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Abstract. In inductive inference we investigate computable devices (learners)
learning formal languages. In this work, we focus on monotonic learners which,
despite their natural motivation, exhibit peculiar behaviour. A recent study anal-
ysed the learning capabilities of strongly monotone learners in various settings.
The therein unveiled differences between explanatory (syntactically converging)
and behaviourally correct (semantically converging) such learners motivate our
studies of monotone learners in the same settings.
While the structure of the pairwise relations for monotone explanatory learning is
similar to the strongly monotone case (and for similar reasons), for behaviourally
correct learning a very different picture emerges. In the latter setup, we provide
a self-learning class of languages showing that monotone learners, as opposed to
their strongly monotone counterpart, do heavily rely on the order in which the
information is given, an unusual result for behaviourally correct learners.

1 Introduction

Algorithmically learning a formal language from a growing but finite amount of its
positive information is referred to as inductive inference or language learning in the
limit. For example, a learner h (a computable device) might be presented more and more
data from a formal language (a computably enumerable subset of the natural numbers),
say, the set of all odd prime numbers Po. With each new element presented, h outputs
a description for a formal language as its guess. As such, the learner may decide to
conjecture a code for the set of all odd numbers No. With more data given, the learner
may infer some structure and finally decide to output a program for the set Po. If h does
not change its mind any more, we say that h learned the language Po correctly.

Originally introduced by Gold [9], such learning is referred to as explanatory learn-
ing, as the learner eventually provides a syntactically fixed explanation of the language.
We denote such learning by TxtGEx, where Txt indicates that the information is
given from text, G stands for Gold-style or full-information learning and, lastly, Ex
refers to explanatory learning. Since a single language can be learned by a learner which
always guesses one and the same code for this language, we study classes of languages
which can be TxtGEx-learned by a single learner and denote the set of all such classes
with [TxtGEx]. We refer to this set as the learning power of TxtGEx-learners.

Picking up the initial example, we observe that the learner h outputs a code for No
overgeneralizing the target language Po before outputting a correct code. The question
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arises whether such overgeneralizations are necessary in order to obtain full learning
power? Various restrictions mimicking overgeneralizations have been investigated in
the literature and show such a behaviour to be crucial. A prominent example are mono-
tonic learners [11,23], where the hypotheses must show a monotone behaviour. In the
strongest from, the hypotheses of strongly monotone (SMon) learners must form as-
cending chains. In a less restrictive form, only the correctly inferred elements, that is,
elements that belong to the target language, in the hypotheses of monotone learners
(Mon) need to form ascending chains.

A recent study of strongly monotone learners under various additional restrictions
provided a full overview of the pairwise relations between these [13]. The studied re-
strictions affect the data given to the learners as well as the learners themselves. In
particular, the learners may be given solely the set of elements to infer their hypothe-
ses from, referred to as set-driven (Sd, [22]) learning, or may additionally be given
an iteration-counter, called partially set-driven or rearrangement-independent (Psd,
[2,21]) learning. When learning indexed families of recursive languages [1] rather than
classes of recursively enumerable languages, monotonic learners have been studied un-
der similar restrictions [16,17,18]. Directly affecting the learner are requirements such
as them being total (denoted using the prefix R) or them being monotone on arbitrary
information (denoted by the prefix τ(Mon)).

Comparing all the possible pairwise combinations, Kötzing and Schirneck [13]
show that Gold-style strongly monotone learners may be assumed so on arbitrary in-
formation. Besides that, they provide self-learning classes of languages [4] to show
that all other combinations separate from each other. Contrasting this are their findings
when studying behaviourally correct learners (Bc, [5,19]), which need to provide a
semantic explanation (rather than a syntactic one) in the limit. Behaviourally correct
strongly monotone learners turn out to be equally powerful, regardless the considered
restriction on the given data (that is, whether the learner has full information, is partially
set-driven or set-driven) or learner itself (that is, whether it is partial, total or required
to be strongly monotone on arbitrary input).

These interesting findings motivate the present study. In Section 3.1, we study
monotonic explanatory learners. In particular, we observe that the overall behaviour of
monotone learners resembles the one of strongly monotone learners. This similarity cul-
minates in Theorem 3, where we prove learners which are monotone on arbitrary input,
so called globally monotone learners, to be equal to globally strongly monotone ones.
We additionally observe that most proof strategies used to separate the diverse strongly
monotone learning paradigms [13] can be carried over to fit monotone learners. While
these transitions are often non-trivial, they do indicate a deep similarity between these
two restrictions. We provide all the necessary comparisons in Section 3.1 and depict the
overall picture in a lucid map, see Figure 1(a). Please consider the full version [6] for
the proofs.

