
ACO Beats EA

on a Dynamic Pseudo-Boolean Function

Timo Kötzing1 and Hendrik Molter2

1 Max Planck Institute for Informatics, Saarbrücken, Germany
2 Saarland University, Saarbrücken, Germany

Abstract. In this paper, we contribute to the understanding of the
behavior of bio-inspired algorithms when tracking the optimum of a dy-
namically changing fitness function over time. In particular, we are in-
terested in the difference between a simple evolutionary algorithm (EA)
and a simple ant colony optimization (ACO) system on deterministi-
cally changing fitness functions, which we call dynamic fitness patterns.
Of course, the algorithms have no prior knowledge about the patterns.

We construct a bit string optimization problem where we can show
that the ACO system is able to follow the optimum while the EA gets
lost.

1 Introduction

Bio-inspired algorithms are an important class of randomized search heuristics,
valued for their easy applicability also in challenging environments. In particu-
lar, environments with uncertainty are settings difficult for problem specific algo-
rithms, while bio-inspired algorithms can more easily deal with the uncertainty.

Jin and Branke [9] discusse different sources of uncertainty and surveys the
literature evolutionary algorithms in uncertain environments. Two important
sources are a noisy fitness function and a dynamic fitness function. In the case
of a noisy fitness function, the fitness of a search point follows a random distri-
bution, which is the same distribution at each evaluation of the fitness. In the
case of a dynamic fitness function, the fitness of a search point at any given time
is a deterministic value, but this value changes over time.

Bio-inspired algorithms seem to be very robust against noise and dynamic
changes which makes them very popular for these two optimization problem
classes. Two prominent types of bio-inspired algorithm are Evolutionary Algo-
rithms (EA) and Ant Colony Optimization (ACO) systems.

In this paper we are concerned with dynamic fitness functions; the goal for
an algorithm will be to track the optimum of a dynamically changing fitness
function over time. We consider the setting of pseudo-Boolean fitness functions,
where the search space is given as all bit strings of a fixed length n and the
fitness of any search point is a real value.

Some results about evolutionary algorithms tracking optima in pseudo-
Boolean optimization are given in [1,5,6,15,8]. Some of these papers analyze

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part I, LNCS 7491, pp. 113–122, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



114 T. Kötzing and H. Molter

settings where the optimum changes randomly; we are more interested in how
bio-inspired algorithms can track an optimum that changes deterministically
(but, of course, the algorithm has no prior knowledge of what changes will hap-
pen). We believe that an analysis in such settings on certain dynamic patterns
gives a better view on the strengths of bio-inspired algorithms than its perfor-
mance on an optimum which moves away in a random direction – those changes
are hard to control, due to their inherent randomness and the many choices for
the optimum to evade in our search space.

In this paper, we try to gain new insights in the differences between the
behavior of EA and ACO on these optimization problems; more specifically,
we analyze the (1+1)-EA and a version of the Max-Min-ant system (MMAS ,
introduced in [16]) given in Section 2. We compare the performance of these
algorithms on a dynamic optimization problem where we can show that MMAS
is able to follow the optimum while the (1+1)-EA gets lost (see Section 3.1).

The theoretical analysis of these algorithms is very challenging; therefore we
use simple dynamic optimization problems, derived from the OneMax problem;
this approach was also taken in some of the previous literature for the (1+1)-
EA. There are many analyses of MMAS on static variants of OneMax (see,
for example, [13,7,4,11,12,10,17]), but so far there is no theoretical work on the
performance of ACO algorithms on dynamic problems.

We introduce the notion of a dynamic fitness pattern. Instead of considering
random movements of the optimum, and analyzing an algorithms performance
at tracking this random behavior, we are interested in how the (1+1)-EA and
MMAS behave in settings with more structure.

We construct a “maze”, in which the (1+1)-EA cannot track the optimum
and will get lost with high probability. On the other hand, MMAS can track
the optimum, also with high probability. Key to the success of MMAS is the
use of intermediate pheromone values, which serve as a medium-term memory:
pheromones build up according to solutions that have been good recently, ex-
tracting trends in the fitness pattern. The (1+1)-EA misses these trends and,
instead, oscillates between different good solutions.

