
Theoretical Computer Science 816 (2020) 144–168
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

The impact of lexicographic parsimony pressure for

ORDER/MAJORITY on the run time

Benjamin Doerr a, Timo Kötzing b, J.A. Gregor Lagodzinski b, Johannes Lengler c,∗
a Laboratoire d’Informatique (LIX), CNRS, École Polytechnique, Institute Polytechnique de Paris, Palaiseau, France
b Hasso Plattner Institute, University of Potsdam, Germany
c ETH Zürich, Switzerland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 26 July 2018
Received in revised form 8 January 2020
Accepted 9 January 2020
Available online 16 January 2020
Communicated by W. Banzhaf

Keywords:
Genetic programming
Bloat control
Theory
Runtime analysis

While many optimization problems work with a fixed number of decision variables and
thus a fixed-length representation of possible solutions, genetic programming (GP) works
on variable-length representations. A naturally occurring problem is that of bloat, that
is, the unnecessary growth of solution lengths, which may slow down the optimization
process. So far, the mathematical runtime analysis could not deal well with bloat and
required explicit assumptions limiting bloat.
In this paper, we provide the first mathematical runtime analysis of a GP algorithm that
does not require any assumptions on the bloat. Previous performance guarantees were only
proven conditionally for runs in which no strong bloat occurs. Together with improved
analyses for the case with bloat restrictions our results show that such assumptions on the
bloat are not necessary and that the algorithm is efficient without explicit bloat control
mechanism.
More specifically, we analyzed the performance of the (1 + 1) GP on the two benchmark
functions Order and Majority. When using lexicographic parsimony pressure as bloat
control, we show a tight runtime estimate of O(T init + n log n) iterations both for Order

and Majority. For the case without bloat control, the bounds O(T init log T init + n(log n)3)

and �(T init + n log n) (and �(T init log T init) for n = 1) hold for Majority.1

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

While much work on nature-inspired search heuristics focuses on representing problems with strings of a fixed length
(simulating a genome), genetic programming considers trees of variable size. One of the main problems when dealing with
a variable-size representation is the problem of bloat, meaning an unnecessary growth of representations, exhibiting many
redundant parts and slowing down the search.

In this paper we study the problem of bloat from the perspective of run time analysis. We want to know how optimiza-
tion proceeds when there is no explicit bloat control, which is a setting notoriously difficult to analyze formally: previous
works were only able to give results conditional on strong assumptions on the bloat (such as upper bounds on the total

* Corresponding author.
E-mail address: johannes.lengler@inf.ethz.ch (J. Lengler).

1 An extended abstract of the paper at hand has been published at GECCO 2017 [3].
https://doi.org/10.1016/j.tcs.2020.01.011
0304-3975/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2020.01.011
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:johannes.lengler@inf.ethz.ch
https://doi.org/10.1016/j.tcs.2020.01.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2020.01.011&domain=pdf

B. Doerr et al. / Theoretical Computer Science 816 (2020) 144–168 145
bloat), see [24,16] for overviews. The only exception is the very recent work [12] continuing the line of research presented
here.

We use advances from drift theory as well as other tools from the analysis of random walks to bound the behavior
and impact of bloat, thus obtaining unconditional bounds on the expected optimization time even when no bloat control is
active.

Our focus is on mutation-based genetic programming (GP) algorithms, which has been a fruitful area for deriving run
time results in GP. We will be concerned with the problems Order and Majority as introduced in [7]. This is in contrast to
other theoretical work on GP algorithms which considered the PAC learning framework [13], the Max-Problem [14], Boolean
functions [4,17,22,19,20], the sorting problem for which three ways of bloat control were theoretically investigated [28–30]
as well as the generalized Order and Majority versions using weights [24,27].

Individuals for Order and Majority are binary trees, where each inner node is labeled J (short for join, but without any
associated semantics) and leaves are labeled with literal symbols; we call such trees GP-trees . The set of literal symbols is
{xi | i ≤ n} ∪{xi | i ≤ n}, where n is the number of variables. In particular, literal symbols are paired (xi is paired with xi). We
say that in a GP-tree t a leaf u comes before a leaf v if u comes before v in an in-order parse of the tree.

For the Order problem fitness is assigned to GP-trees as follows: we call a variable i expressed if there is a leaf labeled
xi and all leaves labeled xi do not come before that leaf. The fitness of a GP-tree is the number of its expressed variables i.

For the Majority problem, fitness is assigned to GP-trees as follows. We call a variable i expressed if there is a leaf
labeled xi and there are at least as many leaves labeled xi as there are leaves labeled xi (the positive instances are in the
majority). Again, the fitness of a GP-tree is the number of its expressed variables i. The two functions Order and Majority

capture two important aspects of GP: variable length representations and that any given functionality can be achieved by
many different representations. However, the tree-structure, typically crucial in GP problems, is completely unimportant for
the two problems.

A first run time analysis of genetic programming on Order and Majority was conducted in [6]. This work considered
the algorithm (1 + 1) GP proceeding as follows. A single operation on a GP-tree t chooses a leaf u of t uniformly at random
and randomly either relabels this leaf (to a random literal symbol), deletes it (i.e. replacing the parent of u with the sibling
of u) or inserts a leaf here (i.e., replaces u with an inner node with one randomly labeled child and u as the other child,
in random order). The (1 + 1) GP is provided with a parameter k which determines how many such operations make up
an atomic mutation; in the simplest case with k = 1, but a random choice of k = 1 + Pois(1) (where Pois(1) denotes the
Poisson distribution with parameter λ = 1) is also frequently considered. The (1 + 1) GP then proceeds in generations with
a simple mutation/selection scheme (see Algorithm 1).

In this paper we consider a version of bloat control for this algorithm that was introduced in [18] as lexicographic parsi-
mony pressure. Here the algorithm always prefers the smaller of two trees, given equal fitness. For this [23] was able to give
tight bounds on the optimization time in the case of k = 1: in this setting no new redundant leaves can be introduced. The
hard part is now to give an analysis when k = 1 +Pois(1), where bloat can be reintroduced whenever a fitness improvement
is achieved (without fitness improvements, only smaller trees are acceptable). With a careful drift analysis, we show that in
this case we get an (expected) optimization time of O(T init + n log n), which is tight (see Theorem 4.1). Previously, no bound
was known for Majority and the bound of O(n2 log n) for Order required a condition on the initialization.

Without such bloat control it is much harder to derive definite bounds. From [6] we have the conditional bounds of
O(nTmax) for Order using either k = 1 or k = 1 + Pois(1), where Tmax is an upper bound on the maximal size of the
best-so-far tree in the run (thus, these bounds are conditional on these maxima not being surpassed). For Majority and
k = 1 [6] gives the conditional bound of O(n2 Tmax log n). We focus on improving the bound for Majority and obtain a
bound of O(T init log T init + n log3 n) for both k = 1 and k = 1 + Pois(1) (see Theorem 5.2). The proof of this theorem requires
significant machinery for bounding the extent of bloat during the run of the optimization. Thus, our results show that
without bloat control the algorithms considered are at most a few logarithmic factors worse than with bloat control. We
summarize the best known bounds (as either given by us in this paper or by others) in Table 1.

The remainder of the paper is structured as follows. In Section 2 we will give a short introduction to the studied
algorithm. In Section 3 the main tool for the analysis is explained, that is drift analysis. Here we state a selection of known
theorems as well as two new ones: Theorem 3.6 gives lower tail bounds in the case of weak drift, in which the expected
hitting time is dominated by unlikely events; and Theorem 3.7 gives a lower bound conditional on a multiplicative drift
with a bounded step size. In Section 4 we will study the case of bloat control given k = 1 + Pois(1) operations in each step.
Subsequently we will study Majority without bloat control in Section 5. Section 6 concludes this paper.

2. Preliminaries

In this section we formalize the concepts introduced in Section 1. We consider tree-based genetic programming, where
a possible solution to a given problem is given by a syntax tree. The inner nodes of such a tree are labeled by function
symbols from a set F S and the leaves of the tree are labeled by terminals from a set T .

We analyze the problems Order and Majority, where the only available function is the join operator (denoted by J).
The terminal set X consists of 2n literals, where xi is the complement of xi :

• F S := { J }, J has arity 2,

146 B. Doerr et al. / Theoretical Computer Science 816 (2020) 144–168
Table 1
Summary of best known bounds. Note that Tmax denotes the maximal size of the best-so-far
tree in the run until optimization finished (we consider bounds involving Tmax as conditional
bounds). All bounds are to be understood as complexities, that means that upper bounds hold
for arbitrary initializations of the algorithms, while lower bounds are for worst-case initializa-
tion.

Problem Without bloat control Bloat control

Order, k = 1 O(nTmax), [6] �(T init + n logn), [23]

Order, k = 1 + Pois(1) O(nTmax), [6] �(T init + n logn),
Theorem 4.1

Majority, k = 1

O(T init log T init + n log3 n),

�(T init + n logn),
[23]

Theorem 5.2,
�(T init log T init), n = 1,
Theorem 5.1
�(T init + n logn),
Theorem 5.1

Majority, k = 1 + Pois(1)

O(T init log T init + n log3 n),

�(T init + n logn),
Theorem 4.1

Theorem 5.2,
�(T init log T init), n = 1,
Theorem 5.1
�(T init + n logn),
Theorem 5.1

Given a GP-tree t, mutate t by applying HVL-Prime. For each application, choose
uniformly at random one of the following three options.

substitute Choose a leaf uniformly at random and substitute it with a leaf in X
selected uniformly at random.

insert Choose a node v ∈ X and a leaf u ∈ t uniformly at random. Substitute u
with a join node J , whose children are u and v , with the order of the
children chosen uniformly at random.

delete Choose a leaf u ∈ t uniformly at random. Let v be the sibling of u. Delete u
and v and substitute their parent J by v .

Fig. 1. Mutation operator HVL-Prime.

• X := {x1, x1, . . . , xn, xn}.

For a given syntax tree t , the value of the tree is computed by parsing the tree in-order and generating the set S of
expressed variables in this way. For Order a variable i is expressed if a literal xi is present in t and there is no xi that is
visited in the in-order parse before the first occurrence of xi . For Majority a variable i is expressed if a literal xi is present
in t and the number of literals xi is at least the number of literals xi . We associate with each tree t the complexity C , which
denotes the number of nodes t contains. Given a function F , we aim to generate an instance t maximizing F .

In this paper we consider simple mutation-based genetic programming algorithms which use a modified version of the
Hierarchical Variable Length (HVL) operator ([25], [26]) called HVL-Prime as discussed in [6]. HVL-Prime allows to produce
trees of variable length by applying three different operations: insert, delete and substitute (see Fig. 1). Each application
of HVL-Prime chooses one of these three operations uniformly at random, and several such operations may be applied to
create an offspring.

Based on this mutation operator, we consider the (1 + 1) GP as follows. It starts with a given initial tree with T init
leaves and tries to improve its fitness iteratively. In each iteration, the number of mutation steps k is chosen according to
a fixed distribution; important options for this distribution are (i) constantly 1 and (ii) 1 + Pois(1), where Pois(λ) denotes
the Poisson distribution with parameter λ. The choices for k in the different iterations are independent. The (1 + 1) GP then
produces an offspring from the best-so-far individual by applying HVL-Prime k times in a row. Importantly, we consider
two variants of the selection operator, one without and one with bloat control, where we employ lexicographic parsimony
pressure [18] as bloat control. The first one replaces the parent by the offspring if the offspring has at least the same fitness.
For the second one, an offspring with strictly larger fitness is always accepted and an offspring of strictly smaller fitness is
always rejected. If parent and offspring have the same fitness then the offspring is accepted if and only if its complexity C
(see Fig. 2) is at most as large as the complexity of the parent. Thus the complexity serves as second order term to break
ties. Equivalently, it would be possible to include the complexity as second order term into the fitness function, instead of
incorporating it by the selection operator. To summarize, we study the following two algorithms, which differ only if parent
and offspring are of equal fitness:

• The (1 + 1) GP without bloat control, which accepts every offspring of equal fitness regardless of the complexity.

B. Doerr et al. / Theoretical Computer Science 816 (2020) 144–168 147
Fig. 2. Two GP-trees with the same fitness. For Order the fitness is 1 since only the first variable occurs with a non-negated literal first. For Majority

the fitness is 2, since the variable 1 and 2 have one literal xi and also one literal xi . However, the left one has complexity 11 whereas the other has
complexity 7.

• The (1 + 1) GP with bloat control, which accepts an offspring of equal fitness if and only if it doesn’t increase the
complexity.

Each of these algorithms comes with two variants, depending on whether we choose k = 1 or 1 + Pois(1).

Algorithm 1: The (1 + 1) GP with bloat control. In the version without bloat control, the If-condition is simply replaced
by f (t′) ≥ f (t).

1 Let t be the initial tree;
2 while optimum not reached do
3 t′ ← t;
4 Choose k;
5 for i = 1 to k do
6 t′ ← mutate(t′);

7 if f (t′) > f (t) or (f (t′) = f (t) ∧ C(t′) ≤ C(t)
)

then t ← t′

3. Drift theorems

In this section we collect theorems on stochastic processes that we will use in the proofs. We apply the standard Landau
notation O(·), o(·), �(·), ω(·), �(·) as detailed in [1].

Theorem 3.1 (Chernoff Bound [5]). Let X1, . . . , Xn be independent random variables that take values in [0, 1]. Let X =∑n
i=1 Xi and

μ =E[X]. Then for all 0 ≤ δ ≤ 1,

Pr[X ≤ (1 − δ)μ] ≤ e−δ2μ/2,

and

Pr[X ≥ (1 + δ)μ] ≤ e−δ2μ/3.

