, we have L is TxtGSDecEx-learnable.

Proof. In this proof, for any two given sets A, B , we write A =∗ B iff (A \ B) ∪ (B \ A) is finite, i.e. if A and B are finite 
variants of one another. Let h be a learner in Fulk normal form such that h TxtGEx-learns L with N ∈ L. As h is strongly 
locking on L there is a locking sequence of h on N. Using this locking sequence we get an uniformly enumerable sequence 
(Li)i∈N of languages such that,

1. for all i �= j, L ⊇ Li , L′ ⊇ L j with Li =∗ L, L j =∗ L′ , we have L �= L′;
2. for all L ⊇ Li with Li =∗ L, we have L /∈L.

For every σ we define a set N(σ ) such that, for every σ ,

N(σ )= L|σ | ∪ content(σ ).
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Furthermore, with the S-m-n Theorem there is r ∈R such that

∀σ :Wr(σ ) = N(σ ).

We let M be total computable such that, for all σ , M(σ ) is the finite set which includes any sequence τ ⊆ σ such that

• for all x ∈ content(τ ), �h(τ )(x) ≤ |σ |; and
• for all τ ′ ⊇ τ with content(τ ′) ⊆ content(τ ) and 

∣∣τ ′∣∣≤ |σ |, h(τ ) = h(τ ′).

Using the S-m-n Theorem we get a function p ∈R such that, for all σ ,

W p(σ ) =
⋃
t∈N

{
W t

h(σ )
, if ∀ρ ∈W t

h(σ )
: h(σ )= h(σ � ρ);

N(σ ), otherwise.

We will use the p(σ ) as hypotheses. Note that any hypothesis p(σ ) is either semantically equivalent to h(σ ) or, if σ is 
not a locking sequence of h for any language, p(σ ) is an index for a finite superset of L|σ |. In the latter case we call the 
hypothesis p(σ ) poisoned. We will also sometimes default to r(σ ) as hypothesis, which we will also consider a poisoned 
hypothesis.

We define a learner h′ such that, for all σ ,

h′(σ )=
{

p(min(M(σ ))), if M(σ ) �= ∅;
r(σ ), otherwise.

Let L ∈ L and T be a text for L. As h is strongly locking and h TxtGEx-learns L there is a minimal n0 such that, 
for all σ ∈ Seq(L), h(T [n0]) = h(T [n0] � σ) and Wh(T [n0]) = L. Thus, there is n1 > n0 such that, for all x ∈ content(T [n0]), 
�h(T [n0])(x) ≤ n1. This implies that, for all n ≥ n1, h′(T [n1]) = h′(T [n]) and

Wh′(T [n1]) =W p(min(M(T [n1]))) =
⋃
t∈N

W t
h(T [n0]) = L.

Next, we will show that h′ is strongly decisive. Suppose there are i ≤ j ≤ k such that Wh′(T [i]) =Wh′(T [k]) and h′(T [i]) �=
h′(T [ j]).

Case 1: h′(T [i]) is not a poisoned hypothesis. Let τi, τ j, τk be such that h′(T [i]) = p(τi), h′(T [ j]) ∈ {r(τ j), p(τ j)} and 
h′(T [k]) ∈ {r(τk), p(τk)}. We will show that content(τ j) ⊆ Wh′(T [k]) and content(τ j) � Wh′(T [i]) , which implies Wh′(T [i]) �=
Wh′(T [k]) , our desired contradiction.

We have τi ⊂ τ j ⊆ τk , from the construction of h′ and using h′(T [i]) �= h′(T [ j]). From the construction of M (and the 
definition of N(σ )) we have content(τk) ⊆Wh′(T [k]); in particular,

content(τ j)⊆ content(τk)⊆Wh′(T [k]).

Recall now that h made a mind change between τi and τ j , so since h′(T [i]) is not a poisoned hypothesis, Wh′(T [i]) cannot 
contain all of content(τ j), showing content(τ j) � Wh′(T [i]) as desired.

Case 2: h′(T [i]) is poisoned. Thus, we have content(T [i]) ⊆Wh′(T [i]) form the definition of N(σ ).
Case 2.1: h′(T [k]) is not poisoned. Thus, T [k] is a locking sequence on h for a language L ∈ TxtGEx(h) and Wh′(T [k]) ∈

TxtGEx(h). As h′(T [i]) is poisoned we have Wh′(T [i]) /∈ TxtGEx(h). Thus, we get Wh′(T [i]) �=Wh′(T [k]) , a contradiction.
Case 2.2: h′(T [k]) is poisoned. As i < k we have

Wh′(T [i]) =∗ N(T [i])=∗ Li �=∗ Lk =∗ N(T [k])=∗ Wh′(T [k]).

Thus, Wh′(T [i]) �=Wh′(T [k]) , a contradiction. �
Theorem 7.4. We have that any monotone TxtGEx-learnable class of languages is strongly decisive learnable, while the converse does 
not hold, i.e.

[TxtGMonEx] ⊂ [TxtGSDecEx].

Proof. Let h ∈ R be a learner and L = TxtGMonEx(h). We distinguish the following two cases. We call L dense iff it 
contains a superset of every finite set.

Case 1: L is dense. We will show now that h TxtGSMonEx-learns the class L. Let L ∈ L and T be a text for L. Suppose 
there are i and j with i < j such that Wh(T [i]) � Wh(T [ j]) . Thus, we have Wh(T [i])\Wh(T [ j]) �= ∅. Let x ∈ Wh(T [i])\Wh(T [ j]) . 
As L is dense there is a language L′ ∈ L such that content(T [ j]) ∪ {x} ⊆ L′ . Let T ′ be a text for L′ and T ′′ be such that 
T ′′ = T [ j] � T ′ . Obviously, T ′′ is a text for L′ . We have that x ∈ Wh(T ′′[i]) but x /∈ Wh(T ′′[ j]) which is a contradiction as h is 
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monotone. Thus, h TxtGSMonEx-learns L, which implies that h TxtGWMonEx-learns L. Using Corollary 4.6 we get that L
is TxtGSDecEx-learnable.

Case 2: L is not dense. Thus, L′ = L ∪ {N} is TxtGEx-learnable. Using Theorem 7.3 L′ is TxtGSDecEx-learnable and 
therefore so is L.

Regarding the inclusion being proper, recall from Corollary 4.6 that [TxtGWMonEx] ⊂ [TxtGSDecEx]. Let L ∈
[TxtGSDecEx] \ [TxtGWMonEx]. As seen in Case 2, we can assume, without loss of generality, that L is dense (by adding N
if necessary). If L was in [TxtGMonEx] then it would be in [TxtGSMonEx] (as shown in Case 1) and thus in [TxtGWMonEx], 
in contrast to what we supposed. Thus we get L ∈ [TxtGSDecEx] \ [TxtGMonEx] as desired. �
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