We use drift analysis as our key tool to analyze the behavior of the algorithms;
in particular, we use many drift theorems from the literature, including a drift
theorem with tail bounds from [2], which allows us to derive high probability
results.

In general, high probability results are sparse in the analysis of bio-inspired
algorithms; a notable recent exception is [17], where many tail bounds are given.

We proceed as follows. In Section 2 we introduce all necessary mathematical
definitions. In Section 3 we introduce and analyze a maze whereMMAS manages
to follow the optimum and (1+1)-EA loses track of it. We conclude in Section 4.

2 Mathematical Preliminaries

In this section we introduce all formal definitions that we will use in the analysis.
Our general problem setting is pseudo-Boolean function optimization. The

solution space is the set of all bit strings of length n (for fixed n). We let h(x, y)



ACO Beats EA on a Dynamic Pseudo-Boolean Function 115

denote the Hamming distance between two bit strings x and y (the number of
bits where x and y disagree).

One of the simplest functions for static optimization problems is the OneMax
function. This function has proven to be very useful for theoretical analysis of
evolutionary algorithms. For any bit string x of length n we let

OneMax(x) = n− h(x, 1n).

The OneMax function is maximized by the all-ones bit string and, importantly,
the fitness of a bit string x is better the closer x is to the all-ones string, i.e., the
more 1s are in x.

Next we formally introduce the (1+1)-EA and MMAS .
The (1+1)-EA is depicted in Algorithm 1. It keeps a current-best solution x

and, in each iteration, mutates it by flipping each bit independently with some
mutation probability. This mutation probability is typically 1/n, where n is the
number of bits in the bit string.

If the mutant has a better current fitness than the current fitness of x (x is
reevaluated), then x is replaced with its mutant, otherwise x is kept and the
mutant discarded.

Algorithm 1. (1+1)-EA

1 initialize x;
2 repeat
3 x′ ← mutate(x);
4 if fitness(x′) ≥ fitness(x) then
5 x ← x′;

6 until forever ;

The second algorithm we analyze is an Ant Colony Optimization (ACO) sys-
tem. Here ants drop pheromones on the bits and these serve as a probability
distribution to construct new solutions. More specifically, we look at a Max-
Min-ant system (MMAS , [16]). MMAS uses maximum and minimum values
for the pheromone values (typically 1 − 1/n as maximal and 1/n as minimal
pheromone values).

MMAS also maintains a current-best solution, initialized to a random bit
string x. The pheromone value τi, for each bit i, is initialized to 1/2.

In each iteration, we construct a new solution x′ by drawing a new bit string
where each bit x′

i is 1 with probability τi. Then we compare the fitness of
this string to the reevaluated fitness of our current-best solution and replace
the current-best solution if the new solution is better. Then we update the
pheromone values using the current-best solution.

Note that, as long as no better solution is constructed, the pheromones are
updated with always the same current-best solution over and over again until
the pheromones hit the respective limits.



116 T. Kötzing and H. Molter

Algorithm 2. MMAS

1 initialize x, τ ;
2 repeat
3 x′ ← constructSolution(τ);
4 if fitness(x′) ≥ fitness(x) then
5 x ← x′;

6 τ ← update(τ , x);

7 until forever ;

The update step works as follows. For each bit xi, we update the respective
pheromone value τi to a value τ ′i as follows.

τ ′i =
{
min

{
(1 − ρ)τi + ρ, 1− 1

n

}
, if xi = 1;

max
{
(1 − ρ)τi,

1
n

}
, if xi = 0.

When a pheromone value hits a threshold, we call it saturated.

3 The Maze

In this section we consider bit strings of any given length n; the mutation prob-
ability of the (1+1)-EA is set to 1/n, and the pheromone bounds of MMAS are
1/n and 1− 1/n, respectively.

3.1 Definition of the Maze

We give the following definition of a dynamic fitness pattern where MMAS can
track the optimum while (1+1)-EA gets lost. The idea behind the pattern is,
that we start with OneMax, but then let each bit oscillate one after another
with a 001-oscillation and then set it to zero. We set the fitness of the optimal
string to n+2, the fitness of the string, where only the oscillating bit is flipped,
to n + 1, and for the rest we use OneMax. Intuitively, when in an oscillation
phase there are strictly more 0s than 1s, MMAS will converge (in pheromone)
to 0, while the (1+1)-EA will oscillate with its current best solution between the
different optima. Note that any oscillation pattern that contains more 1s than 0
will not be trackable by MMAS (and neither by the (1+1)-EA).

