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ABSTRACT
Ant Colony Optimization (ACO) is a powerful metaheuristic
for solving combinatorial optimization problems. With this
paper we contribute to the theoretical understanding of this
kind of algorithm by investigating the classical minimum cut
problem. An ACO algorithm similar to the one that was
proved successful for the minimum spanning tree problem
is studied. Using rigorous runtime analyses we show how
the ACO algorithm behaves similarly to Karger and Stein’s
algorithm for the minimum cut problem as long as the use
of pheromone values is limited. Hence optimal solutions are
obtained in expected polynomial time. On the other hand,
we show that high use of pheromones has a negative effect,
and the ACO algorithm may get trapped in local optima
resulting in an exponential runtime to obtain an optimal
solution. This result indicates that ACO algorithms may be
inappropriate for finding minimum cuts.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

General Terms
Theory, Algorithms, Performance

Keywords
Ant Colony Optimization, Min-cut

1. INTRODUCTION
Ant colony optimization (ACO) [4] is a powerful class of

general purpose algorithms that has been applied to a wide
range of combinatorial optimization problems. While ACO
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algorithms are successfully used in applications, the theo-
retical foundation of this kind of algorithm is not well de-
veloped. Increasing the theoretical foundation of ACO algo-
rithms has been pointed out as one of the most important
challenges in the research field of ant colony optimization
[3]. The goal of this paper is to contribute to the theoretical
understanding of ACO algorithms by carrying out rigorous
runtime analyses on a classical combinatorial optimization
problem, namely the minimum cut problem.

The analysis of ACO algorithms with respect to their run-
time behavior started for some well-known pseudo-Boolean
functions [8, 9, 16, 2, 14]. Such analyses treat ACO algo-
rithms as randomized algorithms in a classical sense and
analyze the number of iterations to obtain optimal or good
solutions for a given problem. As in the case of evolution-
ary algorithms, such studies on pseudo-Boolean functions
should point out basic properties of these algorithms and
set the basis for analyses on more realistic problems. This
path of research has already been followed for evolution-
ary algorithms in a very successful way. Based on results
for different kinds of pseudo-Boolean functions [5, 11, 20],
results have been obtained for different kinds of combina-
torial optimization problems. An overview of the different
results that have been obtained on the runtime of evolution-
ary algorithms for combinatorial optimization problems can
be found in [17].

There are only few results on the rigorous runtime analysis
of ACO algorithms for classical combinatorial optimization
problems. To our knowledge, the only problems where rigor-
ous results have been obtained are the computation of short-
est paths [1, 10] and minimum spanning trees [15]. Recently,
also an initial study for the traveling salesman problem has
been carried out [21]; however, this paper only analyses some
simple instances. All studies on classical combinatorial opti-
mization problems are motivated by the wish to understand
the basic working principles on natural examples. Such stud-
ies should be the basis for a deeper understanding of ACO
algorithms that can be used later on for the development of
even more successful algorithms.

In this paper, we examine the behavior of ACO on an-
other well-known combinatorial optimization problem in a
rigorous way. We study the well-known minimum cut prob-
lem in graphs. This problem can be solved by different kinds
of algorithms in polynomial time. Several related problems,
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such as the minimum k-cut problem and the multiway cut
problem, are NP-hard [19]. It has been shown in [18, 6] that
general stochastic search algorithms, such as evolutionary
algorithms and ant colony optimization, can achieve good
results for difficult cutting problems. However, this is not
necessary the case for the classical minimum cut problem.
In a recent theoretical work, [13] proves that simple single-
objective evolutionary algorithms cannot solve the minimum
cut problem in expected polynomial time.

ACO algorithms construct solutions for a problem in a
different way compared to evolutionary algorithms. In this
paper we analyse whether this may be an advantage for ACO
on the minimum cut problem. We use a similar approach
to the one used for the minimum spanning tree problem
examined in [15]: To obtain a candidate solution for the
minimum-cut problem, we compute a forest consisting of
n − 2 edges, which yields a graph consisting of exactly two
connected components. The edges that lie between these
two components constitute the cut that is given by such a
solution.

