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ABSTRACT
Black-box complexity is a complexity theoretic measure for
how difficult a problem is to be optimized by a general pur-
pose optimization algorithm. It is thus one of the few means
trying to understand which problems are tractable for ge-
netic algorithms and other randomized search heuristics.

Most previous work on black-box complexity is on artifi-
cial test functions. In this paper, we move a step forward and
give a detailed analysis for the two combinatorial problems
minimum spanning tree and single-source shortest paths.
Besides giving interesting bounds for their black-box com-
plexities, our work reveals that the choice of how to model
the optimization problem is non-trivial here. This in partic-
ular comes true where the search space does not consist of
bit strings and where a reasonable definition of unbiasedness
has to be agreed on.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

General Terms
Theory, algorithms

Keywords
Black-box complexity, running time analysis, combinatorial
optimization, theory

1. INTRODUCTION
Black-box complexity is a notion trying to capture how

difficult a problem is to be solved via problem-independent,
possibly randomized, search heuristics. Roughly speaking,
the black-box complexity of a problem (a class of functions
to be optimized) is the expected number of function evalu-
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ations needed to find the optimum of an unknown member
of the class (Droste, Jansen, and Wegener [11]).

This unrestricted black-box model sometimes gives unre-
alistically small complexity values (as compared with run
times exhibited by standard randomized search heuristics
(RSH)). A way to overcome this is to restrict the class of
randomized algorithms regarded (of course, in a way that
classic RSH are still included). To this aim, Lehre and
Witt [12] suggested an unbiased black-box model, in which
algorithms are only allowed to generate new solutions from
existing ones, and only via so-called unbiased variation oper-
ators. Doerr and Winzen [9] regard the restriction that the
algorithm has no access to the absolute objective values of
solutions, but only to the ranking implied by their fitnesses.
This leads to an (unrestricted or unbiased) ranking-based
black-box model.

A number of deep and sometimes unexpected results exist
for the different notions, most of them, however, only regard-
ing artificial test problems like OneMax, LeadingOnes,
or jump functions. The focus of this paper is to start an
in-depth analysis of black-box complexities for combinato-
rial problems. As we will see in this paper, a number of
additional modeling issues have to be regarded here. We
start our analysis with the minimum spanning tree (MST)
problem, because here it is generally agreed on that a bit-
string representation is most natural. This allows to use the
definition of unbiasedness as in [12]. When talking about
ranking-based black-box complexity, the two-criteria fitness
(total weight, number of connected components) needs at-
tention, but the only reasonable model is to treat the two
criteria separately, i.e., to assume comparability in both cri-
teria.

We then proceed to the single-source shortest path (SSSP)
problem, where current-best evolutionary approaches use
representations different from bit-strings. Here it is not
clear a priori what unbiasedness shall mean. Transforming
the definition from Lehre and Witt [12] in a straightforward
way leads to not very useful results. Taking the problem
semantics into account, we find a reasonable definition for
unbiasedness and prove meaningful black-box complexities.
Spanning Trees. In one of the earliest theoretical works
on evolutionary algorithms for combinatorial optimization
problems, Neumann and Wegener [13, 14] analyze the (ex-
pected) optimization time of the (1+1) evolutionary algo-
rithm (EA) for the MST problem. They prove that the
expected time to find one is O(m2 log(nwmax)), where n is
the number of vertices, m the number of edges and wmax
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is the maximum of the positive and integral edge weights.
It is a major open problem whether the dependence on the
maximum edge weight is necessary.

The same bound is proven for a randomized local search
(RLS) variant doing one-bit and two-bit flips each with prob-
ability 1/2. This can be easily improved to O(m2 logn) by
noting that the optimization behavior remains exactly the
same if we replace the existing edge weights by the numbers
from 1 to m (keeping the relative order of the edge weights
unchanged) [16].

Since the MST problem has a natural representation via
bit strings, for this combinatorial problem we can easily use
the four black-box complexity notions. Our results can be
found in Table 1. They imply that the unbiased black-box
complexity is asymptotically different for the unary case and
for arities ≥ 3.

In a nutshell, the results show that, on the one hand, sim-
ple algorithms based on unary operators, such as EAs and
RLS can get run times very close to the theoretically opti-
mal; on the other hand, they show how operators of higher
arity can further improve on the run time (see also [3,6,8] for
higher-arity operators for combinatorial optimization prob-
lems).
Shortest Paths. In another one of the earliest theo-
retical works on evolutionary algorithms for combinato-
rial optimization problems, Scharnow, Tinnefeld, and We-
gener [17,18] analyze how a (1+1) EA solves the SSSP prob-
lem.

Since in the SSSP problem a shortest path between the
source and any other vertex is sought for, a bit-string rep-
resentation for solution candidates seems not very natural.
Therefore, most works resort to trees or slightly more gen-
eral structures as representations. To ease the compari-
son with most existing works on the SSSP problem, in this
work we shall only work with the vertex-based represen-
tation employed in [18], which, roughly speaking, for each
vertex stores its predecessor on the path from the source to
it. We note that superior run times were recently proven for
an edge-based approach [4].

