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Abstract Recent advances in drift analysis have given us better and better tools for
understanding random processes, including the run time of randomized search heuris-
tics. In the setting of multiplicative drift we do not only have excellent bounds on the
expected run time, but also more general results showing the strong concentration of
the run time. In this paper we investigate the setting of additive drift under the assump-
tion of strong concentration of the “step size” of the process. Under sufficiently strong
drift towards the goal we show a strong concentration of the hitting time. In contrast to
this, we show that in the presence of small drift a Gambler’s-Ruin-like behavior of the
process overrides the influence of the drift, leading to a maximal movement of about√
t steps within t iterations. Finally, in the presence of sufficiently strong negative

drift the hitting time is superpolynomial with high probability; this corresponds to the
well-known Negative Drift Theorem.

Keywords Additive drift · Concentration · Run time analysis

1 Introduction

Suppose we make a random walk on a finite set of real numbers starting at 0, stopping
when we first hit some fixed value n. Further suppose that, in each step of the walk,
we expect to increase in value by exactly ε > 0; this expected increase is called
a positive drift. The Additive Drift Theorem ([11], see Theorem 5) tells us that the
expected time for the walk to reach n for the first time is exactly n/ε. The (random)
time to reach a given value for the first time is called the first hitting time or just
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hitting time; overshooting the given value will also be considered “hitting” in this
paper. The Additive Drift Theorem is based on a more general result [10] and gave a
new and powerful tool for the formal analysis of random optimization processes, such
as the progress of randomized search heuristics (like evolutionary algorithms and ant
colony optimization). For many randomized search heuristics such drift theorems are
particularly useful as the algorithms can be described as making a (biased) random
walk through the search space. In order to bound the time until reaching a certain part
of the search space (for example a global optimum), one typically derives bounds on
the expected progress per iteration; these bounds can then be turned into an expected
time until reaching the desired part of the search space by using a drift theorem.

After the publication of He and Yao [11] the Additive Drift Theorem became more
and more popular as a method to analyze the expected run time of randomized search
heuristics. In order to get better bounds from a drift theorem with little effort, new
drift theorems were proven, for example for drift proportional to the distance from
the target (instead of uniform drift, as in the Additive Drift Theorem—this is called
multiplicative drift) [5]. Another very powerful family of drift theorems are the so-
called Variable Drift Theorems (independently developed in [12, Theorem 4.6] and
[16, Section 8], but see also [21] for a discussion and extension).

All these theorems have in common that they can be used for showing upper bounds
on the run time of randomized algorithms. Aiming for a similarly strong tool for
showing lower bounds [17,18], derived (again from [10]) a theorem which applies in
case that the drift goes away from the target (see Theorem 6 for a precise statement and
[21] for a powerful variant). Just as the drift theorems for upper bounds, the Negative
Drift Theorem has proven to be tremendously useful for the analysis of randomized
search heuristics, providing an easy-to-apply tool for deriving lower bounds.

In addition to bounds on the expected hitting time, concentration results are also of
interest. These can, for example, be directly used for statements about the concentration
of the run time of an algorithm. But sometimes concentration results are necessary
for deriving bounds on the expected hitting times as well: imagine, for example,
an algorithm which can only be successful when n independent sub-algorithms are
successful; in the analysis, one would usually need concentration results for the run
time of the sub-algorithms.

For the special case of multiplicative drift, strong concentration results were given
in [4]. In very recent work [14] even more general results are given, providing concen-
tration bounds in a very general setting. In this paper, we take an approach different
from that in [14] by focusing on the very special case of additive drift and deriving as
strong as possible concentration results in this case. The advantage is that, for the theo-
rems in this paper, checking whether they apply is easy, and so is using the conclusion;
the downside is the restricted scope.

Outside of the evolutionary computation community, a number of results also
regarding positive drift are known. In particular, most of the work of this paper is
based on the technique of bounded differences (basically all proofs are applications of
the Azuma–Hoeffding Inequality), which is wide-spread, and the applications given
here are straightforward instances of these methods (see [7] for an introduction). A
notable example where similar results regarding positive drift are shown is [22] (a
version of Theorem 1 can be found in its Section 4). The main purpose of the present
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paper is to introduce these methods to the evolutionary computation community in an
easily accessible way (the Azuma–Hoeffding Inequality itself was already used in the
community to derive concentration, see, for example [6]).

