
Difficulties in Forcing Fairness of
Polynomial Time Inductive Inference

John Case and Timo Kötzing

Department of Computer and Information Sciences,
University of Delaware, Newark, DE 19716-2586, USA

{case,koetzing}@cis.udel.edu

Abstract. There are difficulties obtaining fair feasibility from polyno-
mial time updated language learning in the limit from positive data.
Pitt 1989 noted that unfair delaying tricks can achieve polynomial time
updates but with no feasibility constraint on the whole learning pro-
cess. In this context Yoshinaka 2009 makes a useful list of properties or
restrictions towards true feasibility. He also provides interesting exam-
ples of fair polynomial time algorithms featuring particular uniformly
polynomial time decidable hypothesis spaces, and each of his algorithms
satisfies several of his properties.

Yoshinaka claims that the combination of the three restrictions on
polynomial time learners of consistency (which we call herein postdictive
completeness), conservativeness and prudence is restrictive enough to
stop Pitt’s delaying tricks from working.

The present paper refutes the claim of the previous paragraph in three
settings. In the setting of uniformly polynomial time decidable hypoth-
esis spaces with a few effective closure properties, the three restrictions
allow maximal unfairness. The other two settings involve certain other
uniformly decidable hypothesis spaces and general language learning hy-
pothesis spaces. In each of these settings, the three restrictions forbid
some, but not all Pitt-style delaying tricks.

Inside the proofs of each of our theorems asserting that the three re-
strictions do not forbid some or all delaying tricks, the witnessing learners
can be seen to explicitly employ delaying tricks.

1 Introduction

For a class of (at least computably enumerable) languages L and an algorithmic
learning function h, we say that h TxtEx-learns L [Gol67, JORS99] iff, for each
L ∈ L, for every function T enumerating (or presenting) all and only the elements
of L (with or without pauses), as h is fed the succession of values T (0), T (1), . . ., it
outputs a corresponding succession of programs p(0), p(1), . . . from some hypoth-
esis space, and, for some i0, for all i ≥ i0, p(i) is a correct program for L, and
p(i + 1) = p(i). The function T as just above is called a text or presentation for
L. TxtEx-learning is also called learning in the limit from positive data.

We say that h TxtEx-learns a L in polynomial time iff there is a polynomial Q
such that, for each i, h computes p(i) within time Q(|T (0), T (1), . . . , T (i− 1)|).

R. Gavaldà et al. (Eds.): ALT 2009, LNAI 5809, pp. 263–277, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

264 J. Case and T. Kötzing

Pitt [Pit89] notes (in a slightly different context) that such a definition of polyno-
mial time learning may not give one any feasibility restriction on the total time
for successful learning. Here is informally why. Suppose h is any TxtEx-learner.
Then, for suitable polynomial Q, a variant of learner h can delay outputting
significant conjectures based on data σ until it has seen a much larger sequence
of data τ so that Q(|τ |) is enough time for h to think about σ as long as it needs.

Pitt [Pit89] discusses some possible ways to forbid such unfair delaying tricks.
More recently, Yoshinaka [Yos09] compiled a very useful list of properties to help
toward achieving fairness and efficiency in polynomial time learners, including to
avoid Pitt-style delaying tricks. In the second part of [Yos09], Yoshinaka provides
a number of interesting example fair polynomial time learners each satisfying
several of these properties. In each of his example algorithms, the associated
hypothesis space is uniformly polynomial time decidable.1 In the present paper,
we focus, for polynomial time learners, on three of Yoshinaka’s properties: Post-
dictive completeness2, conservativeness, and prudence. Postdictive completeness
[Bār74, BB75, Wie76, Wie78] requires that each hypothesis output by a learner
correctly postdicts the input data on which that hypothesis is based. Conserva-
tiveness [Ang80] requires that each hypothesis may be changed only if it fails to
predict a new datum. Prudence [Wei82, OSW86] requires each output hypothesis
has to be for a target that the learner actually learns.

Yoshinaka [Yos09] claims that, for efficient learning in the limit from positive
data, the combination of postdictive completeness, conservativeness and prudence
is restrictive enough to prevent all Pitt-style delaying tricks.

In the present paper, in several different settings (settings mostly as to kind
of hypothesis spaces), we refute the claim of the immediately above paragraph.

In one of our settings, uniformly polynomial time decidable hypothesis spaces
with a few effective closure properties,3,4 the three restrictions allow maximal

1 These spaces are such that there is a polynomial Q and an algorithm so that, from
both an hypothesis i and an object x, the algorithm returns, within time Q(|i|,|x|)
a correct decision as to whether x is in the language defined by hypothesis i.

2 In the prior literature, except for [Ful88] and [CK08a, CK08b], what we call post-
dictive completeness is called consistency.

3 These effective closure properties pertain to obtaining finite languages and modifi-
cations of languages by finite languages.