In addition, also the choice of the fitness function is sub-
tle. In [18], a multi-criteria fitness was suggested. For each
vertex, the objective function returns the distance from the
source in the current solution (infinity, if the vertex is not
connected to the source). An offspring is only accepted if,
in each of these n− 1 criteria, it is not worse than the par-
ent. For the natural (1+1) EA building on this framework,
they prove an expected optimization time of O(n3). This
was improved to a bound of O(n2 max{`, log(n)}), where `
is the smallest height of a shortest path tree [2].

When analyzing the black-box complexity of this formu-
lation of the SSSP problem, we first note that both unbiased
and ranking-based complexities make little sense. Since the
multi-objective fitness explicitly distinguishes the vertices,
treating vertices equally here (as done by unbiased opera-
tors) or making individual distances incomparable (as done
by component-wise ranking) is ill-natured.

Hence for the multi-criteria fitness, we shall only regard
the unrestricted black-box complexity. Interestingly, this
problem is also among the few combinatorial problems for
which black-box complexity results exist. Droste, Jansen,
(Tinnefeld,) and Wegener [10, 11] showed that the unre-
stricted black-box complexity of the SSSP in the multi-

criteria formulation is at least n/2 and at most 2n − 3.1

We first improve these bounds to exactly n− 1 for both the
upper and the lower bound.2 Surprisingly, if we may as-
sume that the input graph is a complete graph, we obtain a
black-box complexity of at most n/2 +O(1), see Table 3 in
Section 4.1. That is, the SSSP problem becomes easier (in
the black-box complexity sense) if we transform an arbitrary
instance to one on a complete graph (but adding expensive
dummy edges).

The natural single-criterion formulation of the SSSP
problem takes as objective simply the sum of the distances
of all vertices to the source in the current solution. This
approach was dismissed in [18] for the reason that then all
solutions with at least one vertex not connected to the source
form a huge plateau of equal fitness.

In [1], it was observed that this (artificial) problem dis-
solves if each unconnected vertex only contributes a large
value (e.g., larger than the sum of all edge weights) to the
objective value. This is the common way to implement the
∞-value in most algorithms. In this setting, also the single-
criterion EA is efficient and finds the optimum, on average,
in O(n3 log(nwmax)) iterations.

For the single-criterion version of the SSSP problem, there
is no reason to not regard unbiased black-box complexities.
However, we shall see that finding a good notion for unbi-
asedness is a crucial point here. From the representation
point of view, since individuals are nothing more than cer-
tain mappings from the vertex set into itself, unbiasedness
in the sense of Lehre and Witt would mean that we treat
all possible images of each vertex symmetrically. From the
problem view-point, unbiased should mean that we treat all
vertices (apart from the source) equal. This is a substantial
difference, as we shall discuss in detail in Section 4.2. Both
approaches lead to different black-box complexities, cf. Ta-
ble 2.

Due to space limitations, most proofs are omitted in this
extended abstract and are available from the authors.

2. THE FOUR BLACK-BOX MODELS
In this section we present two black-box models, the un-

restricted black-box model by Droste et al. [11] and the un-
biased model by Lehre and Witt [12]. Furthermore, we shall
introduce the unrestricted and the unbiased ranking-based
black-box models in Section 2. For reasons of space we give
only a short presentation of the models. For a more detailed
exposure confer [9, 11, 12]. The description below follows
closely the one in [7].

Throughout this work, we use the following nota-
tions. We denote the positive integers by N and the
positive reals by R+. For any k ∈ N, we abbreviate
[k] := {1, . . . , k}. Analogously, we define [0..k] := [k] ∪ {0}.
For x = x1 · · ·xn ∈ {0, 1}n we denote by x̄ the bitwise
complement of x (i.e., for all i ∈ [n] we have x̄i = 1 − xi).
The bitwise exclusive OR is denoted by ⊕. For any set
S we denote by 2S the power set of S, i.e., the set of all
subsets of S. By Sn we denote the set of all permutations
of [n]. Lastly, with loga we denote the logarithm to

1The only other result published on the black-box complex-
ity of a combinatorial problem is the proof that the NP -
complete MaxClique problem has a polynomial black-box
complexity, see again [11].
2Note that the upper bound in [11] still holds in a more
restricted setting, cf. Section 4.1.
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(rb) unrestr. ∗-ary unb. unary unb. rb unary unb. (rb) binary unb. (rb) 3-ary unb.

upper bound 2m + 1 O(m) O(mn log n)† O(mn(log n)2) O(m log n) O(m)

lower bound (1− o(1))n Ω(n) Ω(m log n) Ω(m log n) Ω(m/ log n) Ω(m/ log n)

Table 1: Upper and lower bounds for the black-box complexity of MST in the different models. Abbrevia-
tions: unrestr.= unrestricted, rb = ranking-based, unb. = unbiased.
† O(mn log(m/n)) if all edge weights are distinct.

unrestr. rb unrestr. unary struct binary struct 3-ary struct unary redir

upper bound n(n− 1)/2 (n− 1)2 O(n3 log n) O(n2 log n) O(n2) O(n3)

Table 2: Upper bounds for the black-box complexity of SSSP with single-criteria fitness function in the
different models. Abbreviations: unrestr.= unrestricted, rb = ranking-based, struct = structure preserving
unbiased, redir = redirecting unbiased.

base a, and with log we denote the natural logarithm to
base e := exp(1).