We examine this approach with respect to a wide range of
parameter settings that determine the importance of phero-
mone and heuristic information. It turns out that this ACO
approach behaves similar to the well-known randomized al-
gorithm of Karger and Stein [12] for computing a minimum
cut, as long as the influence of pheromone values is not too
big. As a consequence we get ACO algorithms that prov-
ably find optimal cuts in an expected polynomial number of
iterations. On the other hand, we show that our ACO ap-
proach fails once a higher influence of pheromone values is
allowed: There are graphs where provably an expected expo-
nential number of iterations is needed to obtain an optimal
solution.

In Section 2 we describe the ACO approach examined in
this paper. Afterwards, we point out for which parameter
settings our approach leads provably to an expected polyno-
mial optimization time in Section 3. Finally, in Section 4, we
discuss parameter settings and worst case instances where
the stated approach fails.

2. THE ALGORITHM
The min-cut problem can be stated as follows. Given an

undirected graph G = (V,E) with |V | = n vertices, m edges
and a weight function w : E → R+, the goal is to find a
partitioning of the vertices into two sets V1 6= ∅ and V2 6= ∅
such that the total weight of the edges between them is
minimal.

We study a simple ACO algorithm called MMAS* (see Al-
gorithm 2), already analyzed in [15] for the minimum span-
ning tree (MST) problem. MMAS* stands for Max-Min Ant
System, where the max-min refers to having upper and lower
bounds on the pheromone values used (see below for a dis-
cussion on pheromone values). MMAS* works iteratively,
creating one new candidate solution x in each iteration, and
keeping track of the best-so-far solution x∗.

New candidate solutions are generated by a procedure
Construct (see Algorithm 1). This procedure starts with
an empty graph and iteratively introduces more and more
edges between different components while not creating cy-
cles. Conceptually, choosing an edge can be seen as contract-
ing this edge. Finally, a graph with exactly two connected
components is obtained. These two connected components
are given as the output by the Construct procedure, and

the edges between them constitute the cut of this candidate
solution.

A run of Construct on a graph G = (V,E) returns a set
E0 of n−2 edges of G. By the definition of the construction
procedure Construct, the graph G = (V,E0) can be par-
titioned into two vertex sets V1 6= ∅ and V2 6= ∅ such that
V = V1∪V2, V1∩V2 = ∅ and (V1×V2)∩E0 = ∅, i. e. there is
no edge in E0 having their endpoints in different partitions.

The procedure Construct is randomized and works as fol-
lows. We imagine an artificial ant to choose step by step
components of a candidate solution. In our setting, the
components to choose from are the edges from the edge set
{e1, . . . , em} of the input graph G. The construction graph
C(G) is a directed graph on the m+ 1 nodes {s, e1, . . . , em}
with the designated start node s. Its edge set A of cardinal-
ity m2 is given by

A :=
{

(ei, ej) | 0 ≤ i ≤ m, 1 ≤ j ≤ m, i 6= j
}
,

i. e., C(G) is obtained from the complete directed graph by
removing all self-loops and the edges pointing to s. We give
a rough graphical depiction of C(G) in Figure 1.

s

e1 e2 e3 em
. . .

Figure 1: The Construction Graph C(G).

To choose components for a candidate solution, we imag-
ine the ant to traverse C(G). When the artificial ant visits
node e in C(G), this corresponds to choosing the edge e
for the partitioning. To ensure that a walk of the ant ac-
tually constructs a forest, we define the feasible neighbor-
hood N(e′k) of construction node e′k depending on the nodes
e′1, . . . , e

′
k visited so far:

N(e′k) :=
(
E \

{
e′1, . . . , e

′
k

})
\
{
e′ ∈ E

∣∣ (V, {e′1, . . . , e′k, e′}) contains a cycle
}
.

We want the ant to choose an outgoing edge with a prob-
ability based on the pheromone value τ left on the edge by
previous ants and on heuristic information η on the edge
(the pheromone values change during the computation of
MMAS*, the heuristic information does not). The complete
algorithm to choose a new candidate solution can now be
given as a procedure Construct as shown in Algorithm 1.