All results in this paper hold for the case where the step size of the random variables
is bounded by some constant c. In order to extend the scope of the theorems we use
the concept of sub-Gaussian random variables [2] and allow the step sizes to be
any such random variable. Example sub-Gaussian random variables include bounded
variables, but also exponentially decaying random variables (see Sect. 3.1). This way
all theorems are now applicable to awide range of processes such as the ones occurring
in the analysis of randomized search heuristics. We refer the reader to Fan et al. [9] to
an excellent collection of many useful bounds in the context of drift.

This paper is an extended version of Kötzing [13]; in particular, this earlier ver-
sion does not cover all sub-Gaussian random variables, but only those bounded by a
constant.

1.1 Discussion of Results

Recall that, if we start at 0 and drift an expected amount of at most ε towards our goal
n > 0, we have an expected time of at least n/ε to reach n. However, it is possible that
n is already reached after one round with constant probability: the process might, in
the first iteration, jump to the goal (= n) with probability 1/2 and with the remaining
1/2 probability it jumps to −n, giving an expected progress of 0 ≤ ε.1 Similarly, one
can give examples where the drift is high, but the probability to reach the goal within
the expected number of steps is low.

Wewould like to give sufficient conditions (which hold inmany cases for analyses of
randomized search heuristics) under which the hitting time is concentrated around the
expectation. To that end we will assume that large jumps are very unlikely. Formally,
we will require that the progress in each iteration is a random variable Δ such that,
for some constants c and δ,

∀z ∈ [0, δ] : E(exp(zΔ)) ≤ exp(z2c/2). (1)

We call any random variable Δ which fulfills Eq. (1) a (c, δ)-sub-Gaussian random
variable ([2]; see also [3] for a discussion on the concept of sub-Gaussian random
variables). Intuitively this concept captures that there are no large jumps: any proof of
the Azuma-Hoeffding Inequality uses that any random variable on [−c, c] is (c2,∞)-
sub-Gaussian; furthermore, in Theorem 10 we see that any exponentially decaying
random variable is also sub-Gaussian (with parameters that depend on the speed of
decay).

Under the condition that the progress in each iteration is sub-Gaussianwe can derive
strong results; Fig. 1 gives an overview. Note the three regimes of additive drift: if it

1 Note that iterating this idea leads to an example where, under arbitrary additive drift, the expected
number of iterations until n is reached is 2, seemingly contradicting the Additive Drift Theorem; however,
this iterated example requires an unbounded search space, which is ruled out by the requirements of the
Additive Drift Theorem.
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0 Θ(1/n)−Θ(1/n) n−n

high concentration
constant chance of

hitting time of O(n2)

increasing probability with time

superpolynomial hitting time

Fig. 1 Intuitive regimes of additive drift. Depicted are possible values of the additive drift ε for constant
step sizes; the important change points are (up to constant factors) at 1/n and −1/n. Note that for large
(superconstant) bounds on the possible jump size c of the process, the results get worse

is strong, we get high concentration; if it is between about −Θ(1/n) and Θ(1/n), we
get a behavior similarly to the Gambler’s Ruin problem, with a constant probability
of reaching n regardless of the strength of the drift due to a (sufficiently unbiased)
random walk on the real line; note that this result requires constant variance. This
constant probability can be significantly boosted by allowing more time, in case of
non-negative drift. Finally, for strongly negative values of drift (this is the regime of
Negative Drift Theorems), we get an exponential hitting time with superpolynomial
probability. In the following we discuss these statements in more detail; for simplicity,
we will only discuss the case of random processes with bounded step width; later we
will generalize these statements to arbitrary sub-Gaussian steps.

Our first theorem informs about an exponentially small probability of arriving at n
significantly before the expected n/ε iterations. Note that a version of this bound was
shown in [22, Corollary 4.1].

Theorem 1 Let (Xt )t≥0 be random variables overR, each with finite expectation and
let n > 0. With T = min{t ≥ 0 : Xt ≥ n | X0 ≤ 0} we denote the random variable
describing the earliest point that the random process exceeds n, given a starting value
of at most 0. Suppose there are ε, c > 0 such that, for all t ,

1. E(Xt+1 − Xt | X0, . . . Xt , T > t) ≤ ε (an additive drift of at most ε), and
2. |Xt − Xt+1| < c (bounded step width).

Then, for all s ≤ n/(2ε),

P(T < s) ≤ exp

(
− n2

8c2s

)
.

