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Initially discussed are some of Alan Turing’s wonderfully profound and influential ideas
about mind and mechanism—including regarding their connection to the main topic of
the present study, which is within the field of computability-theoretic learning theory.
Herein is investigated the part of this field concerned with the algorithmic, trial-and-
error inference of eventually correct programs for functions from their data points. As
to the main content of this study: in prior papers, beginning with the seminal work by
Freivalds et al. in 1995, the notion of intrinsic complexity is used to analyse the learning
complexity of sets of functions in a Gold-style learning setting. Herein are pointed out
some weaknesses of this notion. Offered is an alternative based on epitomizing sets of
functions—sets that are learnable under a given learning criterion, but not under other
criteria that are not at least as powerful. To capture the idea of epitomizing sets, new
reducibility notions are given based on robust learning (closure of learning under certain
sets of computable operators). Various degrees of epitomizing sets are characterized as the
sets complete with respect to corresponding reducibility notions! These characterizations
also provide an easy method for showing sets to be epitomizers, and they are then
employed to prove several sets to be epitomizing. Furthermore, a scheme is provided to
generate easily very strong epitomizers for a multitude of learning criteria. These strong
epitomizers are the so-called self-learning sets, previously applied by Case & Kötzing
in 2010. These strong epitomizers can be easily generated and employed in a myriad of
settings to witness with certainty the strict separation in learning power between the
criteria so epitomized and other not as powerful criteria!

Keywords: computability-theoretic learning; self-reference; epitomizing success criteria;
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1. Introduction

The present study is within the field of computability-theoretic learning theory.1
We provide, as part of this introduction to the actual subject of the present

study, rhetoric to connect some of Alan Turing’s wonderfully profound and
influential ideas about mind and mechanism to the primary content of the study.

*Author for correspondence (case@cis.udel.edu).
1Sometimes simply called inductive inference.

One contribution of 18 to a Theme Issue ‘The foundations of computation, physics and mentality:
the Turing legacy’.
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Turing [1] gave the world, among other things, an analysis of algorithmic
calculation by an (importantly) human clerk that led Turing to the first
convincing mathematically rigorous and complete definition of what is
computable by algorithm.2 The importance of Turing’s analysis to theoretical
psychology was recognized, for example, by Myhill [3, p. 149], where he says:

. . . in the author’s view, the theorems of Church and Gödel are psychological laws. Mr. E.
H. Galanter of the Department of Psychology, University of Pennsylvania, described them in
conversation with the author as ‘the only known psychological laws comparable in exactitude
with the laws of physics’.3

Of course, Turing himself initiated earlier the part of artificial intelligence that
is concerned with computer simulations of human intelligence [4]. A little later,
Turing carried his mechanization program over to a mathematical model of the
very complex biological process of embryonic development [5]. This model has
been influential in both developmental biology and chemistry.

Next we will segue into the topic of the present study—but with asides of
relevance to treating mind as (algorithmic) mechanism (which, as noted above,
Turing began).

In the present study, we analyse the problem of algorithmically learning a
description (our descriptions will also be algorithmic) for an infinite sequence
(a function from the natural numbers into the natural numbers) when presented
with larger and larger initial segments of that sequence.4 For example, a learner h
might be presented with more and more of the sequence g = 0, 1, 4, 9, 16, . . .. After
each new datum of g, h may output a description of a function as its conjecture.
For example, h might output a computer program for the constantly 0 function
after seeing the first element of this sequence g, a program for the sequence of all
natural numbers after seeing the first two elements of g, and a program for the
squaring function on the further elements from g.

In computability-theoretic learning theory, Gold, in his seminal paper [6],
mathematically models human child language learning as algorithmic.5 Case [7,8]
posits that the universe and hence its component humans are algorithmic at
least in (quantum mechanically) expected behaviour, and claims that, then, some
theorems about algorithmic learnability admit of interpretations for cognitive
science and for philosophy of science. Regarding the relevance for philosophy
of science, Gold [6] hints at connections between algorithmic learnability and
(scientific) inductive inference. Blum and Blum [9] clarified this connection

2There were previous attempts by Church to give such a definition, but it was Turing’s analysis
and definition that ultimately convinced Gödel as to the definitional correctness [2]. Nicely too
Turing showed his definition was constructively equivalent to Church’s. In computer science terms,
this means that Turing’s formalism and Church’s are intercompilable.
3Myhill, at least in his later years, was not in favour of the idea that humans are
algorithmic mechanisms.
4For us, the natural numbers are the non-negative integers.
5Gold’s sequences to be learned represent the correct utterances of a language, and his successful
conjectures for such are programs or grammars for the set of utterances, instead of, as above (and
as in the present study), for the sequence itself.
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with essentially the following example (where successful conjectures are for the
sequence/function itself).

Consider the physicist who looks for a law to explain a growing body of physical data. His
data consist of a set of pairs (x , y), where x describes a particular experiment, e.g., a high-
energy physics experiment, and y describes the results obtained, e.g., the particles produced
and their respective properties. The law he seeks is essentially an algorithm for computing
the function f (x) = y.

As noted in [10,11], such an algorithm is a predictive explanation: if one has
the good fortune to have such an algorithm, one can use it to predict the
outcomes of the associated experiments. Finding programs for such functions
(also known as sequences) is what one hopes to do in science—modelled as
the search for predictive explanations. The present study does not itself involve
direct applications to philosophy of science, whereas Case [7,8] surveys a number
of them. Such applications essentially involve a slight extension of Turing’s
mechanization of mind program to apply to the (collections of) minds of human
scientists (over historical time) attempting to provide predictive explanations
for phenomena.

Many criteria for saying whether learner h is successful on sequence/function
g have been proposed in the literature. Gold [6] gave a first, simple learning
criterion, later called [10,11] Ex-learning,6 where a learner is successful if and
only if (iff) it eventually stops changing its conjectures, and its final conjecture
is a correct description of the input sequence.7

Trivially, each single, describable sequence g has a suitable constant function as
an Ex-learner (this learner constantly outputs an algorithmic description for g).
Thus, we are interested in knowing for which sets of functions S there is a single
learner h learning each member of S. We are interested herein in learning sets of
(total) computable functions, and we will use (codes of) programs from a fixed
programming system as possible conjectured (algorithmic) descriptions for the
functions.8 This framework is known as function learning in the limit and has
been studied extensively, employing a wide range of learning criteria similar to
Ex-learning [12].

Freivalds et al. [13] considered how to define the learning complexity of sets of
learnable functions. They introduced the seminal notion of intrinsic complexity
and defined, for learning criterion I , a corresponding reducibility relation ≤I .
Intrinsic here is intrinsic to a learning task or problem S, not to particular
learning algorithms for S. The idea is that, if S ≤I S ′, then S ′ is at least as
hard to I -learn as is S. In particular, Freivalds et al. [13] show that, if S ≤Ex S ′
and S ′ is Ex-learnable, then S is Ex-learnable. This intrinsic complexity has been
further studied in some detail [13–15].

From [13], for a given learning criterion I , an I -learnable set of functions S0
is said to be ≤I -complete iff, for all I -learnable sets of functions S, S ≤I S0. As
far as ≤I describes the relative difficulty of learnability, ≤I -complete sets are

6Ex stands for explanatory.
7Later in the study, after providing more formal definitions of this and other learning criteria, for
uniformity of terminology, we change the term Ex-learning to GEx-learning. This is to show that
this criterion is ‘Gold-like’ as in [6].
8One could, for example, think of the programming system as one of Java, C, Turing machines, etc.
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the most difficult to I -learn. Freivalds et al. [13] show that the set SFinSup of all
computable functions of finite support9 is ≤Ex-complete. These notions from [13]
are structural analogues, for example, to the various notions from complexity
theory of polynomial time reducibility and completeness.

There are at least two problems connected with the notion of intrinsic
complexity from Freivalds et al. [13].

(a) For some learning criteria I , the relation ≤I is not very fine-grained. In
particular, there are ≤I -complete sets of functions that are also learnable
with respect to much more restricted learning criteria (theorem 4.3).

(b) There are learning criteria I and sets of functions S, S ′ such that S ≤I S ′
and S ′ is I -learnable, but S is not I -learnable (theorem 4.4).

In this study, we quantify the difficulty of learning a given set of functions in a
new way. First, we consider the following concept, essentially from [13]. A set of
functions S epitomizes a learning criterion I with respect to some set of learning
criteria I iff S is I -learnable, and, for each I ′ ∈ I , if some I -learnable task is too
hard to be I ′-learned, then S is already such an example task too hard to be
I ′-learned.10

We believe that epitomization nicely captures the learning complexity of a set
of functions. Hence, the work herein aims at finding such epitomizers. Naturally,
the interest is in epitomizers with respect to as large as possible sets of learning
criteria I . We give epitomizers with respect to sets of all learning criteria that
are robust with respect to certain sets of (computable) operators (operating on
functions). Essentially, a learning criterion I is robust with respect to a given
set of operators C iff, for each I -learnable task S and each operator Q ∈ C, Q(S)
is also I -learnable, i.e. the set of I -learnable sets of functions is closed under
operators from C.11

Furthermore, for any set of operators C, we define a reducibility ≤C and a
corresponding completeness notion. As an important first theorem, we have that
a set S epitomizes a learning criterion I with respect to all C-robust learning
criteria iff S is ≤C-complete for all I -learnable sets (theorem 3.7)! The benefits of
this theorem, which we call the fundamental epitomization theorem, are twofold.

First, since, as noted above, we believe that epitomization captures the
complexity of learning, the fundamental epitomization theorem entails that our
reducibility notions also capture this complexity.

Secondly, we now need only to prove completeness to get epitomization!
Other than structural insight, we get the following two benefits from epitomizers.