If instead X1, . . . , Xn are independent random variables with mean zero that take values in [−1, 1], then for all 0 ≤ δ ≤ 1,

Pr[|X | ≥ δn] ≤ 2e−δ2n/2.

We will apply a variety of drift theorems to derive the results of this paper. Drift, in this context, describes the expected
change of the best-so-far solution within one iteration with respect to some potential. In later proofs we will define potential
functions on best-so-far solutions and prove bounds on the drift; these bounds then translate to expected run times with
the use of the drift theorems from this section. We use formulations from [15] because they do not require finite search
spaces, and they do not require that the potential forms a Markov chain. Instead, we will have random variables Zt (the
current GP-tree) that follow a Markov chain, and the potential is some function of Zt . We start with a theorem for additive
drift.

Theorem 3.2 (Additive Drift [9], formulation of [15]). Let (Zt)t∈N0 be random variables describing a Markov process with state space
Z, and with a potential function α : Z → S ⊆ [0, ∞), and assume α(Z0) = s0 . Let T := inf{t ∈ N0 | α(Zt) = 0} be the random
variable that denotes the earliest point in time t ≥ 0 such that α(Zt) = 0. If there exists c > 0 such that for all z ∈ Z with α(z) > 0
and for all t ≥ 0 we have

148 B. Doerr et al. / Theoretical Computer Science 816 (2020) 144–168
E[α(Zt+1) | Zt = z] ≤ α(z) − c, (1)

then

E[T] ≤ s0

c
.

We will use the following variable drift theorem, an extension of the variable drift theorem from [10, Theorem 4.6].

Theorem 3.3 (Variable Drift [15]). Let (Zt)t∈N0 be a Markov chain with state space Z and with a potential function α : Z → S ⊆
{0} ∪ [smin, ∞) for some smin > 0. Assume α(Z0) = s0 , and let T := inf{t ∈N0 | α(Zt) = 0} be the random variable that denotes the
first point in time t ∈ N for which Xt = 0. Suppose furthermore that there exists a positive, increasing function h : [smin, ∞) → R+
such that for all z ∈ Z with α(z) > 0 and all t ≥ 0 we have

E[α(Zt+1) | Zt = z] ≤ α(z) − h(α(z)).

Then

E[T] ≤ 1

h(1)
+

s0∫
1

1

h(u)
du.

The most important special case is for multiplicative drift, which was developed in [2]. We again give the version from [15]

Theorem 3.4 (Multiplicative Drift [15]). Let (Zt)t∈N0 be a Markov chain with state space Z and with a potential function α : Z →
S ⊆ {0} ∪ [smin, ∞) for some smin > 0, and assume α(Z0) = n. Let T := inf{t ∈N0 : α(Zt) = 0} be the random variable that denotes
the first point in time t ∈ N for which Xt = 0. Assume that there is δ > 0 such that for all z ∈ Z with α(z) > 0 and for all t ≥ 0 we
have

E[α(Zt+1) | Zt = z] ≤ (1 − δ)α(z).

Then for all k > 0

Pr

[
T >

⌈
log(n/smin) + k

δ

⌉]
≤ e−k,

and

E [T] ≤ 1 + log(n/smin)

δ
.

For bloat estimation we need a lower bound drift theorem in the regime of weak additive drift. To illustrate what we
mean by “weak drift”, consider a biased random walk on N , starting at n, which makes in each round a step to the left with
probability (1 + ε)/2, and a step to the right with probability (1 − ε)/2. This random walk has a drift of ε towards zero,
so the hitting time T of zero satisfies E[T] = n/ε by additive drift analysis. However, the expectation may not give the full
picture. If ε 1/n (strong drift), then indeed T is concentrated around its expectation, and this generalizes to other random
walks (Theorem 3.5 below). But if ε � 1/n (weak drift), then with high probability the biased random walk hits zero after
roughly O(n2) � n/ε steps, since even an unbiased random walk hits zero after roughly O(n2) steps. Thus the typical length
of a random walk is much shorter than its expectation. This is not contradictory, it just means that the expectation is
dominated by very unlikely events that contribute high values. Thus the expectation is somewhat misleading in this case.
On the other hand, it is not hard to come up with other random walks with weak drift in which T is concentrated around
its expectation. For example, the deterministic walk which decreases in each round by ε trivially has this property. Thus, in
the case of weak drift, knowing the drift is sufficient to derive E[T], but it is not sufficient to determine typical values of
T . In the random walks we encounter, we will need that unlikely events indeed contribute substantially to the expectation.

We start with a theorem (Theorem 3.5) which is tight for strong drift, which follows from Theorem 10 and 12 in [11].
Theorem 3.5 is not directly applicable to our situation, since it does only tight bounds in the regime of weak drift. Nev-
ertheless, we can use it to prove lower bounds on the tail probabilities for the regime of weak drift, see Theorem 3.6
below.

Theorem 3.5 (Strong Additive Drift, Lower Tail Bound, follows from [11, Theorem 10,12]). Let (Zt)t∈N0 be random variables describing
a Markov process with state space Z, and with a potential function α : Z → S ⊆ N , and assume α(Z0) = s0 . Suppose further that
there exist δ, ρ, r > 0 such that for all z ∈ Z such that α(z) > 0, all k ∈N0 , and all t ≥ 0,

1. Pr[|Xt − Xt+1| > k | Zt = z] ≤ r
k .
(1+δ)

B. Doerr et al. / Theoretical Computer Science 816 (2020) 144–168 149
2. E[Xt − Xt+1 | Zt = z] ≤ ρ .

Then, for all x ≥ 0, if T := inf{t ∈ N0 | α(Zt) = 0} is the random variable that denotes the earliest point in time t ≥ 0 such that
α(Zt) = 0.

Pr

[
T ≤ s0 − x

ρ

]
≤ exp

{
−δx

8
min

{
1,

δ2ρx

32rs0

}}
. (2)

The next theorem gives a lower bound on hitting times of random walks even if we start close to the goal, provided that
the drift towards the goal is weak. We remark that the statement on the expectation is similar to other lower bounds for
additive drift [11], but the existing tail bounds are tailored to the regime of strong drift, and are thus not tight in our case.
We prove the theorem by martingale theory.

Theorem 3.6 (Weak Additive Drift, Lower Bounds). For every δ, C > 0 there exists ε > 0 such that the following holds for all N ≥ 1.
Let (Zt)t∈N0 be random variables describing a Markov process with state space Z, and with a potential function α : Z → S ⊆ [0, ∞).
We denote Xt := α(Zt). Assume α(Z0) = s0 and that the following conditions hold for all t ≥ 0 and all z, z′ ∈ Z such that α(z) ≤ N.

(i) Weak Drift. E[Xt − Xt+1 | Zt = z] ≤ C/N.
(ii) Small Steps. Pr[|Xt − Xt+1| ≥ k | Zt = z′] ≤ (1 + δ)−k.

(iii) Initial Increase. Pr[Xt+1 > Xt | Zt = z] ≥ δ.

Then for every 0 ≤ x < s0 ≤ εN, if T := min{τ ≥ 0 | Xt ≤ x} is the hitting time of {0, 1, . . . , x} for Xt , then

E[T] ≥ ε(s0 − x)N (3)

and

Pr[T ≥ εN2] ≥ ε

N
. (4)

Proof. Note that for any constant N0 = N0(δ, C), the statement is trivial for all N ≤ N0 if ε is sufficiently small. Hence, we
may always assume that N is large compared to δ and C .

Without loss of generality, we may assume that |E[Xt+1 − Xt | Zt = z]| ≤ C/N , which is stronger than (i). If this does
not hold a priori, then we may couple the process Xt to a process X ′

t which makes the same steps as Xt (i.e., Xt+1 − Xt =
X ′

t+1 − X ′
t), with one exception: if E[Xt − Xt+1 | Zt = z] < −C/N at any point in time, then with some (additional) probability

pt we choose Zt+1 such that Xt+1 is smaller, thus increasing the drift. More precisely, we choose pt in such a way that
−C/N ≤ E[Xt − Xt+1 | Zt = z] ≤ C/N . Then X ′

t ≤ Xt for all t ≥ 0, so it suffices to prove the statement for X ′
t . To keep

notation simple, we will assume that we do not need to modify Xt in the remainder.
We rescale X̃t := Xt − x and consider the drift of X̃2

t . Let pi := Pr[Xt+1 − Xt = i | Zt = z] for all i ∈Z. Then

E[X̃2
t+1 − X̃2

t | Zt = z] =
∑
i∈Z

pi(X̃t + i)2 − X̃2
t =

∑
i∈Z

pi(2 X̃t i + i2)

= 2 X̃tE[Xt+1 − Xt | Zt = z] +
∑
i∈Z

pi i
2.

Note that we have
∑

i∈Z pi i2 ≥ p1 ≥ δ by (i) and
∑

i∈Z pi i2 ≤∑i∈Z(1 + δ)|i|i2 ∈ O(1) by (ii). Together with Condition (i),
we have for all 0 ≤ X̃t ≤ δN/(4C),

δ/2 ≤E[X̃2
t+1 − X̃2

t | Zt = z] ≤ O(1). (5)

Let t0 be the (random) time when the process X̃t (started at X̃0 = s0 − x) for the first time leaves the interval I =
[1, δN/(4C) − x] on either side. We note that t0 ≤ T holds. Let p� and pr be the probabilities that the process leaves the
interval on the left (that is, at 0 or lower) and on the right (that is, at �δN/(4C) − x� + 1 or higher), respectively. By (ii) if
the process leaves I on the right side, then the expectation of X̃t in this case is at most δN/(2C); recall that we assumed
N to be large. Similarly, if it leaves I on the left, then the expectation of X̃t is at least −D for some constant D > 0.

By (5) there is a constant D > 0 such that the process Yt := X̃2
t − Dt has a negative drift in the interval I . Hence, using

that t0 is a stopping time we obtain from the optional stopping theorem [8]

(s0 − x)2 = E[Y0] ≥E[Yt0] ≥ pr

(
δN

4C
− x

)2

− p�D − DE[t0]

≥ pr

(
δN

8C

)2

− D − DE[t0]. (6)

150 B. Doerr et al. / Theoretical Computer Science 816 (2020) 144–168
Similarly, we regard the process Ut = X̃t + Ct/N . By (i) it has a non-negative drift for t < t0. Hence, we obtain

s0 − x = E[U0] ≤E[Ut0] ≤ pr
δN

2C
+ CE[t0]

N
. (7)

This yields a lower bound of prδN2/(2C) ≥ (s0 − x)N − CE[t0] for pr . Together with (6) we obtain

E[t0] ≥ (s0 − x) (δN/(2C) − 16(s0 − x)) − 16D

16D + δ/2
, (8)

which proves the bound on the expectation (3) since s0 − x ≤ εN .
For the tail bound (4) we reverse the previous argument. By (5) the process Ut := X̃2

t − δt/2 has a non-negative drift in
the interval I . If X̃t leaves I on the right side then due to (ii) the expectation of X̃2

t is at most (δN/(2C))2. Hence, by the
optional stopping theorem

(s0 − x)2 =E[U0] ≤ E[Ut0] ≤ pr

(
δN

2C

)2

− δ

2
E[t0]

(3)≤ pr

(
δN

2C

)2

− δ

2
ε(s0 − x)N.

Solving for pr shows that pr ∈ �(1/N) whenever s0 − x ≤ δε/4 N . Note that we may assume the latter condition by de-
creasing the ε in the theorem. (Despite the formulation, it is obviously sufficient to prove (3) for ε and (4) for ε′ := δε/4.)
Then with probability �(1/N) we have Xt > δN/(4C) for some t ≥ 0. However, starting from this Xt by Theorem 3.5 with
probability �(1) we need at least �(N2) additional steps to return to x < εN if ε < δ/(4C). This proves (4). �

For our lower bounds we need the following new drift theorem, which allows for non-monotone processes (in contrast
to, for example, the lower bounding multiplicative drift theorem from [31]), but requires an absolute bound on the step
size.

Theorem 3.7 (Multiplicative Drift, lower bound, bounded step size). Let (Zt)t∈N0 be random variables describing a Markov process
with state space Z with a potential function α : Z → S ⊆ (0, ∞), for which we assume α(Z0) = s0 . Let κ > 0, smin ≥ √

2κ and let
T := inf{t ∈N0 | α(Zt) ≤ smin} be the random variable denoting the earliest point in time t ≥ 0 such that α(Zt) ≤ smin . If there exists
a positive real δ > 0 such that for all z ∈ Z with α(z) > smin and all t ≥ 0 it holds

1. |α(Zt) − α(Zt+1)| ≤ κ , and
2. E[α(Zt) − α(Zt+1) | Zt = z] ≤ δα(z),

then

E[T] ≥ 1 + ln(s0) − ln(smin)

2δ + κ2

s2
min−κ2

.

Proof. We concatenate α with a second potential function g turning the multiplicative bound of the expected drift into an
additive bound enabling us to apply the additive drift theorem. Let

g(s) := 1 + ln

(
s

smin

)

and g(0) := 0. Furthermore, let Xt := α(Zt) and Vt := g(Xt) = g(α(Zt)). It follows that Vt is a stochastic process over the
search space R = g(α(Z)) ∪ {0}. We observe that T is also the first point in time t ∈ N such that Vt ≤ 1. Since smin is a
lower bound on Xt , smin − κ is a lower bound on Xt+1. Thus, Xt+1 > 0 as well as Vt+1 > 0. We derive

Vt − Vt+1 = ln

(
Xt

Xt+1

)
.

Therefore, due to Jensen’s inequality we obtain

E[Vt − Vt+1 | Zt = z] ≤ ln

(
E

[
Xt

Xt+1

∣∣∣∣ Zt = z

])
.