The Unrestricted and Unbiased Black-Box Models.
We are interested in measuring the complexity of a prob-
lem’s optimizability by randomized search heuristics. Black-
box complexity follows the usual approach to take as a mea-
sure the performance of the best algorithm out of some class
of algorithms. As our main interest is in the performance
of RSH, we restrict our attention to the class of algorithms
which obtain information about the problem to be solved
only by learning the objective value of possible solutions.
The objective function is given by an oracle, or as a black-
box. Using this oracle, the algorithm may query the ob-
jective value of all possible solutions, but any such query
does only return this solution’s objective value and no other
information about the objective function.

Naturally, we allow that the algorithms are adaptive and
that they use random decisions. However, the only type of
action the algorithm may perform is, based on the objective
values learned so far, deciding on a probability distribution
on the search space S, sampling from it a solution (“search
point”) x ∈ S, and querying its objective value (“fitness”)
from the oracle. This leads to the black-box model by Droste
et al.‘[11] which contains all algorithms following the scheme
of an unrestricted black-box algorithm, cf. Algorithm 1.

In typical applications of RSH, the evaluation of the fitness
of a search point is more costly than the generation of a new
one. Thus, we take as performance measure of a black-
box algorithm the number of queries to the oracle until the
algorithm first queries an optimal solution. Since we mainly
talk about randomized algorithms, we regard the expected
number of such queries and call this value the run time of
the black-box algorithm.

For a class F of functions, the complexity of an algorithm
A for F is the worst-case run time, i.e., the maximum run
time of A on a function f ∈ F . The complexity of F with
respect to a class A of algorithms is the minimum (“best”)
complexity among all A ∈ A for F . Hence, the unrestricted
black-box complexity of F is the complexity of F with respect
to the class of all unrestricted black-box algorithms.

Already the authors of [11] noted that the unrestricted
black-box is very powerful. As an example, consider a single
objective function f . Clearly, the unrestricted black-box

Algorithm 1: Scheme of an Unrestricted Black-Box Algo-
rithm

1 Initialization: Sample x(0) according to some

probability distribution p(0) on S. Query f(x(0)).
2 Optimization: for t = 1, 2, 3, . . . until termination

condition met do
3 Depending on(

(x(0), f(x(0))), . . . , (x(t−1), f(x(t−1)))
)

choose a

probability distribution p(t) on S.
4 Sample x(t) according to p(t), and query f(x(t)).

complexity of {f} is 1 — the algorithm which queries an
optimal solution of f as first action shows this bound.

This motivated Lehre and Witt [12] to introduce a more
restrictive black-box model, where algorithms may gener-
ate new solution candidates only from random or previously
generated search points and only by using unbiased variation
operators. Note already here that Lehre and Witt formu-
lated their model only for the hypercube {0, 1}d as search
space. In Section 4, we propose two ways to carry over the
notion to a different setting. Next is a brief presentation of
the model by Lehre and Witt.

Definition 1. Let k ∈ N. A k-ary unbiased
distribution is a family of probability distributions(
D(· | y(1), . . . , y(k))

)
y(1),...,y(k)∈{0,1}d over {0, 1}d such

that for all inputs y(1), . . . , y(k) ∈ {0, 1}d the following two
conditions hold.

(i)∀x, z ∈ {0, 1}d :

D(x | y(1), . . . , y(k)) = D(x⊕ z | y(1) ⊕ z, . . . , y(k) ⊕ z) ;

(ii) ∀x ∈ {0, 1}d ∀σ ∈ Sn :

D(x | y(1), . . . , y(k)) = D(σ(x) | σ(y(1)), . . . , σ(y(k))) ,

where σ(x) := xσ(1) · · ·xσ(d).
We refer to the first condition as ⊕-invariance and to the

second as permutation invariance. An operator sampling
from a k-ary unbiased distribution is called a k-ary unbiased
variation operator.

1-ary (i.e., mutation only) operators are also called unary
and we refer to 2-ary (i.e., crossover type) operators as bi-

983



nary ones. If arbitrary arity is considered, we call the cor-
responding model the ∗-ary unbiased black-box model.

A k-ary unbiased black-box algorithm [12] can now be
described via the scheme of Algorithm 2. The k-ary unbi-
ased black-box complexity of some class of functions F is the
complexity of F with respect to all k-ary unbiased black-box
algorithms.