9A (total) function has finite support iff only finitely many arguments have a function value other
than 0.
10Note that Freivalds et al. [13] called epitomizing sets characteristic. To the best of our knowledge,
neither this term nor the concept caught on in the later literature—until now.
11In the previous literature, a set S was called robustly I -learnable iff, for all recursive operators
[16] Q, the set of total functions in Q(S) is I -learnable [17,18]. The motivation behind such past
notions of robustness was to eliminate self-referential examples. The motivation herein is quite
different. Herein, as will be seen, it is very interesting that which operators are to be considered
can be restricted, and ask for all I -learnable tasks to be robust with respect to some possibly
restricted set of operators.
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First, we can use epitomizers to show the identity of the learning power
of two learning criteria. For example, theorem 6.1 establishes SFinSup to be
epitomizing with respect to various learning criteria and certain sets of operators.
In corollary 6.2, we use this to show a learning criterion I to be as powerful as
one of the epitomized learning criteria by showing that SFinSup can be I -learned.
With classic methods, the proof of this result might have required tedious work
with attention to detail, whereas we can conclude it to be a corollary to structural
properties uncovered by our theorems.

The second way in which epitomization helps us is by providing canonical
candidates to witness the separation of two learning criteria. To this end, the
so-called self-learning sets (theorem 6.6) are particularly useful epitomizers and
have recently been used in the literature to prove particularly difficult separations
(see [19,20], which solve two previously open problems using this technique, and
see also [21,22]). Intuitively, the defining learner for a self-learning set merely
runs each input function value as a program (on inputs relevant for that kind of
learner).12

Freivalds et al. [13] noted that their ≤Ex-completeness does not give
epitomization with respect to even the set of learning criteria considered in [13].

Thus, we believe that our approach to complexity of learning is both more
comprehensive and more useful than the notion of intrinsic complexity from [13].

We present mathematical preliminaries in §2. The notions discussed above
and some first theorems about them are given in §3—including the mentioned
fundamental epitomization theorem characterizing epitomizers as complete sets
(theorem 3.7).

Section 4 gives definitions and results regarding the notion of intrinsic
complexity introduced in [13]. We have already mentioned our theorems 4.3
and 4.4 that witness drawbacks of this older notion; furthermore, in theorem 4.6,
we characterize ≤Ex in terms of one of our reducibility notions, and conclude in
corollary 4.7 that all sets complete with respect to a central one of our reducibility
notions are ≤Ex-complete.

Finally, in §6, we present a series of tasks and we state which learning criteria
they epitomize at what strength. Note that epitomizers with respect to larger sets
of learning criteria are stronger. As indicated above, we give each epitomization
result, for some set of operators C, and with respect to the corresponding
set of C-robust learning criteria. It will be seen that, the smaller the set of
operators C, the larger the set of C-robust learning criteria. Theorem 6.1 entails
that SFinSup, the set of functions of finite support introduced above, is a very
weak epitomizer. Some so-called self-describing sets (from the earlier literature)
are also surprisingly weak epitomizers (theorem 6.3); some are of considerably
greater strength (theorem 6.4); but, interestingly, the strongest are the (to be
defined below) self-learning sets (theorem 6.6).

Some of our proofs involve subtle infinitary program self-reference arguments
employing (variants of) Case’s operator recursion theorem (ORT) [24,25].

We are working on extending the present study to employ self-learning sets that
work for those learning criteria, unlike those herein, which require the learners

12Not explored herein is the connection between machine self-reference (which, as we will see, is
needed to exploit the just-mentioned self-learning sets) and the weaker phenomenon of human
(conscious) self-modelling. Regarding this connection, see [23].
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to be total on all inputs. Some preliminary success re-learning grammars for
languages (as noted above, not the topic of the present study) appear in [20] and
involve the introduction of a hybrid operator recursion theorem (HORT).13

The present study is an extension of [26].

2. Mathematical preliminaries

(a) Notation and definitions

Unintroduced computability-theoretic notions follow Rogers [16].
N denotes the set of natural numbers, {0, 1, 2, . . .}.
The symbols ⊆, ⊂, ⊇, ⊃, respectively, denote the subset, proper subset,

superset and proper superset relation between sets. The symbol \ denotes set
difference.

The quantifier ∀∞x means ‘for all but finitely many x ∈ N’; the quantifier ∃∞x
means ‘for infinitely many x ∈ N’. For any set A, card(A) denotes its cardinality,
and Pow(A) denotes the set of all subsets of A.

With P and R we denote, respectively, the set of all partial and of all total
functions N → N. With dom and range we denote, respectively, the domain and
range of a given function. Set-theoretically, (partial) functions are identified with
their graphs, i.e. they are treated as sets of ordered pairs, and we sometimes
compare them by ⊆.

We sometimes denote a partial function f of n > 0 arguments x1, . . . , xn in
lambda notation (as in Lisp) by lx1, . . . , xn f (x1, . . . , xn). For example, with c ∈ N,
lx c is the constantly c function of one argument.

If f ∈ P is not defined for some argument x , then we denote this fact by f (x)↑,
and we say that f on x diverges; the opposite is denoted by f (x)↓, and we say that
f on x converges. If f on x converges to p, then we denote this fact by f (x)↓ = p.

We say that f ∈ P converges to p iff ∀∞x : f (x)↓ = p; we write f → p to
denote this.14

For any (possibly partial) predicate P, we let mx P(x) denote the least x such
that P(x) and, for all y < x , P(x)↓ (if no such x exists, mx P(x) is undefined).

We fix any computable one-to-one and onto pairing function 〈·, ·〉 : N × N →
N.15 With p1 and p2, respectively, we denote decoding into first and second
arguments of pairing, respectively. Whenever we consider tuples of natural
numbers as input to f ∈ P, it is understood that the general coding function
〈·, ·〉 is used to (left-associatively) code the tuples into a single natural number
(but we will not necessarily state the pairing explicitly).

For any g ∈ P and x ∈ N, we let g[x] denote the sequence of the numbers
g(0), . . . , g(x − 1), if all are defined, and ↑ otherwise.

A partial function f ∈ P is partial computable iff there is a deterministic,
multi-tape Turing machine which, on input x , returns f (x) if f (x)↓, and loops
infinitely if f (x)↑. P and R denote, respectively, the set of all partial computable
and all (total) computable functions N → N. The functions in R are called
computable functions.
13The HORT permits infinitary self-and-other program reference between certain highly restricted
complexity-bounded programming systems and a general-purpose programming system.
14f (x) converges should not be confused with f converges to.
15For a linear time computable and invertible example, see [27, §2.3].
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We let 4 be any fixed acceptable programming system for the partial
computable functions N → N with the associated complexity measure F [12,28].
Further, we let 4p denote the partial computable function computed by the
4-program with code number p, and we let Fp denote the partial computable
complexity function of the 4-program with code number p.

Whenever we consider sequences or finite sets as input to functions, we assume
these objects to be appropriately coded as natural numbers. Similarly, when
functions are defined to give non-numeric output, for example, when the outputs
are in N ∪ {?}, we implicitly assume N ∪ {?} to be appropriately coded onto the
natural numbers.

We use complexity-theoretic notions as introduced in [27]. We let LinF
be the set of all linear time deterministic multi-tape Turing machine computable
functions. A function g is called linlin iff g is computable in linear time and there
is a linear time computable function g−1 such that g−1 ◦ g = lx x . We let LL
be the set of all linlin functions.

Some of our proofs will make use of s-m-n [16]. It is easy to see from [27] that,
for a natural choice of 4 corresponding to multi-tape Turing machines, we can
get the following S-m-n theorem:16

∃s ∈ LL ∀e, x , y : 4s(e,x)(y) = 4e(x , y). (2.1)

For this study, we will assume (2.1). As a direct consequence (see [29] and the
proof of [30, theorem 2.3.5]), we get a linlin version of ORT, given as follows (Ceff
is the set of all effective operators, see definition 3.2).

∀Q ∈ Ceff ∃e ∈ LL ∀x , y : 4e(x)(y) = Q(e)(x , y). (2.2)

(b) Learning in the limit

A learner is a partial computable function. A target is a total computable
function g; a learning task is a set of targets S ⊆ R.

A learning criterion consists of three parts that, together, determine whether
a given learner is successful on a given learning task.

First, the learning criterion has to specify what learners are allowed to do. This
is called a learner admissibility restriction, and is modelled as a set C ⊆ P, the
set of all admissible learners.

Secondly, the learning criterion has to specify how the learner and the target
interact. This part is modelled as a sequence generating operator, which is an
operator b taking as arguments a learner h and a target g and that outputs a
function p. We denote by p the learning sequence of h given g. For this study, we
think of p as the sequence of conjectured programs of h on g.

Thirdly, the learning criterion has to specify which learning sequences are to be
considered ‘successful’ on a given target. This is done with a sequence acceptance
criterion, a total binary predicate d on a learning sequence and a target function.17

For C a learner admissibility restriction, b a sequence generating operator,
d a sequence acceptance criterion and h a learner, we call (C, b, d) a learning
criterion. For every learning criterion I with I = (C, b, d) we let CI = C, bI = b and
16We are grateful to Jim Royer for remarks providing an S-m-n theorem also linear time invertible.
17Herein, our bs and ds can essentially be modelled as multi-argument variants of Rogers’ [16]
recursive operators.
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dI = d. Let I = (C, b, d) be a learning criterion. We proceed by giving definitions
for I -learning.

We say that h I -learns a learning task S iff h ∈ C and, for all g ∈ S, with
p = b(h, g), (p, g) ∈ d. We denote by S(I ) and also by Cbd the set of all I -
learnable learning tasks.18 With an abuse of notation, we sometimes also use
Cbd to denote I .