In Section 3.2, we transfer the problem of finding the pairwise relations to be-
haviourally correct monotonic learners and discover an unexpected result. In Theo-
rem 7, we provide a self-learning class of languages [4] using the Operator Recur-
sion Theorem [3] showing that Gold-style monotone learners are strictly more powerful
than their partially set-driven counterpart. This is particularly surprising as usually be-
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Fig. 1: Relation of various monotonic learning restrictions in the (a) explanatory (Ex)
and (b) behaviourally correct (Bc) case. We omit mentioning Txt to favour readability.
Solid lines imply trivial inclusions (bottom-to-top, left-to-right). Greyly edged areas
illustrate a collapse of the enclosed learning criteria. There are no further collapses.

haviourally correct learners cope rather well with such memory restrictions [13,7]. This
marks the most important and surprising insight of this work. We provide the necessary
results in Section 3.2 and collect our findings in the lucid Figure 1(b).

2 Preliminaries

2.1 Language Learning in the Limit

In this section, we discuss the notation used and the system for learning criteria which
we follow [15]. Notation which is not introduced follows the textbook [20].

Starting with the mathematical notation, we use ( and⊆ to denote the proper subset
and subset relation between sets, respectively. We denote with N = {0, 1, 2, . . . } the
set of all natural numbers. With ∅ and ε we denote the empty set and empty string,
respectively. Furthermore, we let P andR be the set of all partial and total computable
functions p : N → N, respectively. We fix an effective numbering {ϕe}e∈N of P and
denote withWe = dom(ϕe) the e-th computably enumerable set. This way, we interpret
the natural number e as an index or hypothesis for the set We. Regarding important
computable functions, we fix with 〈., .〉 a computable coding function. We use π1 and π2
to recover the first and second component, respectively. Furthermore, we write pad for
an injective computable function such that, for all e, k ∈ N, we have We = Wpad(e,k).
We use unpad1 and unpad2 to compute the first and second component of pad(., .),
respectively. Note that both functions can be extended iteratively to more coordinates.
Lastly, we let ind compute an index for any given finite set.

We aim to learn languages, that is, recursively enumerable sets L ⊆ N. These will
be learned by learners which are partial computable functions. By # we denote the
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pause symbol and for any set S we denote S# := S∪{#}. Furthermore, a text is a total
function T : N→ N∪{#}, the collection of all texts we denote with Txt. For any text
or sequence T , we let content(T ) := range(T ) \ {#} be the content of T . A text of a
language L is such that content(T ) = L, the collection of all texts of L we denote with
Txt(L). For n ∈ N, we denote by T [n] the initial sequence of T of length n, that is,
T [0] := ε and T [n] := (T (0), T (1), . . . , T (n− 1)). For a set S, we call the text where
all elements of S are presented in strictly increasing order (followed by infinitely many
pause symbols if S is finite) the canonical text of S. Furthermore, we call the sequence
of all elements of S presented in strictly ascending order the canonical sequences of
S. On finite sequences we use ⊆ to denote the extension relation and ≤ to denote the
order on sequences interpreted as natural numbers. Furthermore, for tuples of finite sets
and numbers (D, t) and (D′, t′), we define the order � such that (D, t) � (D′, t′) if
and only if t ≤ t′ and there exists a text T such that D = content(T [t]) and D′ =
content(T [t′]). In addition, given two sequences σ and τ we write σ_τ to denote the
concatenation of these. Occasionally, we omit writing _ for readability.

We formalise learning criteria using the following system [15]. An interaction op-
erator β is given a learner h ∈ P and a text T ∈ Txt and outputs a (partial) function
p. Intuitively, β provides the information for the learner to make its guesses. We con-
sider the interaction operators G for Gold-style or full-information learning [9], Psd
for partially set-driven or rearrangement-independent learning [2,21] and Sd for set-
driven learning [22]. Define, for any i ∈ N,

G(h, T )(i) := h(T [i]),

Psd(h, T )(i) := h(content(T [i]), i),

Sd(h, T )(i) := h(content(T [i])).