We see that, for example for constant c and ε = O(1/n), we have a superpolyno-
mially small probability of hitting n in less than n2/ω(log n) iterations. Note that the
bound is no longer useful (i.e. greater than 1) when s ≥ n2. This means that after more
than n2 steps we cannot exclude having exceeded n (at least not with this theorem). If
ε ≥ 1/n, we expected to hit n after n2 steps anyway (due to the drift), and the bound
of s ≤ n/(2ε) makes the bound inapplicable for values of s ≥ n2. As soon as we
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have drift of ε < 1/n, the drift process is intuitively more and more drowned by the
random walk due to the variance (which we will consider later).

But what is now the probability of arriving significantly after the expected time?
For that we need a lower bound on the expected progress (drift).

Theorem 2 Let (Xt )t≥0 be random variables overR, each with finite expectation and
let n > 0. With T = min{t ≥ 0 : Xt ≥ n | X0 ≥ 0} we denote the random variable
describing the earliest point that the random process exceeds n, given a starting value
of at least 0. Suppose there are ε, c > 0 such that, for all t ,

1. E(Xt+1 − Xt | X0, . . . Xt , T > t) ≥ ε, and
2. |Xt − Xt+1| < c.

Then, for all s ≥ 2n/ε,

P(T ≥ s) ≤ exp

(
− sε2

8c2

)
.

Thus, unless the drift is small, n will be exceeded with high probability after twice
the expected number of steps. For small drift (O(1/n)), the bound is only meaningful
for larger numbers of iterations, so that Markov’s Inequality will give better bounds
in this case for s close to n/ε.

If the drift is significantly negative, then we cannot hope to reach the goal in poly-
nomial time with reasonable probability; this is the statement of the Negative Drift
Theorem ([17,18], see Theorem 6). A scaled version can be found in [19, Theorem 22],
which also implies the following theorem.

Theorem 3 ([19]) Let (Xt )t≥0 be random variables over R, each with finite expecta-
tion and let n > 0. With T = min{t ≥ 0 : Xt ≥ n | X0 ≤ 0} we denote the random
variable describing the earliest point that the random process exceeds n, given a start-
ing value of at most 0. Suppose there are c, 0 < c < n and ε < 0 such that, for all
t ,

1. E(Xt+1 − Xt | X0, . . . Xt , T > t) ≤ ε, and
2. |Xt − Xt+1| < c.

Then, for all s ≥ 0,

P(T ≤ s) ≤ s exp

(
−n|ε|
2c2

)
.

For example, for a constant c and ε = −ω(log(n)/n), this gives a superpolynomially
small hitting probability for any polynomial number of steps.

Finally, we consider the case where there is only small drift ε ∈ [0, 1/n].
Theorem 4 Let (Xt )t≥0 be random variables overR, each with finite expectation and
let n > 0. With T = min{t ≥ 0 : Xt ≥ n | X0 ≥ 0} we denote the random variable
describing the earliest point that the random process exceeds n, given a starting value
of at least 0. Suppose there is c with 0 < c < n such that, for all t ,
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1. E(Xt+1 − Xt | X0, . . . Xt , T > t) ≥ 0,
2. Var(Xt+1 − Xt | X0, . . . Xt , T > t) ≥ 1, and
3. |Xt − Xt+1| < c.

Then there is a constant � (independent of n, c and ε) such that, for all p > 0,

P(T ≤ n2/p� log(c)) ≥ 1 − p.

For example, if we have a constant c and want any constant hitting probability δ,
then a quadratic number of steps suffices (just as in the Gambler’s Ruin problem).

2 Known Bounds

The literature knows a large number of drift theorems; we give the two most important
ones with respect to our setting of additive drift.

First we give the classic Additive Drift Theorem.

Theorem 5 (Additive Drift [11]) Let (Xt )t≥0 be random variables describing a
Markov process over a finite state space S ⊆ R. Let T be the random variable that
denotes the earliest point in time t ≥ 0 such that Xt ≥ n. If there exists ε > 0 such
that, for all t > 0,

E(Xt+1 − Xt | T > t) ≤ ε,

then

E(T | X0) ≥ X0

ε
.

If there exists ε > 0 such that, for all t ,

E(Xt+1 − Xt | T > t) ≥ ε,

then

E(T | X0) ≤ X0

ε
.

Second, theNegative Drift Theorem concerns adverse drift and shows a high hitting
time, which can be used to derive lower bounds on the run time of algorithms.

Theorem 6 (Negative Drift [17,18]) Let (Xt )t≥0 be real-valued random variables
describing a stochastic process over some state space. Suppose there is an interval
[a, b] ⊆ R, two constants δ, ε > 0 and, possibly depending on � = b − a, a function
r(�) satisfying 1 ≤ r(�) = o(�/ log �) such that, for all t ≥ 0, the following conditions
hold.
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1. E(Xt+1 − Xt | a < Xt < b) ≥ ε;
2. For all j ≥ 0, P(|Xt+1 − Xt | ≥ j | a < Xt ) ≤ r(�)

(1+δ) j
.