4 The particular uniformly polynomial time hypothesis spaces Yoshinaka employs in
the second half of [Yos09] do not have our few effective closure properties, but his
algorithms would work essentially unchanged were one to extend his hypothesis
spaces to ones with our few effective closure properties. Then his algorithms would
not search or use the new hypotheses and would not learn any more languages. The
space of CFGs with Prohibition discussed below in this section and in Section 2.1
further below would work as such an extension of both Yoshinaka’s hypothesis spaces.
Yoshinaka does mention the possibility of extending his hypothesis spaces to provide
an hypothesis for Σ∗. We did not examine whether we could, in some cases, work
with such an extension instead of our few effective closure properties. We also did
not examine whether we can modify our (to be mentioned shortly) Theorem 13 to
cover just his particular hypothesis spaces.

Difficulties in Forcing Fairness of Polynomial Time Inductive Inference 265

unfairness (Theorem 13 in Section 3 below).5 An example of our uniformly poly-
nomial time decidable hypothesis spaces (with a few effective closure properties)
employs efficiently coded DFAs. Another example employs an (also efficiently
coded), interesting extension of context free grammars (CFGs), called CFGs
with Prohibition [Bur05]. This latter example is treated in more detail after
Definition 2 in Section 2.1 below.

In all of our settings, any combination of just the two restrictions of con-
servativeness and prudence allows for arbitrary delaying tricks (Theorem 18 in
Section 5).

In each of our two settings besides the first setting of uniformly polynomial
time decidable hypothesis spaces (with a few effective closure properties), post-
dictive completeness does strictly forbid some, but not all Pitt-style delaying
tricks.6

The two residual settings are: 1. TxtEx-learning with certain other uniformly
decidable hypothesis spaces (Section 4), e.g., the (efficiently coded), explicitly
clocked, multi-tape Turing Machines which halt in linear time [RC94, Chapter 6]7
and 2. TxtEx-learning with a general purpose hypothesis space (Section 5).

The theorems that postdictive completeness forbids some delaying tricks in
these last two settings are: Theorem 14 in Section 4 and Theorem 19 in Section 5.

The theorems that postdictive completeness does not forbid all delaying tricks
in these last two settings are: Theorem 15 in Section 4 and Theorem 22 in
Section 5.

Inside the proofs of each of our theorems asserting that the three restrictions
do not forbid some or all delaying tricks, the witnessing learners can be seen to
explicitly employ delaying tricks. Note that many of our delaying tricks involve
“overlearning,” i.e., learning a larger class of languages than required.

To avoid having to define successively each of a large number of criteria of
successful learning (e.g., restricted variants of TxtEx-learning), we provide a
modular approach to presenting such definitions. In our modular approach, we
define names for “pieces” of our criteria (Section 2.1). Then, after that, each
criterion needed is named by stringing together the relevant names of its pieces.
For example, unrestricted TxtEx-learning in the present section will be later

5 It is an interesting open question, though, for our uniformly polynomial time decid-
able hypothesis spaces, whether the combination of postdictive completeness, conser-
vativeness and prudence is so restrictive, that, any class of languages TxtEx-learnable
employing such an hypothesis space and with those three restrictions, is also TxtEx-
learnable with an intuitively fair, different polynomial time learner respecting all
three restrictions.

6 That is, in our residual two settings, of the three restrictions, postdictive complete-
ness does improve fairness, but there can still be some residual unfair delaying tricks.

For these residual settings, we did not examine the question of whether adding
onto postdictive completeness, conservativeness and/or prudence, provides better
degree of avoidance of delaying tricks than postdictive completeness alone. Again:
we already know, though, that all three restrictions do not avoid all delaying tricks.

7 The associated class is not uniformly polynomial time decidable, by
[RC94, Theorem 6.5].

266 J. Case and T. Kötzing

named, TxtGEx.8 A similar modular approach appears already in [CK08a,
CK08b].

2 Mathematical Preliminaries

Any unexplained complexity-theoretic notions are from [RC94]. All unexplained
general computability-theoretic notions are from [Rog67].

Strings herein are finite and over the alphabet {0, 1}. {0, 1}∗ denotes the set
of all such strings; ε denotes the empty string.

N denotes the set of natural numbers, {0, 1, 2, . . .}. We do not distinguish
between natural numbers and their dyadic representations as strings.9

For each w ∈ {0, 1}∗ and n ∈ N, wn denotes n copies of w concatenated end
to end. For each string w, we define size(w) to be the length of w. Since we
identify each natural number x with its dyadic representation, for all n ∈ N,
size(n) denotes the length of the dyadic representation of n. For all strings w,
we define |w| to be max{1, size(w)}.10

The symbols ⊆,⊂,⊇,⊃ respectively denote the subset, proper subset, superset
and proper superset relation between sets.

For sets A,B, we let A \ B := {a ∈ A | a �∈ B}, A := N \ A and Pow(A) be
the power set of A.

The quantifier ∀∞x means “for all but finitely many x”, the quantifier ∃∞x
means “for infinitely many x”. For any set A, card(A) denotes the cardinality of
A.

P and R denote, respectively, the set of all partial and of all total functions
N → N∪ {#}. dom and range denote, respectively, domain and range of a given
function.

We sometimes denote a function f of n > 0 arguments x1, . . . , xn in lambda
notation (as in Lisp) as λx1, . . . , xn f(x1, . . . , xn). For example, with c ∈ N,
λx c is the constantly c function of one argument.