The value of Xt+1 can only be in a κ-interval around Xt due to the bounded step size. For all i ≥ 0 let pi be the probability
that Xt − Xt+1 = i and let qi be the probability that Xt − Xt+1 = −i. Let z ∈ Z and s := α(z). We note that p0 = q0 and
obtain by counting twice the instance of a step size of 0

B. Doerr et al. / Theoretical Computer Science 816 (2020) 144–168 151
E

[
Xt

Xt+1

∣∣∣∣ Zt = z

]
≤
(

κ∑
i=0

s

s − i
pi + s

s + i
qi

)
=
(

κ∑
i=0

s
pi(s + i) + qi(s − i)

s2 − i2

)

≤
(

κ∑
i=0

s
pi(s + i) + qi(s − i)

s2 − κ2

)
=
(

s2

s2 − κ2
+

κ∑
i=0

s(ipi − iqi)

s2 − κ2

)
,

where the last equality comes from summing all non-zero probabilities for a step size, i.e.
∑

pi + qi = 1. The same holds
for Xt since smin ≥ √

2κ . It follows that X2
t − κ2 ≥ 1/2X2

t and this yields

E

[
Xt

Xt+1

∣∣∣∣ Zt = z

]
≤
(

s2

s2 − κ2
+ 2

s

κ∑
i=0

ipi − iqi

)
=
(

1 + κ2

s2 − κ2
+ 2

s

κ∑
i=0

ipi − iqi

)
.

Since the remaining sum in the log-term is the difference of Xt and Xt+1 multiplied by the probability for the step size, we
obtain

E[Vt − Vt+1 | Xt = s] ≤ ln

(
1 + κ2

X2
t − κ2

+ 2E

[
Xt − Xt+1

Xt

∣∣∣∣ Zt = z

])

≤ 2E

[
Xt − Xt+1

Xt

∣∣∣∣ Zt = z

]
+ κ2

X2
t − κ2

≤ 2δ + κ2

X2
t − κ2

.

Finally, we apply the additive drift theorem and deduce

E[T] ≥ V 0

2δ + κ2

s2
min−κ2

= 1 + ln(s0) − ln(smin)

2δ + κ2

s2
min−κ2

. �

We conclude this section with the following lemma on the occupation probability of a random walk between two states.

Lemma 3.8. Let δ ≥ 0, and let r ≥ b ≥ 0. Consider a time-discrete random walk (Xt)t∈N with two states A and B, adapted to some
filtration Ft . For any t ≥ 0, let St := min{t′ ≥ 0 | Xt+t′ = A} be the number of rounds to reach A for the next time after t. Suppose that

1. Pr[Xt+1 = B | Ft , Xt = A] ≥ δ for all t ≥ 0.
2. There exists s ≥ 0 such that for all t ≥ 0,

Pr[St ≥ s | Ft, Xt = B, Xt−1 = A] ≥ b

s
.

Then, if N A(r) := |{1 ≤ t ≤ r | Xt = A}| denotes how many of the first r round we spend in A, we have

E[N A(r)] ≤ 2r

bδ
,

and

Pr

[
N A(r) >

4r

bδ

]
≤ e−r/(2s).

We remark that Condition (2) cannot be replaced by the weaker condition E[St | Ft , Xt = B, Xt−1 = A] ≥ b, not even for
the statement on the expectation. For example, for r b 1 set St := r2 with probability b/r2, and St := 1 otherwise. Then
by a union bound, with probability �(1) we never observe St = r2 in the first r rounds, so E[N A(r)] ∈ �(r).

Proof of Lemma 3.8. We first consider the case that r = s. We claim that N A(s) is stochastically dominated by a geometric
random variable Geo(p), where p := δb/s. Consider the first r = s rounds. By condition (2), whenever we enter B , we spend
all the remaining rounds in B with probability at least b/s. We pessimistically assume that we immediately return to A
otherwise. Then for Xt = A, one of the following three cases will happen.

1. Xt+1 = A, with probability at most 1 − δ.
2. Xt+1 = B and Xt+2 = A, with probability at most δ(1 − b/s).
3. Xt+1 = Xt+2 = . . . , Xr = b, with probability at least δb/s.

Hence, N A(s) is stochastically dominated by Geo(p) as claimed. In particular, E[N A(s)] ≤ 1/p = s/(bδ).
For the other case r > s, we split up the random walk into k := �r/s� phases of length s each, which covers slightly

more than r rounds. Then in each phase we know that the expected number of rounds in A is dominated by Geo(δb/s).

152 B. Doerr et al. / Theoretical Computer Science 816 (2020) 144–168
Regarding the expectation, the total number of rounds in A is at most E[N A(r)] ≤ k · s/(bδ) ≤ 2r/(bδ). For the tail bound,
we need to bound the probability q := Pr[Y1 + . . . + Yk > 4r/(bδ)], where the Yi are independent random variables with
distribution Geo(p). We equivalently characterize q by q = Pr[Bin(4r/(bδ), p) < k]. Since k < 2r/s = 1

2 4rp/(bδ), from the
Chernoff bound, Theorem 3.1, we deduce q ≤ e−(1/2)2(4r/s)/2 = e−r/(2s) . �
4. Results with bloat control

In this section we show the following theorem.

Theorem 4.1. The (1 + 1) GP with bloat control choosing k = 1 + Pois(1) on Order and Majority takes O(T init +n log n) iterations
in expectation for any initial tree of size T init, and there are initial trees of size T init for which it takes �(T init + n log n) iterations in
expectation.

4.1. Lower bound

Regarding the proof of the lower bound, let T init and n be given. Let t be a GP-tree which contains T init leaves labeled
x1. From a simple coupon collector’s argument we get a lower bound of �(n log n) for the run time to insert each xi . As an
optimal tree cannot list any of the leaves in t in addition to the expected number of deletions performed by (1 + 1) GP in
one round being in O(1), we obtain a lower bound of �(T init) from the additive drift theorem (Theorem 3.2).

4.2. Upper bound

This section is dedicated to the proof of the upper bound. Let t be a GP-tree over n variables and denote the number
of expressed variables of t by v(t). We call the number of leaves of t the size of t and denote it by s(t). For a best-so-far
GP-tree of the (1 + 1) GP we denote the size of the initial GP-tree by T init. Both parameters n and T init are considered to be
given. The main difference to the case of only one mutation per iteration of the (1 + 1) GP is that with more mutations in
a single iteration the number of expressed variables can increase together with the introduction of a number of redundant
leaves. The increased fitness will hinder the bloat control from rejecting the offspring even though the size could have
increased by a large amount.

In order to deal with this behavior we are going to partition the set of leaves by observing the change of fitness when
deleting one leaf. For a redundant leaf, the fitness is not affected by deleting it. However, not every non-redundant leaf
contributes an expressed variable, since the deletion of a leaf can also increase the fitness if it is a negative literal. Thus, we
consider the following sets of leaves.

R(t): Redundant leaves v , where the fitness of t is not affected by deleting v .

C+(t): Critical positive leaves v , where the fitness of t decreases by deleting v .

C−(t): Critical negative leaves v , where the fitness of t increases by deleting v .

We denote by r(t), c+(t) and c−(t) the cardinality of R(t), C+(t) and C−(t), respectively. Thus we obtain

s(t) = r(t) + c+(t) + c−(t). (9)

The general idea of the proof is the following: We are going to construct a suitable potential function g mapping a
GP-tree t to a natural number in such a way that the optimum receives a value of 0 and the function displays the fitness
with respect to the number of expressed variables and the size in a proper way. For a best-so-far GP-tree t let t′ be the
offspring of t under the (1 + 1) GP. By bounding the drift, i.e. the expected change g(t) − g(t′) denoted by (t), we are
going to obtain the bound for the optimization time due to Theorem 3.3.

Regarding the bound on the drift we already argued that the case of only one mutation in an iteration is beneficial,
since either the amount of expressed variables of parent and offspring are the same or the offspring has exactly one more
variable expressed. However, the case of at least two mutations in an iteration is problematic in the above mentioned sense.
In order to deal with the negative drift (leading away from the optimum) introduced by the latter case, the positive drift
due to the other case has to outweigh the negative drift. Therefore, we need to bound the drift in both cases carefully.

We observe that starting with a very big initial tree the algorithm will delete redundant leaves with a constant proba-
bility until most of the occurring variables are expressed. In this second stage the size of the tree is at most linear in n and
the algorithm will insert literals, which do not occur in the tree at all, with a probability of at least linear in 1/n until all
variables are expressed. In order to obtain a better bound on the drift, we will split the second stage in two cases. Finally,
by the law of total expectation we will obtain a bound on the drift due to the bounds under the mentioned cases.

In order to deal with critical leaves, we are going to prove upper bounds on the number of these. In fact, there exists a
strong correlation between critical and redundant leaves we are going to exploit frequently.

B. Doerr et al. / Theoretical Computer Science 816 (2020) 144–168 153
Lemma 4.2. Let t be a GP-tree, then for Order and Majority we have

(i) c+(t) ≤ r(t) + v(t),
(ii) c−(t) ≤ 2r(t).

Proof. We prove both statements by observing the behavior of Order and Majority individually.

(i): Let opt(t) be the number of optimal leaves, i.e. positive leaves xi , where no additional instances of the variable i are
present in t . Obviously opt(t) ≤ v(t) ≤ n holds. We observe

c+(t) − v(t) ≤ c+(t) − opt(t),

thus it suffices to bound the number of non-optimal critical positive leaves.
For Majority a variable i can only contribute such a leaf, if the number of positive literals xi equals the number of
negative literals xi . Since every such negative literal is a redundant leaf, we obtain c+(t) − opt(t) ≤ r(t).
For Order a variable i can only contribute such a leaf, if the first occurrence of i is a positive literal xi and the second
occurrence is a negative literal xi . In this case the negative literal as well as every additional occurrence of a literal xi

is a redundant leaf. Therefore, we deduce c+(t) − opt(t) ≤ r(t).
(ii): For Majority a variable i can only contribute a critical negative leaf if the number of positive literals xi is m and the

number of negative literals xi is m + 1 for some m ≥ 1. In this case each negative literal is a critical negative leaf and
each positive literal is a redundant leaf. We obtain c−(t) ≤ 2r(t).
For Order a variable i can only contribute a critical negative leaf if the first occurrence of i is a negative literal and the
second occurrence is a positive literal. In this case the first occurrence is a critical negative leaf and every additional
occurrence afterwards is a redundant leaf. We obtain c−(t) ≤ r(t). �

In order to construct the mentioned potential function, we want to reward strongly an increase of fitness given by
a decrease of the unexpressed variables. Furthermore, we want to reward a decrease of size but without punishing an
increase of fitness. Here, we need to be careful with the weights for both changes since a strong reward for a decrease
of size might result in a very big negative drift in case of at least two operations. In order to illustrate the choice for the
weights, we will fix the weight m ∈ R>0 for a decrease of unexpressed variables only later on. Thus, we associate with t
the potential function

g(t) = m(n − v(t)) + s(t) − v(t).

This potential is 0 if and only if t contains no redundant leaves and for each i ≤ n there is an expressed xi . Furthermore, by
Lemma 4.2 s(t) − v(t) is also 0 since r(t) is 0.

Let D1 be the event where the algorithm chooses to do exactly one operation in the observed mutation step, and D2

where the algorithm chooses to do at least two operations in the observed mutation step. Since the algorithm chooses in
each step at least one operation, we observe

Pr[D1] = Pr[Pois(1) = 0] = 1

e
,

Pr[D2] = 1 − 1

e
.

Now we are going to derive bounds on the negative drift in the case D2. These are going to be connected with bounds
on the positive drift for D1 by the law of total expectation. Let E be the event that v(t′) = v(t). As argued above, in the case
E the potential cannot increase even if D2 holds. However, conditional on E the potential can increase yielding a negative
drift.

Lemma 4.3. For the expected negative drift measured by g(t) conditional on D2 holds

E[(t) | D2] ≥ −1

e

(
2e − me +

m∑
i=1

m − i

(i − 1)!

)
.

In addition, if s(t) > n/2 holds, this bound is enhanced to

E[(t) | D2] > − g(t)

en

(
1

6m
+ 2

3

)(
2e − 5me +

m∑
i=1

i(m − i)

(i − 1)!

)
.

154 B. Doerr et al. / Theoretical Computer Science 816 (2020) 144–168
Proof. Concerning the drift conditional on D2 we observe

E[(t) | D2] ≥ −E[−(t) | E] Pr[E], (10)

since the drift can be negative only in this case. In particular, we observe a drift of at least m for the increase of fitness
counteracted by the possible increase of the size. The latter is at most the number of operations the algorithm does in the
observed step, because every operation can increase the size by at most 1.

Let Y ∼ Pois(1) + 1 be the random variable describing the number of operations in a round. Note that, for all i ≥ 1,

Pr[Y = i] = 1

e(i − 1)! .

By this probability we obtain for the expected negative drift conditional on E

E[−(t) | E] =
∞∑

i=0

E[−(t) | Y = i,E] Pr[Y = i | E] ≤
∞∑

i=0

(i − m) Pr[Y = i | E]

≤
∞∑

i=m+1

(i − m) Pr[Y = i | E].

Due to Bayes’ theorem we derive

E[−(t) | E] ≤
∞∑

i=m+1

(i − m) Pr[E | Y = i] Pr[Y = i]
Pr[E] ,

which yields the first bound due to inequality (10) by pessimistically assuming Pr[E | Y = i] = 1

E[(t) | D2] ≥ −
∞∑

i=m+1

(i − m) Pr[Y = i] = −1

e

(
2e − me +

m∑
i=1

m − i

(i − 1)!