We want to use heuristic information that prefers edges in
the construction procedure that have large weights. Hence,
we set η(ei, ej) = w(ej).

The algorithm MMAS* consists of iteratively generating
new solutions using the procedure Construct, keeping the
best-so-far solution x∗, and updating the pheromone values
in between each two iterations.

Initially, all pheromone values are the same such that the
pheromone values sum up to 1 (i. e., each edge (u, v) ∈ A
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Algorithm 1: The algorithm Construct(C(G), τ, η)

1 function Construct on C(G), τ, η is
2 e′0 ← s;
3 k ← 0;
4 for k = 0 to n− 3 do
5 R←

∑
y∈N(e′

k
)[τ(e′k,y)]

α · [η(e′
k
,y)]

β ;

6 Choose one neighbor e′k+1 of e′k where the
probability of selection of any fixed y ∈ N(e′k) is
[τ(e′

k
,y)]

α·[η(e′
k
,y)]

β

R
;

7 return {e′1, . . . , e′n−2};

gets a pheromone value τ(u,v) = 1/|A|). Afterwards, an
initial solution x∗ is produced using Construct.

We let h and ` be two pheromone values such that h ≥ `
(high and low). These values may depend on the size n
of the input graph. In each iteration, MMAS* will update
the pheromone values according to a procedure Update such
that Update(τ, x∗) = τ ′, where

∀(e, e′) ∈ A : τ ′(e,e′) =

{
h, if e′ ∈ x∗;
`, otherwise.

In other words, all edges leading to nodes which were chosen
in the best-so-far solution x∗ have pheromone value h, all
others have `.

The fitness of a candidate solution p = (v1, . . . , vn−2) is
measured by the cost of the edges that lie between the two
partitions V1 and V2, i. e. the cut corresponding to p is given
by the edges that lie between V1 and V2. The fitness is given
by the following function

f(p) :=
∑

e∈E∩(V1×V2)

w(e).

The complete algorithm MMAS* is given in Algorithm 2.

Algorithm 2: The algorithm MMAS*.

1 function MMAS* on G is
2 τ(u,v) ← 1/|A|, for all (u, v) ∈ A;
3 x∗ ← Construct(C(G), τ, η);
4 Update(τ, x∗);
5 while true do
6 x← Construct(G, τ, η);
7 if f(x) > f(x∗) then
8 x∗ ← x;

9 τ ← Update(τ, x∗);

3. UPPER BOUNDS
In this section, we show upper bounds on the expected

optimization time of MMAS*, dependent on the α and β
and on the pheromone bounds h and `. To gain such results
we consider the initial run first and extend our analysis later
to the whole run of the algorithm.

Lemma 1. Choosing β = 1, the probability that MMAS*
produces a min-cut in the initial run is at least 2/(n(n−1)).

Proof. We follow the ideas used in the analysis of the
randomized algorithm of Karger and Stein [12] for comput-
ing a min-cut. Let i, 3 ≤ i ≤ n be the number of connected
components in the run of the construction procedure and
k be the value of a min-cut C. Then the total weight of
the edges that lie between these i components is at least
ik/2 as otherwise C is not a min-cut of G. In the initial
run the probability to choose an edge of C when having i
components is at most

k

ik/2
= 2/i.

Hence, the probability of not choosing an edge of C is at
least 1− 2/i and the probability of choosing no edge of C in
the initial run of the MMAS* is at least

n∏
i=3

(1− 2/i) = 2/(n(n− 1)).

This gives the desired probability.

For the case α = 0 and β = 1, all solutions constructed
by MMAS* have the same chance of being optimal as the
initial one. This leads to the following upper bound on the
expected optimization time.

Corollary 1. Let α = 0 and β = 1. The expected time
for MMAS* to find a min-cut for any given weighted graph
is O(n2).

Proof. As the pheromones do not have any impact when
α = 0, the algorithm behaves as if ` = h. The result then
follows from Theorem 1.

In the following we extend our analysis to the case α =
β = 1. We show an upper bound on the expected optimiza-
tion time for MMAS* that depends on the ratio of the two
pheromone bounds h and `.