We will see in Section 3.2 that MMAS is able to track down all the zeros,
because the pheromone values of the oscillating bit drop down to the lower
border; however, as we will see in Section 3.3, the (1+1)-EA loses the zero with
probability at least 1/4 each time we move the oscillating bit one step. Then
(1+1)-EA falls back to OneMax and is not able to find the optimum again,
since it the fitness function leads to the all-ones string.

Formally, we define the dynamic fitness pattern as follows. Let opt001(t) denote
a function that equals 1 at all times t which have a remainder of 2 when divided
by 3, and 0 otherwise.



ACO Beats EA on a Dynamic Pseudo-Boolean Function 117

Definition 1 (Maze). Let � denote bit string concatenation, k > 0 and let

f(i, t) = 0i � opt001(t) � 1n−i−1,

f ′(i, t) = 0i � (1− opt001(t)) � 1n−i−1

define two bit strings of length n, where i determines the position of the oscil-
lating bit and t the time point of the oscillation. These two bit strings will be
the optimal and second best solution. Let t0 = kn3 log(n). For any bit string of
length n and any t, we define

Mazek(x, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n+ 2, if x = f(� t−t0
t0

�, t)
and t > t0;

n+ 1, if x = f ′(� t−t0
t0

�, t)
and t > t0;

OneMax(x), otherwise.

We will choose a suitable constant k later. Note that we start the oscillation of
the first bit after an initial phase of t0 iterations, after which each oscillation
takes t0 iterations. The initial phase ensures that both MMAS and the (1+1)-
EA will have found the all-ones bit string as their current-best solution before
the oscillations start; the oscillation is, as we will see, long enough for MMAS
to track the optimum.

3.2 MMAS on Maze

In this section we will show that MMAS can track the optimum of the maze
with high probability. We start by showing that, during the oscillation phase of
a bit between two 1s and 0, MMAS will drift towards the 1-bit

Lemma 2. Suppose ρ ∈ Θ(1/n). For all c > 0, during a single bit 110-
oscillation, where in every iteration we construct a new solution with some
probability p converging to 1/e and update pheromones with the current-best
solution otherwise, the pheromone value is saturated as 1− 1/n in O(n3 log(n))
iterations with probability 1−O(n−c).

Proof. First we calculate the expected values for the pheromone value and
current-best solution after one oscillation. We use the potential function g(τ, x) =
τ + qρx, where q is a constant. We set this constant to q = 7

2 .
We begin with the x = 1 case, where we get

E[τ ′] = τρ(p− 3±O(ρ)) + ρ(3− p) + τ ± o(ρ),

E[x′] = τ(p±O(ρ)) + 1− p±O(ρ).

For the potential difference, we get

E[g(τ ′, x′)]− g(τ, x) = τρ(p− 3 + qp±O(ρ)) + ρ(3− p+ qp)± o(ρ).



118 T. Kötzing and H. Molter

For q = 7
2 and p close enough to 1/e, this yields a drift in Ω((1 − τ)ρ).

For the x = 0 case, we get

E[τ ′] = τ3ρ(−p3 ±O(ρ)) + τ2ρ(p2 ±O(ρ)) + τρ(5p− 2p2 − 3±O(ρ)) + τ,

E[x′] = τ3(−p3 ±O(ρ)) + τ2(p2 − p3 ±O(ρ)) + τ(2p− 2p2 ±O(ρ)).

For the potential difference, we get

E[g(τ ′, x′)]− g(τ, x) = Ω(τρ(5p+ q2p− 2p2 − q2p2 − 3)).

For q = 7
2 and p close enough to 1/e, this yields a drift in Ω(τρ).