)
.

In order to obtain a better bound on the negative drift, we are going to bound the probability Pr[E | Y = i] by a better
bound than the previously applied bound of 1.

The event E requires a non-expressed variable in t to become expressed in t′ . There are n − v(t) non-expressed variables
in t . These can become expressed by either adding a corresponding positive literal or deleting a corresponding negative
literal. There are 2n literals in total and due to n − v(t) ≤ g(t)/m adding such a positive literal has a probability of at most

n − v(t)

6n
≤ g(t)

6mn

per operation. Regarding the deletion of negative literals, there are at most s(t) − v(t) negative literals. Hence, due to
s(t) − v(t) ≤ g(t) and s(t) > n/2 the probability of deleting a negative literal is at most

s(t) − v(t)

3s(t)
≤ 2g(t)

3n

per operation. Let ql be the probability that the l-th mutation leads an unexpressed variable to become expressed. We
can bound the probability that i operations lead to the expression of a previously unexpressed bound by pessimistically
assuming that the mutation is going to be accepted. This yields by the union bound

Pr[E | Y = i] ≤
i⋃

l=1

ql ≤
i∑

l=1

qi = ig(t)

n

(
1

6m
+ 2

3

)
.

Therefore, we obtain due to inequality (10) an expected drift conditional on D2 of

E[(t) | D2] > − g(t)

en

(
1

6m
+ 2

3

) ∞∑
i=m+1

i(i − m)

(i − 1)!

= − g(t)

en

(
1

6m
+ 2

3

)(
2e − 5me +

m∑
i=1

i(m − i)

(i − 1)!

)
. �

As a small spoiler for the choice of m, we will give the following Corollary on Lemma 4.2.

B. Doerr et al. / Theoretical Computer Science 816 (2020) 144–168 155
Corollary 4.4. For m = 10 we obtain the following bounds

E[(t) | D2] ≥ −1

e

(
4 · 10−7) .

In addition, if s(t) > n/2 holds, this bound is enhanced to

E[(t) | D2] > −7g(t)

10en

(
4 · 10−6

)
.

We are now going to prove the upper bound by deriving the expected positive drift outweighing the negative drift given
by Lemma 4.3.

Case 1: We first consider the case r(t) ≥ v(t). Due to Lemma 4.2 and Equation (9) we obtain

s(t) = r(t) + c+(t) + c−(t) ≤ 4r(t) + v(t) ≤ 5r(t),

thus the algorithm has a probability of at least 1/5 for choosing a redundant leaf followed by choosing a deletion with
probability 1/3. Since the deletion of a redundant leaf without any additional operations does not change the fitness this
contributes to the event E . Hence, we obtain for the event D1

E[(t) | D1, E] Pr[E] ≥ 1

15
.

Additionally, the drift conditional on D1 is always positive, which yields

E[(t) | D1] ≥E[(t) | D1, E] Pr[E] ≥ 1

15
.

The drift conditional on D2 is given by Lemma 4.3. We observe, that the positive drift of 1/15 outweighs the negative
drift for the choice of m = 10 given by Corollary 4.4. Overall, we obtain a constant drift in the case of r(t) ≥ v(t) due to the
law of total expectation

E[(t)] ≥E[(t) | D1] Pr[D1] +E[(t) | D2] Pr[D2] ≥ 1

15e
− 1

e

(
1 − 1

e

)(
4 · 10−7)

≥ 1

e

(
1

15
− 4 · 10−7

)
≥ 3

50e
. (11)

Case 2: Suppose r(t) < v(t) and s(t) ≤ n/2. In particular, we have for at least n/2 many i ≤ n that there is neither xi

nor xi present in t . The probability to choose such an xi is at least 1/4 and the probability that the algorithm chooses
an insertion is 1/3. This insertion will yield a fitness increase of m and since the location of the newly inserted literal is
unimportant we obtain

E[(t) | D1] Pr[D1] ≥ m

12e
.

For the expected drift in the case D2 holds we apply again the bound given by Lemma 4.3. Analogue to Case 1 we observe,
that the positive drift outweighs the negative drift for the choice of m = 10, which yields the following constant drift

E[(t)] ≥ 1

e

(
10

12
− 4 · 10−7

)
>

8

10e
.

Case 3: Consider now the case that r(t) < v(t) and s(t) > n/2. In particular, the tree can contain at most 5n leaves due
to

s(t) ≤ 4r(t) + v(t) < 5v(t) ≤ 5n,

which enables us to bound the probability that an operation chooses a specific leaf v as

1

5n
≤ Pr[choose leaf v] ≤ 2

n
.

Let A be the set of i, such that there is neither xi nor xi in t , and let B be the set of i, such that there is exactly one xi
and no xi in t . Recall that R(t) is the set of redundant leaves in t . For every i in A let Ai be the event that the algorithm
adds xi somewhere in t . For every j in R(t) let R j(t) be the event, that the algorithm deletes j. Finally, let A′ be the event
that one of the Ai holds, and R′ the event that one of the R j(t) holds.

Conditional on D1 we observe for every event Ai a drift of m. For each event R j(t) conditional on D1 we observe a
drift of 1 since the amount of redundant leaves decreases by exactly 1. Hence,

156 B. Doerr et al. / Theoretical Computer Science 816 (2020) 144–168
E[(t) | Ai, D1] = m,

E[(t) | R j(t), D1] = 1.

Regarding the probability for these events we observe that for Ai the algorithm chooses with probability 1/3 to add a
leaf and with probability 1/(2n) it chooses xi for this. Furthermore, the position of the new leaf xi is unimportant, hence

Pr[Ai | D1] ≥ 1

6n
.

Regarding the probability of R j(t), with probability at least 1/(5n) the algorithm chooses the leaf j and with probability
1/3 the algorithm deletes j. This yields

Pr[R j(t) | D1] ≥ 1

15n
.

In order to sum the events in A′ and R′ , we need to bound the cardinality of the two sets A and R(t). For this purpose
we will need the above defined set B . First we note that the cardinality of B is at most v(t). In addition

|A| + |R(t)| ≥ r(t) (12)

holds since R(t) is the set of all redundant leaves. Furthermore, we observe that for any variable j, which is not in B
or A, there has to exist at least one redundant leaf x j or x j . Since every redundant leaf is included in R(t) we obtain
|A| + |R(t)| + |B| ≥ n and subsequently

|A| + |R(t)| ≥ n − v(t). (13)

Furthermore, due to Lemma 4.2 we deduce

s(t) − v(t) ≤ r(t) + c+(t) + c−(t) − v(t) ≤ 4r(t) ≤ 4(|A| + |R(t)|), (14)

where the last inequality is due to (12). This inequality (14) in conjunction with (13) yields

(m + 4)(|A| + |R(t)|) ≥ m(n − v(t)) + s(t) − v(t) = g(t). (15)

We obtain the expected drift conditional on the event D1 as for m ≥ 1

E[(t) | D1] ≥E[(t) | (A′ ∨R′), D1] Pr[A′ ∨R′ | D1]
=
∑
i∈A

E[(t) | Ai, D1] Pr[Ai, D1] +
∑

j∈R(t)

E[(t) | R j(t), D1] Pr[R j(t) | D1]

≥ |A| m

6n
+ |R(t)| 1

15n
≥ (|A| + |R(t)|) 1

15n
≥ g(t)

15(m + 4)n
,

where the last inequality is due to (15). Concerning the expected drift conditional on D2, the condition for the second
bound given by Lemma 4.3 is satisfied in this case. Again, we observe that the positive drift outweighs the negative drift for
m = 10 given by Corollary 4.4, which justifies the choice of m = 10 we are setting from here on. In fact, we could choose
any integer m ≥ 5 in order for the positive drift to outweigh the negative. Summarizing the events D1 and D2 we obtain
the expected drift

E[(t)] ≥E[(t) | D1] Pr[D1] +E[(t) | D2] Pr[D2]

≥ g(t)

en

(
1

210
−
(

1 − 1

e

)
7

10
· 4 · 10−6

)
>

g(t)

250en
. (16)

Summarizing the derived expected drifts (11) and (16), we observe a multiplicative drift in the case of

g(t)

250en
≤ 3

50e
,

which simplifies to g(t) ≤ 15n. If g(t) > 15n, we observe a constant drift. This constant drift is at least 3/50e since the
expected drift for Case 2 is always bigger than the one for Case 1.

We now apply the variable drift theorem (Theorem 3.3) with h(x) = min{3/(50e), 1x/(250en)}, X0 = T init + 10n and
Xmin = 1, which yields

B. Doerr et al. / Theoretical Computer Science 816 (2020) 144–168 157
E[T | g(t) = 0] ≤ 1

h(1)
+

T init+10n∫
1

1

h(x)
dx

= 250en + 250en

15n∫
1

1

x
dx + 50e

3

T init+10n∫
15n+1

1 dx

= 250en (1 + log(15n)) + 50e

3
(T init − 5n − 1) < 250en log(15en) + 50e

3
T init.

This establishes the theorem.

5. Results without bloat control

In this section we show the following theorems.

Theorem 5.1. The (1 +1) GP without bloat control (choosing k = 1 or k = 1 +Pois(1)) on MAJORITY takes �(T init log T init) iterations
in expectation for n = 1 for some initial trees. For general n ≥ 1 and for some initial trees, it takes �(T init + n log n) iterations in
expectation.

Theorem 5.2. The (1 +1) GP without bloat control (choosing k = 1 or k = 1 +Pois(1)) on MAJORITY takes O(T init log T init +n log3 n)

iterations in expectation.

5.1. Proof of the lower bound

Regarding the proof of Theorem 5.1, let T init be large. Let t0 be a GP-tree which contains T init leaves labeled x1 and no
other leaves. From a simple coupon collector’s argument we get a lower bound of �(n log n) for the run time to insert each
xi . It remains to bound the time the algorithm needs to express the x1.

In order to derive the bound for general n ≥ 1 we observe, that the algorithm does in expectation 2 operations in each
iteration since E[1 + Pois(1)] = 2. Hence, the algorithm needs in expectation at least T init/2 iterations to express the first
variable yielding the desired result.

Regarding the bound for the case n = 1 let t be a GP-tree, let I1(t) be the set of literals x1 in t and I ′1(t) be the set of
literals x1 in t . Additionally, we define |I1(t)| = i1(t) and |I ′1(t)| = i′1(t). We associate with t the potential function g(t) by

g(t) = i′1(t) − i1(t).

In order to express the variable 1, the potential g(t) has to become non-positive at one point. In particular, starting with
g(t0) = T init , the potential has to reach a value of at most T 2/3

init . Let τ denote the number of iterations until the algorithm
encounters for the first time a GP-tree t with g(t) ≤ T 2/3

init . We are going to bound the expected value of τ starting with t0,
since this will yield a lower bound for the expected number of iterations until x1 is expressed.

Let Ai be the event, that the algorithm performs more than 15 ln(T init) operations in the i-th iteration. For a better
readability we define z to be 15 ln(T init). Regarding the probability of Ai we obtain due to the Poisson-distributed number
of operations

Pr[Ai] =
∞∑

i=z

1

e(i − 1)! .

Let pi be the probability, that a Pois(1) distributed random variable is equal to i. We derive pi+1 = pi/(i + 1) ≤ pi/2. Since
Ai is Pois(1)-distributed, this yields

Pr[Ai] ≤ pz

∞∑
i=0

1

2i
= 2

ez! .

By the Stirling bound n! ≥ e(n/e)n we obtain

Pr[Ai] ≤ ez

ezz
≤ T 15

init

zz
≤ T −15

init ,

where the last inequality comes from zz ≥ e2z , which holds for T init ≥ 2.
Let A be the event that in T 2

init iterations the algorithm performs at least once more than z operations in a single
iteration. By the union bound we obtain for the probability of A

158 B. Doerr et al. / Theoretical Computer Science 816 (2020) 144–168
Pr[A] = Pr

⎡
⎣T 2

init⋃
i=1

Ai

⎤
⎦≤

T 2
init∑

i=1

Pr[Ai] ≤ T −13
init .

Hence, w.h.p. the algorithm will not encounter the event A. By the law of total expectation we deduce

E[τ] = E[τ | A] Pr[A] +E[τ | A] Pr[A] ≥E[τ | A]1

2
. (17)

It remains to bound the expected value of τ under the constraint of A.
Let t′ be the random variable describing the best-so-far solution in the iteration after t . We are going to derive an upper

bound on the drift, i.e. the expected change g(t) − g(t′) denoted by (t), in order to apply the Multiplicative Drift Theorem
(Theorem 3.7). The event A assures the condition of a bounded step size. We recall that g(t) = i′1(t) − i1(t), where i′1(t)
is the number of literals x1 and i1(t) is the number of literals x1. If the algorithm chooses an insertion, the probability to
insert x1 is the same as the probability to insert x1. Therefore, an insertion will only contribute 0 to the expected drift.
The same holds for the literals introduced by a substitution. However, for literals deleted by a deletion or substitution the
probability to choose a literal x1 or x1 is of importance, contrary to the case of insertion.

In order to analyze the drift (t), we observe that a deletion of a literal in I ′1(t) yields a positive drift of 1, whereas a
deletion of a literal in I1(t) yields a negative drift of −1. For all j ∈ [s(t)] we define for the j-th literal x in t the indicator
variable J j by

J j =

⎧⎪⎨
⎪⎩

0, if x does not get deleted or substituted;

1, if x is a literal x1, which gets deleted or substituted;

−1, if x is a literal x1, which gets deleted or substituted.