Algorithm 2: Scheme of a k-ary Unbiased Black-Box Algo-
rithm

1 Initialization: Sample x(0) ∈ {0, 1}d uniformly at

random and query f(x(0)).
2 Optimization: for t = 1, 2, 3, . . . until termination

condition met do

3 Depending on
(
f(x(0)), . . . , f(x(t−1))

)
choose up to

k indices i1, . . . , ik ∈ [t− 1] and a k-ary unbiased

distribution D(· |x(i1), . . . , x(ik)).
4 Sample x(t) according to D(· |x(i1), . . . , x(ik)) and

query f(x(t)).

Contrary to the unrestricted model, Lehre and Witt [12]
could show that all functions with a single global optimum
have a unary unbiased black-box complexity of Ω(n logn),
a bound which, for several standard test problems, is met
by different unary randomized search heuristics, such as the
(1 + 1) EA or RLS. For results on higher arity models we
refer to the work of Doerr et al. [5].

Ranking-Based Black-Box Models. Another possible
restriction of the black-box model was introduced by Doerr
and Winzen [9]. The authors observed that many standard
RSH do not take advantage of knowing exact objective val-
ues. Rather, for creating the next search points, many RSH
always select those individuals with largest fitness values,
examples are given below.

Definition 2. Let S be a finite set, let f : S → R be a
function, and let C be a subset of S. The ranking ρ of C
with respect to f assigns to each element c ∈ C the number
of elements in C with a smaller f-value plus 1, formally,
ρ(c) := 1 + |{c′ ∈ C | f(c′) < f(c)}|.

Note that two elements with the same f -value are assigned
the same ranking.

Following [9], we restrict the two black-box models which
we introduced in the previous section to black-box algo-
rithms that use no other information than this ranking.

Unrestricted Ranking-Based Black-Box Model.
The unrestricted ranking-based black-box model can be de-
scribed via the scheme of Algorithm 1 where we replace the
third line by “Depending on the ranking of {x(0), . . . , x(t−1)}
with respect to f , choose a probability distribution p(t) on
S.”

Unbiased Ranking-Based Black-Box Model. For
the definition of the unbiased ranking-based model we con-
sider the scheme of Algorithm 2 and replace the third line by
“Depending on the ranking of {x(0) . . . , x(t−1)} with respect
to f , choose up to k indices i1, . . . , ik ∈ [t − 1] and a k-ary

unbiased distribution D(· |x(i1), . . . , x(ik)).”
Both ranking-based black-box models capture many com-

mon search heuristics, such as (µ + λ) evolutionary algo-
rithms, some ant colony optimization algorithms, and RLS.

They do not include algorithms like simulated annealing al-
gorithms, threshold accepting algorithms, or evolutionary
algorithms using fitness proportional selection.

Doerr and Winzen [9] could show that while the basic and
the ranking-based models yield the same asymptotic bounds
for some problems (e.g., the OneMax function class), it
does matter not to consider exact fitness values for other
problems, e.g., the BinaryValue function class.

3. MINIMUM SPANNING TREES

Definition 3 (MST). The Minimum Spanning Tree
(MST) problem consists of a connected graph G = (V,E)
on n := |V | vertices and m := |E| weighted edges. The edge
weights w(e), e ∈ E, are positive real numbers. The objec-
tive is to find an edge set E′ ⊆ E of minimal weight that
connects all vertices.

We encode this problem in binary representation as fol-
lows. First, we enumerate the edges in E in arbitrary order
ν : E → [m]. For every bit string x ∈ {0, 1}m we then inter-
pret x as the subset of edges Ex := {ν−1(i) ∈ E |xi = 1}. In
the following, we assume that the enumeration of the edges
is not known to the algorithm. So the algorithm only knows
the numbers n and m, but neither knows the geometry of the
graph nor which bit corresponds to which edge. However, it
may assume that the graph is connected since otherwise no
solution of MST exists.

For E′ ⊆ E let c(E′) be the number of connected com-
ponents induced by E′, and let w(E′) =

∑
e∈E′ w(e) be

the total weight of E′. The book [15] argues that the ob-
jective function f(E′) = (c(E′), w(E′)) is “appropriate in
the black-box scenario”. Thus, if an algorithm queries some
x ∈ {0, 1}m, it receives f(Ex) = (c(Ex), w(Ex)) as answer.

In the ranking-based models, the objective value consists
of a ranking of both components. That is, the oracle reveals
two rankings of the search points, based on the first and the
second component, respectively.

We obtain the following upper bounds by modifying
Kruskal’s algorithm to fit the black-box setting at hand.

Theorem 4 (Upper Bounds for MST). The
(ranking-based) unrestricted black-box complexity of
the MST problem is at most 2m + 1. The unary un-
biased black-box complexity is O(mn log(m/n)) if there
are no duplicate weights and O(mn logn) if there are.
The ranking-based unary unbiased black-box complexity
is O(mn logn).The (ranking-based) binary unbiased black
box-complexity is O(m logn). The (ranking-based) 3-ary
unbiased black-box complexity is O(m).