Intuitively, Gold-style learners have full information on the elements presented to them.
Partially set-driven learners, however, base their guesses on the total amount of elements
presented and the content thereof. Lastly, set-driven learners only base their conjectures
on the content given to them. Furthermore, for any β-learner h, we write h∗ for its
starred learner, that is, the G-learner which simulates h. For example, if β = Sd, then,
for any sequence σ, h∗(σ) = h(content(σ)).

When it comes to learning, we can distinguish between various criteria for success-
ful learning. The first such criterion is explanatory learning (Ex, [9]). Here, a learner is
expected to converge to a single, correct hypothesis in order to learn a language. This
can be loosened to require the learner to converge semantically, that is, from some point
onwards it must output correct hypotheses which may change syntactically [5,19]. This
is referred to as behaviourally correct learning (Bc). Formally, a learning restriction δ
is a predicate on a total learning sequence p, that is, a total function, and a text T ∈ Txt.
For the mentioned criteria we have

Ex(p, T ) :⇔ ∃n0∀n ≥ n0 : p(n) = p(n0) ∧Wp(n0) = content(T ),

Bc(p, T ) :⇔ ∃n0∀n ≥ n0 : Wp(n) = content(T ).

These success criteria can be expanded in order to model natural learning restrictions.
Our focus lies on monotonic learners [11,23]. Strongly monotone learning (SMon)
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forms the basis. Here, the learner may never discard elements which were once present
in its previous hypotheses. This restrictive criterion can be loosened to hold only on the
elements of the target language, that is, the learner may never discard such elements
from the language which it already proposed in previous hypotheses. This is referred to
as monotone learning (Mon). This is formalized as

SMon(p, T ) :⇔ ∀n,m : n ≤ m⇒Wp(n) ⊆Wp(m),

Mon(p, T ) :⇔ ∀n,m : n ≤ m⇒Wp(n) ∩ content(T ) ⊆Wp(m) ∩ content(T ).

Given two restrictions δ and δ′, we denote their combination, that is, their intersec-
tion, with δδ′. Finally, T, the always true predicate, denotes the absence of a restriction.

Now, a learning criterion is a tuple (α, C, β, δ), where C is a set of admissible
learners, typically P or R, β is an interaction operator and α and δ are learning re-
strictions. We denote this learning criterion as τ(α)CTxtβδ. In the case of C = P ,
α = T or δ = T we omit writing the respective symbol. Now, an admissible learner
h ∈ C τ(α)CTxtβδ-learns a language L if and only if on arbitrary text T ∈ Txt
we have α(β(h, T ), T ) and on texts of the target language T ∈ Txt(L) we have
δ(β(h, T ), T ). With τ(α)CTxtβδ(h) we denote the class of languages τ(α)CTxtβδ-
learned by h and with [τ(α)CTxtβδ] we denote the set containing, for all h′ ∈ C, all
classes τ(α)CTxtβδ(h′). Note that restrictions which hold globally (that is, on arbi-
trary text) are denoted using τ(.).

2.2 Normal Forms in Inductive Inference

The introduced learning restrictions all fall into the scope of delayable restrictions. In-
formally, the hypotheses of a delayable restriction may be postponed arbitrarily but
not indefinitely. Formally, we call a learning restriction δ delayable if and only if for
all texts T and T ′ with content(T ) = content(T ′), all learning sequences p and all
total, unbounded non-decreasing functions r, we have that if δ(p, T ) and, for all n,
content(T [r(n)]) ⊆ content(T ′[n]), then δ(p ◦ r, T ′). Furthermore, we call a restric-
tion semantic if and only if for any learning sequences p and p′ and any text T , we have
that if δ(p, T ) and, for all n, Wp(n) = Wp′(n), then δ(p′, T ). Intuitively, a restriction
is semantic if any hypothesis could be replaced by a semantically equivalent one with-
out violating the learning restriction. Note that all mentioned restrictions are delayable
and all except for Ex are semantic. In particular, one can provide general results when
talking about delayable or semantic restrictions.

Theorem 1 ([12]; [14]). For any interaction operator β, delayable restriction δ and
semantic restriction δ′, we have [RTxtGδ] = [TxtGδ] and [RTxtβδ′] = [Txtβδ′].