Let J j be the event that J j �= 0. Utilizing these events and the linearity of expectation we deduce

E[(t)] = E

⎡
⎣ s(t)∑

j=1

J j

⎤
⎦=

s(t)∑
j=1

E[J j] =
∑

j∈I ′1(t)

E[J j] −
∑

j∈I1(t)

E[J j]. (18)

Regarding the probability of J j we observe that with a probability of 2/(3s(t)) the j-th literal will be chosen for a
deletion or substitution in one operation. Therefore, with probability (1 − 2/(3s(t)))i the j-th literal will not be chosen
for a deletion or substitution i-times. We deduce, using that k is the random number of operations in a given round,
Pr[J j | k = i] = 1 − (1 − 2/3s(t))i and hence

Pr[J j] =
∞∑

i=1

Pr[J j | k = i] pi−1 =
∞∑

i=1

(
1 −

(
1 − 2

3s(t)

)i
)

1

e(i − 1)! .

We observe that Pr[J j] = Pr[Ji] for all i, j ≤ s(t). The probability for J j is at least the probability to have only one oper-
ation, which already deletes or substitutes the j-th literal and thus Pr[J j] ≥ 2/(3es(t)). Regarding an upper bound on the
probability we apply a Bernoulli-bound yielding (1 − 2/(3s(t)))i ≥ 1 − 2i/(3s(t)) and

Pr[J j] ≤
∞∑

i=1

2i

3s(t)e(i − 1)! = 4

3s(t)
.

Combining both bounds we deduce that Pr[J j] ∈ �(1/s(t)). Hence, there exists a constant c such that we obtain due to (18)
and Pr[J j] = Pr[Ji] for all i, j ≤ s(t)

E[(t)] = i′1(t)Pr[J j] − i1(t)Pr[J j] ≤ c

s(t)

(
i′1(t) − i1(t)

)= c

s(t)
g(t).

In order to bound the size s(t) we observe that following a standard gambler’s ruin argument within o(T 1.5
init) iterations

the size will not shrink by a factor bigger than 1/2. Therefore, we obtain s(t) ≥ 1/2 T init . Due to the step size bound of
15 ln(T init) < T 2/3

init we can apply Theorem 3.7 with smin = T 2/3
init and δ = 2c/T init and derive

E[τ | A, X0 = T init] ≥ 1 + ln(T init) − ln(T 2/3
init)

4c
T init

+ (15 ln(T init))
2

T 4/3
init −(15 ln(T init))

2

.

In order to simplify this bound we observe ln(T init) ≤ 3T 1/3, which yields
init

B. Doerr et al. / Theoretical Computer Science 816 (2020) 144–168 159
(15 ln(T init))
2

T 4/3
init − (15 ln(T init))

2
≤ (15 ln(T init))

2

T 4/3
init − (45T 1/3

init)
2

≤ 1

2T init
.

Therefore, we obtain due to (17)

E[τ] ≥ T init ln(T init)

3(8c + 1)

establishing the theorem.

5.2. Proof of the upper bound

5.2.1. Outline
Since the proof of Theorem 5.2 is long and involved, we first give an outline of the proof. The key ingredient is a

bound on the bloat, i.e., on the speed with which the tree grows. Roughly speaking, we will show in Theorem 5.4 that if
T init ≥ n log2 n, then the size of the tree grows at most by a constant factor in O(T init log T init) rounds.

Before we elaborate on the bloat, let us first sketch how this implies the upper bound. Consider any xi that is not
expressed and let V ′(tr, i) := #{xi-literals} − #{xi-literals} ≥ 1. For this outline we neglect the case that there are neither xi

nor xi in the string. Then the probability of deleting or substituting an xi is larger than deleting or substituting an xi , while
they have the same probability to be inserted. Computing precisely, and denoting by tr the GP-tree in round r, we will show
an expected drift of

E[V ′(tr, i) − V ′(tr+1, i) | V (tr, i) = v] ≥ v

3eTmax
(19)

for the V ′(tr, i), where Tmax ∈ O(T init) is an upper bound on the size of the tree. Using a multiplicative drift theorem,
Theorem 3.4, after O(T init log T init) rounds we have V ′(tr, i) = 0 with very high probability. By a union bound over all i,
w.h.p. there is no i left after O(T init log T init) rounds for which V ′(tr, i) < 0. This proves the theorem modulo the statement
on the bloat.

Regarding the bloat, we note that in expectation the offspring has the same size as the parent and the size of the tree
does not change significantly by such unbiased fluctuations. However, in some situations bigger offspring are more likely to
be accepted or shorter offspring are more likely to be rejected. For example, if the tree contains only positive critical literals
then every deletion will be rejected. This results in a positive drift for the size, which we need to bound. Note that since
the offspring has in expectation the same size as the parent, the biased drift is caused purely by the selection process, i.e.,
the drift would be zero if all offspring were accepted. We will show that offspring are rarely rejected and bound the drift
of s(tr) by (essentially) the probability that the offspring is rejected.

Similar to before, for an expressed variable xi we let V (tr, i) := #{xi-literals} − #{xi-literals} ≥ 0. An important insight
is that the offspring can only be rejected if there is some expressed variable i such that at least V (tr, i) + 1 mutations
touch i, i.e., they insert (by insertion or substitution) or delete (by deletion or substitution) xi -literals or xi -literals.2 We
want to show that this does not happen frequently. The probability to touch xi -literals or xi -literals at least k times falls
geometrically in k, as we show in Lemma 5.3. So for this outline we will restrict to the most dominant case V (tr, i) = 0.

Assume that we are in a situation where the size of the tree has grown at most by a constant factor. Similar to before,
we may bound the drift of V (tr, i) in rounds that touch i by

E[V (tr, i) − V (tr+1, i) | V (tr, i) = v, i touched in round r] ≤ C vn

T init
(20)

for a suitable constant C > 0. The factor n appears because we condition on i being touched in round r, which happens
with probability �(1/n).

Equation (20) tells us that the drift towards zero may be positive, but that it is relatively weak. In particular, for v ≤
N := √

T init/n, the drift is at most O(1/N). Under such circumstances the expected return time to 0 is large. More precisely,
it follows from martingale theory (Theorem 3.6) that the expected number of rounds that touch i to reach V (tr, i) = 0
from any starting configuration is at least �(N).3 In particular, after V (tr, i) becomes positive for the first time, it needs in
expectation �(N) rounds that touch i to return to 0. On the other hand, it only needs O(1) rounds that touch i to leave 0
again. Hence, V (tr, i) only has value 0 in an expected O(1/N)-fraction of all rounds that touch i.4 However, recall that the
drift of s(tr) is driven by the selection operator, since the drift of s(tr) would be zero if every offspring would be accepted.
If V (tr, i) is positive then xi does not influence whether the offspring is accepted. Formally, whenever all variables that are

2 Some borders cases are neglected in this statement.
3 Interestingly, we also show that a substantial part of this expectation comes from return times of size �(N2), which will be important to obtain tail

bounds.
4 This statement is more subtle than it may seem, and it is only true because the return times have a suitable tail distribution.

160 B. Doerr et al. / Theoretical Computer Science 816 (2020) 144–168
touched in a round have positive V (tr, i), then the drift of s(tr) is zero in this round. Since we have argued that V (tr, i) is
positive in all but a O(1/N) fraction of the rounds, the drift of s(tr) is also O(1/N).

In particular, if T init ≥ n log2 n then in r0 ∈ O(T init log T init) rounds the drift increases the size of the GP-tree in expectation
by at most r0/N ∈ O(T init). Hence, we expect the size to grow by at most a constant factor. In fact, we provide strong tail
bounds showing that it is rather unlikely to grow by more than a constant factor. The exact statement can be found in
Theorem 5.4.

5.2.2. Preparations
We now turn to the formal proof of Theorem 5.2.

Notation. We start with some notation and technical lemmas. For a variable i ∈ [n], we say that i is touched by some
mutation, if the mutation inserts, delete or substitutes an xi - or xi -literal, or if it substitutes a literal by xi or xi . We say that
a mutation touches i twice if it substitutes an xi -literal into xi or vice versa. Note that a substitution has only probability
O(1/n) to touch a literal twice. We call a round an i-round if at least one of the mutations in this round touches i. Finally,
we say that i is touched s times in a round if it is touched exactly s times by the mutations of this round (counted with
multiplicity 2 for mutations that touch i twice).

For a GP-tree t , let

V (t, i) :=

⎧⎪⎨
⎪⎩

−1, no xi or xi appear in the tree;

−z, there are z > 0 more xi than xi;

z, i is expressed, and there are z ≥ 0 more xi than xi .

In particular, i is expressed if and only if V (t, i) ≥ 0. Note that V (t, i) = −1 may occur either if xi and xi do not appear at
all, or if exactly one more xi than xi appears. Both cases have in common that i will be expressed after a single insertion of
xi .

Note that a mutation that touches i once can change V (t, i) by at most 1, with one exception: if V (t, i) = 1 and there is
only a single positive xi -literal, then V (t, i) may drop to −1 by deleting this literal. Conversely, V (t, i) can jump from −1 to
1 by the inverse operation. In general, if i is touched at most s times and V (t, i) > s then V (t, i) can change at most by s;
it can change sign only if |V (t, i)| ≤ s. We say that a variable i is critical in a round if V (t, i) ≥ 0, and i is touched at least
V (t, i) times in this round; we call the variable non-critical otherwise. Moreover, we say that a variable is positive critical if
it is critical and V (t, i) is strictly positive. We say that a round is (positive) critical if there is at least one (positive) critical
variable in this round. Note that in a non-critical round, the fitness of the offspring cannot be smaller than the fitness of the
parent. Hence, in these rounds every offspring is accepted, and thus the change of size is unbiased in these rounds. Hence
the biased drift of s(tr) comes only from critical rounds.

Many Mutations. We conclude our preparations with a lemma stating that it is exponentially unlikely to have many muta-
tions, even if we condition on some variable to be touched.

Lemma 5.3. There are constants C, δ > 0 and n0 ∈ N such that the following is true for every n ≥ n0 , every GP-tree t with T ≥ 2n
leaves , and every κ ≥ 2. Let i ∈ [n], and let k denote the number of mutations in the next round. Then:

1. Pr[k ≥ κ] ≤ e−δκ .
2. Pr[k = 1 | i touched] ≥ δ.
3. Pr[k ≥ κ | i touched] ≤ e−δκ .
4. E[k | i touched] ≤ C.

Proof. Note that all statements are trivial if the (1 + 1) GP uses k = 1 deterministically. So for the rest of the proof we will
assume that k is 1 + Pois(1)-distributed. We will use the well known inequality

Pr[Pois(λ) ≥ x] ≤ e−λ

(
eλ

x

)x

(21)

for the Poisson distribution [21]. In our case (λ = 1, x = κ − 1), and using e−1 ≤ 1, we can simplify to

Pr[Pois(1) ≥ κ − 1] ≤
(

e

κ − 1

)κ−1

. (22)

1: First consider κ ≥ 4. Then, using κ − 1 ≥ κ/2 we get from (22):

Pr[k ≥ κ] = Pr[Pois(1) ≥ κ − 1] ≤ (e/3)κ/2 = elog(e/3)κ/2.

B. Doerr et al. / Theoretical Computer Science 816 (2020) 144–168 161
Thus 1 is satisfied for κ ≥ 4 with δ := log(e/3)/2. By making δ smaller if necessary, we can ensure that 1 is also satisfied
for κ ∈ {2, 3}, which proves this property.
2 and 3: Let T = s(t) be the size of t (the number of leaves). Additionally, we define the parameter

x := max

{
#{i-literals in t}

T
,

1

n

}
.

Note that the next mutation has probability at most 2x to touch i. Unfortunately, that is not true for subsequent mutations
in the same round, which makes the proof considerably more complicated. We claim

Pr[k = 1 and i touched] ≥ x

3e
. (23)

To see the claim, first note that Pr[k = 1] = 1/e by definition of the Poisson distribution. First, consider the case that x = 1/n.
Then we have Pr[k = 1 and xi or xi inserted] = 1/(3en), which implies (23). In the other case, the probability that a deletion
operation picks a xi or xi is x, so Pr[k = 1 and xi or xi inserted] = x/(3e), which also implies (23). This proves (23) in all
cases.

We first prove the simpler case of large x; more precisely, let x ≥ 1/4. With probability 1/e there is only one mutation
and with probability at least x/3 ≥ 1/12 this mutation deletes a xi or xi -literal. Hence,

Pr[k = 1 and i touched] ≥ 1

12e
.

This already implies 2, because

Pr[k = 1 | i touched] ≥ Pr[k = 1 and i touched] ≥ 1

12e
.

Regarding 3 it suffices to observe that

Pr[k ≥ κ | i touched] = Pr[k ≥ κ and i touched]
Pr[i touched]

≤ Pr[k ≥ κ]
Pr[k = 1 and i touched]

1.≤ 12e · e−δκ , (24)

which implies 3 by absorbing the factor 12e into the exponential. This settles the case x ≥ 1/4.
The case for smaller x basically runs along the same lines, but will be much more involved. In particular, in (24) we

cannot use the trivial bounds in the second line. So assume from now on x < 1/4 and thus at most one fourth of the
literals in t are i-literals. In the following we will bound the probability to have k > 1 mutations such that at least one of
them touches i. The probability to have k = κ mutations is Pr[Pois(1) = κ − 1]. We will first assume k ≤ 1/x. Note for later
reference that k ≤ 1/x ≤ n ≤ T /2 in this situation.