Then there is a constant c such that, for T = min{t ≥ 0 : Xt ≤ a | X0 ≥ b}, we have

P(T ≤ 2c�/r(�)) = 2−Ω(�/r(�)).

A crucial requirement of the theorem is a restriction on the jump size of the random
process: the larger the step, the less likely it must be. A further important requirement
is that of constant drift away from the target; this requirement can be circumvented
via scaling, see [19, Theorem 22]. See Corollary 22 for a comparison with the results
of this paper.

A sequence of random variables (Xt )t≥0 is called a supermartingale if each random
variable has finite expectation and, for all t ≥ 0,

E(Xt+1 − Xt | X0, . . . Xt ) ≤ 0.

How is additive drift related to the concept of (super)martingales? In the presence of
additive drift of at most ε, we have, for all t ≥ 0, the inequality

E(Xt+1 − Xt | X0, . . . Xt ) ≤ ε.

This means that (Xt − tε)t≥0 is a supermartingale, making all the strong and well-
developed machinery for martingales applicable. For our results, we make use of a
variant of the Azuma–Hoeffding Inequality for supermartingales, see [1]. We give a
version from [8, Corollary 2.1] for reference, but we will cite a more flexible version
in Sect. 3.2.

Theorem 7 (Azuma–Hoeffding Inequality) Let (Xt )t≥0 be a supermartingale such
that there is a sequence (ct )t≥0 of real number such that, for all t ≥ 0, |Xt+1−Xt | < ct .
For all t let Ct = ∑t−1

i=0 c
2
t . Then, for all t ≥ 0 and all x > 0,

P

(
max
0≤ j≤t

(X j − X0) ≥ x

)
≤ exp

(
− x2

2Ct

)
.

The Azuma–Hoeffding Inequality is sometimes stated with Xt − X0 in place of
max0≤ j≤t (X j − X0). However, as discussed at the end of Section 3.5 in [15], the
stronger version typically comes at no extra price.

3 Bounds for Sub-Gaussian Random Variables

In this section we discuss sub-Gaussian random variables and give a variant of the
Azuma-Hoeffding Inequality. In particular, we want to extend the Azuma-Hoeffding
Inequality to sequences of random variables (Xt )t≥0 where the differences Xt+1 − Xt
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are not bounded, but sub-Gaussian as follows. Formally,we call a sequences of random
variables (Xt )t≥0 ((ct )t≥0, δ)-sub-Gaussian iff, for all t ≥ 0,

∀z ∈ [0, δ] : E(exp(z(Xt+1 − Xt )) | X0, . . . , Xt ) ≤ exp(z2ct/2). (2)

We allow for δ = ∞ with the obvious meaning.2 In case that there is a c such that, for
all j , c j = c, we simplify notation and call (Xt )t≥0 a (c, δ)-sub-Gaussian.

The following remark follows from calculus (see, for example, [20] for an expo-
sition).3 In particular, any sub-Gaussian sequences of random variables is always a
submartingale.

Remark 8 Let (Xt )t≥0 be ((ct )t≥0, δ)-sub-Gaussian. Then, for all t ≥ 0,

E(Xt+1 − Xt | X0, . . . , Xt ) ≤ 0

and

Var(Xt+1 − Xt | X0, . . . , Xt ) ≤ ct .

We proceed by giving examples for sub-Gaussian supermartingales, before giving
bounds for these random processes.

3.1 Examples for Sub-Gaussian Supermartingales

We start with the simple example of a bounded supermartingale.

Theorem 9 Let (Xt )t≥0 be a supermartingale such that there is a c > 0 with

∀t ≥ 0 : |Xt+1 − Xt | ≤ c.

Then (Xt )t≥0 is (c2,∞)-sub-Gaussian.

The straightforward proof of this fact is at the heart of the proof of the Azuma-
Hoeffding Inequality as given in Theorem 7. Next we see that also exponentially
decaying random variables are sub-Gaussian.

Theorem 10 Let (Xt )t≥0 be a supermartingale such that there are c > 0 and δ with
0 < δ < 1 and, for all t ≥ 0,

∀x ≥ 0 : P(|Xt+1 − Xt | ≥ x | X0, . . . , Xt ) ≤ c

(1 + δ)x
. (3)

Then (Xt )t≥0 is (128cδ−3, δ/4)-sub-Gaussian.