A function ψ is partial computable iff there is a deterministic, multi-tape
Turing machine computing ψ. P and R denote, respectively, the set of all partial
computable and the set of all total (partial) computable functions N → N. If
f ∈ P is defined for some argument x, then we denote this fact by f(x)↓, and
we say that f on x converges.

We say that f ∈ P converges to p iff ∀∞x : f(x)↓ = p; we write f → p to
denote this.11
ϕTM is the fixed programming system from [RC94, Chapter 3] for the partial

computable functions N → N. This system is based on deterministic, multi-tape
8 In general, standard inductive inference criteria names will be changed to slightly

different names in our modular approach.
9 The dyadic representation of a natural number x := the x-th finite string over {0, 1}

in length-lexicographical order, where the counting of strings starts with zero [RC94].
Hence, unlike with binary representation, lead zeros matter.

10 This convention about |ε| = 1 helps with runtime considerations.
11 f(x) converges should not be confused with f converges to.

Difficulties in Forcing Fairness of Polynomial Time Inductive Inference 267

Turing machines (TMs). In this system the TM-programs are efficiently given
numerical names or codes.12 ΦTM denotes the TM step counting complexity mea-
sure also from [RC94, Chapter 3] and associated with ϕTM. In the present paper,
we employ a number of complexity bound results from [RC94, Chapters 3 & 4]
regarding (ϕTM, ΦTM). These results will be clearly referenced as we use them.
For simplicity of notation, hereafter, we write (ϕ,Φ) for (ϕTM, ΦTM). ϕp denotes
the partial computable function computed by the TM-program with code num-
ber p in the ϕ-system, and Φp denotes the partial computable runtime function
of the TM-program with code number p in the ϕ-system.

The symbol # is pronounced pause and is used to symbolize “no new input
data” in a text.

Note that all (partial) computable functions are N → N. Whenever we want
to consider (partial) computable functions on objects like finite sequences or
finite sets, we assume those objects to be efficiently coded as natural numbers.
We give such codings for finite sequences and finite sets below.

For all p, Wp denotes the computably enumerable (ce) set dom(ϕp). E denotes
the set of all ce sets. We say that e is an index (in W) for We.

We fix the 1-1 and onto pairing function 〈·, ·〉 : N × N → N from [RC94],
which is based on dyadic bit-interleaving. Pairing and unpairing is computable
in linear time.

Whenever we consider tuples of natural numbers as input to TMs, it is under-
stood that the general coding function 〈·, ·〉 is used to (left-associatively) code
the tuples into appropriate TM-input.

We identify any function f ∈ P with its graph {〈x, f(x)〉 | x ∈ N}.
A finite sequence is a mapping with a finite initial segment of N as domain

(and range, (N ∪ {#})). ∅ denotes the empty sequence (and, also, the empty
set). The set of all finite sequences is denoted by Seq. For each finite sequence
σ, we will denote the first element, if any, of that sequence by σ(0), the second,
if any, with σ(1) and so on. #elets(σ) denotes the number of elements in a finite
sequence σ, that is, the cardinality of its domain.

From now on, by convention, f , g and h with or without decoration range
over (partial) functions N → N; x, y with or without decorations range over N.
D with or without decorations ranges over finite subsets of N.

Following [LV97], we fix a coding 〈·〉Seq of all sequences into N ∪ {#} (=
{0, 1}∗ ∪ {#}) – with the following properties.

The set of all codes of sequences is decidable in linear time. The time to encode
a sequence, that is, to compute

λk, v1, . . . , vk 〈v1, . . . , vk〉Seq
is

O(λk, v1, . . . , vk

k∑

i=1

|vi|).

12 This numerical coding guarantees that many simple operations involving the coding
run in linear time. This is by contrast with historically more typical codings featuring
prime powers and corresponding at least exponential costs to do simple things.

268 J. Case and T. Kötzing

Therefore, the size of the codeword is also linear in the size of the elements:
λk, v1, . . . , vk |〈v1, . . . , vk〉Seq| is O(λk, v1, . . . , vk

∑k
i=1 |vi|).13

Furthermore,
∀σ : #elets(σ) ≤ |〈σ〉Seq|. (1)

Henceforth, we will many times identify a finite sequence σ with its code number
〈σ〉Seq. However, when we employ expressions such as σ(x), σ = f and σ ⊂ f ,
we consider σ as a sequence, not as a number.

For a (partial) function g and i ∈ N, if ∀j < i : g(j)↓, then g[i] is defined to
be the finite sequence g(0), . . . , g(i− 1).
D, with and without decorations, ranges over finite sets. We fix the following

1-1 coding for all finite subsets of N. For each non-empty finite set D = {x0 <
. . . < xn}, 〈x0, . . . , xn〉Seq is the code for D and 〈〉Seq is the code for ∅.

Henceforth, we will many times identify a finite set D with its code number.
However, when we employ expressions such as x ∈ D, card(D), max(D) and
D ⊂ D′, we consider D and D′ as sets, not as numbers.