We conjecture that it is not an artifact of our methods
that we obtain different upper bounds, but that all four
complexity classes of the MST problem are different.

Theorem 5 (Lower Bounds for MST). The unre-
stricted black-box complexity of MST for complete graphs is
at least (1− o(1))n.

Proof. We apply Yao’s minimax principle [19]. To this
end, we show that there exists a probability distribution on
the input set of all weighted complete graphs such that every
deterministic algorithm needs at least (1− o(1))n queries to
compute a MST. More precisely, we consider the distribution
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p on the set of all inputs where we sample uniformly at
random a spanning tree, and give weight 1 to all of its edges.
All other edges receive weight 2. We call edges of weight 1
“cheap”, and all other edges “expensive”.

Let us now consider a fixed deterministic algorithm A.
We assume that the algorithm already knows which bit in
the vector corresponds to which edge in the graph. This
assumption makes life only easier for the algorithm. Then
for each query the algorithm knows in advance how many
connected component its query has. So the first component
of the objective function does not contain any information.
If the algorithm makes a query consisting of k edges, then
the total weight of all these edges is contained in the interval
[2k−n+1, 2k], depending of how many cheap edges the query
contains. Therefore, each query gives at most log2(n) bits
of information.

Obviously, the algorithm A needs to learn the set of all
cheap edges. It is well known that the number of span-
ning trees on n vertices is nn−2 (so-calles Cayley’s formula).
Therefore A needs to learn (n − 2) log2(n) many bits, so it
has in the worst case a run time of T := n − 2. Moreover,
for every 0 ≤ t ≤ T , after T − t many queries the probability
to find the correct solution is at most n−t. Therefore, the
probability that A needs at least T steps is at least

Pr[T (Ip, A) ≥ T ] ≥ 1−
T−1∑
t=1

n−t ≥ 1− n−1

1− n−1
= 1− o(1).

Note that the hidden constant in o(1) does not depend on
the algorithm A. By Markov’s inequality, the expected run
time is at least

E[T (Ip, A)] ≥ T · Pr[T (Ip, A) ≥ T ]

≥ T · (1− o(1))

= (1− o(1))n.

Since this holds for all deterministic algorithms A, Yao’s
minimax principle implies the statement.

In order to prove a lower bound in the unbiased setting,
we compare MST with the auxiliary problem OneMaxm.
The search space of OneMaxm is the space {0, 1}m, and
for each vector x ∈ {0, 1}m the objective value is given by
OneMaxm(x) :=

∑m
i=1 xi, the number of 1-bits in x.

Theorem 6. The k-ary unbiased black-box complexity of
MST for n vertices and m edges is at least as large as the
k-ary unbiased black-box complexity of OneMaxm.

It has been shown in [12] that OneMaxm has a unary
unbiased complexity of Θ(m logm) = Θ(m logn) and
in [5] it was proven that the ∗-ary unbiased complexity of
OneMaxm is Θ(m/ logm) = Θ(m/ logn). This yields the
following.

Corollary 7. The unary unbiased black-box complexity
of MST is in Ω(m logn); for all other arities, the unbiased
black-box complexity of MST is in Ω(m/ logn).

4. SINGLE-SOURCE SHORTEST PATH

Definition 8 (SSSP). The Single-Source Short-
est Path (SSSP) problem consists of a connected
graph G = (V,E) on n := |V | vertices and m := |E|

edges. The edge weights w(e), e ∈ E, are positive real
numbers. There is a distinguished source vertex s ∈ V .
The objective is to find for all vertices v ∈ V a path pv in
G from s to v such that the total weight of pv,

∑
e∈pv w(e),

is minimal among all paths from s to v.

For the SSSP problem, it is less clear what a good choice
of the search space and the objective function is. Two ap-
proaches have been regarded, which we discuss in the fol-
lowing subsections.

We assume without loss of generality that the nodes are
labeled by 1, . . . , n and that s = 1 is the source for which we
need to compute the shortest path tree. Let w : E → R+ be
the weight function of the edges.

4.1 SSSP with Multi-Criteria Fitness
The paper [11] argues for a multi-criteria objective func-

tion, where any algorithm may query arbitrary trees on [n]
and the objective value of any such tree is an n− 1 tuple of
the distances of the n− 1 non-source vertices to the source
s = 1 (if an edge is traversed which does not exist in the
input graph, the entry of the tuple is ∞).

The paradigm underlying the unbiased black-box com-
plexity is that the algorithm should not be allowed to exploit
knowledge about solution candidates stemming from their
representation, but only information stemming from their
fitness and the population history. This is why only unbi-
ased variation operators are admitted, which fulfill certain
symmetry properties.

For the multi-objective formulation of the SSSP problem,
we thus feel that there is little room for unbiasedness. With
the fitness explicitly distinguishing the vertices, imposing
certain symmetry conditions among the vertices makes little
sense. A similar argument makes us not regard ranking-
based black-box complexities for this problem.