3 Studying Monotone Learning Restrictions

We investigate monotone learners imposed with various restrictions and compare them
to their strongly monotone counterpart. We split this study into two parts, first studying
explanatory learners in Section 3.1 and then behaviourally correct ones in Section 3.2.
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Before we dive into the respective part, we note that it is a well-established fact that
strongly monotone learners are significantly weaker than their monotone counterpart.
In particular, the class L = {2N} ∪ {{0, 2, 4, . . . , 2k, 2k + 1} | k ∈ N} is learnable by
a TxtSdMonEx-learner, however, any TxtGSMonBc-learner fails to do so. We
remark that the separating class can also be learned by a total monotone learner.

Theorem 2. We have [RTxtSdMonEx] \ [TxtGSMonBc] 6= ∅.

Despite this fundamental separation, we observe similarities between monotone and
strongly monotone explanatory learners. These similarities are not only reflected by the
overall pairwise relation of the different settings, but also by the techniques used to
obtain these relations. The main difficulty thereby is to reason why the elements used
to contradict strongly monotone learning suddenly are part of a learnable language and,
thus, also contradict monotone learning. Furthermore, in order to show strong results,
all of these adaptations have to be done while maintaining the original learnability by
some strongly monotone learner.

These similarities culminate in Theorem 3, where we show globally monotone
learners to be equally powerful as globally strongly monotone ones. This result also
holds true when requiring semantic convergence. However, as monotone learners may
discard elements from their guesses, the strategy of keeping all once suggested elements
regardless of the order (as for strongly monotone learners [13]) is not fruitful for mono-
tone learners. On the contrary, we show that such an equality cannot be obtained. In
particular, in Theorem 7 we show that partially set-driven learners are strictly less pow-
erful than their Gold-style counterpart, an unusual result as we discuss in Section 3.2.

3.1 Explanatory Monotone Learning

In this section, we investigate monotone learners when requiring syntactic convergence
and also compare them to their strongly monotone counterpart. Building on the thor-
ough discussion of strongly monotone learners [13], we show that the general behaviour
of both types of learners is alike. This can be seen, firstly, in the resulting overall picture
of the pairwise relations and, secondly, in the way these results are obtained.

Our first result is already a good indication towards how similar these restrictions
are. We show that requiring both restrictions to hold globally results in equal learning
power. To motivate the idea, note that monotone learners exhibit a strongly monotone
behaviour on target languages. If now the learner is required to be monotone on any
possible set, as required by global restrictions, it is already globally strongly monotone.
Note that this equality, in fact, holds on the level of the restrictions itself.

Theorem 3. For all restrictions δ and all interaction operators β we have

[τ(SMon)Txtβδ] = [τ(Mon)Txtβδ].

Proof. The inclusion [τ(SMon)Txtβδ] ⊆ [τ(Mon)Txtβδ] is immediate. For the
other inclusion, let h∗ be a τ(Mon)Txtβδ-learner in its starred form. Assume that h∗
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is not τ(SMon). Then, there exists some text T , i < j and x such that x ∈Wh∗(T [i]) \
Wh∗(T [j]). Considering the text T ′ := T [j]_x_T (j)_T (j + 1)_ · · · , we have

x ∈Wh∗(T [i]) ∩ content(T ′) \Wh∗(T [j]) ∩ content(T ′).

Thus, h∗ is not τ(Mon) on text T ′, a contradiction. ut

In particular, this implies that all separations and equalities known for globally
strongly monotone learners also hold for globally monotone ones. Most notably, Gold-
style globally monotone learners are strictly less powerful than their total counterpart.

Gold-style monotone learners, being delayable, can be assumed total without loss of
learning power [12]. We show that these learners are more powerful than their partially
set-driven counterpart. In particular, we show that even strongly monotone Gold-style
learners are more powerful than any partially set-driven monotone learner. We do so
by learning a class of languages on which the learner, in order to discard certain ele-
ments, needs to know the order the information appeared in. This, no partially set-driven
monotone learner can do.

Theorem 4. We have [TxtGSMonEx] \ [TxtPsdMonEx] 6= ∅.

Next, we show that a partial learner, even sustaining a severe memory restriction and
expected to be strongly monotone, is still more powerful than any total monotone par-
tially set-driven learner. When constructing a separating class of languages, the partial
learner simply awaits the guess of the total learner to, then, learn a different language.

Theorem 5. We have [TxtSdSMonEx] \ [RTxtPsdMonEx] 6= ∅.