For each (possibly infinite) sequence q, let content(q) = (range(q) \ {#}).
We define LinPrograms = {e | ∃a, b, ∀x : Φe(x) ≤ a|x| + b} and

PolyPrograms = {e | ∃p polynomial ∀x ∈ N : Φe(x) ≤ p(|x|)}. Furthermore,
for let LinF = {ϕe | e ∈ LinPrograms} and PF = {ϕe | e ∈ PolyPrograms}.

For g ∈ PF we say that g is computable in polytime, or also, feasibly com-
putable. Recall that we have, by (1), ∀σ : #elets(σ) ≤ |σ|.

With log we denote the floor of the base-2 logarithm, with the exception of
log(0) = 0.

For all e, x, t, we write ϕe(x)↓t iff Φe(x) ≤ t. Furthermore, we write

∀e, x, t : ϕe(x)↓t =

{
ϕe(x), if Φe(x) ≤ t;
0, otherwise.

(2)

The following lemma is used in many of our detailed proofs. The present
paper, because of space limitations, omits many details of proofs. Nonetheless,
we still include this lemma herein to give the reader some intuitions as to how
to manage some missing details.

Lemma 1. Regarding time-bounded computability, we have the following.

– Equality checks and log are computable in linear time [RC94, Lemma 3.2].
– Conditional definition is computable in a time polynomial in the runtimes

of its defining programs [RC94, Lemma 3.14].
– Bounded minimizations, and, hence, bounded maximizations are computable

in a time polynomial in the runtimes of its defining programs [RC94,
Lemma 3.15].

– Boolean combinations of predicates computable in polytime are computable
in polytime [RC94, Lemma 3.18].

– From [RC94, Corollary 3.7], we have that λe, x, t ϕe(x)↓|t| and
λe, x, t, z ϕe(x)↓|t| = z are computable in polynomial time.

13 For these O-formulas, |ε| = 1 helps.

Difficulties in Forcing Fairness of Polynomial Time Inductive Inference 269

– Our coding of finite sequences easily gives that the following functions
are linear time computable. ∀x : 1 ≤ length(x̄), λ〈σ〉Seq #elets(σ) and

λ〈σ〉Seq, i
{
σ(i), if i < #elets(σ);
0, otherwise.

– Our coding above of finite sets enables content to be computable in polyno-
mial time.14

2.1 Learning Criteria Modules

In this section we give our modular definition of what a learning criterion is.
After that we will put the modules together to obtain the actual criteria we
need. As noted above, all standard inductive inference criteria names will be
changed to slightly different names in our modular approach.

Definition 2. An effective numbering of ce languages is a function V : N → E
such that there is a function f ∈ P with ∀e, x : f(e, x)↓ ⇔ x ∈ V (e).15 For
such numberings V , for each e, we will write Ve instead of V (e), and call e an
index or an hypothesis (in V) for Ve. Recall that we identify functions with their
graphs. Therefore, ϕ and any other indexing for partial computable functions
is considered an effective numbering. We use effective numberings as hypothesis
spaces for our learners.

We will sometimes require that {Ve | e ∈ N} is effectively closed under some
finite modifications; precisely we will sometimes require

∃s∩ ∈ R : ∀e,D : Vs∩(e,D) = Ve ∩D ∧
∃s∪ ∈ R : ∀e,D : Vs∪(e,D) = Ve ∪D ∧
∃s\ ∈ R : ∀e,D : Vs\(e,D) = Ve \D.

(3)

Note that, in practice, many effective numberings of ce languages allow s∩, s∪
and s\ as in (3) to be computable in polynomial or even linear time.

Effective numberings include the following important examples.

– W ((3) holds).
– A canonical numbering of all regular languages, represented by efficiently

coded DFAs (where membership is trivially uniformly polynomial time de-
cidable and (3) holds).

– For each pair of context free grammars (CFGs) G0, G1, we efficiently code
(G0, G1) to be an index for (L(G0) \L(G1)). Then the resulting numbering,
in particular, has an index for each context free language. Furthermore,

14 This computation involves sorting. Selection sort can be done in quadratic time in
the RAM model [Knu73], and adding an extra linear factor to translate from RAM
complexity to deterministic multi-tape TM complexity [vEB90], we get selection sort
in cubic (and, hence, polynomial) time measured by ΦTM.

15 Note that such a numbering does not necessarily need to be onto, i.e., a numbering
might only number some of the ce languages, leaving out others.

270 J. Case and T. Kötzing

membership is uniformly polynomial time decidable [HU79, Sch91], and (3)
holds. As noted above, these grammars are called CFGs with Prohibition in
[Bur05].16

Definition 3. Any set C ⊆ P is a learner admissibility restriction. Intuitively,
a learner admissibility restriction defines which functions are admissible as po-
tential learners.

Two typical learner admissibility restrictions are P and R. When denoting
criteria with P as the learner admissibility restriction, we will omit P .

Definition 4. Any function from E to Pow(R) is called a target presenter for
the ce languages. The only target presenter used in this paper is Txt : E →
Pow(R), L �→ {ρ ∈ R | content(ρ) = L}.

Definition 5. Every computable operator P × R → P2 is called a sequence
generating operator.17 Intuitively, a sequence generating operator defines how
learner and presentation interact to generate two infinite sequences, one for
learner-outputs (we call this sequence the learner-sequence) and one for learnee-
outputs.