Any set of complexity-bounded functions is an example learner admissibility
restriction, as are R and P. We omit mentioning C, if C = P (no restriction on
the learner).

We make use of the special symbols ‘?’ and ‘#’, where ‘?’ is used to denote
‘don’t know’ conjectures, and ‘#’ is used to denote a pause in a text.

We give the following three examples for sequence generating operators. Let G
be defined thus:19

∀h, g, i : G(h, g)(i) = h(g[i]). (2.3)

Let It be defined thus:20

∀h, g : It(h, g)(0) =? ∧ ∀i : It(h, g)(i + 1) = h(i, g(i), It(h, g)(i)). (2.4)

Finally, we give transductive learning [29].

∀h, g : Td(h, g)(0) =? ∧ ∀i : Td(h, g)(i + 1) = h(〈i, g(i)〉). (2.5)

For sequence acceptance criteria, we give the following five examples. We define
explanatory learning [6] as follows:

Ex = {(p, g) | p total and ∃e : p → e and 4e = g}.
Finite learning is given by

Fin = {(p, g) | p total and ∃e ∈ N : e ∈ range(p) ⊆ {e, ?} and 4e = g}.
Further, we define a sequence acceptance criterion corresponding to postdictively
complete learning21 [9,32,33].

Pcp = {(p, g) | p total and ∀i : g[i] ⊆ 4p(i+1)}.
For conservative learning [34], we give the following sequence acceptance criterion:

Conv = {(p, g) | p total and ∀i : p(i + 1) �= p(i) ⇒ g[i] �⊆ 4p(i)}.
Finally, behaviourally correct learning as given by [11,35] is associated with

Bc = {(p, g) | p total and ∀∞i : 4p(i) = g}.
Any two sequence acceptance criteria d and d′ can be combined by intersecting
them. For ease of notation we write dd′ instead of d ∩ d′.

18Note that ‘Cbd’ is the classical way to denote this, while we use ‘S(I )’ whenever C, b and d are
not explicit.
19G stands for Gold identification [6].
20It stands for iterative [31,32].
21Also called consistent learning.
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Note that Ex-learning from the introduction is captured in this notation as
GEx. Bc-learning from the prior literature, e.g. [11,35], requires for success that,
for the learner’s sequence of conjectured programs, all but finitely many of these
programs correctly compute the input sequence/function. Bc-learning is similarly
captured by GBc. For more examples of the above concepts, see [30].

We will use the following proposition later.

Proposition 2.1. Let S ⊆ Pow(R) be ⊆-downward closed. Then there is a
learning criterion I with S(I ) = S.

Proof. We let p and p′ be two different computable functions. We associate
with each element S ∈ S a learner hS . Let b be such that, for all S ∈ S and g ∈ S,
b(hS , g) = p; for all other pairs (h, g) ∈ P × R, let b(h, g) = p′. Let d accept, for
all g ∈ R, (p, g). Obviously, S(bd) = S. �

3. Concept definitions

In this section, we give the key concepts used in this study in definition 3.4. Before
we can get to that, we define pre-orders and associated notions, as well as several
sets of operators, for which we give examples and remark on some easy properties.

The main theorem of this section is the fundamental epitomization theorem
(theorem 3.7), which shows the important connections between complete sets
and epitomizers.

Definition 3.1. Let S be a set and � a binary relation on S . We call � a
pre-order iff � is reflexive and transitive. For s ∈ S and T ⊆ S , we say that s is
�-complete for T iff s ∈ T and, for all t ∈ T , t � s.

Next we define several sets of operators. For illustration, see example 3.3.

Definition 3.2. A function Q : P → P is called an operator. We define the
following sets of operators.

— Let Ceff be the set of all effective operators [16], i.e. all operators Q such
that there is a computable function s ∈ R with ∀e : Q(4e) = 4s(e).22

— Let C ⊆ P. Let CC
loc be the set of all Q ∈ Ceff such that there is a function

f ∈ C with ∀g ∈ P, ∀x : Q(g)[x] = f (g[x]).23 We write Cloc for CP
loc; note that

Q ∈ Cloc is equivalent to

∀g, g ′ ∈ P ∀x : g[x] = g ′[x] ⇒ Q(g)[x] = Q(g ′)[x]. (3.1)

— Let C ⊆ P. Let CC
inj be the set of all Q ∈ Ceff such that24

∀g, g ′ ∈ P ∀x : Q(g)[x] = Q(g ′)[x] ⇒ g[x] = g ′[x], (3.2)

and there is a function f ∈ C with ∀g ∈ P, ∀x : g[x] = f (Q(g)[x]). We write
Cinj for CP

inj.
25

22Note that, without loss of generality, we can take s to be linlin (this can be proven using linlin
s-m-n).
23Intuitively, for all g, x , Q(g)[x] depends only on g[x]. We call these operators local.
24‘inj’ stands for injective, but note that the operators from Cinj are not merely injective, but have
a stronger requirement that could be called locally injective.
25Note that all effective operators satisfying (3.2) are in Cinj.
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— Let C ⊆ P. Let CC
ew be the set of all Q ∈ Ceff such that there is a function

f ∈ C such that ∀g ∈ P : Q(g) = lx f (g(x), x).26 We write Cew for CP
ew.

Clearly, Cew ⊂ Cloc ⊂ Ceff . We define sets of left-invertible operators as follows. For
any set of operators C and S ⊆ R, we let

LInv(C; S) = {Q ∈ C | Q(S) ⊆ R ∧ ∃Q̂ ∈ C ∀g ∈ S : (Q̂ ◦ Q)(g) = g}. (3.3)

Example 3.3. For illustration, we give the following example operators.

— The operator Q such that ∀g ∈ P ∀x : Q(g)(x) = g(x + 1) is in Ceff , but not
in Cloc or Cew; furthermore, Q is not in LInv(Ceff ) (Q is not one-to-one and
hence cannot be left-inverted).

— The operator Q such that

∀g ∈ P ∀x : Q(g)(x) =
{
0, if x = 0,
g(x − 1), otherwise,

(3.4)

is in Ceff and in Cloc, but not in Cew; furthermore, Q is in LInv(Ceff ), but
not in LInv(Cloc) (Q has a computable left-inverse, but not a local one).

— The operator Q such that ∀g ∈ P ∀x : Q(g)(x) = x + g(x) is in Ceff , Cloc and
also Cew; furthermore, Q is even in LInv(Cew).

Now we give the definition of the central notions of this study.

Definition 3.4. Let C be a set of operators and I a learning criterion. Let
S, S0, S1 ⊆ R.

(a) I is called C-robust iff, for all S ⊆ R and Q ∈ LInv(C; S),

S ∈ S(I ) ⇒ Q(S) ∈ S(I ). (3.5)

Intuitively, I is C-robust iff the set of I -learnable sets is closed under
operators from C that are left-invertible on the set to which they are applied
(by an operator from C).

(b) We say that S epitomizes I with respect to a set of learning criteria I iff
S ∈ S(I ) and27

∀I ′ ∈ I : [S ∈ S(I ′) ⇔ S(I ) ⊆ S(I ′)]. (3.6)

(c) If S epitomizes I with respect to the set of all C-robust learning criteria,
then we say that S C-epitomizes I .

(d) We say that S C-generates I iff {Q(S ′) | S ′ ⊆ S, Q ∈ LInv(C; S ′)} is the set
of all I -learnable functions.

(e) S0 ≤C S1 iff there is an operator Q ∈ LInv(C; S0) such that Q(S0) ⊆ S1.

As an interesting first observation on epitomizers, we make the following
remark regarding separations from unions of learning criteria.
26We call these operators element-wise.
27Equation (3.6) is equivalent to S �∈S(I ′) ⇔S(I ) \S(I ′) �= ∅. Thus, epitomizers give canonical
candidates for learning criteria separations.
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Proposition 3.5. Let I be a learning criterion and I a set of learning criteria
with ∀I ′ ∈ I : S(I ) \ S(I ′) �= ∅. Suppose that there is a set epitomizing I with
respect to I . Then

S(I ) \
⋃
I ′∈I

S(I ′) �= ∅.

Theorem 6.6 provides very strong existence results for epitomizers that can be
used to satisfy the corresponding hypothesis of proposition 3.5.28

We can use proposition 3.5 to give cases where epitomizers do not exist: for
example, let I be reliable learnability and let I be the set of all learning criteria
of delayed postdictive completeness;29 then ∀I ′ ∈ I : S(I ) \ S(I ′) �= ∅ and S(I ) =⋃

I ′∈I S(I ′), which shows that there is no epitomizer of I with respect to I (see
[36] for the definitions; the result will be included in an extension of [36]).30

The following theorem gives a number of general observations regarding the
concepts introduced in definition 3.4.

Proposition 3.6. Let C, C′ be sets of operators, and I a learning criterion.

(a) Let I be C-robust. Then, for all S ⊆ R, Q ∈ LInv(C; S) with Q(S) ⊆ R,

S ∈ S(I ) ⇔ Q(S) ∈ S(I ).

(b) If C ∈ {Ceff , Cloc, Cew}, then ≤C is a pre-order.
(c) Suppose that I is C-robust. Then S(I ) is downward closed under ≤C, i.e.

for all S ∈ S(I ) and S ′ ⊆ R,

S ′ ≤C S ⇒ S ′ ∈ S(I ).

Proof. Regarding (a): Let S ⊆ R, Q ∈ LInv(C; S) as witnessed by Q̂ and Q(S) ⊆
R. The direction ‘⇒’ is obvious.

Suppose Q(S) ∈ S(I ). We have Q̂ ∈ LInv(C; Q(S)) (as witnessed by Q); hence,
as S = Q̂(Q(S)) ∈ S(I ), S ∈ S(I ).