Proof. We adapt the proof of the separation from total SMon-learners [13, Thm. 11]
as follows. Let h ∈ P be the following learner. With p0 being such that Wp0 = ∅, let
for each finite set D ⊆ N

h(D) =



p0, if D = ∅,
ind(D), else, if |D| = 1,

↑, else, if ∃x ∈ D : ϕx(0)↑ ∨ unpad2(ϕx(0)) /∈ {1, 2},
e, else, if ∀x ∈ D : unpad1(ϕx(0)) = e,

e′, else, if(
∃y∀x ∈ D : unpad2(ϕx(0)) = 1⇒ unpad1(ϕx(0)) = y

)
∧

∧
(
∀x ∈ D : unpad2(ϕx(0)) = 2⇒ unpad1(ϕx(0)) = e′

)
,

↑, otherwise.

The intuition is the following. While no elements are presented, h conjectures (a code
for) the empty set. Once, a single element is presented, h suggests (a code for) that
singleton. Thus, h learns all singletons. Given more elements, h either outputs the first
coordinate of the elements (if they all coincide), or another code if there are different
second coordinates. In case of equal second coordinates but different first coordinates,
h is undefined.



8 Vanja Doskoč and Timo Kötzing

Let L = TxtSdSMonEx(h). Assume there exists aRTxtPsdMonEx-learner
h′ which learns L, that is, L ⊆ RTxtPsdMonEx(h′). Since h learns all singletons,
so does h′. Thus, there is a total, strictly monotone function t ∈ R such that t(0) > 0
and for each x

x ∈Wh′({x},t(x)). (1)

With ORT ([3]), we get a total recursive predicate P ∈ R, a strictly monotone increas-
ing a ∈ R and indices e, e′ ∈ N such that for all i ∈ N, using t̃(i) :=

∑i
j=0 t(a(j)) + j

as abbreviation,

P (i)⇔ h′(content(a[i]), t̃(i)) 6= h′(content(a[i+ 1]), t̃(i) + 1),

We = {a(i) | ∀j ≤ i : P (j)},
We′ = {a(i) | ∀j < i : P (j)},

ϕa(i)(0) =

{
pad(e, 1), if P (i),

pad(e′, 2), otherwise.

We show that We and We′ are in L.

1. Case: We is infinite. This means for all i we have P (i). Thus, We = We′ . Thus, it
suffices to showWe ∈ L. Let T ∈ Txt(We). For n > 0, letDn := content(T [n]).
As long as Dn = ∅, we have h(Dn) = p0, i.e. a code for the empty set. When
|Dn| = 1, we have h(Dn) = ind(Dn), a code for the singleton Dn. Once Dn

contains more than one element, h(Dn) starts unpadding. As, for all i, ϕa(i)(0) =
pad(e, 1), we have unpad1({ϕx(0) | x ∈ Dn}) = {e}. Thus, h is strongly mono-
tone and will output e correctly.

2. Case: We is finite. Let k be such that We = {a(j) | j < k} and We′ = {a(j) | j <
k+1}. Again, as long as no elements or only one element is shown, h will output a
code for the empty, respectively singleton set. As We ⊆We′ and unpad1({ϕx(0) |
x ∈ We}) = {e}, h will output e as long as it sees only elements from We.
Once it sees a(k) ∈ We′ , it correctly changes its mind to e′. This maintains strong
monotonicity and is the correct behaviour.

Thus, We,We′ ∈ L. We show that h′ cannot learn both simultaneously.

1. Case: We is infinite. On the text a(0)t(a(0))a(1)t(a(1))+1a(2)t(a(2))+2 . . . of We,
the learner h′ makes infinitely many mind changes. Thus, it cannot learn We, a
contradiction.

2. Case: We is finite. Let k be minimal such that ¬P (k), and thusWe = content(a[k])
and We′ = content(a[k + 1]). By Condition (1) and monotonicity of h′ on We′

we have a(k) ∈ Wh′(content(a[k+1]),t̃(k)+1), as a(k)t̃(k)
_
a[k] is a sequence of el-

ements in We′ and a(k) ∈ We′ . Since ¬P (k), we get h′(content(a[k]), t̃(k)) =
h′(content(a[k + 1]), t̃(k) + 1) and, thus, a(k) ∈ Wh′(content(a[k]),t(a(k))+k). For
each t ≥ t̃(k), we have that (content(a[k]), t) is an initial sequence for some text
of We′ , and thus, by monotonicity of h′ we get a(k) ∈ Wh′(content(a[k]),t). As
a(k) /∈We = content(a[k]), h′ cannot identify We, a contradiction. ut
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To complete Figure 1(a), it remains to be shown that globally strongly monotone
partially set-driven learners are more powerful than their monotone set-driven coun-
terpart. The separation from strongly monotone set-driven learners has already been
shown [13]. We provide a self-learning class [4] to show that globally strongly mono-
tone partially set-driven learners outperform unrestricted set-driven learners. This result
emphasises the weakness of set-driven learners which results from a lack of “learning
time” [8].