Theorem 1. Let α = 1, β = 1 and 0 < ` ≤ h, and let
cn = h

`
. Then the expected optimization time of the MMAS*

is

• O
(

(n−2+2cn)!
(n−2)!(2cn)!

)
;

• in particular, if cn = k constant, O(n2k).

Proof. Let C be a min-cut of total weight k and let i,
3 ≤ i ≤ n be the number of connected components in the
run of the construction procedure. In the worst case, all
edges of C have pheromone value h and all other edges have
pheromone value `. The probability of choosing an edge of
C in step i is upper bounded by

hk

hk + (ik/2− k)`
=

h

h+ (i/2− 1)`

= 1− (i/2− 1)`

(i/2− 1)`+ h

= 1− i− 2

i− 2 + 2(h/`)
.

Hence, the probability of not choosing an edge of C is at
least i−2

i−2+2cn
and the probability of choosing no edge of C

during the construction of a new solution is at least

n∏
i=3

i− 2

i− 2 + 2cn
=

(n− 2)!(2cn)!

(n− 2 + 2cn)!
,
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which leads to an expected optimization time of O(n2cn) if
cn = k constant.

As a corollary, Theorem 1 implies that MMAS* is able to
compute a minimum cut in expected polynomial time if the
ratio between h and ` is not too large.

4. LOWER BOUNDS
In this section we will show lower bounds on the optimiza-

tion time of MMAS* for a wide range of parameter settings.
To show some of these lower bounds, we will use the follow-
ing family of graphs.

Definition 1. For all n > 2, let Vn = {1, . . . , n}×{0, 1}
be the vertex set and let Hn be the complete graph on Vn
with En the set of all of its edges. We assign weights to the
edges of Hn such that, for all (a, i), (b, j) ∈ Vn,

wn((a, i), (b, j)) =


1, if i = j;

n− 2, else if a = 1 = b;

0, otherwise.

We let H = (Hn, wn)n∈N denote the family of these graphs.

The weighted graph (Hn, wn) is depicted in Figure 2.
Note that the weight on all edges inside each clique Kn

is 1, and all and only the weight-0 edges are omitted. We
will call the only edge of weight n − 2 the “heavy edge”
e. Obviously, the optimal min-cut for (Hn, wn) is just the
heavy edge and the heavy edge never creates a cycle.

4.1 Lower Bounds for α = 1 and β = 1

We start by considering MMAS* weighing heuristic infor-
mation and pheromone information equally and point out
where this parameter setting leads with high probability to
an exponential optimization time.

Theorem 2. Let α = 1, β = 1 and 0 < ` ≤ h, and let
cn = h

`
and n ≥ 5. There are graphs where the optimization

time of the MMAS* is 1 with probability O(n−2), and, if the
optimization time is strictly bigger than 1 and cn > n, then

the optimization time is
(
cn
n

)n
with probability 1−

(
n
cn

)Ω(n)

.

Proof. We consider the family of graphs H. The part
about the optimization time of 1 with probability O(n−2)
follows from Lemma 1. Suppose now MMAS* is not suc-
cessful in the initialization. Hence, the heavy edge e and
2n − 3 other edges, have pheromone value h, while the less
than 2n2 remaining edges have pheromone value `.

Whenever e has pheromone value h, the probability of
choosing e again in a step of the ant is lower bounded by

h(n− 2)

h(n− 2) + (2n− 3)h+ 2`n2
= 1− 2`n2

h(3n− 5) + 2`n2

= 1− 2n2

cn(3n− 5) + 2n2
.

Hence, the probability of not choosing e in a run of the ant
when n ≥ 5, is at most(

2n2

cn(3n− 5) + 2n2

)2n−2

≤
(

2n2

cn(3n− 5)

)2n−2

≤
(
n

cn

)2n−2

.

By union bound, the probability that the minimum cut has
not been found within

(
cn
n

)n
iterations is at least

1−
(cn
n

)n
·
(
n

cn

)2n−2

= 1−
(
n

cn

)Ω(n)

.