2 In fact, the term sub-Gaussian originally entailed δ = ∞, while the version with finite δ is called
locally sub-Gaussian [3]. Furthermore, this terminology is usually applied to single random variables, not
to martingales.
3 Note that Eq. (2) is typically required to also hold for negative z ≥ −δ, in which case even stronger
statements can be made. However, we want to keep the scope of these definitions wide.
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Proof We will need the following equation from calculus.

∀a > 0 :
∫ ∞

0
x2e−axdx = 2

a3
. (4)

Let f be the probability density function of |Xt+1 − Xt | for given X0, . . . , Xt and let
z be such that 0 ≤ z ≤ ln(1 + δ)/2; note that from δ < 1 we know ln(1 + δ) ≥ δ/2,
so that we indeed consider all z with 0 ≤ z ≤ δ/4 as necessary. It is easy to see that,
for all real numbers x , ex ≤ 1 + x + x2e|x |/2. Therefore, we have

E(exp(z(Xt+1 − Xt )) | X0, . . . , Xt )

≤ 1 + z E(Xt+1 − Xt | X0, . . . , Xt )

+ z2

2
E((Xt+1 − Xt )

2 exp(z|Xt+1 − Xt |) | X0, . . . , Xt )

≤ 1 + z2

2
E((Xt+1 − Xt )

2 exp(z|Xt+1 − Xt |) | X0, . . . , Xt )

≤ 1 + z2

2

∫ ∞

0
x2ezx P(|Xt+1 − Xt | ≥ x | X0, . . . , Xt ) dx

= 1 + z2

2

∫ ∞

0
x2 f (x)ezx dx .

Note that in the second inequality we use E(Xt+1 − Xt | X0, . . . , Xt ) ≤ 0 (the
supermartingale property). From Eq. (3) we have

∀x : f (x) ≤ c

(1 + δ)x
.

In order to abbreviate terms in the next chain of inequalities, we let

B = 2c

(ln(1 + δ) − z)3
.

Thus, we can extend the above chain of equalities and inequalities with

E(exp(z(Xt+1 − Xt )) | X0, . . . , Xt )

≤ 1 + z2

2

∫ ∞

0
x2

c

(1 + δ)x
ezx dx

= 1 + cz2

2

∫ ∞

0
x2e−x(ln(1+δ)−z) dx

= 1 + cz2

2

2

(ln(1 + δ) − z)3

= 1 + z2B/2

≤ ez
2B/2.
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For z ≤ ln(1 + δ)/2 and using ln(1 + δ) ≥ δ/2 we know

B ≤ 2c

(ln(1 + δ)/2)3
= 16c

ln(1 + δ)3
≤ 128c

δ3
.

This shows the desired result.

3.2 Bounds for Sub-Gaussian Supermartingales

Now we turn to using sub-Gaussian supermartingales to derive bounds for first hitting
times. The following is a version of the Azuma–Hoeffing Inequality modified to sub-
Gaussian supermartingales taken from [9].

Theorem 11 ([9]) Let (Xt )t≥0 be ((ct )t≥0, δ)-sub-Gaussian. For all t ≥ 0, let

Ct =
t−1∑
j=0

c j .

Then, for all t ≥ 0 and all x > 0,

P

(
max
0≤ j≤t

(X j − X0) ≥ x

)
≤ exp

(
− x

2
min

(
δ,

x

Ct

))
.

Proof The statement of this theorem follows from [9, Theorem 2.6] by using the
following parameters. We let n = t ; for all i ≥ 1, let Vi−1 be the random variable
which is constantly ci ; let v2 = Ct ; for all λ, let f (λ) = λ2/2. Now we choose

λ = min

(
δ,

x

Ct

)

and get the result directly from [9, Theorem 2.6] (after a few small manipulations).

The following is now a straightforward corollary.

Theorem 12 Let (Xt )t≥0 be a sequence of random variables and let d ∈ R. If, for all
t ≥ 0,

E(Xt+1 − Xt | X0, . . . , Xt ) ≤ d,

then (Xt −dt)t≥0 is a supermartingale. If further (Xt −dt)t≥0 is (c, δ)-sub-Gaussian,
then, for all t ≥ 0 and all x > 0,

P

(
max
0≤ j≤t

(X j − X0) ≥ dt + x

)
≤ exp

(
− x

2
min

(
δ,

x

ct

))
.