We note that, when studying learners which may be undefined even on input belong-
ing to a target language, a similar class is used to separate strongly monotone Gold-style
learners from total set-driven learners [10].

Theorem 6. We have [τ(SMon)TxtPsdEx] \ [TxtSdEx] 6= ∅.

3.2 Behaviourally Correct Monotone Learning

In this section we consider an analogous question: How do monotone and strongly
monotone learners interact when requiring semantic convergence? By Theorem 3 and
the findings of Kötzing and Schirneck [13], we already have that globally monotone
set-driven (and even Gold-style) learners are as powerful as strongly monotone Gold-
style learners. The mentioned learners are, due to Theorem 2, less powerful than total
set-driven monotone ones. This, in particular, implies that a “complete collapse” of the
learning considered criteria as for strongly monotone learners [13] is impossible. As
partially set-driven monotone (explanatory) learners are more powerful than set-driven
behaviourally correct ones [14], only one question remains, namely, whether Gold-
style Mon-learners may be separated from partially set-driven Mon-learners? Studies
of various other restrictions [13,7], show that behaviourally correct partially set-driven
learners are often as powerful as their respective Gold-style counterpart.

Surprisingly, for monotone behaviourally correct learners, such an equality does
not hold, as we show with the next result. The idea is to construct a class of languages
where the learner must keep track of the order the elements were presented in, in order
to safely discard them at a later point in learning-time. To obtain this result, we apply
the technique of self-learning classes [4] using the Operator Recursion Theorem [3].
Note that this result already completes Figure 1(b), as monotone Bc-learners may be
assumed total [14].

Theorem 7. We have [TxtGMonEx] \ [TxtPsdMonBc] 6= ∅.

Proof. We provide a class witnessing the separation using self-learning classes [4,
Thm. 3.6]. Consider the learner which for a finite sequence σ is defined as

h(σ) =

{
ind(∅), if content(σ) = ∅,
ϕmax(content(σ))(σ), otherwise.

LetL = TxtGMonEx(h). Assume there exists a TxtPsdMonBc-learner h′ which
learns L, that is, L ⊆ TxtPsdMonBc(h′). By the Operator Recursion Theorem
(ORT, [3]), there exists a family of strictly monotone increasing, total computable func-
tions (aj)j∈N with pairwise disjoint range, a total computable function f ∈ R, an index



10 Vanja Doskoč and Timo Kötzing

We0 We1 We2

We

Wê1 Wê2

a0(f(0)) a1(f(1)) a2(f(2))

Fig. 2: A depiction of the class L′. Given j, the dashed line depicts the set Wêj and the
cross indicates the element aj(f(j)).

e ∈ N and two families of indices (ej)j∈N, (êk)k∈N such that for all finite sequences σ,
where first(σ) is the first non-pause element in the sequence σ, we have

ϕaj(i)(σ) =



ej , if content(σ) ⊆ range(aj),

êk, else, if ∃k : ak(f(k)) ∈ content(σ) ∨
∃k : first(σ) ∈ range(ak)∧
∧max{j | content(σ) ∩ range(aj) 6= ∅} = k,

e, otherwise.

f(j) = first i found such that aj(i) ∈Wh′(content(aj [i]),i),

Wej = range(aj),

Wêk =
⋃
j′≤k

content(aj′ [f(j′)]) ∪ {ak(f(k))},

We =
⋃
j

content(aj [f(j)]).