Thus we have an overall drift of Ω(min{τρ, (1− τ)ρ}). In particular, we have
a uniform additive drift of Ω(ρ/n). Using the drift theorem with tail bounds
from [2, Theorem 1], we obtain the result. Note that this wastes a lot, as the
drift theorem with tail bounds is intended for use with multiplicative drift, while
we use it on additive drift; also, the statement of the theorem requires a (1+1)-
EA, but the proof, published in [3, Theorem 5], shows that this requirement is
unnecessary. �

Note that, for the maze, will use Lemma 2 symmetrically for drifting down
with the pheromone. We will choose k large enough so that during the oscillation
of a bit, the pheromone value of the oscillating bit will at least once be 1/n.
Additionally, we have to make sure that the pheromone value stays low.

Lemma 3. Suppose ρ ∈ Θ(1/n). Let k ≥ 1 and let i be the position of the
oscillating bit of Mazek. If the pheromone value τi is saturated at the lower
threshold, for all c > 0, it will stay below (log(n))2/n for at least kn3 log(n)
iterations with probability 1−O(n−c).

Proof. This can be seen with a simple rescaling of the search space and an
application of the drift theorem concerned with negative drift from Oliveto and
Witt [14].

Note that the largest possible jump away from the lower threshold is 3ρ, since
in every update the pheromone value is changes by at most ρ and we update
3 times per oscillation. After rescaling of the search space by 1/ρ, we see that
probability to make jumps larger than 3 is 0, so that the theorem from [14] easily
applies. �
Another important ingredient for analyzing MMAS on the maze, we have to
show that MMAS does not get lost when the oscillation switches from bit i to
bit i + 1. This can only happen, if in the last iteration of oscillating i, the ith
bit of the current-best solution is 1. This happens with probability at most 1/n,
so we expect it to happen once in the run of the maze.

We show that, in this case, MMAS is able to regain track of the optimum
again with high probability. W.l.o.g. we show this behavior for the case that all
pheromones are saturated at the upper border, i.e. at 1− 1/n.



ACO Beats EA on a Dynamic Pseudo-Boolean Function 119

Lemma 4. Suppose ρ ∈ Θ(1/n) and the fitness function is f(x) = n −
OneMax(x) (this implies that the all-zeros string is the optimum of f). Further-
more, assume the current-best solution is 1n−10 and the first (n−1) pheromones
are saturated at 1−1/n, while the last pheromone value is at 1−O((log(n))2/n).
Then we have, for all c > 0, MMAS samples 1n within O(log(n)) iterations with
probability 1−O(n−c).

Proof. Let c > 0, and let t = 3c log(n). We show that MMAS samples 1n within
t iterations with probability 1−O(n−c). Within these t iterations, MMAS will
change more and more bits in its current-best solution to 0. For this to happen,
MMAS needs to, in some iteration, sample one of the bits with pheromone
1− 1/n as 0. For all i < t, let Xi be the number of bits that MMAS samples as
0 in iteration i, and that where not sampled as 0 in an earlier iteration. Clearly,
for all i < t, E(Xi) ≤ 1. Let X =

∑t
i=1 Xi be the total number of different bits

sampled as 0 within the first t iterations.
Using a Chernoff bound we see that

P (X > 3t) ≤ n−c.

Let k = 3t = 9c log(n). The following probabilities are conditional on X ≤ 3t =
k.

For the case that we lower the pheromone value of a bit, we lower it by
at most ρ. Hence, within t iterations, at most k new bits have a pheromone
lower than 1 − 1/n, by at most tρ = o(1); the last bit, after t iterations, has
pheromone 1 − O((log(n))2/n + tρ). Thus, those k + 1 bits have a pheromone
of 1 − polylog(n)/n.1 All other bits still have maximal pheromone. Hence, the
probability to sample 1n in any particular of the t iteration is at least

(1− 1/n)n−k−1 · (1− polylog(n)/n)k+1.

Using Bernoulli’s inequality, we can lower bound this probability with

1

e
· (1− (2k)polylog(n)/n) =

1

e
· (1− polylog(n)/n).

Now we bound the probability that we do not sample 1n in any of the t iterations
from above with

(1 +
1

e
(−1 + polylog(n)/n))t.

We can upper bound this probability by

exp

(
t

e
(−1 + polylog(n)/n)

)
≤ O(n−c).