As a corollary to Theorem 2, we get that, for α = 1, β = 1
and h

`
≥ n(1 + ε), for any constant ε > 0, there are graphs

where the expected optimization time of MMAS* is bounded
below by an exponential function.

4.2 Lower Bounds for β > 1

In the following, we study the impact of the choice of β
in greater detail. We have already seen that β = 1 may
lead to an expected polynomial optimization time if α = 0
holds. On the other hand, for β = 1 and α = 1 there
are graphs where MMAS* needs with high probability an
exponential number of steps to obtain an optimal solution.
As a consequence, we ask whether larger values of β can
lead to optimal solutions in expected polynomial time. We
answer this question negatively and point out that there
are graphs where choosing β > 1 leads to an exponential
optimization time regardless of the choice of α.

Theorem 3. Choosing β = 1 + ε, ε > 0 a constant, the
time until MMAS* has found a min-cut for Hn is exp(cnε)

with probability 1− 2−Ω(nε), for some constant c > 0.

Proof. We bound the probability that the heavy edge e
will be chosen in any given choice of the algorithm from be-
low if, for all edges e′, τ(e) ≥ τ(e′). Note that the condition
on the pheromone values will hold as long as e was chosen in
each previous iteration. In the worst case no edge creates a
cycle. Then, edge e will be chosen with probability at least

τ(e)α · (n− 2)β

τ(e)α · (n− 2)β +
∑
e′∈En\{e} τ(e′)αw(e′)β

≥ τ(e)α · (n− 2)β

τ(e)α · (n− 2)β + 2 ·
(
n
2

)
τ(e)α

=
(n− 2)β

(n− 2)β + (n2 − n)
,

which, if β > 2, is lower bounded by a constant > 0, and
is otherwise lower bounded by 1

4
nβ−2 (we omit the easy

algebraic transformations). Hence, if β ≤ 2, the probability
of not choosing the heavy edge in any given iteration is at
most(

1− 1

4n2−β

)n−2

=

[
(1− 1

4n2−β )4n2−β
] n−2

4n2−β

≤ e
− n−2

n2−β

= e−Ω(nε).

For β ≤ 2, using the union bound, the probability that the
minimum cut has not been found within en

ε

steps is at least
1 − en

ε

· e−Ω(nε) = 1 − e−Ω(nε). The case of β ≥ 2 is simi-
lar.

4.3 Lower Bounds for α = 1 and β = 0

After having studied the impact of heuristic information
we analyze the impact of the pheromone value in greater
detail. By setting β = 0, we remove all explicit biases to-
wards choosing edges with larger weights. Hence the algo-
rithm only relies on pheromone values to choose edges. In
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Kn Kn

n− 2

Figure 2: The Graph (Hn, wn).

V1 V2

i

n− i

j

n− j

i(n− i) j(n− j)

εi(n− j)

εj(n− i)

Figure 3: A Cut of the Graph (Gn, wn).

the following we will prove that there exist instance classes
of the minimum cut problem where the algorithm requires
exponential time with high probability (i.e. 1− o(1)).

Definition 2. For all n, let Gn be the complete graph on
the vertices V = V1 ∪ V2 where Vk := {1, ..., n} × {k}. For
any ε, 0 < ε < 1/n, we assign weights to the edges of Gn
such that for all (a, i), (b, j) ∈ V ,

wn((a, i), (b, j)) :=

{
ε if i 6= j, and

1 otherwise.
(1)

The graph Gn is depicted with a cut between P and V \P
in Figure 3, where i = |P ∩ V1| and j = |P ∩ V2|. The edges
connecting nodes in V1 with nodes in V2 have weights ε,
whereas edges connecting nodes internally within V1 or V2

have weights 1.

Proposition 1. The minimum cut of Gn corresponds to
the partition V1 and V2, and has cost εn2 < n. Except for
the minimum cut, no other cut has less cost than the cuts
containing a single vertex v and V \ {v}.

Proof. Let the partition be given by P ⊂ V1 ∪ V2, and
define i := |P ∩ V1| and j := |P ∩ V2|. W.l.o.g., we can
assume that i ≤ j and i ≤ n/2. The cost of this cut is
(n− i)(i+ εj) + (n− j)(j + εi) (see Figure 3).