So fix some value k ≤ 1/x. Let us refer to the mutations by M1, . . . , Mk and let κi := min{1 ≤ κ ≤ k | Mκ touches i} be
the index of the first mutation that touches i. If none of M1, . . . , Mk touches i then we set κi := ∞. We claim that for all
k ≤ 1/x and all 1 ≤ κ ≤ k,

Pr[κi ≥ κ + 1 | k, κi ≥ κ] ≥ 1 − 3x ≥ e−6x, (25)

where the last inequality holds since x < 1/4.
In order to see the first inequality of (25) we distinguish two cases. If x = 1/n, then the number of i-literals in t is at

most T x = T /n. Since we condition on κi ≥ κ , the number of i-literals is still at most T /n after the first κ − 1 operations.
The number of leaves after κ − 1 < n operations is at least T − n ≥ T /2. Hence, the probability to pick one of these leaves
for deletion or substitution is at most (2/3)(T /n)/(T /2) < 2/n. On the other hand, the probability to insert an i-literal or to
substitute a leaf with xi or xi is at most 1/n. By the union bound, the probability to touch i is at most 3/n. This proves (25)
if x = 1/n.

The other case is very similar only involving different numbers. The number of i-literals in t is T x. Since k ≤ 1/x ≤ T /2,
after κ ≤ k operations the size of the remaining tree is at least T /2. Therefore, the probability that Mκ picks an i-literal
for deletion or substitution is at most (2/3)xT /(T /2) ≤ 2x. On the other hand, the probability to insert an i-literal or to
substitute a leaf with xi or xi is at most 1/n ≤ x. By the union bound, the probability to touch i is at most 3x. This
proves (25) if x = #{i-literals}/T .

We can expand (25) to obtain the probability of κi = ∞. For 2 ≤ k ≤ 1/x,

Pr[κi = ∞ | k] =
k∏

i=1

Pr[κi ≥ κ + 1 | k, κi ≥ κ] ≥ e−6kx,

and consequently, for all 1 ≤ k ≤ 1/x,

162 B. Doerr et al. / Theoretical Computer Science 816 (2020) 144–168
Pr[i touched | k] = 1 − Pr[κi = ∞ | k] ≤ 1 − e−6kx ≤ 6kx.

For k > 1/x we will use the bound Pr[i touched | k] ≤ 1. To ease notation, we will assume in our formulas that 1/x is an
integer. Then we may bring both cases together, and bound

Pr[k ≥ 2 and i touched] ≤
1/x∑
κ=2

Pr[k = κ]Pr[i touched | k = κ] +
∞∑

κ=1+1/x

Pr[k = κ]

1.≤
1/x∑
κ=2

e−δκ6κx +
∞∑

κ=1+1/x

e−δκ ≤ x
∞∑

κ=2

(6κ + 1
x e−δ/x)e−δκ

≤ Cx

for a suitable constant C > 0, since the function 1
x e−δ/x is upper bounded by a constant for x ∈ (0, 1]. Together with (23),

we get

1

Pr[k = 1 | i touched] = 1 + Pr[k ≥ 2 and i touched]
Pr[k = 1 and i touched]

≤ 1 + Cx

x/(3e)
= 1 + 3eC .

This proves 2 for δ := 1/(1 + 3Ce). For 3 we compute similar as before

Pr[k ≥ κ and i touched] ≤
1/x∑

κ ′=κ

Pr[k = κ ′]Pr[i touched | k = κ ′] +
∞∑

κ ′=max{κ,1+1/x}
Pr[k = κ ′]

≤
1/x∑

κ ′=κ

e−δκ ′
6κ ′x +

∞∑
κ ′=max{κ,1+1/x}

e−δκ ′

≤ xe−δκ/2
∞∑

κ ′=1

(6κ ′ + 1
x e−δ/x)e−δκ ′/2 ≤ Cxe−δκ/2

for a suitable constant C > 0. Therefore, as before,

1

Pr[k ≥ κ | i touched] = 1 + Pr[k < κ and i touched]
Pr[k ≥ κ and i touched] ≥ 1 + Pr[k = 1 and i touched]

Pr[k ≥ κ and i touched]
≥ 1 + x/(3e)

Cxe−δκ/2
≥ 1

3eC
eδκ/2.

This proves 3, since we may decrease δ in order to swallow the constant factor 3eC by the term eδκ/2.
4: This follows immediately from 3, because

E[k | i touched] =
∑
κ≥1

Pr[k ≥ κ | i touched] ≤ 1 +
∑
κ≥2

e−δκ ,

and the latter sum is bounded by an absolute constant. �
5.2.3. Bloat estimation

The main part of the proof is to study how the size of the GP-tree increases. We show that it increases by only a little
more than a constant factor within roughly T init log T init rounds if T init ∈ ω(n log2 n). However, we need explicit tail bounds
on the error probability, which are provided by the following theorem.

Theorem 5.4. There is ε > 0 such that the following holds. Let f = f (n) ∈ ω(1) be any growing function with f (n) ∈ o(n). Let
Tmin := max{T init, f (n) n log2 n}. Then for sufficiently large n, with probability at least 1 − exp(−ε

√
f (n)), within the next r0 :=

ε f (n)Tmin log Tmin rounds the tree has never more than Tmax :=√ f (n)Tmin leaves.

The proof of Theorem 5.4 is the most technical part of the proof and this whole subsection is devoted to it. First, we
provide an outline of the basic ideas, adding some actual numbers to the general outline presented in Section 5.2.1. We
will couple the size of the GP tree to a different process S = (Sr)r≥0 on N which is easier to analyze. The key idea is
that we only have a non-trivial drift in rounds in which the offspring is rejected. As we will see later, this event does not

B. Doerr et al. / Theoretical Computer Science 816 (2020) 144–168 163
happen often. Formally, we define S by a sum Sr = Tmin +∑r
j=1(X ′

j + X j), where X ′
j are independent random variables

with zero drift, and X j are only non-zero in critical rounds. Thus S can be regarded as a decomposition into terms which
are unbiased, and terms which account for the (small) positive drift of the size of the GP-tree.

The most difficult part is to bound the contribution of the X j , i.e., to show that most rounds are non-critical. To this
end, we will show that the random variables V (t, i), once they are non-negative, follow a random walk with weak drift as
described in Theorem 3.6, with parameter N := √

Tmin/n ≥√ f (n) log Tmin. For the purpose of this outline we consider only
rounds in which at most one variable i ∈ [n] with V (t, i) = 0 is critical. This (almost) covers the case when the number
k of mutations in a round is constantly one, but similar arguments transfer to the case when k is 1 + Pois(1)-distributed.
Whenever i is touched in such a round then V (t, i) has probability �(1) to increase, so the state V (t, i) = 0 will only
persist for O(1) rounds that touch i. On the other hand, after being increased, it needs in expectation �(N) i-rounds to
return to zero. Intuitively, this means that in a random i-round, the probability to encounter V (t, i) = 0 is O(1/N). Note
that this intuition is not quite correct, but we can use Lemma 3.8 for the formal argument. Since each round touches only
O(1) variables, and each of them has only probability O(1/N) to be critical, there are only O(r0/N) ∈ O(ε

√
f (n)Tmin) critical

rounds within r0 rounds. Thus the size of the GP-tree grows roughly by at most a constant factor in Tmin log Tmin rounds.

Proof of Theorem 5.4. We will prove the theorem under the assumption that the size of the GP-tree never falls below Tmin.
This is justified because we can track the process until either r0 rounds have passed or the size of the GP-tree falls below
Tmin in some round r ≤ r0. In the former case we are done, in the latter case we apply the same argument again starting in
the next round in which the size of the GP-tree exceeds Tmin.5

Let t be the GP-tree in round j, let k be the number of mutations in this round, and let t′ be the tree resulting from
these mutations. We set X ′

j+1 := s(t′) − s(t), and

X j+1 :=
{

k, if round j is positive critical;

0, otherwise.
(26)

As mentioned in the outline, we define Sr := Tmin +∑r
j=1(X ′

j + X j).

s(tr) ≤ Sr . We first show that the size of the GP-tree after r rounds is at most Sr . The fitness of t′ can only be smaller
than the fitness of t if there is at least one index i for which V (t, i) changes from non-negative to negative, which can only
happen in positive critical rounds. In particular, in the second case of (26) we have f (t′) ≥ f (t), and hence the GP-tree t′ is
accepted. Thus, in this case we have Sr+1 − Sr = X ′

r+1 + Xr+1 = s(t′) − s(t), so S j and the size of the GP-tree both change by
the same amount. For the first case of (26), we have Sr+1 − Sr = k + s(t′) − s(t) ≥ max{0, s(t′) − s(t)}. Since the size of the
GP-tree changes either by s(t′) − s(t) (if t′ is accepted) or by 0 (if t′ is rejected), the increase of Sr is at least the increase
of the size of the GP-tree. Since this is true for all cases, the size of the GP-tree is at most Sr , as claimed. We will derive
upper bounds on Sr in the following.

In order to bound Sr = ∑r
j=1(X j + X ′

j) we will prove separately that each of the bounds
∑r

j=1 X ′
j ≤ Tmax/3 and ∑r

j=1 X j ≤ Tmax/3 hold with probability at least 1 − exp{−�(
√

f (n))}. By the union bound, it will follow that both bounds
together hold with probability at least 1 − exp{−�(

√
f (n))}. The two bounds will imply that the size of the GP-tree

is at most Tmin + 2Tmax/3 ≤ Tmax, thus proving the theorem. Recall that we need to consider the range 1 ≤ r ≤ r0 =
ε f (n)Tmin log Tmin.

Bounding X′
j. First we bound X ′

j . For
∑r

j=1 X ′
j , note that each X ′

j is the sum of k Bernoulli-type random variables (with
values +1 for insertion, −1 for deletion, and 0 for substitution), where k is either constantly 1 or 1 + Pois(1)-distributed,
depending on the algorithm. Let us denote by Kr the total number of Bernoulli-type variables (i.e., the total number of
mutations in r rounds). In the case where we always choose k = 1, we have trivially Kr = r. In the case k ∼ 1 + Pois(1) we
have Kr ∼ r + Pois(r) since the sum of independent Poisson distributed random variables is again Poisson distributed. Since
Pois(r) is dominated by Pois(r0), we have

Pr[Kr ≥ 3r0] ≤ Pr[Pois(r0) ≥ 2r0]
(21)≤ e−r0(er0)

2r0

(2r0)2r0
=
(e

4

)r0

for each r ≤ r0. Note that this estimate holds also for the case that all k are one, because then the probability on the
left is zero. Taking a union bound over all 1 ≤ r ≤ r0 we see that with exponentially high probability6 Kr ≤ 3r0 also holds
uniformly for all 1 ≤ r ≤ r0. For each mutation the probability of insertion, deletion, and substitution is 1/3 each, i.e., each of
the Kr Bernoulli-type random variables contributes +1, −1, or 0, with probability 1/3 each. Thus we may use the Chernoff

5 We are slightly cheating here, because for k ∼ 1 +Pois(1), the size of the GP-tree may jump to something strictly larger than Tmin in one step. However,
our proof also works if we start with any GP-tree of size at most 2Tmin, and the probability to increase the size of the GP-tree by more than Tmin in one
step is negligibly small.

6 that means with probability 1 − e−�(r0) .

164 B. Doerr et al. / Theoretical Computer Science 816 (2020) 144–168
bound, Theorem 3.1, with δ = r−1/4
0 to infer that with sufficiently high probability

∑r
j=1 X ′

j ≤ r3/4
0 < Tmax/3 holds uniformly

for all 1 ≤ r ≤ r0. In particular, this probability is 1 − exp{−�(
√

f (n))}.

Bounding Xj: Setup. It remains to bound
∑r

j=1 X j . Recall that X j is either zero or the number of mutations applied in the
j-th round. Therefore, the sum is non-decreasing in r and it suffices to bound the sum for r = r0. Then the same bound will
follow for all r ≤ r0.

We fix some i ∈ [n] and consider the random walk of the variable V (tr, i). Recall that we assume the size of the GP-tree tr
to be at least Tmin. Since V (tr, i) can only change in i-rounds, it makes sense to study the random walk by only considering
i-rounds. We will apply Theorem 3.6 with N := √

Tmin/n to this random walk. To this end, in the following paragraphs we
prove that the random walk that V (tr, i) performs in i-rounds satisfies the conditions of Theorem 3.6.

Bounding Xj: Computing the drift. Now we are ready to compute the drift of X j .
Let us first consider v ≥ 1, and compute the drift

v,i := E[V (tr+1, i) − V (tr, i) | V (tr, i) = v, r is i-round].
We mind the reader to not confuse this drift with the drift of Sr , which is a very different concept. The notation v,i is
slightly abusive because the drift does depend on tr , too. However, we will derive lower bounds on the drift which are
independent of tr , thus justifying the abuse of notation. In fact, we will compute the drift of

′
v,i := E[V (t′

r, i) − V (tr, i) | V (tr, i) = v, r is i-round],
where t′

r is the offspring of tr . In other words, we ignore whether the offspring is accepted or not. Note that this can only
decrease the drift, since a mutation that causes t′

r to be rejected can not increase V (tr, i). Hence, any lower bound on ′
v,i

is also a lower bound on v,i .
Let Er be the event that r is an i-round. Note that

Pr[Er] ∈ �(1/n), (27)

since we always have probability 1/(3n) to touch i with an insertion.
Consider any round r conditioned on Er and let M be a mutation in round r. If M does not touch i, then M does not

change V (tr, i) and the contribution to the drift is zero. Next we consider the case that M is an insertion of either xi or xi .
Both cases are equally likely and the case that M is an insertion contributes zero to the drift. By the same argument, the
cases that M substitutes a non-i-literal by xi or xi cancel out and together contribute zero to the drift.