We now have two chances for MMAS to fail to sample 1n in the first t iterations:
either by lowering pheromone on more than k bits, or by failing to sample 1n

1 With polylog(n) we denote the set of all functions bounded above by c log(n)d, for
some c, d > 0.



120 T. Kötzing and H. Molter

conditional on not having decreased pheromones on more than k bits. Both
failure probabilities are below n−c; thus, MMAS samples 1n in t iterations with
probability 1−O(n−c). �
The following theorem is taken from [17, Corollary 5] and gives high probability
bounds for MMAS optimizing OneMax.

Theorem 5 ([17]). For all c > 0, MMAS optimizes OneMax in time
O(n log(n)/ρ) with probability 1−O(n−c).

We are now ready to give the central theorem of this paper.

Theorem 6. Suppose ρ ∈ Θ(1/n). For all c > 0 there is a k such that, for n
large enough, MMAS can follow the optimum2 of the dynamic fitness pattern
Mazek with probability 1−O(n−c).

Proof. Let c > 0. Let k′ be the largest implicit constant of the runtime bounds
of Lemma 2 and 4, as well as Theorem 5, for obtaining a failure probability of
O(n−c−1). Let k = 3k′.

Since we run OneMax for the first kn3 log(n) iterations, we know by Theorem 5
that MMAS finds the optimum and all pheromone values are saturated before
the oscillations starts with probability 1 − O(n−c−1). During the oscillation of
any bit, by (the symmetric version of) Lemma 2, we lower the pheromone of the
oscillating bit to 1/n with probability 1−O(n−c−1) after one third the oscillation
of the bit.

Using Lemma 3, the pheromone of an oscillating bit during its oscillation
will never be further away than log(n)2/n with probability 1−O(n−c−1). Thus,
when the next bit starts oscillating, by Lemma 4, MMAS needs at most one
third the oscillation to sample again a solution that has fitness n + 1 or n + 2
with probability 1 − O(n−c−1). MMAS can now recover all pheromones to the
proper borders within another third of the oscillation and after this, the process
repeats.

MMAS loses the optimum or does not saturate the pheromone value of the
oscillating bit by the end of the oscillation with probability n−c−1.

By induction and the union bound for the failure probabilities, MMAS follows
the optimum of Mazek with probability 1−O(n−c). �

3.3 (1+1)-EA on Maze

Now we take a look at the (1+1)-EA. Because of space limitations, we omit the
proofs of this section.

Consider the oscillation of bit i; we will show that the expected value of bit i
of the current-best solution of the (1+1)-EA is at least 1

4 .

2 The algorithm is said to “follow the optimum” if, at the end of all phases, the distance
of the current-best solution to the current optimum is constant.



ACO Beats EA on a Dynamic Pseudo-Boolean Function 121

Lemma 7. Let k ≥ 1; consider the (1+1)-EA optimizing Mazek during the
oscillation of bit i, and suppose the current-best solution of the (1+1)-EA has a
0 on all positions before and at the oscillating bit, and a 1 on all others. For all
t, let Xt be the random variable denoting the value of bit i of the current-best
solution t iterations later. Then, for all t ≥ n log(n), E[Xt] ≥ 1/4.

Now we show that (1+1)-EA loses track of the optimum with high probability.

Theorem 8. For all c > 0 and k ≥ 1, the (1+1)-EA loses track of the optimum
of Mazek with probability 1−O(n−c).

4 Conclusions and Future Work

We have given an example of a dynamic fitness pattern where MMAS is able
to track the optimum with high probability, while the (1+1)-EA loses the opti-
mum with high probability. This shows that there are instances where MMAS
performs strictly better than the (1+1)-EA.

The intuition behind this difference is as follows. Consider a singe bit position,
where the optimizing algorithm is supposed to find out whether a 0 or a 1 is
better at that position. Suppose none of the other positions influence the fitness
of the bit string. For an oscillating optimum at that bit position, the (1+1)-EA,
in each iteration, will give a definite statement about what bit it thinks to be
better (whatever bit the best-so-far bit string has at that position), while the
MMAS uses intermediate pheromone values as a medium-term memory. This
enables MMAS to “average” over the phases of oscillation, smoothing out the
dynamic fitnesses of the search points, while the (1+1)-EA reacts strongly, too
strongly, in each iteration.