For any sequence generating operator β, we define β1 and β2 such that β =
λh, g (β1(h, g), β2(h, g)).

We define the following sequence generating operators.

– Goldstyle: G : P × R → P × R, (h, g) �→ (λi h(g[i]), g).
– [JORS99] Set-driven: Sd : P×R → P×R, (h, g) �→ (λi h(content(g[i])), g).
– [JORS99] Partly set-driven: Psd : P × R → P × R, (h, g) �→

(λi h(content(g[i]), i), g).

Definition 6. Every subset of P2 is called a sequence acceptance criterion. In-
tuitively, a sequence acceptance criterion defines what identification-sequences
are considered a successful identification of a target. Any two such sequence ac-
ceptance criteria δ and δ′ can be combined by intersecting them. For ease of
notation we write δδ′ instead of δ ∩ δ′.

For each effective numbering of some ce languages V , we define the following
sequence acceptance criteria.

– Explanatory: ExV = {(p, q) ∈ P2 | ∃p′ : p→ p′ ∧ Vp′ = content(q)}.
– Postdictive Completeness: PcpV = {(p, q) ∈ R2 | ∀i : content(q[i]) ⊆ Vp(i)}.
– Conservativeness: ConvV = {(p, q) | ∀i : p(i) �= p(i+1) ⇒ content(q[i+1]) �⊆
Vp(i)}.

For any given target presenter α and a sequence generating operator β, we
can turn a given sequence acceptance criterion δ into a learner admissibil-
ity restriction T δ by admitting only those learners that obey δ on all input :
16 Intuitively, G0 may “generate” an element, and G1 can correct it or exclude it.

The concept of Prohibition Grammars is generalized in [CCJ09, CR09] and, there,
they are called Correction Grammars.

17 Essentially, these computable operators are the recursive operators of [Rog67] but
with two arguments and two outputs and restricted to the indicated domain.

Difficulties in Forcing Fairness of Polynomial Time Inductive Inference 271

T δ := {h ∈ P | ∀T ∈ range(α) : β(h, T) ∈ δ}. We then speak of “total”
For example, total postdictive completeness, i.e., T PcpV , requires postdictive
completeness on any input data, including input data not necessarily taken from
a target to be learned.18

Definition 7. A learning criterion (for short, criterion) is a 4-tuple consisting
of a learner admissibility restriction, a target presenter, a sequence generating
operator and a sequence acceptance criterion. Let C, α, β, δ be, respectively, a
learner admissibility restriction, a target presenter, a sequence generating op-
erator and a sequence acceptance criterion. For h ∈ P, L ∈ dom(α), we say
that h (C, α, β, δ)-learns L iff: h ∈ C and, for all T ∈ α(L), β(h, T) ∈ δ. For
h ∈ P and L ⊆ dom(α) we say that h (C, α, β, δ)-learns L iff, for all L ∈ L, h
(C, α, β, δ)-learns L. The set of (C, α, β, δ)-learnable sets of computable functions
is

Cαβδ := {L ⊆ E | ∃h ∈ P : h (C, α, β, δ)-learns L}. (4)

We refer to the sets Cαβδ as in (4) as learnability classes. Instead of writing
the tuple (C, α, β, δ), we will ambiguously write Cαβδ. For h ∈ P, the set of all
computable learnees (C, α, β, δ)-learned by h is denoted by Cαβδ(h) := {L ∈
E | h (C, α, β, δ)-learns L}.
Definition 8. We let Id be the function mapping a learning criterion (C, α, β, δ)
to the set Cαβδ, as defined in (4). We define two versions of prudent learning as
follows. For all C, α, β, δ, V , respectively, a learner admissibility restriction, a
target presenter, a sequence generating operator, a sequence acceptance criterion
and an effective numbering of ce languages, we let

PrudV (C, α, β, δ) = {L ⊆ dom(α) | ∃h ∈ C : L ⊆ αβδ(h) ∧
∀t ∈ L, ∀T ∈ α(t), ∀i : Vβ1(h,T)(i) ∈ L},

and
T PrudV (C, α, β, δ) = {L ⊆ dom(α) | ∃h ∈ C : L ⊆ αβδ(h) ∧

∀e ∈ range(h) : Ve ∈ L}.
For D ∈ {Id,Prud, T Prud}, a learning criterion C and a learner h, we write
DC instead of D(C); further, we let DC(h) denote the set of all targets learnable
by h for criterion DC.

We subscript an entire learning criterion with an effective numbering V to change
all restrictions to expect hypotheses from V .

For example, we write the criterion of TxtEx-learning, with V -indices for the
hypothesis space, as TxtGExV . However, TxtGExV with the three restrictions
of total postdictive completeness, total conservativeness and prudence (not total
prudence) in our modular notation is written PrudT PcpT ConvTxtGExV ,
which we abbreviate as PrudT (PcpConv)TxtGExV . If, instead, we wanted
this criterion but with total prudence in the place of prudence, it could be written
T PrudT (PcpConv)TxtGExV .
18 Note that, while Yoshinaka [Yos09] essentially defines for his postdictive complete-

ness, conservativeness and prudence the total kinds, his interesting algorithms for
which he claims these three restrictions satisfy only the non-total versions.