Item (b) is obvious.
Regarding (c): Suppose Q ∈ C witnesses S ′ � S. As Q(S ′) ⊆ S ∈ S(I ), Q(S) ∈

S(I ). Hence, from I being C-robust and (a), we get S ′ ∈ S(I ). �
Next is the central theorem of this section, showing that, for important sets of

operators C and certain learning criteria I , ≤C-completeness for I characterizes
C-epitomization of I .

28We give the following example for illustration. Let, for all a ∈ N, Exa be like Ex, but, for success,
the final program is allowed to be incorrect on up to a places. Further, let Ex∗ be like Ex, but the
final program is allowed to be incorrect on up to finitely many places. From [11] we know that, for
all a ∈ N, GExa ⊂ GExa+1; hence, GExa ⊂ GEx∗. Theorem 6.6 provides an appropriate epitomizer
for GEx∗, so that we can deduce, with proposition 3.5,

⋃
a∈N

GExa ⊂ GEx∗ (which was shown
in [11]).
29Intuitively, the definition of delayed postdictive completeness asks for the learner to start a
countdown for each datum seen; as soon as the countdown has run out, the learner has to correctly
postdict the associated datum.
30We are grateful to an anonymous referee who pointed out a (different) example for the non-
existence of epitomizers.
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Theorem 3.7 (Fundamental epitomization theorem). Let C be a set of operators
containing the identity and which is closed under composition. Let I be a C-robust
learning criterion. Let S ⊆ R. The following are equivalent.

(a) S C-epitomizes I .
(b) S C-generates I .
(c) S is ≤C-complete for I .

Proof. ‘(a)⇒(b)’: By proposition 2.1, there is a learning criterion I ′ such that
exactly all of S = {Q(S ′) | S ′ ⊆ S, Q ∈ LInv(C; S ′)} are I ′-learnable. We need to
show that S(I ) = S. As I is C-robust, S ⊆ S(I ). To show the other direction,
we first show that I ′ is C-robust. Any I ′-learnable set is of the form Q(S ′) where
S ′ ⊆ S and Q ∈ LInv(C; S ′) as witnessed by Q̂. Pick such S ′, Q, Q̂. Suppose Q′ ∈
LInv(C; Q(S ′)) as witnessed by Q̂′. As C is closed under composition, Q′ ◦ Q ∈
LInv(C; S ′) as witnessed by Q̂ ◦ Q̂′. Thus, Q′(Q(S ′)) ∈ S. Therefore, I ′ is C-robust.

Now we show that S(I ) ⊆ S. As C contains the identity, S ∈ S. Thus, as S
C-epitomizes I , S(I ) ⊆ S(I ′) = S.

‘(b)⇒(c)’: Let S ′ ∈ S(I ). As S is an C-generator for I , let S ′′ ⊆ S and Q ∈
LInv(C, S ′) as witnessed by Q̂ be such that Q(S ′′) = S ′. Now we have that Q̂ is
left-invertible on S ′ ⊆ Q(S) (by Q). Thus, Q̂ ∈ LInv(C; S ′) and Q̂(S ′) = S ′′ ⊆ S,
which shows that S ′ ≤C S as desired.

‘(c)⇒(a)’: Let I ′ be C-robust. Suppose there is S ′ ∈ S(I ) \ S(I ′). From S
being ≤C-complete for S(I ), we get Q ∈ LInv(C; S) such that Q(S ′) ⊆ S. As I ′ is
C-robust and S ′ not I ′-learnable, we have that Q(S ′) is not I ′-learnable; thus,
S (⊇ Q(S ′)) is not I ′-learnable. �

4. Connection to intrinsic complexity

We will now give the definitions of intrinsic complexity. Some version thereof was
introduced in [13]; here we give an interpretation that fits our formalism. After
that we will give theorems regarding the shortcomings of intrinsic complexity, as
discussed in §1.

In particular, theorem 4.3 gives an example ≤GEx-complete set of functions that
is nonetheless learnable in much more restricted criteria. Then, in theorem 4.4, we
give two natural learning criteria I for which the learnable sets are not downward
closed with respect to ≤I . For the two criteria, the cause of this failure of closure
is different: in one case it is a local restriction on the conjectures, and in the other
a memory restriction on the learner.

Finally, we show the equivalence of ≤GEx with one of our reducibility notions
in theorem 4.6.

Definition 4.1. Let I = (C, b, d) be a learning criterion and g a function. We
say that a sequence p is I -admissible for g iff (p, g) ∈ d.31

Let S0, S1 ⊆ R, and an identification criterion I be given. We say that S0 ≤I S1
iff there exist recursive operators Q and J such that, for any function g ∈ S0,
31I -admissibility is not to be confused with learner admissibility restrictions.
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(a) Q(g) ∈ S1 and
(b) for any I -admissible sequence p for Q(g), J(p) is an I -admissible sequence

for g.

We say that a set S ⊆ R is ≤I -complete iff S is ≤I -complete for S(I ).

Note that, for any learning criterion I , the definition of ≤I is not sensitive to
the learner admissibility restriction or the sequence generating operator of I . We
formalize this as follows.

Remark 4.2. Let I0 and I1 be learning criteria with identical sequence
acceptance criteria. Then ≤I0 and ≤I1 coincide.

Theorem 4.3 ([9,13,35]). SFinSup is ≤GEx-complete, but SFinSup ∈ GPcpEx ∈
GEx.32

Proof. Completeness was proven in [13]; GPcpEx ⊂ GEx is a well-known result
[9,12,35]; the rest is straightforward. �

The following theorem shows the learnable sets of two learning criteria to be
not downward closed with respect to their respective intrinsic reducibility notions.

Theorem 4.4.

(a) There are sets S0 and S1 ⊆ R such that S0 ≤ItEx S1 and S1 ∈ ItEx, but S0 �∈
ItEx.

(b) There are sets S0 and S1 ⊆ R such that S0 ≤GPcpEx S1 and S1 ∈ GPcpEx,
but S0 �∈ GPcpEx.

Proof. Regarding (a): The intuitive idea of this proof is that ≤ItEx does not
depend on the severe memory limitation imposed by It. Clearly, ≤ItEx equals the
relation ≤GEx. Let S ∈ GEx\ItEx (the existence of such sets is well known [12]).
As SFinSup is ≤GEx-complete, we have S ≤GEx SFinSup; thus, S ≤ItEx SFinSup. Clearly,
SFinSup ∈ ItEx, which concludes the proof of (a).

Regarding (b): The idea of this proof is that ≤GPcpEx allows ‘looking into the
future’ by the operators involved.

We use a set of functions from [37, corollary 15] (see also [9, p. 140 ff]). Let S0
be such that

S0 = SFinSup ∪ {g ∈ R | 4g(0) = g ∧ ∀x : Fg(0)(x) ≤ g(x + 1)}. (4.1)

Let Q ∈ Ceff be such that

∀g, x : Q(g)(x) =
{〈g(x), 1〉, if Fg(0)(x) ≤ g(x + 1) ∧ 4g(0)(x) = g(x),33

〈g(x), 0〉, otherwise.
(4.2)

We argue the following three claims, which will complete the proof.

— S0 ≤GPcpEx Q(S0);
32An anonymous referee pointed out that an even more interesting result would be to find a set
in GPcpEx that is ≤GPcpEx-complete for the GEx learnable sets; this way, the more fine-grained
reduction ≤GPcpEx would be shown to be too coarse.
33Intuitively, Q ‘looks into the future’, as Q(g)(x) depends on g(x + 1).
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— Q(S0) ∈ GPcpEx;
— S0 �∈ GPcpEx.

The last item has been shown in [37] (without the set of finite functions already
in [9]); the second is straightforward to see by a learner h as follows. On no
data, h outputs anything. Furthermore, as long as all data seen by h have a 1 as
second component, h outputs the first component of the first datum. Otherwise,
h outputs a canonical program for an extension of the seen data with 〈0, 0〉s.

By s-m-n, there is s ∈ R such that ∀e : 4s(e) = p1 ◦ 4e. Let J be such that

∀p : J(p) = s ◦ p. (4.3)

To show that Q, J witness S0 ≤GPcpEx Q(S0), it suffices to show that, for all g ∈
S0 and p GPcpEx-admissible for Q(g), J(p) is GPcpEx-admissible for g. Let
g ∈ S0 and p be GPcpEx-admissible for Q(g). Therefore, for all x and all w < x ,
4p(x)(w) = Q(g)(w); thus,

4s(p(x))(w) = p1(4p(x)(w)) = p1(Q(g)(w)) = g(w). (4.4)

This shows that J(p) is a postdictively complete sequence of conjectures for g.
Convergence of p to a correct index is straightforward. �

In order to characterize the reducibility of intrinsic complexity in terms of our
notions, we give the following definitions, extending notions from §3.

Definition 4.5. Let C and C′ be sets of operators and S ⊆ R.

(a) Let LInv(C, C′; S) = {Q ∈ C | ∃Q̂ ∈ C′ ∀g ∈ S : (Q̂ ◦ Q)(g) = g}.
(b) For two sets S0 and S1 ⊆ R, we write S0 ≤(C,C′) S1 iff there is an operator

Q ∈ LInv(C, C′; S0) such that Q(S0) ⊆ S1.
(c) Furthermore, let ClimPEff be the set of all partial operators Q such that

there is a computable function s ∈ R with

∀e : Q(4e) =
{

4p, if lt s(e, t) converges to some p,
↑, otherwise.34 (4.5)

Now we show the equivalence of one particular reducibility notion of intrinsic
complexity to one of our extended variants from definition 4.5. Note that a similar
characterization can be made for GBc.