[11] shows that the unrestricted black-box complexity of
this problem is lower bounded by n/2 and upper bounded
by 2n− 3.3

In this section, we first improve the bounds from [11] and
match them. Then we restrict the problem instances to com-
plete graphs, which will avoid objective values of ∞ for the
different objectives.

arbitrary connected graph complete graph

upper n− 1 b(n + 1)/2c+ 1

lower n− 1 n/4

Table 3: Upper and lower bounds for the unre-
stricted black-box complexity of SSSP with multi-
criteria objective function,

Theorem 9. The unrestricted black-box complexity of
SSSP with arbitrary input graphs is n− 1.

Surprisingly, if we may assume that the input graph is
complete, we obtain a lower complexity. Note that this in-
cludes the case where the complete graph is obtained from
3Note that the upper bound holds in a restricted setting
where the algorithm may only store up to two previous
data points. However, the algorithm witnessing our upper
bound for the unrestricted black-box setting does also not
require the full storage granted by the unrestricted setting,
but merely needs to store a linear number of pointers at any
given time.
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on arbitrary one by adding dummy edges with artificially
high weight. This shows, again, that even small changes in
modeling the combinatorial problem can lead to substantial
changes in the complexity.

For the upper bound, we cover the graph with b(n+1)/2c
spanning trees, and query each of them. From the objec-
tive values, it is possible to compute all edge weights in the
graph, and thus to compute the optimal solution. For the
lower bound, we apply the same techniques as in the proof
of 9, but use a more intricate distribution on the set of all
spanning trees. Skipping the detais, we obtain the following.

Theorem 10. The unrestricted black-box complexity of
SSSP with complete input graphs is bounded from above by
b(n+ 1)/2c+ 1 and bounded from below by n/4.

We do not regard unbiased models for this setting. As
mentioned before, it seems inappropriate to use an objective
function that gives vertex-specific information and to still
require unbiased variation operators.

4.2 SSSP with Single-Criterion Fitness
It is an interesting question how the bounds of Section 4.1

change if we require the algorithms to be unbiased. The un-
biased model of Lehre and Witt in [12] has only been for-
mulated for pseudo-Boolean functions, cf. Section 2. As
we are dealing with a different representation here, our first
step is to generalize the unbiasedness conditions to the set-
ting of SSSP. As we discuss below, there is no unique best
way to generalize unbiasedness to a more general class of
problems. Even more, the upper bounds which we obtain
for the different unbiasedness models differ by a factor of
logn, cf. Theorem 15 and Corollary 13. We conjecture that
this difference is not an artifact of our analysis but that
there actually exists an asymptotic difference between the
two models.

In this section, we consider the following model for the
SSSP problem. A representation of a candidate solution
will be a vector (ρ(2), . . . , ρ(n)) ∈ [n]n−1 to be interpreted
as follows. The predecessor of node i is ρ(i). Note that we
do not require that ρ(i) 6= i, nor do we require that the
candidate solution forms a tree; RSH without repair mecha-
nisms might generate such solutions. In order to reflect the
meaning of the components, the indices of such an x will run
from 2 to n, i.e., x = (x2, . . . , xn).

We can now formulate a first unbiasedness condition for
this model. We require that, for any source-preserving per-
mutation of the nodes, the probabilities are preserved. Intu-
itively, all subgraphs with the same structure but different
labels are equally likely to be chosen.

Definition 11. Let k ∈ N. A k-ary structure preserv-
ing unbiased distribution is a family of probability distribu-
tions

(
D(· | y(1), . . . , y(k))

)
y(1),...,y(k)∈[n]n−1 over [n]n−1 such

that for all inputs y(1), . . . , y(k) ∈ [n]n−1 the distribution

D(· | y(1), . . . , y(k)) is invariant under relabeling of the non-
source nodes.

That is, for all σ ∈ Sn with σ(1) = 1 and for all x ∈ [n]n−1

we have that

D(x | y(1), . . . , y(k)) = D(σ̂(x) | σ̂(y(1)), . . . , σ̂(y(k))) ,

where σ̂(x) :=
(
σ(xσ−1(2)), . . . , σ(xσ−1(n))

)
.

Alternatively, as search points are just mappings from the
vertex set into itself, we might require that all possible im-
ages of each vertex are to be treated symmetrically. For-
mally, we require the following.

Definition 12. Let k ∈ N. A k-ary redirecting un-
biased distribution

(
D(· | y(1), . . . , y(k))

)
y(1),...,y(k)∈[n]n−1 is

a family of probability distributions over [n]n−1 such that

for all inputs y(1), . . . , y(k) ∈ [n]n−1 the distribution

D(· | y(1), . . . , y(k)) is invariant under redirecting the nodes.
That is, for all vectors σ = (σ2, . . . , σn) ∈ Sn−1

n of permuta-
tions, and for all x ∈ [n]n−1 we require

D(x | y(1), . . . , y(k)) = D(~σ(x) | ~σ(y(1)), . . . , ~σ(y(k))) ,

where ~σ(x) :=
(
σ2(x2), . . . , σn(xn)

)
.