Next consider deletions of xi or xi . This case is not symmetric, since there are v ≥ 1 more xi than xi . So we can describe
the number of xi by x + v , and the number of xi by x, for some x ≥ 0. Consider the first x occurrences of xi . Then the
probability that a deletion M picks one of these first xi equals the probability that M picks one of the xi . As before, both
cases are equally likely. Therefore, the contribution to the drift from either picking one of the first x occurrences of xi or any
occurrence of xi , cancel out. For the remaining v literals xi the unconditional probability that a deletion picks one of them
is v/s(tr) ≤ v/Tmin, where s(tr) ≥ Tmin is the current size of the GP-tree. Thus the conditional probability (on Er) to pick
one of them is at most O(vn/Tmin) by (27). Since the conditional expected number of deletions is E[# deletions | Er] ∈ O(1)

by Lemma 5.3, the deletions contribute −O(vn/Tmin) to the drift v,i . By the same argument we also get a contribution of
−O(vn/Tmin) for substitutions of xi -literals or xi -literals.

Summarizing, the only cases contributing to ′
v,i are deletions and substitutions of i-literals, and they contribute not

less than −O(vn/Tmin), which is −O(
√

n/Tmin) for v ≤ N = √
Tmin/n. All other cases contribute zero to ′

v,i . Therefore, the
random walk of V (tr, i) (where we only consider rounds which touch i) satisfies the first condition of Theorem 3.6 with
N = √

Tmin/n.

Bounding Xj: Step sizes and initial increase. Now we check the other two conditions of Theorem 3.6, on step sizes and
the initial increase of X j . The second condition (small steps) of Theorem 3.6 follows from Lemma 5.3. Finally, for the third
condition (initial increase) we show that for every v ≤ N , where N = √

Tmin/n and every n sufficiently large, with probability
at least δ the next non-stationary step increases V (tr, i) by exactly one. Note that by Lemma 5.3, an i-round has probability
�(1) to have exactly one mutation. Now we distinguish two cases: if there are less than s(tr)/n occurrences of xi then the
probability to touch i in any way is O(1/n) and the probability of inserting an xi -literal is �(1/n). Hence, conditioned on
touching i, with probability �(1) the only mutation in this round is an insertion of xi .

For the other case, assume there are more than s(tr)/n ≥ Tmin/n ∈ ω(1) occurrences of i-literals. Additionally, assume
that v ≤ √

Tmin/n < (1/3)s(tr)/n, where the last inequality holds for n large enough since then Tmin/n is large enough. Then
xi occurs at least half as often as xi , and thus the probability of deleting or substituting a xi -literal is at least half as big as
the probability to delete or substitute an xi -literal. Therefore, a mutation that touches i is with probability �(1) a deletion
of xi . So in both cases the first mutation that touches i increases V (tr, i) with probability �(1). This proves that the third
condition of Theorem 3.6 is satisfied.

Bounding Xj: Putting everything together. So far, we have shown that V (tr, i) performs a random walk that satisfies the
conditions of Theorem 3.6. Hence, for 0 < v < ε′N = ε′√Tmin/n the expected hitting time of {[0, 1, . . . , v]} when starting at

B. Doerr et al. / Theoretical Computer Science 816 (2020) 144–168 165
any value larger than v is �(
√

Tmin/n), for a suitable constant ε′ > 0. Moreover, with probability �(1/N) the hitting time
is at least �(N2).

Now we have all ingredients to bound the expected number of positive critical rounds. We fix a variable i and some v ≥ 0
and aim to bound the number of rounds in which V (tr, i) = v and i is a critical variable. For v ≥ ε′N ≥ ε′√ f (n) log Tmin,
with probability at least 1 − e−�(N) ≥ 1 − exp{−�(

√
f (n))}/Tmin this does not happen in a specific round by Lemma 5.3. By

a union bound, with probability 1 − exp{−�(
√

f (n))} it never happens for any variable i and any of r0 rounds, with room
to spare. So we may assume 0 ≤ v < εN . We use Lemma 3.8 to estimate how many i-rounds occur with V (tr, i) = v before
for the first time V (tr, i) > v . For this purpose we check the conditions of Lemma 3.8. In each i-round with V (tr, i) =
v , with probability �(1) the value of V (tr, i) = v increases strictly by Lemma 5.3. On the other hand, once V (tr, i) > v
it takes in expectation at least �(

√
Tmin/n) i-rounds before the interval [0, 1, . . . , v] is hit again, and it takes at least

�(Tmin/n) i-rounds with probability at least �(
√

n/Tmin). Thus we are in the situation of Lemma 3.8 with δ ∈ �(1) and
s ∈ �(

√
Tmin/n).

Let Ei denote the number of i-rounds and let Ei,v be the number of i-rounds with V (tr, i) = v . Note that we can only
apply Lemma 3.8 if Ei ≥ s. However, in each round we have probability at least 1/(3n) to insert an i-literal. Hence, E[Ei] ≥
r0/(3n) ∈ �(f (n) log n). In particular, by the Chernoff bound, Theorem 3.1, Pr[Ei < r0/(6n)] ∈ e−�(f (n) log n) � (1/n)e−�(f (n)) .
Hence, after a union bound over all i, we observe that with probability 1 − e−�(f (n)) we have Ei ≥ r0/(6n) for all 1 ≤ i ≤ n,
and we will assume this henceforth. In particular, Ei ≥ r0/(6n) ≥ s. Thus we may apply Lemma 3.8 with r = Ei and obtain

E[Ei,v] ≤ C

√
n

Tmin
E[Ei]

for a suitable constant C > 0. Moreover, by the tail bound in Lemma 3.8,

Pr

[
Ei,v ≤ 2C

√
n

Tmin
Ei

]
≥ 1 − e−r0/(12ns) ∈ 1 − e−�(

√
f (n) log Tmin)

≥ 1 − 1

nN
e−�(

√
f (n)). (28)

By a union bound over all i and v we see that with probability 1 − exp{−�(
√

f (n))} the bound Ei,v ≤ 2C
√

n/Tmin Ei

from (28) holds for all 1 ≤ i ≤ n and all 1 ≤ v ≤ √
N . So again we may assume this from now on.

An i-round with V (tr, i) = v has probability e−�(v) for i to be critical by Lemma 5.3. Therefore, the expected number of
critical rounds within the first r0 rounds is at most

E[#{critical rounds}] ≤
∑
i∈[n]

0≤v≤εN

e−�(v) ·E[Ei,v] ∈ O

(√
n

Tmin

)∑
i∈[n]

E[Ei]. (29)

The bound e−�(v) that an i-round with V (tr, i) = v is critical holds independently of all previous rounds. Therefore, as
before we can use the Chernoff bound to amend (29) by the corresponding tail bound and obtain with probability at least
1 − e−�(

√
f (n)) that

#{critical rounds} ≤ C ′
√

n

Tmin

∑
i∈[n]

Ei (30)

for a suitable constant C ′ > 0.
We bound the sum further by observing that in each round only O(1) literals are touched in expectation and the number

of touched literal drops at least exponentially. Therefore,
∑

i∈[n]E[Ei] ∈ O(r0) and by standard concentration bounds [11,
Theorem 11] with probability 1 − exp{−�(

√
f (n))} the expectation is not exceeded by more than a constant factor. More-

over, by assumption we have Tmin ≥ f (n)n log2 n, which implies Tmin ≥ (1/2) f (n)n log2 Tmin for sufficiently large n. Hence,
with probability 1 − exp{−�(

√
f (n))}

#{critical rounds} ∈ O

(
r0

√
n

Tmin

)
∈ O

(
r0√

f (n) log Tmin

)

≤ 1
12

√
f (n)Tmin,

where the last step follows from r0 = f (n)εTmin log Tmin if ε > 0 is sufficiently small. Since X j is zero in non-critical rounds
and is bounded by 1 + Pois(1) in critical rounds, as before we may use [11, Theorem 11] to get the following tail bound.

Pr

⎡
⎣ r0∑

j=1

X j ≤ 1
3

√
f (n)Tmin

⎤
⎦ ∈ 1 − e−�(

√
f (n)).

166 B. Doerr et al. / Theoretical Computer Science 816 (2020) 144–168
Thus we have shown that with sufficiently large probability
∑r0

j=1 X j ≤ 1
3

√
f (n)Tmin = Tmax/3. This proves the desired

bound on Sr and thus concludes the proof of Theorem 5.4. �
5.2.4. Run Time Bound

For technical reasons, before we prove Theorem 5.2 on the expected runtime, we first need to prove a rather technical
statement that holds with high probability.

Lemma 5.5. There is ε > 0 such that the following holds for any growing function f (n) ∈ ω(1) with f (n) ∈ o(n). Let Tmin :=
max{T init, f (n)n log2 n}. If n is sufficiently large, then for any starting tree, with probability at least 1 − exp{− f (n)1/4} the (1 + 1) GP
without bloat control on Majority finds a global optimum within r0 := ε f (n)Tmin log Tmin rounds, and the size of the GP-tree never
exceeds Tmax =√ f (n)Tmin .

Proof. We already know by Theorem 5.4 that with probability 1 − exp{−�(
√

f (n))} the size of the GP-tree does not
exceed Tmax within r0 rounds. We fix a variable i, which is not expressed at the beginning, and consider V ′(tr, i) :=
max{−V (tr, i), 0}. We claim that V ′(tr, i) has a multiplicative drift,

E[V ′(tr, i) − V ′(tr+1, i) | V ′(tr, i) = v] ≥ v

3eTmax
, (31)

for all v ≥ 0, as long as i is not expressed. In order to prove (31) we first consider insertions. It is equally likely to insert
xi (which decreases V ′(tr, i)) and xi (which increases V ′(tr, i)). Moreover, whenever the offspring is accepted after inserting
xi , it is also accepted after inserting xi . Therefore, the contribution to the drift from insertions is at least zero. Analogously,
substituting a non-i-literal by an i-literal contributes at least zero to the drift. For deletions, with probability at least 1/(3e)
we have exactly one mutation, and this mutation is a deletion. In this case, the probability to delete a xi -literal is exactly
by v/s(tr) ≥ v/Tmax larger than the probability to delete an xi -literal. Since we always accept deleting a single xi -literal,
this case contributes no less than −v/(3eTmax) to the drift. For all the other cases (several deletions, substitutions of one
or several i-literals), it is always more likely to pick an xi -literal for deletion/substitution than an xi -literal and it is more
likely to accept the offspring if an xi -literal is deleted/substituted. Therefore, these remaining cases contribute at least zero
to the drift. This proves (31).

We next show that for V (tr, i) = 0 in the next i-round with probability �(1) the literal xi is expressed in the offspring
and no other literal becomes unexpressed. We call such a round i-fixing. Note that the number of expressed literals can
never decrease, so xi can only become unexpressed if a literal x j becomes expressed in the same round. In this case we can
just swap the roles of i and j for the remainder of the argument. So we may assume that after an i-fixing round the literal
xi stays expressed forever. Then it suffices to show that for every i, if i is not expressed for a sufficient number of rounds,
then there is an i-fixing round.

Note that a sufficient condition for an i-fixing round is that there is only a single mutation which inserts a new xi -literal
or deletes an xi -literal. The probability to insert a new xi -literal equals the probability to insert a new xi -literal, to create an
xi -literal by substitution or to create an xi -literal by substitution. On the other hand, the probability to delete an xi -literal
equals the probability to delete an xi -literal (since V (tr, i) = 0), to substitute an xi -literal and to substitute an xi -literal. Thus,
the probability that an i-round with only a single mutation is i-fixing is at least 1/3. Moreover, an i-round has probability
�(1) to consist of a single mutation by Lemma 5.3. This proves that for V (tr, i) = 0 the next i-round has probability �(1)

to be i-fixing.
By the Multiplicative Drift Theorem 3.4, V ′(tr, i) reaches 0 after at most rinit := 3eTmax(k + log Tmax) steps with prob-

ability at least 1 − e−k , for a parameter k > 0 that we fix later. Moreover, once at 0 the next i-round is i-fixing with
probability �(1). If it is not i-fixing, then V ′(tr, i) may jump from 0 to a positive value. This value will be at most k with
probability at least 1 − e−�(k) by Lemma 5.3, and again by the Multiplicative Drift Theorem V ′(tr, i) will return to 0 after
rreturn := 3eTmax(k + log log k + O(1))) steps with probability at least 1 − e−�(k) . Assume this pattern repeats up to C log k
times, for a sufficiently large constant C > 0. Then the probability that there is an i-fixing round with V ′(tr, i) = 0 is at least
1 − e−�(k) . It remains to estimate the number of rounds spent in the state V ′(tr, i) = 0. Since each round has probability
at least 1/(3n) to be an i-round, among any rfix := 6Cn log k rounds there will be at least C log k i-rounds with probabil-
ity at least 1 − e−�(k) . In particular, if we spend 6Cn log k rounds in the state V ′(tr, i) = 0, then with probability at least
1 − e−�(k) at least C log k of them will be i-rounds. By a union bound, the probability that there is an i-fixing round with
V ′(tr, i) = 0 within rtotal := rinit + C log krreturn + rfix rounds is 1 − O(e−�(k) log k) ≥ 1 − e−�(k) , where the latter bound holds
if k is sufficiently large.

By a union bound over all i, with probability 1 − ne−�(k) all indices will be fixed after at most rtotal ∈ O(Tmaxk log k)

steps. Choosing k = f 1/3 log Tmin/(log f (n) + log log Tmin) gives ne−�(k) ≤ exp{− f (n)1/4} and rtotal ≤ r0, both with room to
spare. This proves the lemma. �

Finally we are ready to prove Theorem 5.2.