Theorem 4.6. We have

≤(Ceff ,ClimPEff ) equals ≤GEx .

Proof. Let S, S ′ ⊆ R. Suppose S ≤(Ceff ,ClimPEff ) S ′ as witnessed by Q ∈ Ceff and
Q̂ ∈ ClimPEff . Then Q is as required for S ≤GEx S ′. Let s ∈ R be as given by Q̂ ∈
ClimPEff . Let J be such that

∀p, t : J(p)(t) = s(p(t), t). (4.6)

Clearly, J is as required for S ≤GEx S ′.
34Note that the operators from ClimPEff resemble those from [38,39].
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For the converse, suppose S ≤GEx S ′ as witnessed by Q and J. Then Q is as
required for S ≤C S ′. By s-m-n, there is an f ∈ R such that

∀e : 4f (e) = J(lx e). (4.7)

Let s ∈ R be such that

∀e, t : s(e, t) =
⎧⎨
⎩

0, if ∀t ′ ≤ t : Ff (e)(t ′) > t,
4f (e)(t ′), otherwise, with t ′ maximal such that

t ′ ≤ t and Ff (e)(t ′) ≤ t.
(4.8)

Obviously, s is total. Furthermore, for all e with 4e ∈ Q(S), from the choice of J
we have that 4f (e) is total and converges to a program number for the pre-image
of 4e with respect to Q. We let Q̂ be as in (4.5). It is easy to see that Q̂ is also
as required. �

We get the following corollary from theorem 4.6.

Corollary 4.7. Let I be a learning criterion with dI = Ex as the sequence
acceptance criterion. We have that ≤Ceff is a subrelation of ≤GEx; in particular,
for all S ⊆ R

S is ≤Ceff -complete for S(I ) ⇒ S is ≤I -complete.

Proof. Clearly, ≤I and ≤GEx are identical. Note that, for all sets of operators
C0, C′

0, C1 and C′
1 with C0 ⊆ C′

0 and C1 ⊆ C′
1 we have that ≤(C0,C1) is a subrelation of

≤(C′
0,C

′
1). Further, for all sets of operators C, it is easy to see that ≤C equals ≤(C,C).

Thus, ≤Ceff is a subrelation of ≤(Ceff ,ClimPEff ). The rest follows from theorem 4.6. �

5. Robustness

In this section, we give a number of examples for robustness of learning criteria
with respect to various sets of operators. These results are summarized in table 1.

Example 5.1. Let C ⊆ P contain all linlin functions. Let F ⊆ P be closed under
C-composition and contain all linear time computable functions.

Table 1 states several kinds of robustness of learning criteria with respect to
certain sets of operators. In particular, in each row, the learning criteria in the
right column are robust with respect to the set of operators in the left column.

Note that each criterion in any given row just above could also be listed in any
lower row.

The remaining section deals with proving the statement of example 5.1.
First, we define some properties for sequence acceptance criteria.

Definition 5.2. Let C ⊆ Ceff be a set of effective operators. A sequence
acceptance criterion d is called C-robust iff, for all Q ∈ C and s ∈ R with ∀e :
Q(4e) = 4s(e),

∀p ∈ P, g ∈ R : (p, g) ∈ d ⇒ (s ◦ p, Q(g)) ∈ d.35 (5.1)

35Note that, for robustness of learning criteria, we restricted ourselves to certain left-invertible
operators, whereas, for robustness of sequence acceptance criteria, we make no such restriction.
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Table 1. Learning criteria and their robustness.

Ceff FGEx, FGBc, FGFin

CC
loc FGPcpEx, FGConvEx, FGPcpConvEx

CC
ew F ItEx, F ItConvEx, F ItPcpConvEx, FTdEx, FTdBc

Definition 5.3. Let R∞ = {r ∈ R | r is non-decreasing and ∀x , ∀∞t : r(t) ≥ x}.36

A sequence acceptance criterion d is called a delayable iff

∀p ∈ P, g ∈ R, r ∈ R∞ : (p, g) ∈ d ⇒ (p ◦ r , g) ∈ d.37 (5.2)

The following examples are straightforward.

Example 5.4.

(a) Ex and Bc are delayable and Ceff -robust.
(b) Pcp is not delayable, whereas Conv is.

Next, we make a side remark and use Pitt-style delaying tricks (see [40]) to
show that, for learning criteria with G as a sequence generating operator and
a delayable sequence acceptance criterion, all learners can be assumed linear
time computable.

Proposition 5.5. Let d be delayable. Then

PaGd = LinFaGd. (5.3)

Proof. The inclusion ‘⊇’ is trivial. We fix linear time computable functions
T and S as shown existent in [27, theorem 3.20] such that, for all e and x , if
4e(x)↓, then, for all but finitely many t, T (e, x , t) = 1; and, for all e, x and t, if
T (e, x , t) = 1, then S(e, x , t) = 4e(x).

Let S ∈ PGd as witnessed by h ∈ P. Let e be such that 4e = h. Let f , h ′ ∈ LinF
be such that, for all s,

f (s) = max
{t | s[t]≤log(|s|)}

T (e, s[t], log(|s|)) = 1 (5.4)

and

h ′(s) =
⎧⎨
⎩

0, if, for all t with s[t] ≤ log(|s|),
T (e, s[t], log(|s|)) = 0,

S(e, s[f (s)], log(|s|)), otherwise.
(5.5)

It is easy to see that h ′ is linear time computable and learns all functions learned
by h. �

36Note that R∞ is equal to the set of all non-decreasing and unbounded total computable functions.
37Intuitively, if p is a valid (with respect to d) sequence of conjectures for g, then any delayed
variant of p is.
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We now characterize C-robustness of Pcp and Conv in the following two
theorems.

Theorem 5.6. Let C ⊆ Ceff be a set of effective operators. We have

Pcp is C-robust ⇔ C ⊆ Cloc. (5.6)

Proof. We show the equivalence operator-wise. Suppose Q ∈ C and s is any
element R with ∀e : Q(4e) = 4s(e).

‘⇐’: Suppose (p, g) ∈ Pcp, let x ∈ N. We have 4p(x)[x] = g[x]. Thus, as Q ∈ Cloc,

Q(g)[x] = Q(4p(x))[x] = 4(s◦p)(x)[x]. (5.7)

‘⇒’: Suppose g, g ′ ∈ R and x ∈ N with g[x + 1] = g ′[x + 1]. Suppose, by way of
contradiction, Q(g)(x) �= Q(g ′)(x). Let e and e′ be such that 4e = g and 4e′ = g ′.
Let p ∈ R be such that

∀y : p(y) =
{
e′, if y ≤ x + 1,
e, otherwise.

(5.8)

Then (p, g) ∈ Pcp. As

4(s◦p)(x+1)(x) = 4s(e′)(x) = Q(g ′)(x) �= Q(g)(x), (5.9)

we get (s ◦ p, Q(g)) �∈ Pcp. �

Theorem 5.7. Let C ⊆ Ceff be a set of operators. We have

Conv is C-robust ⇔ C ⊆ Cinj. (5.10)

Proof. We show the equivalence operator-wise. Let Q ∈ C and s ∈ R with ∀e :
Q(4e) = 4s(e).

‘⇐’: Suppose (p, g) ∈ Conv, let x ∈ N with p(x) �= p(x + 1). Thus, g[x + 1] �=
4p(x)[x + 1]. Hence, as Q ∈ Cinj,

Q(g)[x + 1] �= Q(4p(x))[x + 1] = 4(s◦p)(x)[x + 1]. (5.11)

‘⇒’: Without loss of generality, suppose s is one-to-one. Let g, g ′ ∈ R and x be
such that g[x] = g ′[x] and g(x) �= g ′(x). Suppose, by way of contradiction, that
Q(g)[x + 1] = Q(g ′)[x + 1]. Let e and e′ be such that 4e = g and 4e′ = g ′. Let
p ∈ R be such that

∀y : p(y) =
{
e′, if y ≤ x ,
e, otherwise.

(5.12)

Then (p, g) ∈ Conv. We have s(e) �= s(e′), as s is one-to-one and g �= g ′. As

4(s◦p)(x)[x + 1] = 4s(e′)[x + 1] = Q(g ′)[x + 1] = Q(g)[x + 1], (5.13)

we get (s ◦ p, Q(g)) �∈ Conv (a mind change was made from x to x + 1, even though
the previous hypothesis (s ◦ p)(x) was correct on known data Q(g)[x + 1]). �
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Definition 5.8.

— An operator Q is called S-bijective iff, for all g ∈ S and g ′ ∈ R,

∀x : g[x] = g ′[x] ⇔ Q(g)[x] = Q(g ′)[x]. (5.14)

— A sequence acceptance criterion d is called local bijection robust iff, for
all S, Q S-bijective and s total (not necessarily computable) with ∀e :
Q(4e) = 4s(e),

∀p ∈ P, g ∈ S : (p, g) ∈ d ⇒ (s ◦ p, Q(g)) ∈ d. (5.15)

As a corollary to the proofs of the directions ‘⇐’ of theorems 5.6 and 5.7, we
see that Pcp and Conv are local bijection robust. Furthermore, local bijection
robust criteria are closed under intersection.

Proposition 5.9. Let Q ∈ Ceff . Then there is an f ∈ LinF such that, for all
sequences s, f (s) is a sequence with

(∀g ∈ R | s ⊆ g) f (s) ⊆ Q(g),

and, for all g ∈ R with Q(g) ∈ R, there is r ∈ R∞ such that38

∀t : f (g[t]) = Q(g)[r(t)].39

Proof. We argue informally. We view Q as a recursive operator. Let s be a
sequence. We define f (s) as follows. We let Q compute Q(s)(x) for all x < log(1 +
#elets(s)) for log(1 + |s|) steps. Let x0 be maximal such that, for all x < x0, this
computation halted with output zx . Then f (s) is the sequence z0, . . . , zx0−1. For all
g ∈ R with Q(g) ∈ R, we let r be such that, for all t, r(t) is the x0 obtained while
computing f (g[t]) as above. It is straightforward to check that f is as desired. �

After having introduced various properties of sequence acceptance criteria and
establishing them for some examples, we are now ready to give our main theorem
to establish robustness of learning criteria with respect to certain sets of operators.
Example 5.1 provides corollaries to theorem 5.10.