For the partition {V1, V2}, we have i = 0 and j = n and
the cut has cost εn2 := c∗. For partitions containing only

a single vertex, we have i = 0 and j = 1, and the cut has
cost n(1 + ε) − 1 := cl > c∗. In any other partition, it
is necessary that i + j ≥ 2. In the case where i = 0 and
2 ≤ j ≤ n− 1, the cut has cost at least 2εn+ 2(n− 2) > cl.
Finally, if 1 ≤ i ≤ j ≤ n − 1, the cut has cost at least
(n− i)i+ (n− j)j ≥ 2(n− 1) > cl.

Firstly, we consider pheromone values such that the h/`
ratio is not too large. In the following theorem we prove
that in such cases the MMAS* requires exponential time to
find the minimum cut of Gn with overwhelming probability.

Theorem 4. Let α = 1, β = 0 and cn = h/` < n2−δ

for any δ > 0. Then the probability that MMAS* has found
a minimum cut of Gn within exp(nδ/6) steps is at most

e−Ω(nδ).

Proof. From Proposition 1 the minimum cut of Gn cor-
responds to the partition V1 and V2. Hence, no ε-edges have
to be chosen, when constructing the optimal solution. Let
pi be the probability of selecting an ε-edge in a construction
step i, and m := n(2n − 1) the total number of edges. For
each construction step, this probability is always bounded
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from below by

pi ≥
(n2 − i)`

(2n− 2− i)h+m`

≥ `n/2

2h+ 2n`

≥ 1

4(cn/n+ 1)

>
1

5n1−δ .

Thus, the probability of not choosing an ε-edge during each
construction phase is at most(

1− 1

5n1−δ

)2n−2

≤ e−n
δ/5.

Finally, taking the union bound we get a probability of at

most e−Ω(nδ) to find the minimum cut in exp(nδ/6) steps.

Hence the h/` ratio should be at least n2. For the re-
mainder of this paper, we choose h and ` such that h =
(m− 2n+ 2)(logn)` holds, which was shown to be success-
ful for finding minimum spanning trees in graphs [15]. In
this case, the probability of taking a rewarded edge (if ap-
plicable) is always at least 1− 1/logn.

Let m := n(2n − 1) ≤ 2n2 be the total number of edges.
Note that the ratio `/h = 1/(m − 2n + 2) logn is bounded
by

1

2n2 logn
≤ `

h
≤ 1

n2 logn
.

We now present the main result of this section, which
states that in the worst case the algorithm fails to find the
minimum cut in polynomial time with high probability.

Theorem 5. For any constant δ, 0 < δ < 1, the probabil-
ity that MMAS* has not found a minimum cut of Gn within
ecn steps is 1−O(n−(1−δ)), for some constant c > 0.

The proof idea is first to show that with high probability,
a partition v and V \ {v} is constructed. Furthermore, with
high probability, this partition will be constructed by choos-
ing a large number of the ε-edges. Once such a partition is
found, only the minimum cut will be accepted. Finally, this
requires every selected ε-edge to be deselected in a single
iteration, an event which happens with overwhelmingly low
probability.

Proposition 2. The solution created in the first itera-
tion of MMAS* is constructed by selecting at least n/5 ε-

edges with probability 1− e−Ω(n).

Proof. We only consider construction steps where at
least one of the contracted components contains only a single
node. In the initial construction step, there are 2n single-
node components (i.e. all the nodes). A single-node compo-
nent can be contracted by any of the n−1 1-edges and any of
the n ε-edges. The probability that a single-node component
is contracted by an ε-edge is therefore n/(n+ n− 1) ≥ 1/2,
while the probability that it is contracted differently is less
than 1/2. Each of the 2n− 2 contractions reduce the num-
ber of single-node components by at most 2, so the total
number of contractions of single-node components is at least
(2n − 2)/2 ≥ n/2. Hence, the expected number of contrac-
tions of ε-edges is at least n/4, and by Chernoff bounds, the

probability that the number of contractions of ε-edges is less
than n/5 is e−Ω(n).