272 J. Case and T. Kötzing

3 Uniformly Polytime Decidable Hypothesis Spaces

For this section, we let U be an arbitrary, fixed effective numbering of some ce
languages and such that λe, x x ∈ Ue is computable in polynomial time. We call
such a numbering uniformly polynomial time computable. Further suppose there
is an r ∈ PF such that ∀D : Ur(D) = D and suppose (3) in Section 2.1 holds
for U . Codings for DFAs or CFGs with Prohibition are example such Us (see
Definition 2 in Section 2.1).

Interestingly, Theorem 10 below says that, every conservative learner em-
ploying hypothesis space U can, without loss of generality, be assumed to be
polynomial time, postdictively complete, prudent and set-driven. This leads to
the main theorem in this section (Theorem 13), that, for hypothesis space U , no
combination of the three restrictions of postdictive completeness, conservative-
ness and prudence will forbid arbitrary delaying tricks.

First, we show with a lemma how we can delay set-driven learning and pre-
serve postdictive completeness and conservativeness. We use this lemma for the
succeeding theorem.

Lemma 9. We have

PFT (PcpConv)TxtSdExU = T (PcpConv)TxtSdExU .

Proof: “⊆” is immediate. Let h ∈ R and L = T (PcpConv)TxtSdExU (h). Fix
a ϕ-program for h.

Let P be a computable predicate such that

∀D′, D : P (D′, D) ⇔ [D′ ⊆ D ∧ h(D′)↓|D| ∧ D ⊆ Uh(D′)]. (5)

By Lemma 1, there is h′ ∈ PF such that

∀D : h′(D) =

{
h(D′), if there is ≤-max D′ ≤ |D| such that P (D′, D);
r(D), otherwise.

(6)

We omit the proof that this delaying construction works.

Theorem 10. We have

T PrudPFT (PcpConv)TxtSdExU = TxtGConvExU .

Proof: “⊆” is trivial. Regarding “⊇”: First we apply Proposition 16 to get total
conservativeness. Then we use Theorem 17 to obtain total postdictive complete-
ness. We use Theorem 20 to make the learner set-driven. By Lemma 9, such a
learner can be delayed to be computable in polynomial time. By Proposition 21,
this learner is automatically totally prudent.

Proposition 11 just below shows that any learner can be assumed partially set-
driven, and, importantly, the transformation of a learner to a partially set-driven

Difficulties in Forcing Fairness of Polynomial Time Inductive Inference 273

learner preserves prudence. The proposition and its proof are somewhat anal-
ogous to [JORS99, Proposition 5.29] and its proof. However, our proof, unlike
that of [JORS99, Proposition 5.29], does not require the hypothesis space to be
paddable.

Proposition 11. Let D ∈ {Id,Prud, T Prud}. We have

DTxtPsdExU = DTxtGExU .

We can delay partially set-driven learning just as we delayed set-driven learning
in Lemma 9, resulting in Lemma 12 just below.

Lemma 12. We have

PrudPFT PcpTxtPsdExU = PrudTxtGExU and
T PrudPFT PcpTxtPsdExU = T PrudTxtGExU .

The next theorem is the main result of the present section. As noted in Section 1
above, it says that the three restrictions of postdictive completeness, conserva-
tiveness and prudence allow maximal unfairness — within the current setting of
polynomial time decidable hypothesis spaces.

Theorem 13. Let δ ∈ {R2,Pcp,Conv,PcpConv}, D ∈ {Id,Prud} and D′ ∈
{Id, T Prud}. Then

DPFTxtGδExU = DTxtGδExU and
D′PFT δTxtGExU = D′T δTxtGExU .

Proof: Use Theorem 10, as well as Theorem 18 and Lemma 12.

4 Other Uniformly Decidable Hypothesis Spaces

For this section, we let V : N → E range over effective numberings of some
ce languages such that λe, x x ∈ Ve is computable (we call such a numbering
uniformly decidable). Further suppose, for each such V , there is r ∈ R such that
∀D : Vr(D) = D.19

Example such numberings V include the classes of all linear time, polyno-
mial time, . . . decidable languages (not uniformly linear time, polynomial time,
. . . decidable), each represented by efficiently numerically coded programs in a
suitable subrecursive programming system for deciding languages [RC94].

For uniformly decidable hypothesis spaces, we get mixed results. We have al-
ready seen from Theorem 13 in Section 3 above that there are uniformly decid-
able hypothesis spaces where we have arbitrary delaying for all combinations of
postdictive completeness, conservativeness and prudence. Next is the first main
19 Note that, in practice, many effective numberings of some ce languages allow r to

be computable in polynomial or even linear time.

274 J. Case and T. Kötzing

theorem of the present section. It states that there are other uniformly decid-
able hypothesis spaces such that postdictive completeness, with or without any
of conservativeness and prudence, forbids some delaying tricks. By contrast, ac-
cording to Theorem 18 in Section 5, any combination of just the two restrictions
of conservativeness and prudence allows for arbitrary delaying tricks.