Theorem 5.10. Let C ⊆ P contain all linlin functions. Let F ⊆ P be closed under
C-composition and contain all linear time computable functions. Further, let d, d′
be sequence acceptance criteria and C ⊆ Ceff .

(a) Suppose d is C-robust and delayable. Then (F , G, d) is C-robust.
(b) Suppose d is local bijection robust. Then (F , G, d) is CC

loc-robust.
(c) Suppose d is CC

ew-robust. Then (F , It, d) is CC
ew-robust.

Proof. Regarding (a): Let S ∈ FGd as witnessed by h ∈ F and let Q ∈
LInv(C; S) as witnessed by Q̂. Let s ∈ R be such that ∀e : Q(4e) = 4s(e). Let f ∈ R

38We gave the set R∞ in definition 5.3.
39Note that, in this study, we do not use that f is linear time computable, but merely that it is
computable.
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be as claimed existent for Q̂ in proposition 5.9. Let h ′ ∈ P be such that

h ′ = s ◦ h ◦ f . (5.16)

It suffices to show that h ′ (P, G, d)-learns Q(S), as we then get (a) by the
application of proposition 5.5. Obviously, h ′ ∈ P. Let g ∈ S. Let p = G(h, g). By
the choice of f , for all g ′ with Q̂(g ′) total, there is r ∈ R∞ such that ∀t : f (g ′[t]) =
Q̂(g ′)[r(t)]. Let r be witnessing this for Q(g) (as we have that Q̂(Q(g)) is total).
By the choice of Q̂ we have ∀t : f (Q(g)[t]) = Q̂(Q(g))[r(t)] = g[r(t)]. Thus,

G(h ′, Q(g)) = lt h ′(Q(g)[t]) = lt (s ◦ h)(f (Q(g)[t])) = lt (s ◦ h)(g[r(t)])
= s ◦ (lt h(g[t])) ◦ r = s ◦ p ◦ r .

By d being C-robust, we have (s ◦ p, Q(g)) ∈ d. As d is delayable, we have (s ◦ p ◦
r , Q(g)) ∈ d as desired.

Regarding (b): Let S ∈ FGd as witnessed by h ∈ F ; furthermore, let Q ∈
LInv(CC

loc; S) as witnessed by Q̂ ∈ CC
loc. Let s be linlin such that ∀e : Q(4e) = 4s(e).

Let f ∈ C be as given by Q̂ ∈ CC
loc, that is, such that ∀g ∈ R, ∀x : f (g[x]) = Q̂(g)[x].

In particular, ∀g ∈ S, ∀x : f (Q(g)[x]) = g[x]. Let h ′ ∈ P be such that

h ′ = s ◦ h ◦ f . (5.17)

We show that h ′ (F , G, d)-learns Q(S). Obviously, h ′ ∈ F , as F is closed under
C-composition. Let g ∈ S and p = G(h, g). By the choice of f ,

G(h ′, Q(g)) = lt h ′(Q(g)[t]) = s ◦ lt h(f (Q(g)[t])) = s ◦ lt h(g[t]) = s ◦ p,
(5.18)

similarly as in the proof of (a). By d being local bijection robust, it suffices to
show Q to be {g}-bijective. The direction ‘⇒’ in (5.14) of {g}-bijectivity follows
directly from Q ∈ Cloc, the other from Q̂ ∈ Cloc being an inverse for Q on g.

Regarding (c): Let S ∈ F Itd as witnessed by h ∈ F ; furthermore, let Q ∈
LInv(CC

ew; S) as witnessed by Q̂. Let s be linlin such that ∀e : Q(4e) = 4s(e). Let
f ∈ C be such that ∀g : Q̂(g) = lx f (x , g(x)). Let h ′ ∈ P be such that

h ′ = lx , y, e (s ◦ h)(x , f (x , y), s−1(e)).40 (5.19)

The remainder of the proof is analogous to (a). �

6. Specific function learning epitomizers

In this section we present several epitomizers, starting with the very natural set
of functions SFinSup in theorem 6.1. After noting an immediate corollary, we show
a self-describing set to be an epitomizer. Finally, we give a construction for self-
learning sets and show them to be very powerful epitomizers in theorem 6.6, i.e.
epitomizing with respect to a very wide range of learning criteria, much wider
than for self-descibing sets (which is in turn wider than for SFinSup).

40Recall that the input to an iterative learner on function g in iteration x is the triple x , g(x) and
prior conjecture.
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Note that all proofs rely implicitly on the fundamental epitomization
theorem (theorem 3.7), as they show completeness and derive epitomization
from that.

Next, we show SFinSup to epitomize various particular learning criteria with
respect to various sets of learning criteria.

Theorem 6.1. We have

(a) SFinSup Ceff-epitomizes GEx;
(b) SFinSup does not Cloc-epitomize GEx;
(c) SFinSup Cloc-epitomizes GPcpEx;
(d) SFinSup does not Cew-epitomize GPcpEx.

Proof. We prove (a) at the end, since the proof of (c) gives valuable intuition
for the proof of (a).

The claim of (b) follows from SFinSup ∈ GPcpEx ⊂ GEx; see [9,12,35].
The claim of (d) follows from the fact that SFinSup is identifiable by a learner

outputting only programs for total functions; the associated learning criterion,
called Popperian identification, is strictly weaker than GPcpEx and Cew-robust,
as only subsets of uniformly recursive functions are learnable [11,41].

We prove (c). We use theorem 3.7 and show SFinSup to be Cloc-complete for
GPcpEx. Let S ∈ GPcpEx as witnessed by h. Let Q and Q̂ be such that, for all
g ∈ P and x ∈ N,

Q(g)(x) =

⎧⎪⎪⎨
⎪⎪⎩

↑, if h(g[x])↑ ∨ h(g[x + 1])↑,

0, else if x > 0 and h(g[x]) = h(g[x + 1]),
1 + h(g[x + 1]), otherwise

(6.1)

and

Q̂(g)(x) = 4g(t)−1(x), where t = max
t≤x

(g(t) �= 0).41 (6.2)

Obviously, Q, Q̂ ∈ Cloc. Let g ∈ S and x ∈ N. We show (Q̂ ◦ Q)(g)(x) = g(x). We
have Q(g)(0) �= 0. Let t ≤ x be maximal such that Q(g)(t) �= 0. By the definition
of Q and the maximality of t, Q(g)(t) = 1 + h(g[x + 1]). Thanks to h learning g
postdictively completely, we have

Q̂(Q(g))(x) = 4Q(g)(t)−1(x) = 4h(g[x+1])(x) = g(x). (6.3)

Furthermore, for all g ∈ S, as h converges on g, Q(g) ∈ SFinSup.
Regarding (a), we use a similar but more complex construction. The main

difference is that we need to insert more information as long as the learner is not
converged to ensure invertibility of the operator to be defined.

41By convention, max ∅ = 0 and (0 − 1)↑.
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Let S ∈ GEx as witnessed by h. Without loss of generality, we assume h to be
total [12]. Let Q, Q̂, J0, J1 and c be such that, for all j ∈ {1, 2}, g ∈ P, x ∈ N,

c(x) = 1 + 〈h(g[x + 1]), g[x + 1]〉, (6.4)

Q(g)(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

↑, if h(g[x])↑ ∨ h(g[x + 1])↑,
0, else if x > 0 ∧ h(g[x]) = h(g[x + 1]) ∧

∀y ≤ x : (Fh(g[x])(y) > x ∨ 4h(g[x])(y) = g(y)),
c(x), otherwise,

(6.5)

Jj(g, x) = pj(g(max
t≤x

(g(t) �= 0)) − 1) (6.6)

and Q̂(g)(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

↑, if (J1(g, x)↑ ∨ 4J1(g,x)(x)↑) ∧ ∀t ≥ x : g(t) = 0,
J2(g, t)(x), else if there is minimal t ≤ FJ1(g,x)(x) :42

t ≥ x ∧ g(t)↓ �= 0,
4J1(g,x)(x), otherwise.

(6.7)

Obviously, Q, Q̂ ∈ Ceff . Let g ∈ S and x ∈ N. We show (Q̂ ◦ Q)(g)(x) = g(x).
Let g ′ = Q(g). Obviously, for each j ∈ {0, 1}, Jj(g ′, x)↓.

Case 1: There is t ≤ FJ1(g ′,x)(x) with t ≥ x and g ′(t) �= 0.
Fix the minimal such t. Then the first case in the definition of Q̂(g ′)(x) does

not hold, but the second case does. Therefore,

Q̂(Q(g))(x) = J2(g ′, t)(x) = p2(g ′(t))(x) = g[t + 1](x) = g(x). (6.8)

Case 2: ∀t ≥ x : g ′(t) = 0.
Then h on g is converged after x steps (by the definition of Q) and h(g[x]) is

a program for g. Thus, 4J1(g,x)(x)↓ = g(x), which shows that the first and second
cases in the definition of Q̂(g ′)(x) do not hold and Q̂(Q(g))(x) = g(x).