The following is a corollary which regards the probability of undershooting.
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Theorem 13 Let (Xt )t≥0 be a sequence of random variables. If there is d such that,
for all t ≥ 0,

E(Xt+1 − Xt | X0, . . . , Xt ) ≥ d,

then (dt−Xt )t≥0 is a supermartingale. If further (dt−Xt )t≥0 is (c, δ)-sub-Gaussian,
then, for all t ≥ 0 and all x > 0,

P

(
max
0≤ j≤t

(X j − X0) ≤ dt − x

)
≤ exp

(
− x

2
min

(
δ,

x

ct

))
.

4 Detailed Theorems and Proofs

In this section we generalize the theorems from Sect. 1 to sub-Gaussian supermartin-
gales. The proofs are applications of the (generalized) Azuma-Hoeffding Inequality
and its corollaries from Sect. 3.2; we will discuss these in Sect. 4.1 on large drift (they
mostly apply when the drift is Ω(1/n) in either direction). After that we will consider
small drift in Sect. 4.2.

For this section, let (Xt )t≥0 be randomvariables overR, eachwithfinite expectation.
Furthermore, we let n ∈ N and let T≤ = min{t ≥ 0 : Xt ≥ n | X0 ≤ 0} be the random
variable that denotes hitting time of n (similarly, T≥ = min{t ≥ 0 : Xt ≥ n | X0 ≥
0}). For a given ε > 0, we say that (Xt )t≥0 has drift of at most ε iff, for all t ≥ 0,

E(Xt+1 − Xt | X0, . . . Xt , T > t) ≤ ε. (5)

Symmetrically, we say, for a given ε > 0, that (Xt )t≥0 has drift of at least ε iff, for
all t ≥ 0,

E(Xt+1 − Xt | X0, . . . Xt , T > t) ≥ ε. (6)

4.1 Large Drift

We will now use the (generalized) Azuma–Hoeffding Inequality to extend Theo-
rems 1–3.

Theorem 14 (Extending Theorem 1) Suppose that (Xt )t≥0 has drift of at most ε > 0
and (Xt − εt)t≥0 is (c, δ)-sub-Gaussian. Then, for all s ≤ n/(2ε),

P(T≤ < s) ≤ exp
(
−n

4
min

(
δ,

n

2cs

))
.

Proof Let s ≤ n/(2ε). We apply Theorem 12 (with x = n/2 and t = s). Intuitively,
we bound the probability of gaining twice the distance that we should have gained.

Similarly, we get a bound showing a high hitting probability after sufficiently many
iterations.
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Theorem 15 (Extending Theorem 2) Suppose that (Xt )t≥0 has drift of at least ε > 0
and (εt − Xt )t≥0 is (c, δ)-sub-Gaussian. Then, for all s ≥ 2n/ε,

P(T≥ ≥ s) ≤ exp
(
− sε

4
min

(
δ,

ε

2c

))
.

Proof Let s ≥ 2n/ε. We apply Theorem 13 (with x = sε/2 and t = s). Intuitively,
we bound the probability of gaining only half the distance that we should have gained;
this is meaningful once we should have overshot by a factor of 2, i.e. for s ≥ 2n/ε as
desired.

We now use the same approach to prove the theorem concerning negative drift.

Theorem 16 (Extending Theorem 3) Suppose that (Xt )t≥0 has drift of at most ε < 0
and (Xt − εt)t≥0 is (c, δ)-sub-Gaussian. Then, for all s ≥ 0,

P(T≤ ≤ s) ≤ s exp

(
−n

2
min

(
δ,

|ε|
c

))
.

Proof We make an analysis with phases. A phase begins at t if Xt < 0 and Xt+1 ≥ 0
and ends at t ′ if either Xt ′ ≥ n or Xt ′ < 0; in the first case we call the phase
successful, in the second case unsuccessful. We will show that a phase is successful
with probability at most exp (−n/2min (δ, |ε|/c)) , as then a union bound (or an
application of Bernoulli’s Inequality) will give the desired result, lower bounding the
length of each phase with the trivial bound of 1. In order to bound the probability
of a phase being successful, we use the following reasoning. Any phase starts ≤ 0.
If the process does not overshoot its expectation by n ever within n/|ε| iterations, it
not only did not reach n (starting from ≤ 0) but is certainly below 0 (as, after n/|ε|
iterations, the expectation is ≤ −n). To bound the probability of this event we apply
again Theorem 12 (with x = n and t = n/|ε|) to see that the probability of a phase
being successful is at most

exp

(
−n

2
min

(
δ,

|ε|
c

))
,

as desired.