As in the hypercube model, we call an operator sampling
from a k-ary structure preserving unbiased distribution a
k-ary structure preserving unbiased variation operator and,
similarly, an operator that samples from a k-ary redirecting
unbiased distribution is called a k-ary redirecting unbiased
variation operator.

To get a better understanding of the above definitions,
let us investigate the restrictions for the unary case k = 1.
We first look at the structure preserving model. Assume we
have a search point z, and we would like to sample the next
search point according to a probability distribution Dz on
the search space. We may do so if and only if there is an
unbiased family of probability distributions (D(· | y))y such
that D(· | z) = Dz. A necessary condition is

For every source-preserving permutation σ
with σ̂(z) = z and all x ∈ [n]n−1 it holds that
Dz(x) = Dz(σ(x)).

(1)

This condition is also sufficient. Assume Dz satisfies (1).
Then for every y there are two possibilities.

1. Either there exists a σ such that σ̂(y) = z. In this case,
we define D(x | y) := D(σ̂(x) | z) for all x ∈ [n]n−1.

2. Or there does not exist such a σ. In this case, we
let D(· | y) be the uniform distribution on the search
space.

It can be checked that the family D(· | y) is a structure pre-
serving unbiased family of distributions. The same holds for
the redirecting unbiased model if we take σ from the set of
all vectors in Sn−1

n and replace σ̂ by ~σ.
Now we can determine the distributions Dz satisfying con-

dition (1). For the structure-preserving model, we need
to find all source-preserving permutations that leave z un-
changed. These are in one-to-one correspondence with the
source-preserving automorphisms of the graph induced by z.
If A denotes the group of these automorphisms, then con-
dition (1) is that Dz must be invariant under A, i.e., for all
α ∈ A and all x ∈ [n]n−1 we require Dz(x) = Dz(α(x)).

For the redirecting model, we need to determine all fami-
lies σ ∈ Sn−1

n such that ~σ(z) = z. Consider any component
yi of y. Then we can choose σi to be any permutation of
[n] with σi(zi) = zi. In particular, for all s, t ∈ [n] \ {zi}
there is such a permutation mapping s to t. Therefore, a
distribution Dz is redirecting unbiased if and only if the fol-
lowing condition is satisfied. ‘If x(1), x(2) ∈ [n]n−1 are vec-

tors such that for every i ∈ [2, . . . , n] the equations x
(1)
i = zi
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and x
(2)
i = zi are either both true or are both false, then

Dz(x
(1)) = Dz(x

(2)).” Similar considerations hold for higher
arity. We omit the details.

Since we do not want the objective function to give vertex-
specific information, we use the single-criterion objective
function fG(ρ(2), . . . , ρ(n)) :=

∑n
i=2 di where di is the dis-

tance of the i-th node to the source. If an edge – including
loops – is traversed which does not exist in the input graph,
we set di := C where C is some very large constant (e.g.,
we could choose C := nwmax). In all models, the constant
C can be learned by the algorithm in a constant number of
queries, e.g., by querying the objective value of search point
(2, . . . , 2) in the unrestricted model and dividing it by n− 1
and, similarly, querying a search point with “all nodes to
one non-source node” in the structure preserving unbiased
model, and “all nodes to the same node” in the redirecting
unbiased model. In the latter one we may perform two inde-
pendent such queries to guarantee a probability of at least
1−n−2 to learn the exact value of C. Thus, we assume that
the value C is known to the algorithm.

It has been argued in [1] that the RLS algorithm, which
in each iteration flips exactly one bit chosen uniformly at
random, solves the single-source shortest path problem with
the single-criterion objective function in O(n3) iterations.
Since this algorithm is contained in the ranking-based un-
restricted black-box model, we immediately gain an upper
bound of O(n3). RLS is also contained in the redirecting
unbiased model.

Corollary 13. The ranking-based unrestricted black-box
complexity and the ranking-based unary redirecting unbiased
black-box complexity of the SSSP with the single-criterion
fitness function is O(n3).

We conjecture that already for the (non-ranking-based)
unary redirecting unbiased model this bound is tight. How-
ever, the following shows that we can achieve better bounds
in the unrestricted black-box model.

Theorem 14. The unrestricted black-box complexity of
the SSSP with the single-criterion objective function is at
most

∑n−1
i=1 i = n(n−1)/2 and the ranking-based unrestricted

one is at most (n− 1)2.

This theorem, as all the subsequent theorems, can be
proven by applying some variants of Dijkstra’s algorithm.
It is possible to derive the edge weights in the unrestricted
model from the oracle’s answers, so we need only n − 1 − i
queries to add the i-th vertex to the tree. In the ranking-
based model we have less information and need up to (n−1)
queries to add a new edge.

For the structure-preserving unbiased model, things get
more involved. In the unary case we need O(n2 logn) queries
to add a new edge. In the binary and 3-nary case, some
precomputations are possible that reduce the run time.