The probability of constructing a partition v and V \ {v}
for some node v depends on the number of leaf nodes in the
current solution. We now show that the “contraction graph”
is likely to have many leaf nodes. The initial construction
of a solution in Algorithm 2 can be expressed equivalently
in the following way. Obtain first a spanning tree Tn on the
graph by contracting edges randomly as long as no cycles
are introduced. Then remove a randomly chosen edge to
obtain two trees Tn,1 and Tn,2. Clearly, the total number of
leaf nodes in Tn,1 and Tn,2 is at least as large as the number
of leaf nodes in the original tree Tn, assuming that single
nodes are counted as leaf nodes. The probability that Tn
contains less than βn leaf nodes for some constant β > 0
can be bounded from above using a result due to Gerke et
al. [7], which we here express in a slightly less general form.

Theorem 6 ([7]). Let Y be the number of leaf nodes of
Tn. Then there exists β > 0 such that

Prob [Y ≤ βn] < e−βn.

We would like to show that the number of contracted ε-
edges and the number of leaf nodes in the contraction graph
do not decrease too rapidly. This follows from the next
Proposition.

Proposition 3. Let H be the set of edges with pheromone
level h after the first iteration of MMAS*, and c and δ any
constants where c > 0 and 0 < δ < 1. The probability that,
within nδ iterations, more than cn edges in H have been
given pheromone value ` at least once is O(n−(1−δ)).

Proof. In each construction step, selecting an edge with
pheromone level ` can only reduce the number of h-edges
that can be chosen later by 1. Hence, in construction step
i, there are at least 2n − 2 − i edges with pheromone level
h that can be chosen without introducing a cycle. Let pi
be the probability of selecting an edge with pheromone level
` in construction step i. For each construction step i, this
probability is bounded from above by

pi ≤
`m

(2n− 2− i)h ≤
2

logn(2n− 2− i) .

Hence, the expected number of `-edges chosen during one
construction phase is

2n−3∑
i=1

1 · pi + 0 · (1− pi) ≤
2

logn

2n−3∑
i=1

1

2n− 2− i ≤ k

for some constant k. The expected number of `-edges cho-
sen during nδ iterations is therefore no more than knδ. By
Markov’s inequality, the probability that more than cn `-
edges have been selected is therefore no more than k/cn1−δ.

Proposition 4. The probability of constructing a cut be-
tween partitions v and V \ {v} in any iteration where the
construction graph contains at least cn leaf nodes for any
constant c > 0 is Ω(1).

Proof. Let v be any leaf node, and assume that the cur-
rent partition is A∪{v} and B. The partition v and A∪B,
which is a local optimum, can now be constructed by de-
selecting the edge connecting node v with component A,
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and selecting one of the `-edges between A and B. These
`-edges are at least 2n− 2.

Consider the event that this happens for a particular leaf
node v. To do this, we first estimate the probability that
in all steps except step i, we re-select an h-edge except for
the edge connecting node v to A. Then we estimate the
probability that in step i, we select one of the 2n−2 `-edges
connecting partition A with partition B.

The probability of not selecting an h edge, assuming that
only h-edges have been chosen until step j − 1 is no more
than

(m− 2n+ 2)`

(2n− 2− (j − 1))h
≤ 1

(2n− 1− j) logn
.

The probability that in all steps except step i, an h-edge is
selected is therefore at least

1−
2n−2∑
j=1
j 6=i

1

(2n− 1− j) logn
≥ 1− ln(2n− 2) + 1

logn
+

1

logn

≥ 1− ln(2n)

logn
= Ω(1).

The probability that in step i one of the 2n− 2 `-edges that
connects A and B gets selected is at least

(2n− 2)`

(2n− 2− i)h+ (m− 2n+ 2)`
≥ (2n− 2)`

2(2n− 2− i)h

≥ (n− 1)

2(2n− 2− i)n2 logn

≥ 1

3(2n− 2− i)n logn
.