Case 3 : Otherwise.
As case 1 does not hold, for all t with x ≤ t ≤ FJ1(g ′,x)(x), g ′(t) = 0. As

case 2 does not hold, FJ1(g ′,x)(x)↓. Let t = FJ1(g ′,x)(x). We have g ′(t) = 0. Let
t ′ = maxt≤x [g ′(t) �= 0]. Note that J1(g ′, t) = h(g[t ′]) = h(g[t]).

From the definition of Q, as Q(g)(t) = 0, 4h(g[t])(x) = g(x). Hence, the first and
second cases in the definition of Q̂(g ′)(x) do not hold and

Q̂(Q(g))(x) = 4J1(g,x)(x) = 4h(g[t])(x) = g(x). (6.9)

This finishes the different cases. We also have, for all g ∈ S, as h converges on g,
Q(g) ∈ SFinSup. �

From theorem 6.1 we can directly get the following corollary, showing an
identity of learning criteria power. The very short proof shows the power of our
notions of epitomizers and robustness.

42Note that there are several ways in which FJ1(g,x)(x) can be undefined, in which case Q̂ makes
an unbounded search.
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Corollary 6.2. We have

GPcpEx = GPcpConvEx.

Proof. Clearly, SFinSup, the set of all computable functions with finite support, is
GPcpConvEx-learnable. By example 5.1, GPcpConvEx is Cloc-robust. We obtain
the result using theorem 6.1(c). �

Next we analyse a set of self-describing functions that was first given in [11]
and used extensively in [12]. Theorem 6.2 shows that this set is not a very
good epitomizer.

Theorem 6.3. Let S0 = {g ∈ R | 4g(0) = g}. Then S0 Ceff-epitomizes GFin.
However, S0 does not Cloc-epitomize any learning criterion that can be built from
components given in this study as S0 ≡Cloc {g ∈ R | ∀x > 0 : g(x) = 0}.

Proof. We show S0 to be ≤Ceff -complete for GFin and apply theorem 3.7. Let
S ∈ GFin as witnessed by h ∈ R (we can assume, without loss of generality, h ∈ R).
By the one-to-one ORT,43 there is a one-to-one s ∈ R such that

∀e, x : 4s(e)(x) =
{
s(e), if x = 0,
〈4e(0), 4e(x)〉, otherwise.

(6.10)

Let Q, Q̂ be such that

∀g ∈ P, x : Q(g)(x) =
{
s(h(g[mt h(g[t]) �=?])), if x = 0,
〈g(0), g(x)〉, otherwise

(6.11)

and

∀g ∈ P, x : Q̂(g)(x) =
{

p1(g(1)), if x = 0,
p2(g(x)), otherwise.

(6.12)

Clearly, Q ∈ LInv(Ceff ) as witnessed by Q̂. Furthermore, Q(S) ⊆ S0. This finishes
the proof of the first assertion of the theorem.

We get S0 ≤Cloc S1 by letting (a different) Q be such that

∀g ∈ P, x : Q(g)(x) =
{
g(0), if x = 0,
0, otherwise.

(6.13)

We have Q ∈ LInv(Cloc; S0), as, for all g ′ ∈ Q(S0), g ′(0) contains all the information
to compute the pre-image of g ′. Clearly, Q(S0) ⊆ S1.

By the one-to-one ORT,44 there is a (different from above) one-to-one s ∈ R
such that

∀e, x : 4s(e)(x) =
{
s(e), if x = 0,
0, otherwise.

(6.14)

Now we get S1 ≤Cloc S0 by letting (a different) Q be such that

∀g ∈ P, x : Q(g)(x) =
{
s(g(0)), if x = 0,
0, otherwise.

(6.15)

43Note that using the one-to-one parametric recursion theorem suffices.
44Note that, again, using the one-to-one parametric recursion theorem suffices.
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We have Q ∈ LInv(Cloc; S1), as, for all g ′ ∈ Q(S1), g ′(0) contains all the information
to compute the pre-image of g ′. Clearly, Q(S1) ⊆ S0. �

Next we analyse a set of self-describing functions that was used in [11] to show
the separation of GBc and (a stronger version of) GEx. Theorem 6.4 shows that
this set necessarily shows the separation of GEx and GBc, if any set does.

Theorem 6.4. Let S0 = {g ∈ R | ∀∞x : 4g(x) = g}. Then S0 CLL
loc-epitomizes GBc.

However, S0 does not Cew-epitomize GBc, as SFinSup �≤Cew S0.45

Proof. We show S0 to be ≤CLL
loc -complete for GBc and apply theorem 3.7. Let

S ∈ GBc as witnessed by h ∈ LinF (without loss of generality, we assume h to be
linear time computable).

By linlin ORT, there is a linlin s ∈ LL such that

∀e, x , y : 4s(e,x)(y) = s(h(4e[y + 1]), 4e[y + 1]). (6.16)

Let Q be such that

∀g ∈ P, x : Q(g)(x) = s(h(g[x + 1]), g[x + 1]). (6.17)

Clearly, Q ∈ LInv(CLL
loc). We show Q(S) ⊆ S0. Let g ∈ S. We have, for all but finitely

many x and all y,

4Q(g)(x)(y) =
(6.17)

4s(h(g[x+1]),g[x+1])(y) (6.18)

=
(6.16)

s(h(4h(g[x+1])[y + 1]), 4h(g[x+1])[y + 1]) (6.19)

=∀∞x
s(h(g[y + 1]), g[y + 1]) (6.20)

and =
(6.17)

Q(g)(y). (6.21)

Thus, ∀∞x : 4Q(g)(x) = Q(g). Hence, Q(S) ⊆ S0. This finishes the proof of the
first assertion.

We show SFinSup �≤Cew S0. Let Q ∈ LInv(Cew; SFinSup) and suppose, by way of
contradiction, Q(SFinSup) ⊆ S0. Let g, g ′ ∈ SFinSup with g �= g ′. We have that Q(g)
and Q(g ′) are finite variants of one another; thus, for large enough x , Q(g)(x) =
Q(g ′)(x) is a program for both Q(g) and Q(g ′). Therefore, Q(g) = Q(g ′). Hence,
Q is not one-to-one on SFinSup and thus not left-invertible on SFinSup. �

Theorem 6.6 gives examples for self-learning sets of functions, which turn out
to be very strong epitomizers. In order to define these sets, we need the following
notions of computable robustness and data normality.

Definition 6.5. Let I be a learning criterion.
We call I computably element-wise robust iff I is element-wise robust in a

constructive way, i.e. there is an effective operator J ∈ Ceff such that, for all
h, e ∈ P, e ◦ I (h) ⊆ I (J(h, e)).

45This uses the fundamental epitomization theorem (theorem 3.7).
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We call I data normal iff (a)–(c) below hold.

(a) There is fI ∈ R such that

∀h ∈ P ∀g ∈ R ∀i : bI (h, g)(i) = h(fI (g[i], bI (h, g)[i])).46 (6.22)

(b) There is a function dI ∈ R such that

∀h ∈ P ∀g ∈ R ∀i : dI (fI (g[i], bI (h, g)[i])) =
{
?, if i = 0,
g(i − 1), otherwise.47

(6.23)

(c) There is an effective operator Ĵ ∈ Ceff such that, for all h ∈ P, I (h) ⊆
I (Ĵ(h)) and Ĵ(h)(fI (∅, ∅)) =?.48

Theorem 6.6. Let I be a computably element-wise robust learning criterion with
CI = P (i.e. I does not impose global restrictions on the learner). Suppose I is data
normal as witnessed by f and d. Let h0 be such that

∀x : h0(x) =
{
?, if d(x) =?,
4d(x)(x), otherwise.

(6.24)

Further, let S0 = I (h0).49 Then S0 CLL
ew-epitomizes I .

Proof. We show S0 to be ≤CLL
ew -complete for S(I ) and apply theorem 3.7. Let

S ∈ S(I ) as witnessed by h ∈ P.
Let J be as given by I being computably element-wise robust. Let Ĵ be as

given by (c) of I being data normal. By linlin ORT, there is a strictly monotonic
increasing e ∈ LL such that

∀w, x : 4e(w)(x) = Ĵ(J(h, e))(x). (6.25)

It now suffices to show that e ◦ S ⊆ S0, as (lg e ◦ g) ∈ LInv(CLL
ew). Suppose

I = (P, b, d).
Let

g ∈ (e ◦ S). (6.26)

We show, by induction on i,

∀i : b(h0, g)(i) = b(Ĵ(J(h, e)), g)(i). (6.27)

46Intuitively, the ith conjecture of h on g depends only on some information (as specified by fI )
about the first i data points and conjectures.
47Intuitively, in the ith round the learner has access to the (i − 1)st data item.
48Intuitively, without loss of generality, the output based on no data of a learner equals ?.
49Note that S0 is a self-learning set. Roughly, the learner (h0 in theorem 6.6) defining such a set (S0
in theorem 6.6) just runs each input datum as coding a program to determine its corresponding
conjecture to output [19,21]. Note that h0 is not total and hence not, for example, polynomial
time computable. As noted in §1, [20] introduce a new tool (HORT) to begin handling some
complexity-bounded examples of total learners.
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This is clear for i = 0 (both sides of the equality are ?). Let i > 0, and suppose
(inductively) b(h0, g)[i] = b(Ĵ(J(h, e)), g)[i]. Let

x = f (g[i], b(h0, g)[i]) =
IH

f (g[i], b(Ĵ(J(h, e)), g)[i]). (6.28)

Note that d(x) =
(6.23)

g(i − 1) ∈
(6.26)

range(e). We have

b(h0, g)(i) =
(6.22) & (6.28)

h0(x) (6.29)

=
(6.24)

4d(x)(x) (6.30)

=
(6.25)

Ĵ(J(h, e))(x) (6.31)

=
(6.28)

Ĵ(J(h, e))(f (g[i], b(Ĵ(J(h, e)), g)[i])) (6.32)

and =
(6.22)

b(Ĵ(J(h, e)), g)(i). (6.33)

This concludes the induction proof of (6.27). Thus, h0 on any function g ∈ (e ◦ S)
makes the same conjectures as Ĵ(J(h, e)) on g. By the choice of J and Ĵ,
Ĵ(J(h, e)) is an I -learner for (e ◦ S); thus, (e ◦ S) ⊆ I (h0) = S0. �

Theorem 6.6 provides epitomizing sets for the learning criteria bd with b and d
as explicitly given in this study, and many more. Furthermore, S0 of theorem 6.6
epitomizes with respect to all learning criteria that can be built from the example
components given in this study (including the ones with learner admissibility
restrictions), as they are all CLL

ew-robust. In particular, theorem 6.6 provides a
superior epitomizer for GBc than the epitomizer of theorem 6.4.50

Timo Kötzing was supported by the Deutsche Forschungsgemeinschaft (DFG) under grant NE
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References

1 Turing, A. M. 1936 On computable numbers with an application to the Entscheidungsproblem.
Proc. Lond. Math. Soc. 42, 230–265. (doi:10.1112/plms/s2-42.1.230)

2 Davis, M. 1982 Why Gödel didn’t have Church’s thesis. Inf. Control 54, 3–24.
3 Myhill, J. 1952 Some philosophical implications of mathematical logic. I. Three classes of ideas.