Proof of Theorem 5.2. The theorem essentially follows from Lemma 5.5 by using restarts. Let f (n) ∈ ω(1) be a growing
function such that f (n) ≤ n. We define a sequence (Ti)i≥0 recursively by T0 := Tmin = max{T init, n log2 n} and Ti+1 :=

B. Doerr et al. / Theoretical Computer Science 816 (2020) 144–168 167
√
f (n)Ti . Moreover, we define ri := ε f (n)Ti log Ti , where ε > 0 is the constant from Lemma 5.5. Note that Ti and ri are

chosen such that when we start with any GP-tree of size Ti , then with probability at least 1 − exp{− f (n)1/4} a global
optimum is found within the next ri+1 rounds without exceeding size Ti+1.

By Lemma 5.5 there is a high chance to find an optimum in r0 rounds without increasing the size of the GP-tree too
much. In this case, the optimization time is at most r0. For the other case, the probability that either the global optimum
is not found or the size of the GP-tree exceeds T1 is at most p := exp{− f (n)1/4}. Let t1 be the GP-tree at the first point in
time where something goes wrong, i.e., we set t1 to be the first GP-tree of size larger than T1, if this happens within the
first r0 rounds; otherwise we set t1 to be the GP-tree after r0 rounds. In either case, t1 is a GP-tree of size at most T1. Then
we do a restart, i.e., we apply Lemma 5.5 again with t1 as the starting tree. Similar as before, there is a high chance to find
an optimum in r1 rounds without blowing up the GP-tree too much. Otherwise (with probability at most p), we define t2

to be the first GP-tree with size at least T2, if such a tree exists before round r0 + r1; otherwise, we let t2 be the tree at
time r0 + r1. Repeating this argument, the expected optimization time Topt is at most

E[Topt] ≤ r0 + p (r1 + p (r2 + p (. . .))) =
∞∑

i=0

piri = ε f (n)

∞∑
i=0

pi Ti log Ti

By the recursive definition we see that Ti = f (n)i/2Tmin. In particular, using that p
√

f (n) < 1/2 for sufficiently large n we
obtain

E[Topt] ≤ ε f (n)

∞∑
i=0

2−i Tmin log
(

f (n)i/2Tmin

)

= ε f (n)Tmin

(
log(Tmin)

∞∑
i=0

2−i + log (f (n))

∞∑
i=0

2−i i

2

)

f (n)<n<Tmin≤ 3ε f (n)Tmin log Tmin.

This shows that for every arbitrarily slowly growing function f (n) we have E[Topt] ≤ 3ε f (n)Tmin log Tmin. We claim that
we may replace the function f (n) by a constant, i.e., that E[Topt] ≤ 3εC Tmin log Tmin for a suitable constant C > 0. Assume
otherwise for the sake of contradiction, i.e., assume that for every constant C > 0 there are arbitrarily large nC and GP-trees
tC of size TC such that E[Topt | tinit = tC] > 3εC TC log TC . Then we choose a growing sequence Ci (for instance Ci = i). Since
for each Ci there are arbitrarily large counterexamples nCi , tCi , we may choose a growing sequence nC1 < nC2 < nC3 < . . .

of counterexamples. Now we define f (n) := min{i | nCi > n} ∈ ω(1) and obtain a contradiction, since we have an infinite
sequence of counterexamples for which E[Topt] > 3ε f (n)Tmin log Tmin. Hence we have shown for a suitable constant C > 0
that E[Topt] ≤ 3εC Tmin log Tmin. This proves the theorem, since Tmin log Tmin ∈ �(max{T init log T init, n log3 n}). �
6. Conclusion

We considered a simple mutational genetic programming algorithm, the (1 +1) GP, and studied the two simple problems
Order and Majority. It turns out that for these problems, optimization is efficient in spite of the possibility of bloat: except
for logarithmic factors, all run times are linear. However, bloat and the variable length representations were not easily
analyzed, but required rather deep insights into the optimization process and the growth of the GP-trees.

For optimization preferring smaller GP-trees we observed a very efficient optimization behavior: whenever there is a
significant number of redundant leaves, these leaves are pruned. Whenever only few redundant leaves are present, the
algorithm easily increases the fitness of the GP-tree.

For optimization without bloat control, we were able to show that the extent of bloat is not too excessive during the
optimization process, meaning that the tree is only larger by at most multiplicative polylogarithmic factors. Since this is
an upper bound, the real bloat might be smaller. While polylogarithmic factors are not a major obstacle for a theoretical
analysis, a solution which is not even linear in the optimal solution might not be desirable from a practical point of view.
So if bloat does occur then for obtaining small solutions, some kind of bloat control should be used.

From our analysis we witnessed an interesting option for bloat control: by changing the probabilities such that deletions
are more likely than insertions we would observe in the presented drift equations a bias towards shorter solutions. Overall,
this would lead to faster optimization.

Declaration of competing interest

The authors have no conflict of interest with respect to this manuscript.

168 B. Doerr et al. / Theoretical Computer Science 816 (2020) 144–168
References

[1] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, 2. edition, MIT Press, 2001.
[2] Benjamin Doerr, Leslie Ann Goldberg, Adaptive drift analysis, Algorithmica 65 (1) (2013) 224–250.
[3] Benjamin Doerr, Timo Kötzing, J.A. Gregor Lagodzinski, Johannes Lengler, Bounding bloat in genetic programming, in: Proc. of GECCO’17, ACM, 2017,

pp. 921–928.
[4] Benjamin Doerr, Andrei Lissovoi, Pietro S. Oliveto, Evolving boolean functions with conjunctions and disjunctions via genetic programming, in: Proc. of

GECCO’19, ACM, 2019, pp. 1003–1011.
[5] Devdatt P. Dubhashi, Alessandro Panconesi, Concentration of Measure for the Analysis of Randomized Algorithms, Cambridge University Press, 2009.
[6] Greg Durrett, Frank Neumann, Una-May O’Reilly, Computational complexity analysis of simple genetic programming on two problems modeling isolated

program semantics, in: Proc. of FOGA’11, 2011, pp. 69–80.
[7] David E. Goldberg, Una-May O’Reilly, Where does the good stuff go, and why? How contextual semantics influences program structure in simple

genetic programming, in: Proc. of EuroGP’98, 1998, pp. 16–36.
[8] Geoffrey Grimmett, David Stirzaker, Probability and Random Processes, Oxford University Press, 2001.
[9] Jun He, Xin Yao, A study of drift analysis for estimating computation time of evolutionary algorithms, Nat. Comput. 3 (1) (2004) 21–35.

[10] Daniel Johannsen, Random Combinatorial Structures and Randomized Search Heuristics, PhD thesis, Universität des Saarlandes, 2010.
[11] Timo Kötzing, Concentration of first hitting times under additive drift, Algorithmica 75 (3) (2016) 490–506.
[12] Timo Kötzing, J.A. Gregor Lagodzinski, Johannes Lengler, Anna Melnichenko, Destructiveness of lexicographic parsimony pressure and alleviation by a

concatenation crossover in genetic programming, in: Proc. of PPSN’18, Springer, 2018, pp. 42–54.
[13] Timo Kötzing, Frank Neumann, Reto Spöhel, PAC learning and genetic programming, in: Proc. of GECCO’11, 2011, pp. 2091–2096.
[14] Timo Kötzing, Andrew M. Sutton, Frank Neumann, Una-May O’Reilly, The Max problem revisited: the importance of mutation in genetic programming,

in: Proc. of GECCO’12, 2012, pp. 1333–1340.
[15] Johannes Lengler, Angelika Steger, Drift analysis and evolutionary algorithms revisited, Comb. Probab. Comput. 27 (4) (2018) 643–666.
[16] Andrei Lissovoi, Pietro S. Oliveto, Computational complexity analysis of genetic programming, in: Benjamin Doerr, Frank Neumann (Eds.), Theory of

Evolutionary Computation: Recent Developments in Discrete Optimization, Springer International Publishing, Cham, 2020, pp. 475–518, Also available
at https://arxiv.org /abs /1811.04465.

[17] Andrei Lissovoi, Pietro Simone Oliveto, On the time and space complexity of genetic programming for evolving boolean conjunctions, in: Proc. of
AAAI’18, 2018, pp. 1363–1370.

[18] Sean Luke, Liviu Panait, Lexicographic parsimony pressure, in: Proc. of GECCO’02, 2002, pp. 829–836.
[19] Andrea Mambrini, Luca Manzoni, A comparison between geometric semantic GP and cartesian GP for Boolean functions learning, in: Proc. of GECCO’14,

2014, pp. 143–144.
[20] Andrea Mambrini, Pietro Simone Oliveto, On the analysis of simple genetic programming for evolving Boolean functions, in: Proc. of EuroGP’16, 2016,

pp. 99–114.
[21] Michael Mitzenmacher, Eli Upfal, Probability and Computing: Randomized Algorithms and Probabilistic Analysis, Cambridge University Press, New York,

NY, USA, 2005.
[22] Alberto Moraglio, Andrea Mambrini, Luca Manzoni, Runtime analysis of mutation-based geometric semantic genetic programming on Boolean functions,

in: Proc. of FOGA’13, 2013, pp. 119–132.
[23] Frank Neumann, Computational complexity analysis of multi-objective genetic programming, in: Proc. of GECCO’12, 2012, pp. 799–806.
[24] Anh Nguyen, Tommaso Urli, Markus Wagner, Single- and multi-objective genetic programming: new bounds for weighted ORDER and MAJORITY, in:

Proc. of FOGA’13, 2013, pp. 161–172.
[25] Una-May O’Reilly, An Analysis of Genetic Programming, PhD thesis, Carleton University, Ottawa, Canada, 1995.
[26] Una-May O’Reilly, Franz Oppacher, Program search with a hierarchical variable length representation: Genetic programming, simulated annealing and

hill climbing, in: Proc. of PPSN’94, 1994, pp. 397–406.
[27] Tommaso Urli, Markus Wagner, Frank Neumann, Experimental supplements to the computational complexity analysis of genetic programming for

problems modelling isolated program semantics, in: Proc. of PPSN’12, 2012, pp. 102–112.
[28] Markus Wagner, Frank Neumann, Parsimony pressure versus multi-objective optimization for variable length representations, in: Proc. of PPSN’12,

2012, pp. 133–142.
[29] Markus Wagner, Frank Neumann, Single- and multi-objective genetic programming: new runtime results for sorting, in: Proc. of CEC’14, 2014,

pp. 125–132.
[30] Markus Wagner, Frank Neumann, Tommaso Urli, On the performance of different genetic programming approaches for the sorting problem, Evol.

Comput. 23 (4) (2015) 583–609.
[31] Carsten Witt, Tight bounds on the optimization time of a randomized search heuristic on linear functions, Comb. Probab. Comput. 22 (2) (2013)

294–318.

http://refhub.elsevier.com/S0304-3975(20)30032-3/bib436F726D656E416C676F726974686D73s1
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib646F657272323031336164617074697665s1
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib446F6572724B4C4C3137s1
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib446F6572724B4C4C3137s1
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib646F6572723230313965766F6C76696E67s1
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib646F6572723230313965766F6C76696E67s1
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib647562686173686932303039636F6E63656E74726174696F6Es1
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib4750464F47413131s1
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib4750464F47413131s1
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib476F6C64626572674F3938s1
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib476F6C64626572674F3938s1
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib6772696D6D6574743230303170726F626162696C697479s1
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib486559616F3A30343A6472696674s1
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib4A6F683A74683A3130s1
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib6B6F747A696E6732303136636F6E63656E74726174696F6Es1
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib6B6F65747A696E673230313863726F73736F766572s1
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib6B6F65747A696E673230313863726F73736F766572s1
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib44424C503A636F6E662F676563636F2F4B6F747A696E674E533131s1
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib4B6F655375744E65754F72653A633A3132s1
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib4B6F655375744E65754F72653A633A3132s1
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib6C656E676C6572323031386472696674s1
https://arxiv.org/abs/1811.04465
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib44424C503A636F6E662F616161692F4C6973736F766F694F3138s1
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib44424C503A636F6E662F616161692F4C6973736F766F694F3138s1
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib4C756B653A323030323A474543434Fs1
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib4D616D6272696E694D3134s1
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib4D616D6272696E694D3134s1
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib4D616D6272696E694F3136s1
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib4D616D6272696E694F3136s1
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib426F6F6B4D69745570s1
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib426F6F6B4D69745570s1
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib4D6F7261676C696F4D4D3133s1
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib4D6F7261676C696F4D4D3133s1
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib4E6575474543434F3132s1
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib4E677555726C5761673A633A31333A466F6761s1
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib4E677555726C5761673A633A31333A466F6761s1
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib4F5265696C6C793A746865736973s1
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib4F5265696C6C793A313939343A475053414843s1
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib4F5265696C6C793A313939343A475053414843s1
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib523237s1
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib523237s1
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib523238s1
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib523238s1
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib5761676E65723A323031343A53696E676C655F616E645F6D756C74692D6F626A656374697665s1
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib5761676E65723A323031343A53696E676C655F616E645F6D756C74692D6F626A656374697665s1
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib523330s1
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib523330s1
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib776974743A323031333A637063s1
http://refhub.elsevier.com/S0304-3975(20)30032-3/bib776974743A323031333A637063s1

	The impact of lexicographic parsimony pressure for ORDER/MAJORITY on the run time
	1 Introduction
	2 Preliminaries
	3 Drift theorems
	4 Results with bloat control
	4.1 Lower bound
	4.2 Upper bound

	5 Results without bloat control
	5.1 Proof of the lower bound
	5.2 Proof of the upper bound
	5.2.1 Outline
	5.2.2 Preparations
	Notation.
	Many Mutations.

	5.2.3 Bloat estimation
	5.2.4 Run Time Bound

	6 Conclusion
	References