As one line of future work it would be interesting to see how evolutionary
algorithms with a large population size handle similar dynamic problems.

More importantly, though, future research goals should include finding re-
sults for more general classes of dynamic fitness patterns. In particular, dynamic
combinatorial optimization might offer interesting settings for the analysis of the
performance of bio-inspired algorithms.

References

1. Chen, T., Chen, Y., Tang, K., Chen, G., Yao, X.: The impact of mutation rate on
the computation time of evolutionary dynamic optimization (2011),
http://arxiv.org/abs/1106.0566

2. Doerr, B., Goldberg, L.A.: Drift Analysis with Tail Bounds. In: Schaefer, R.,
Cotta, C., Ko�lodziej, J., Rudolph, G. (eds.) PPSN XI, Part I. LNCS, vol. 6238,
pp. 174–183. Springer, Heidelberg (2010)

3. Doerr, B., Goldberg, L.A.: Adaptive drift analysis. CoRR, abs/1108.0295 (2011)
4. Doerr, B., Neumann, F., Sudholt, D., Witt, C.: On the runtime analysis of the

1-ANT ACO algorithm. In: Genetic and Evolutionary Computation Conference
(GECCO 2007), pp. 33–40. ACM (2007)

http://arxiv.org/abs/1106.0566


122 T. Kötzing and H. Molter

5. Droste, S.: Analysis of the (1+1) EA for a dynamically changing OneMax-variant.
In: IEEE Congress on Evolutionary Computation (CEC 2002), pp. 55–60. IEEE
Press (2002)

6. Droste, S.: Analysis of the (1+1) EA for a Dynamically Bitwise Changing OneMax.
In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer,
H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter,
M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.)
GECCO 2003. LNCS, vol. 2723, pp. 909–921. Springer, Heidelberg (2003)

7. Gutjahr, W.J., Sebastiani, G.: Runtime analysis of ant colony optimization with
best-so-far reinforcement. Methodology and Computing in Applied Probability 10,
409–433 (2008)

8. Jansen, T., Schellbach, U.: Theoretical analysis of a mutation-based evolutionary
algorithm for a tracking problem in the lattice. In: Genetic and Evolutionary Com-
putation Conference (GECCO 2005), pp. 841–848 (2005)

9. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments—a sur-
vey. IEEE Transactions on Evolutionary Computation 9, 303–317 (2005)

10. Kötzing, T., Neumann, F., Sudholt, D., Wagner, M.: Simple max-min ant systems
and the optimization of linear pseudo-boolean functions. In: Foundations of Genetic
Algorithms (FOGA 2011), pp. 209–218 (2011)

11. Neumann, F., Sudholt, D., Witt, C.: Analysis of different MMAS ACO algorithms
on unimodal functions and plateaus. Swarm Intelligence 3, 35–68 (2009)

12. Neumann, F., Sudholt, D., Witt, C.: A few ants are enough: ACO with iteration-
best update. In: Genetic and Evolutionary Computation Conference (GECCO
2010), pp. 63–70. ACM (2010)

13. Neumann, F., Witt, C.: Runtime analysis of a simple ant colony optimization
algorithm. Algorithmica 54, 243–255 (2009)

14. Oliveto, P.S., Witt, C.: Simplified drift analysis for proving lower bounds in evo-
lutionary computation. Algorithmica 59, 369–386 (2011)

15. Rohlfshagen, P., Lehre, P.K., Yao, X.: Dynamic evolutionary optimisation: an anal-
ysis of frequency and magnitude of change. In: Genetic and Evolutionary Compu-
tation Conference (GECCO 2009), pp. 1713–1720 (2009)

16. Stützle, T., Hoos, H.H.: MAX-MIN ant system. Journal of Future Generations
Computer Systems 16, 889–914 (2000)

17. Zhou, D., Luo, D., Lu, R., Han, Z.: The use of tail inequalities on the probable
computational time of randomized search heuristics. Theoretical Computer Science
(to appear, 2012)


	ACO Beats EAon a Dynamic Pseudo-Boolean Function
	Introduction
	Mathematical Preliminaries
	The Maze
	Definition of the Maze
	MMAS on Maze
	(1+1)-EA on Maze

	Conclusions and Future Work
	References