Rev. Metaphys. 6, 165–198.
4 Turing, A. M. 1950 Computing machinery and intelligence. Mind 59, 433–460.

(doi:10.1093/mind/LIX.236.433)
5 Turing, A. M. 1952 The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B 237,

37–72. (doi:10.1098/rstb.1952.0012)
50The first author of the present paper, when he was co-creating [11], had the intuition that, for any
criterion I , if (GBc \S(I )) �= ∅, then the S0 of theorem 6.4 above would witness that separation.
Consider I = TdBc. Clearly, SFinSup separates GBc from TdBc. However, the epitomizer S0 of
theorem 6.4 clearly is TdBc-learnable—disproving the present first author’s old intuition. Nicely,
though, from CLL

ew-robustness of TdBc (example 5.1), the epitomizer S0 of theorem 6.6 does separate
GBc from TdBc.
An aside: it is argued in [42] that self-referential examples may portend more natural examples.

Phil. Trans. R. Soc. A (2012)

 on October 27, 2016http://rsta.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/doi:10.1112/plms/s2-42.1.230
http://dx.doi.org/doi:10.1093/mind/LIX.236.433
http://dx.doi.org/doi:10.1098/rstb.1952.0012
http://rsta.royalsocietypublishing.org/


Learning complexity 3595

6 Gold, E. 1967 Language identification in the limit. Inf. Control 10, 447–474. (doi:10.1016/
S0019-9958(67)91165-5)

7 Case, J. 2007 Directions for computability theory beyond pure mathematical. In Mathematical
problems from applied logic II. Logics for the XXIst century (eds D. Gabbay, S. Goncharov &
M. Zakharyaschev). International Mathematical Series, vol. 5, pp. 53–98. New York: Springer.

8 Case, J. In press. Algorithmic scientific inference: within our computable expected reality.
Invited talk and paper at Proc. 3rd Int. Workshop on Physics and Computation, Nile, Egypt,
30 August–6 September 2010. (To appear in Int. J. Unconvent. Comput.)

9 Blum, L. & Blum, M. 1975 Toward a mathematical theory of inductive inference. Inf. Control
28, 125–155. (doi:10.1016/S0019-9958(75)90261-2)

10 Case, J. & Smith, C. 1978 Anomaly hierarchies of mechanized inductive inference. In Proc.
Symp. on the Theory of Computation, pp. 314–319. New York, NY: ACM Press.

11 Case, J. & Smith, C. 1983 Comparison of identification criteria for machine inductive inference.
Theor. Comput. Sci. 25, 193–220. (doi:10.1016/0304-3975(83)90061-0)

12 Jain, S., Osherson, D., Royer, J. & Sharma, A. 1999 Systems that learn: an introduction to
learning theory, 2nd edn. Cambridge, MA: MIT Press.

13 Freivalds, R., Kinber, E. & Smith, C. 1995 On the intrinsic complexity of learning. Inf. Comput.
123, 64–71. (doi:10.1006/inco.1995.1158)

14 Jain, S., Kinber, E., Papazian, C., Smith, C. & Wiehagen, R. 2003 On the intrinsic complexity
of learning recursive functions. Inf. Comput. 184, 45–70. (doi:10.1016/S0890-5401(03)00059-2)

15 Jain, S. 2003 The intrinsic complexity of learning: a survey. Fundam. Inf. 57, 17–37.
16 Rogers, H. 1967 Theory of recursive functions and effective computability. New York: McGraw-

Hill. (Reprinted by MIT Press, Cambridge, MA, 1987.)
17 Fulk, M. A. 1990 Robust separations in inductive inference. In Proc. 31st Annu. Symp. on

Foundations of Computer Science, St. Louis, MO, 22–24 October 2010, pp. 405–410. New York,
NY: IEEE Press. (doi:10.1109/FSCS.1990.89560)

18 Fulk, M. 2011 Robust separations in inductive inference. J. Symbolic Logic 76, 368–376.
(doi:10.2178/jsl/1305810752)

19 Case, J. & Kötzing, T. 2010 Solutions to open questions for non-U-shaped learning with memory
limitations. In Proc. 21st Int. Conf. on Algorithmic Learning Theory, Canberra, Australia, 6–8
October 2010 (eds M. Hutter, F. Stephan, V. Vovk & T. Zeugmann). Lecture Notes in Artificial
Intelligence, no. 6331, pp. 285–299. Berlin, Germany: Springer.

20 Case, J. & Kötzing, T. In press. Memory-limited non-U-shaped learning with solved open
problems. Theor. Comput. Sci. (To appear in Algorithmic Learning Theory special issue.)

21 Case, J. & Kötzing, T. 2010 Strongly non-U-shaped learning results by general techniques. In
Proc. 23rd Annu. Conf. on Learning Theory, Haifa, Israel, 27–29 June 2010 (eds A. T. Kalai
& M. Mohri), pp. 181–193. Madison, WI: Omnipress.

22 Kötzing, T. 2011 Iterative learning from positive data and counters. In Proc. 22nd Int. Conf. on
Algorithmic Learning Theory, Espoo, Finland, 5–7 October 2011 (eds J. Kivinen, C. Szepesvári,
E. Ukkonen & T. Zeugmann). Lecture Notes in Artificial Intelligence, no. 6925, pp. 40–54.
Berlin, Germany: Springer.

23 Case, J. 1999 Machine self-reference and consciousness. In Proc. Abstracts of the Third Annual
Meeting of the Association for the Scientific Study of Consciousness, London, Ontario.

24 Case, J. 1974 Periodicity in generations of automata. Math. Syst. Theory 8, 15–32.
(doi:10.1007/BF01761704)

25 Case, J. 1994 Infinitary self-reference in learning theory. J. Exp. Theor. Artif. Intell. 6, 3–16.
(doi:10.1080/09528139408953778)

26 Case, J. & Kötzing, T. 2011 Measuring learning complexity with criteria epitomizers. In Proc.
28th Int. Symp. on Theoretical Aspects of Computer Science, Dortmund, Germany, 10–12 March
2011, pp. 320–331. Dagstuhl, Germany: Schloss Dagstuhl, Leibniz-Zentrum für Informatik.

27 Royer, J. & Case, J. 1994 Subrecursive programming systems: complexity and succinctness.
Progress in Theoretical Computer Science. Boston, MA: Birkhäuser.

28 Blum, M. 1967 A machine independent theory of the complexity of recursive functions. J. Appl.
Math. Comput. 14, 322–336. (doi:10.1145/321386.321395)

Phil. Trans. R. Soc. A (2012)

 on October 27, 2016http://rsta.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/doi:10.1016/S0019-9958(67)91165-5
http://dx.doi.org/doi:10.1016/S0019-9958(67)91165-5
http://dx.doi.org/doi:10.1016/S0019-9958(75)90261-2
http://dx.doi.org/doi:10.1016/0304-3975(83)90061-0
http://dx.doi.org/doi:10.1006/inco.1995.1158
http://dx.doi.org/doi:10.1016/S0890-5401(03)00059-2
http://dx.doi.org/doi:10.1109/FSCS.1990.89560
http://dx.doi.org/doi:10.2178/jsl/1305810752
http://dx.doi.org/doi:10.1007/BF01761704
http://dx.doi.org/doi:10.1080/09528139408953778
http://dx.doi.org/doi:10.1145/321386.321395
http://rsta.royalsocietypublishing.org/


3596 J. Case and T. Kötzing

29 Case, J. & Kötzing, T. 2008 Dynamic modeling in inductive inference. In Proc. 19th Int. Conf.
on Algorithmic Learning Theory, Budapest, Hungary, 13–16 October 2008 (eds Y. Freund,
L. Györfi, G. Turán & T. Zeugmann). Lecture Notes in Artificial Intelligence, no. 5254,
pp. 404–418. Berlin, Germany: Springer.

30 Kötzing, T. 2009 Abstraction and complexity in computational learning in the limit.
PhD thesis, University of Delaware, Newark. See http://pqdtopen.proquest.com/#viewpdf?
dispub=3373055.

31 Fulk, M. 1985 A study of inductive inference machines. PhD thesis, State University of New
York, Buffalo.

32 Wiehagen, R. 1976 Limes-Erkennung rekursiver Funktionen durch spezielle Strategien.
Elektron. Informationverarb. Kybernetik 12, 93–99.
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