Let L′ = {Wej | j ∈ N} ∪ {Wêk | k > 0} ∪ {We}. Figure 2 shows a depiction
of the class L′. We show that L′ can be learned by h, but not by h′. The intuition is the
following. For some j, as long as only elements from Wej are presented, h will suggest
ej as its hypothesis. Thus, h′ needs to learn Wej as well and eventually overgeneralize,
that is, at some point i we have content(aj [i]) ( Wh′(content(aj [i]),i). The function
f(j) finds such i. Once the overgeneralization happens, the text presents, for j′ 6= j,
elements from range(aj′). Knowing the order in which the elements were presented,
the learner h now either keeps or discards the element aj(f(j)) in its next hypothesis
depending whether j′ < j or j < j′, respectively. If j′ < j, h needs to keep aj(f(j))
in its hypothesis as it still may be presented the set Wêj . Otherwise, it suggests the set
We, only changing its mind if it sees, for appropriate i ∈ N, an element of the form
ai(f(i)). Then, h is certain to be presented Wêi . So the full-information learner h can
deal with this new information and preserve monotonicity, while h′ cannot, as it does
not know which information came first.

We proceed with the formal proof that hTxtGMonEx-learns L′. Let L′ ∈ L′ and
T ′ ∈ Txt(L′). We first show the Ex-convergence and the monotonicity afterwards. For
the former, we distinguish the following cases.
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1. Case: For some j, we have L′ = Wej . Let n0 be such that content(T ′[n]) 6= ∅.
Then, for n ≥ n0, there exists some i such that aj(i) = max(content(T ′[n])).
Thus,

h(T ′[n]) = ϕmax(content(T ′[n]))(T
′[n]) = ϕaj(i)(T

′[n]) = ej .

Hence, h learns Wej correctly.
2. Case: We have L′ = We. Let n0 ∈ N be the minimal and let k0 ∈ N be such that

content(T ′[n0]) 6= ∅ and first(T ′[n0]) ∈ range(ak0). Let n1 ≥ n0 be minimal
such that there exists k > k0 such that content(T ′[n1]) also contains elements from
content(ak). Then, for n > n1 we have that h(T ′[n]) = e, as there exists no j with
aj(f(j)) ∈ content(T ′) and also max{j | content(T ′[n])∩range(aj) 6= ∅} 6= k0.
Thus, h learns We correctly.

3. Case: For some k > 0 we have L′ = Wêk . In this case, there exists n0 such that, for
some k′ < k, range(ak′)∩content(T ′[n0]) 6= ∅ and ak(f(k)) ∈ content(T ′[n0]).
Then, for n ≥ n0, we have h(T ′[n]) = êk. Therefore, h learns Wêk correctly.

We show that the learning is monotone. Let n ∈ N. As long as content(T ′[n]) is
empty, h returns ind(∅). Once content(T ′[n]) is not empty anymore and as long as
content(T ′[n]) only contains elements from, for some j, range(aj), the learner h out-
puts (a code for) the setWej . Note that j is the index of the element first(T ′[n]), that is,
first(T ′[n]) ∈ range(aj). If ever, for some later n, content(T ′[n]) \ range(aj) 6=
∅, then h only changes its mind if there exists k > j such that content(T ′[n]) ∩
range(ak) 6= ∅ (note that in case j < k, h does not change its mind). Depending
on whether ak(f(k)) ∈ content(T ′[n]) or not, h changes its mind to (a code of) ei-
ther Wêk or We, respectively. In the former case, the learner h is surely presented
the set Wêk , making this mind change monotone. In the latter case, no element of
Wej \ content(aj [f(j)]) is contained the target language. These are exactly the ele-
ments h discards from its hypothesis, keeping a monotone behaviour. The learner only
changes its mind again if it witnesses, for some k′ ≥ k, the element ak′(f(k′)). It will
then output (a code of) the set Wêk′ . This is, again, monotonic behaviour, as h is sure
to be presented the set Wêk′ . Altogether, h is monotone on any text of L′.

Thus, h identifies all languages in L′ correctly. Now, we show that h′ cannot do so
too. We do so by providing a text ofWe where h′ makes infinitely many wrong guesses.
To that end, consider the text T ofWe given as a0[f(0)]a1[f(1)]a2[f(2)] . . . For j > 0,
since aj(f(j)) ∈Wh′(content(aj [f(j)]),f(j)), we have

aj(f(j)) ∈Wh′(content(T [
∑

m≤j f(m)]),
∑

m≤j f(m)),

as T [
∑
m≤j f(m)] is an initial sequence for a text for Wêj . But, since aj(f(j)) /∈ We,

h′ makes infinitely many incorrect conjectures and thus does not identify We on the
text T correctly, a contradiction. ut
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