Theorem 15. The unary structure-preserving unbiased
black-box complexity of SSSP is O(n3 logn).

Theorem 16. The binary structure-preserving unbiased
black-box complexity of SSSP is O(n2 logn).

Proof (sketch). We imitate Dijkstra’s algorithm. Note
however, that in the structure-preserving unbiased model we
are not allowed to (i) direct a node to some node of our

choice, e.g., to the node that was lastly added to the search
tree; and (ii) we cannot simply add a vertex to the current
solution but need to construct this new solution.

To overcome the first point, we split up the algorithm in
two phases. In the search phase, we do not actually find a
search point encoding the search tree T , but rather for every
leaf v of the tree we store a search point that contains the
path in T from the source to v, with all other nodes pointing
to themselves.

When the search phase is completed, we know the struc-
ture of the search tree, and start the construction phase.
In this phase, we grow the desired search tree T .

Remarkably, we need binary operators only to check
whether we have added the correct vertex to the tree in
the construction phase.

Let us start with the search phase. For the first step, let
v1 be the source, and store the search point where every
vertex points to itself. For learning how to add the k+ 1-th
node, assume that for k nodes v1, . . . , vk we have learned
already how to add them to the shortest path tree. We call
the other nodes “free nodes”.

Consider the search point x(k) lastly found. As mentioned
above, x(k) consists of a the shortest path from the source to
vk, and all nodes not on this path point to themselves. We
call the nodes on the shortest path from v1 to vk “connected
nodes”. Note that a node cannot at the same time be free
and connected, but there may be nodes that are neither
free nor connected. We apply O(n logn) times the following

unary unbiased operator. “Create the path z from x(k) by
pointing exactly one of the unconnected nodes to vk. Let
every other unconnected node point to itself.” The operator
is unbiased since every source-preserving automorphism of
x(k) must fix the path in x(k), and hence must fix vk.

With high probability we have queried all possible attach-
ments of free nodes to vk. We compute the lowest cost for
connecting one of them via vk and compare it with the low-
est cost for connecting a free node via one of the vertices
v1, . . . , vk−1. Of all these connections, we choose the cheap-
est and store the corresponding search point.

Since we need to add n−1 vertices, the search phase needs
O(n2 logn) queries.

For the construction phase, assume that we have learned
the complete shortest path tree T . I.e., for every vertex v,
we have a search point encoding the path in T from the
source to v. We want to construct T explicitly. We start
with the empty search tree (i.e., the search point where all
nodes point to themselves), and add vertices in a depth-first
manner.

Now we describe how to construct T iteratively. We call
the queries between adding the (k − 1)st and k-th node the
k-th phase. At the end of each phase, we choose an active
node, to which the next node is to be attached. We start
with the source being active.

For the (k + 1)st phase, assume we have already con-

structed a tree Tk of size k, encoded in a search point y(k).
We will make use of the unary operator attach(y(k)), which

creates a search point z from y(k) by redirecting exactly one
unconnected node to the active node. In general, this op-
erator does not need to be unbiased, since there may be
automorphisms of the search tree mapping the active node
somewhere else. However, it is possible to avoid such au-
tomorphisms by carefully choosing the order in which the
depth first search traverses the children of the active node.
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The key idea is to traverse longest search paths first. We
omit the details.

Let v be the node we want to attach to the active node,
and let xv be the search point storing the shortest path from
s to v, i.e., xv = x(i) for some i ∈ [n]. We add v to Tk as

follows. Sample z ← attach(y(k)). Skipping the details,
we note that it is possible by binary unbiased operations
to compute in a constant number of queries the number of
edges in which z and xv coincide. Hence we can decide
whether the newly added node was v. We keep on sampling
z ← attach(y(k)) until we find a z that adds v to y(k), then

setting y(k+1) ← z. If v has a child in T then we make v
the next active node. Otherwise, we backtrack until we find
a node that has an unconnected child, and make this node
active.

The expected number of queries needed to add a new node
is O(n). Since n nodes need to be added, the construction
phase needs O(n2) queries.

By allowing 3-ary operators it is possible to imitate Dijk-
stra’s algorithm more directly, without any need to split up
the algorithm into two phases as in the proof of the previous
theorem. We get the following theorem.

Corollary 17. The 3-ary structure-preserving unbiased
black-box complexity of SSSP is O(n2).

5. CONCLUSIONS
This first analysis of the different black-box complexity

notions for two classic combinatorial optimization problems
showed the following. In general, all notions make sense
for combinatorial problems as well, though some care has
to be taken of how to implement unbiasedness conditions.
The particular bounds we find are reasonably close to actual
run times observed by existing randomized search heuris-
tics, that is, the black-box complexities give reasonable
bounds for the problem difficulties here. In cases where
our bounds are smaller than those observed by current best
search heuristics, further studies are needed to determine
whether current heuristics can be improved, e.g., by using
higher-arity variation operators, or whether additional re-
strictions to the black-box model are needed to exclude ar-
tificial algorithms.
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