4.2 Small Drift

We start with a lemma which is interesting in its own right, showing the theorem
concerning negative drift (Theorem 3) to be reasonably tight. The proof of the lemma
makes use of one of the results concerning the concentration of the hitting time under
positive drift (Theorem 1).

Lemma 17 Let b = 3072. Then, for all n and c > 0, the following holds. Let k = bcn.
Suppose that (Xt )t≥0 has a drift of at least ε ≥ −1/(8k) and a variance in each step
of at least 1. Also suppose (Xt − εt)t≥0 is (c, δ)-sub-Gaussian, with δ = ω(1/n). Let
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s = 24bcn2. Then we have that, within s steps, the process does not drop below −k
with probability ≥ 1/2 and

P
(
T≥ ≤ s

) ≥ 1

2
.

Proof We give the proof for ε ≤ 0; the case of ε > 0 is analogous, but easier. We let
A be the event that the process does not drop below −k within s steps. We first show
P(A) ≥ 3/4, after that we show that, conditional on A, the process reaches n with
probability 3/4, which will imply the claim.

For all t ≥ 0, we let

Yt = (Xt )
2

and

Δt = Xt+1 − Xt .

We can assume, without loss of generality, E(Δt ) ≤ 0. In all of the following compu-
tations of expectation and variance the conditioning on all relevant (previous) random
variables is implicitly understood but not made explicit for clarity (and brevity) of the
exposition. From Remark 8 we know that, for all t ≥ 0, Var(Δt ) ≤ c (which also
implies c ≥ 1, from our lower bound on the variance). It suffices to show that Yt does
not reach k2 within s steps with probability ≥ 3/4. We want to apply Theorem 14 to
(Yt )t≥0, so we compute the expected drift.

E(Yt+1) = E((Δt + Xt )
2)

= E((Δt )
2 + 2Δt Xt + X2

t )

= E((Δt )
2) + 2 E(Δt )Xt + X2

t

= Var(Δt ) + E(Δt )
2 + 2 E(Δt )Xt + Yt

≤ c + 1 + Yt
≤ 2c + Yt ,

where the first inequality follows from our bound on the variance, together with
−1/(8k) ≤ E(Δt ) ≤ 0 and Xt ≥ −k.

In order to estimate the number of steps until (Xt )t≥0 reaches −k, we wait until
the process drops below 0, and bound the time that the process (Yt )t≥0 takes to get
from 0 to k2, which, using the Additive Drift Theorem, has an expectation of at least
k2/(2c) ≥ 2s steps.As (Yt+1−Yt ) = (Xt+1−Xt )(Xt+1+Xt ) and Xt+1+Xt ≤ 2n, we
get that the process (Yt − 2ct)t≥0 is (4n2c, δ/(2n))-sub-Gaussian. Thus, Theorem 14
gives that (Yt )t≥0 does exceed k2 within s steps starting from 0 with probability at
most

exp

(
− k4

4 · 8n2cs
)

= exp

(
− b3c2

32 · 24
)

≤ 1/4
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as desired.
Now we want to bound the probability for reaching n. To this end we let, for all

t ≥ 0,

Zt = (Xt + k)2 − k2

and we condition on A. In a computation analogous to that for (Yt )t≥0 we see that

E(Zt+1) ≥ 1/2 + Zt .

From the Additive Drift Theorem (Theorem 5) we now know that (Zt )t≥0 reaches
(n + k)2 − k2 in an expected number of at most

2((n + k)2 − k2) = 2(2nk + n2) ≤ 6nk

steps. Thus, using Markov’s Inequality, we get that (Zt )t≥0 reaches (n + k)2 − k2

within s steps with probability at least 3/4 as desired, as s = 4(6nk).

Next we use this lemma to get a direct corollary, basically extending the idea of
Gambler’s Ruin.

Theorem 18 Suppose that (Xt )t≥0 has a drift of at least ε = −o(cn) and a variance
in each step of at least 1. Also suppose (Xt − εt)t≥0 is (c, δ)-sub-Gaussian, with
δ = ω(1/n). Then, for some s = O(cn2),

P
(
T≥ ≤ s

) ≥ 1

2
.

Now we want to boost this probability of 1/2 arbitrarily high by allowing longer
run times. The idea is to apply Lemma 17 iteratively and get arbitrarily good bound
with an induction.

Theorem 19 (Extending Theorem 4) Let b = 3072 just as in Lemma 17. Suppose that
(Xt )t≥0 has drift of at least ε ≥ 0, a variance in each step of at least 1 and (Xt −εt)t≥0
is (c, δ)-sub-Gaussian, with δ = ω(1/n). Then there is a constant � (independent of
n, c and ε) such that, for all p > 0,

P(T≥ ≤ n2/p� log(c)) ≥ 1 − p.