Hence, the probability that the partition v and A ∪ B will
be produced is at least

Ω(1) ·
2n−2∑
i=1

1

3(2n− 2− i)n logn
= Ω(1/n). (2)

There are at least cn leaf nodes, hence the probability that
any local optimum will be produced is Ω(1).

Proposition 5. If the current solution of MMAS* is a
partition containing a single node, and this solution was con-
structed by contracting at least cn ε-edges, for any constant
c > 0, then the probability of accepting a different solution
in the next iteration is e−Ω(n).

Proof. By Proposition 1, no solutions constructed by
contracting at least one ε-edge have fitness strictly better
than the current solution. Hence, in order to accept a new
solution, it is necessary not to contract any ε-edge during
2n − 2 construction steps. In any step of the construct-
ing process, let i be the number of contracted edges with
pheromone level h, and j be the number of contracted edges
with pheromone level `. Out of a total of m ≤ 2n2 edges,
the total amount of pheromone on the edges that can still be
contracted is no more than (2n−2−i)h+(m−2n+2−j)` ≤
2n(h + n`). Assuming that no ε-edge has been contracted
so far, the probability of contracting an ε-edge in the next
construction step is therefore at least

cnh

2n(h+ n`)
≥ c

2 + 2
n logn

≥ c′

for some constant c′. Since the above probability holds
for any i and j, the probability of never contracting an
ε-edge during 2n − 2 construction steps is no more than
(1− c′)2n−2 = e−Ω(n).

Proof Of Theorem 5. We consider two phases. Phase 1
lasts the first nδ iterations, and Phase 2 lasts until the mini-
mum cut has been found. For some constant c > 0, a failure
occurs in Phase 1 if one of the following three events occur:

1. the number of leaf nodes in the construction graph is
less than cn, or

2. the number of ε-edges in the construction graph is less
than cn, or

3. a partition containing a single node v and V \ {v} is
not found before the end of the phase.

From Theorem 6, the number of leaf nodes in the initial it-
eration is at least βn with probability 1−e−Ω(n). Replacing
an h-node with an `-node can only reduce the number of leaf
nodes by 2. By Proposition 3, the probability that (β/4)n
h-edges, and hence (β/2)n leaves have been lost within nδ

steps is O(n−(1−δ)). Multiplying, we get a failure proba-

bility for event 1 of O(n−(1−δ)). From Proposition 2, the
number of ε-edges in the initial iteration is at least n/5 with

probability 1 − e−Ω(n). In order to reduce the number of
ε-edges, it is necessary not to choose an h-edge. Again, by
Proposition 3, the probability that more than cn/10 h-edges,
and hence cn/10 ε-edges have been lost within nδ steps is

O(n−(1−δ)). Multiplying, we get a failure probability for

event 2 of O(n−(1−δ)). From Proposition 4, assuming event
2 occurred without a failure, the probability of finding a lo-
cal optimum in any iteration is at least c′ for some constant
c′. Hence, the probability that a local optimum has not been
found within Phase 1, and hence the failure probability of

event 3 is (1− c′)n
δ

= e−Ω(nδ). Multiplying, the probability

of any failure during Phase 1 is bounded by 1−O(n−(1−δ))
If no failure event occurs during Phase 1, then by Propo-

sition 5, the probability of finding the minimum cut in any
iteration of Phase 2 is no more than e−Ω(n). By union bound,
the probability that the minimum cut has not been found
within ecn steps is at least 1− ecn · e−Ω(n) = 1− e−Ω(n) for
sufficiently small c.

5. CONCLUSIONS
One of the most important challenges in recent research

is to improve the theoretical foundations of general purpose
algorithms, such as evolutionary algorithms and ant colony
optimization. Especially, for ACO algorithms the theoretical
understanding of how and why they work is rather weak.

With this paper, we have contributed to the theoretical
understanding of this kind of algorithm by investigating the
minimum cut problem. We have shown that a simple ACO
algorithm solves this problem in expected polynomial time
for a restricted parameter setting. On the other hand, we
have pointed out that for other parameter settings there
exist instances for which our ACO algorithm needs expo-
nential time to achieve an optimal solution, yielding ACO
inappropriate to find minimum cuts.
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