Theorem 14. There exists a uniformly decidable numbering V such that, for
each δ ∈ {R2,Pcp,Conv,PcpConv}, D ∈ {Id,Prud} and D′ ∈ {Id, T Prud},

DPFTxtGδExV ⊂ DRTxtGδExV ⇔ δ ⊆ Pcp and
D′PFT δTxtGExU ⊂ D′T δTxtGExU ⇔ δ ⊆ Pcp.

We can, and sometimes do, think of total function learning as a special case
of TxtEx-learning thus. Suppose f is any (possibly, but not necessarily total)
function mapping non-negative integers into the same. Recall that we identify
f with its graph, {〈x, y〉 | f(x) = y}, where 〈x, y〉 is the numeric coding of
(x, y) (Section 2). Then {〈x, y〉 | f(x) = y} is a sublanguage of the non-negative
integers. Furthermore, programs for f are generally trivially intercompilable with
programs or grammars for {〈x, y〉 | f(x) = y}. We sometimes refer to languages
of the form {〈x, y〉 | f(x) = y} as single-valued languages.

Next is our second main result of the present section. It asserts the polynomial
time learnability with restrictions of postdictive completeness, conservativeness
and prudence of a uniformly decidable class of total single-valued languages
which are (the graphs of) the linear time computable functions. Importantly,
our proof of this theorem employs a Pitt-style delaying trick on an enumeration
technique [Gol67, BB75], and our result, then, entails, as advertised in Section 1
above, that some delaying tricks are not forbidden in the setting of the present
section.

Let θLtime be an efficiently coded programming system from [RC94, Chap-
ter 6] for LinF. θLtime is based on multi-tape TM-programs each explicitly
clocked to halt in linear time (in the length of its input). Let V Ltime be the cor-
responding effective numbering of all and only those ce languages (whose graphs
are) ∈ LinF. Note that V Ltime does not satisfy the condition at the beginning
of the present section on V s for obtaining codes of finite languages — since we
have only infinite languages in V Ltime . Instead, for V Ltime , we have (and use)
a linear time algorithm, which on any finite function F , outputs a V Ltime -index
for the zero-extension of F .

Theorem 15

LinF ∈ T PrudPFT (PcpConv)TxtGExV Ltime .

The remainder of this section presents two results that are used elsewhere. They
are put here to present them in more generality. They each hold for any V .

The following proposition says that, for any uniformly decidable V , conser-
vative learnability implies total conservative learnability. It is used for proving
Theorem 10 in Section 3.

Difficulties in Forcing Fairness of Polynomial Time Inductive Inference 275

Proposition 16. We have

T ConvTxtGExV = TxtGConvExV .

The following theorem holds for all V and states that we can assume total
postdictive completeness when learning with total conservativeness.

Theorem 17. We have

T (PcpConv)TxtGExV = T ConvTxtGExV .

5 Learning ce Languages

For the remainder of this section, let V be any effective numbering of some ce
languages.

For the present section, next (and mentioned in Section 1 above) is our first
main result which says that any combination of just the two restrictions of
conservativeness and prudence allows for arbitrary delaying tricks.

Theorem 18. Let δ ∈ {R2,Conv}, D ∈ {Id,Prud} and D′ ∈ {Id, T Prud}.
Then

DPFTxtGδExV = DTxtGδExV and
D′PFT δTxtGExV = D′T δTxtGExV .

Our proof of the just above theorem uses delaying tricks similar to those in the
proof of Lemma 9 in Section 3.

Our next main result of the present section says, for the general effective
numbering of all ce languages, W , combinations of postdictive completeness,
conservativeness and prudence forbid some delaying tricks iff postdictive com-
pleteness is part of the combination.

Theorem 19. Let δ ∈ {R2,Pcp,Conv,PcpConv}, D ∈ {Id,Prud} and D′ ∈
{Id, T Prud}. Then

DPFTxtGδExW ⊂ DRTxtGδExW ⇔ δ ⊆ Pcp and
D′PFT δTxtGExW ⊂ D′T δTxtGExW ⇔ δ ⊆ Pcp.

Our proof of the just above theorem makes crucial use of [CK08b, Theorem 5(a)]
as well as Theorem 18 above.
Theorem 20 just below says that certain kinds of learners can be assumed without
loss of generality to be set-driven. This is interesting on its own, and is also of
important technical use for proving Theorem 10 in Section 3.

Theorem 20. Let V be such that (3) holds. We have

T (PcpConv)TxtSdExV = T (PcpConv)TxtGExV . (7)

The following proposition shows that total postdictive complete and total con-
servative, set-driven learners are automatically totally prudent. This, again, is
of important technical use for proving Theorem 10 in Section 3.

276 J. Case and T. Kötzing

Proposition 21. Let δ be a sequence acceptance criterion, let C ⊆ P . Let
h ∈ P . We have

T PrudCT (PcpConv)TxtSdδExV (h) = CT (PcpConv)TxtSdδExV (h).

Next is our last main result. As noted above in Section 1, this theorem says that,
in the general setting of the present section, postdictive completeness does not
forbid all delaying tricks.

Theorem 22. We have

LinF ∈ T PrudPFT (PcpConv)TxtGExW .

Proof: The effective numbering V Ltime from Theorem 15 can be translated into
the W -system in linear (and, hence, in polynomial) time.