Proof We let k0 = 0 and, for all i ,

ki+1 = bc(ki + n) + n + ki

and

si = 24bc(ki + n)2.
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We analyze the process in an infinite series of phases, starting with phase 0. For each
i , Phase i +1 starts as soon as Phase i ends (Phase 0 starts at time t = 0). Phase i ends
when either the goal is reached (the process is≥ n), the process is at most−ki+1, or si
steps passed in Phase i , whichever happens first. We call a phase successful if it ends
with reaching the goal.

Trivially, just before the beginning of Phase i , the process is at least−ki .Wewant to
apply Lemma 17, where the n of the Lemma corresponds to ki +n (for the application
of the Lemma, we shift the process by ki ). Thus, we see that each phase is successful
with probability at least 1/2.

Let p > 0 and let a > 0 be such that 2a−1 ≥ 1/p ≥ 2a . Thus, after a phases, we
have a success probability of at least 1 − p as desired. As, for all i , Phase i takes at
most si steps, we get the desired result.

5 Corollaries

In this section we will derive some useful corollaries to our theorems. We will use the
terminology of the preceding section.

The first corollary is derived from Theorems 14 and 15 and gives an interval in
which the hitting time is with high probability. Note that the interval is smaller if ε is
larger than Θ(1/n).

Corollary 20 (Concentration) Let (Xt )t≥0 with X0 = 0 and let T be the hitting time
of n; let ε = Ω(1/n) be given. Suppose there are constants y, y′ such that (Xt )t≥0
has a drift of at most yε and at least y′ε. Furthermore, suppose that (Xt − yεt)t≥0
and (y′εt − Xt )t≥0 are (c, δ)-sub-Gaussian where δ = ω(log(n)/n). Then, for each
k, there is a k′ (independent of n and ε) such that

P
(
(n/ε)/(k′c log n) ≤ T ≤ k′(n/ε)c log n

) ≥ 1 − n−k .

Furthermore, for all r = ω(c log n),

P ((n/ε)/r ≤ T ≤ (n/ε)r) ≥ 1 − n−ω(1).

The next corollary is derived from Theorem 16. It shows that sufficiently negative
drift gives strong (lower) bounds on the hitting time.

Corollary 21 (Negative Drift) Suppose that (Xt )t≥0 has drift of at most ε =
−ω(c log n/n) and assume (Xt−εt)t≥0 is (c, δ)-sub-Gaussianwith δ = ω(log(n)/n).
Then, for all polynomials p and all n large enough,

P(T≤ ≤ p(n)) ≤ 1

p(n)
.

We can also recover the Negative Drift Theorem ([17,18], see Theorem 6) from
Theorem 16 (more precisely, as a corollary to its proof, where it is easy to see that
negative drift is only required in some bounded interval). Note that, in order to follow
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the notation of Theorem 6, the process attempts to go down (from b to a), so what is
called a “negative drift” is a positive value (away from the goal). This also requires an
application of Theorem 10 to get the result for exponentially decaying step width. If
insteadwe try to get a similar statementwhereweuse the exponential decay to establish
that the process has a bounded step width (with sufficiently high probability), we can
get the following corollary.

Corollary 22 (Negative Drift II) Suppose there is an interval [a, b] ⊆ R, two con-
stants δ, ε > 0 and, possibly depending on � = b − a, a function r(�) satisfying
1 ≤ r(�) = exp(o( 4

√
�)) such that, for all t ≥ 0, the following conditions hold.

1. E(Xt+1 − Xt | a < Xt < b) ≥ ε;
2. For all j ≥ 0, P(|Xt+1 − Xt − ε| ≥ j | a < Xt ) ≤ r(�)

(1+δ) j
.

Then there is a constant c such that, for T = min{t ≥ 0 : Xt ≤ a | X0 ≥ b}, we have

P
(
T ≤ 2c

√
�
)

= 2
−Ω

(
4√

�
)
.

This corollary can give good bounds where the version of the Negative Drift Theorem
given in Theorem 6 is not applicable; this is for example the case for r(�) = �. Also in
some cases where both are applicable the corollary gives slightly better bounds: Con-
sider for example the case of r(�) = �/(log n)2. Corollary 22 gives superpolynomial
run time with just the same probability as for smaller r , while Theorem 6 gives

P(T ≤ 2c(log �)2) = 2−Ω((log �)2).

Note that this is also a superpolynomial run time with superpolynomially high prob-
ability.
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