References

[Ang80] Angluin, D.: Inductive inference of formal languages from positive data. In-
formation and Control 45, 117–135 (1980)

[Bār74] Bārzdiņš, J.: Inductive inference of automata, functions and programs. In:
Int. Math. Congress, Vancouver, pp. 771–776 (1974)

[BB75] Blum, L., Blum, M.: Toward a mathematical theory of inductive inference.
Information and Control 28, 125–155 (1975)

[Bur05] Burgin, M.: Grammars with prohibition and human-computer interaction.
In: Proceedings of the 2005 Business and Industry Symposium and the 2005
Military, Government, and Aerospace Simulation Symposium, pp. 143–147.
Society for Modeling and Simulation (2005)

[CCJ09] Carlucci, L., Case, J., Jain, S.: Learning correction grammars. Journal of
Symbolic Logic 74(2), 489–516 (2009)

[CK08a] Case, J., Kötzing, T.: Dynamic modeling in inductive inference. In: Freund,
Y., Györfi, L., Turán, G., Zeugmann, T. (eds.) ALT 2008. LNCS (LNAI),
vol. 5254, pp. 404–418. Springer, Heidelberg (2008)

[CK08b] Case, J., Kötzing, T.: Dynamically delayed postdictive completeness and
consistency in learning. In: Freund, Y., Györfi, L., Turán, G., Zeugmann, T.
(eds.) ALT 2008. LNCS (LNAI), vol. 5254, pp. 389–403. Springer, Heidelberg
(2008)

[CR09] Case, J., Royer, J.: Program size complexity of correction grammars, Work-
ing draft (2009)

[Ful88] Fulk, M.: Saving the phenomenon: Requirements that inductive machines not
contradict known data. Information and Computation 79, 193–209 (1988)

[Gol67] Gold, E.: Language identification in the limit. Information and Control 10,
447–474 (1967)

[HU79] Hopcroft, J., Ullman, J.: Introduction to Automata Theory Languages and
Computation. Addison-Wesley Publishing Company, Reading (1979)

[JORS99] Jain, S., Osherson, D., Royer, J., Sharma, A.: Systems that Learn: An In-
troduction to Learning Theory, 2nd edn. MIT Press, Cambridge (1999)

Difficulties in Forcing Fairness of Polynomial Time Inductive Inference 277

[Knu73] Knuth, D.: The Art of Computer Programming, Volume III: Sorting and
Searching. Addison-Wesley, Reading (1973)

[LV97] Li, M., Vitanyi, P.: An Introduction to Kolmogorov Complexity and Its
Applications, 2nd edn. Springer, Heidelberg (1997)

[OSW86] Osherson, D., Stob, M., Weinstein, S.: Systems that Learn: An Introduc-
tion to Learning Theory for Cognitive and Computer Scientists. MIT Press,
Cambridge (1986)

[Pit89] Pitt, L.: Inductive inference, DFAs, and computational complexity. In: Jan-
tke, K.P. (ed.) AII 1989. LNCS, vol. 397, pp. 18–44. Springer, Heidelberg
(1989)

[RC94] Royer, J., Case, J.: Subrecursive Programming Systems: Complexity and
Succinctness. Research monograph in Progress in Theoretical Computer Sci-
ence. Birkhäuser, Boston (1994)

[Rog67] Rogers, H.: Theory of Recursive Functions and Effective Computability. Mc-
Graw Hill, New York (1967); Reprinted by MIT Press, Cambridge, Mas-
sachusetts (1987)

[Sch91] Schabes, Y.: Polynomial time and space shift-reduce parsing of arbitrary
context-free grammars. In: Proceedings of the 29th annual meeting on As-
sociation for Computational Linguistics, pp. 106–113. Association for Com-
putational Linguistics (1991)

[vEB90] van Emde Boas, P.: Machine models and simulations. In: Van Leeuwen, J.
(ed.) Handbbook of Theoretical Computer Science. Algorithms and Com-
plexity, vol. A, pp. 3–66. MIT Press/Elsevier (1990)

[Wei82] Weinstein, S.: Private communication at the Workshop on Learnability The-
ory and Linguistics, University of Western Ontario (1982)

[Wie76] Wiehagen, R.: Limes-erkennung rekursiver funktionen durch spezielle strate-
gien. Elektronische Informationverarbeitung und Kybernetik 12, 93–99
(1976)

[Wie78] Wiehagen, R.: Zur Theorie der Algorithmischen Erkennung. PhD thesis,
Humboldt University of Berlin (1978)

[Yos09] Yoshinaka, R.: Learning efficiency of very simple grammars from positive
data. Theoretical Computer Science 410, 1807–1825 (2009); In: Hutter, M.,
Servedio, R.A., Takimoto, E. (eds.) ALT 2007. LNCS (LNAI), vol. 4754, pp.
227–241. Springer, Heidelberg (2007)

	Difficulties in Forcing Fairness of Polynomial Time Inductive Inference
	Introduction
	Mathematical Preliminaries
	Learning Criteria Modules

	Uniformly Polytime Decidable Hypothesis Spaces
	Other Uniformly Decidable Hypothesis Spaces
	Learning ce Languages

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

