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Abstract
Following up on previous work of Cathabard et al. (in: Proceedings of founda-
tions of genetic algorithms (FOGA’11), ACM, 2011) we analyze variants of the
(1+1) evolutionary algorithm (EA) for problems with unknown solution length. For
their setting, in which the solution length is sampled from a geometric distribution,
we provide mutation rates that yield for both benchmark functions OneMax and
LeadingOnes an expected optimization time that is of the same order as that of
the (1+1) EA knowing the solution length. More than this, we show that almost
the same run times can be achieved even if no a priori information on the solu-
tion length is available. We also regard the situation in which neither the number
nor the positions of the bits with an influence on the fitness function are known.
Solving an open problem from Cathabard et al. we show that, for arbitrary s ∈ N,
such OneMax and LeadingOnes instances can be solved, simultaneously for all
n ∈ N, in expected time O(n(log(n))2 log log(n) . . . log(s−1)(n)(log(s)(n))1+ε) and
O(n2 log(n) log log(n) . . . log(s−1)(n)(log(s)(n))1+ε), respectively; that is, in almost
the same time as if n and the relevant bit positions were known. For the LeadingOnes
case, we prove lower bounds of same asymptotic order of magnitude apart from the
(log(s)(n))ε factor. Aiming at closing this arbitrarily small remaining gap, we realize
that there is no asymptotically best performance for this problem. For any algorithm
solving, for all n, all instances of size n in expected time at most T (n), there is an
algorithm doing the same in time T ′(n) with T ′ = o(T ). For OneMax we show
results of similar flavor.

Results presented in this work are based on [11,13].
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1 Introduction

Evolutionary algorithms (EAs) form a class of black-box optimizers, that—thanks to
their high flexibility and their ability to produce high-quality solutions for a broad
range of problems—are today well-established problem solvers in industrial and aca-
demic applications, where they are often used as subroutines for particularly difficult
parts of the optimization problem, as well as for several pre- or post-processing steps
of state-of-the-art optimization methods. The predominant part of research on EAs
focuses on engineering and empirical work. This research is complemented by the
theory of evolutionary computation (EC), which aims at providing mathematically
founded statements about the performance of general-purpose problem solvers like
EAs and similar randomized search heuristics, with one of its main objectives being to
provide rigorous insights into the working principles of such optimization techniques.
This way, theory of EC has helped to debunk common misconceptions about the per-
formance of EAs and has served as a source of inspiration to design more efficient
EAs.

One of the key performance measure in EC is expected run time (also referred
to as optimization time), i.e., the expected number of function evaluations that are
needed until an optimal solution is evaluated for the first time. Run time analysis is
hence one of the core topics in the theory of EC. Thanks to significant methodological
advances in the last 20 years, run time analysis for static problem settings is today
quite well developed [3,23,28]. However, a topic that has received much less attention
in the theory of EA literature is the performance of EAs in uncertain environments.
Uncertainty can come inmany guises, for examplewith respect to function evaluations,
the variation operators, or the dynamics of the fitness function. Understanding how
evolutionary search algorithms can tackle such uncertain environments is an emerging
research topic; see [4] for a survey on examples in combinatorial optimization, but
also [25] for a survey also discussing different sources of uncertainty.

Following up on a line of research initiated in [6], we study what EAs can achieve
in the presence of uncertainty with respect to the solution length. More precisely, we
regard how well an EA can optimize small problems that are hidden in larger repre-
sentations. Our aim is to design algorithms which, on each such small problem, have
a performance comparable to the one that could be obtained with similar algorithms
which know the length and the location of the small problem in the representation.
Quite surprisingly, we are able to show that already some variants of the simplest
evolutionary algorithm, the (1 + 1) EA (cf. Algorithm 1 for the pseudocode of this
classic EA), can be very efficient for such problems.

To model uncertainty with respect to the solution length, we assume that we have
a large search space {0, 1}N consisting of all bit strings of length N . The objective
function f that wewant to optimize, however, depends only on a small subset of the bit
positions; that is, there is a set I ⊆ [1. . .N ] := {1, . . . , N } such that f (x) = f (x|I )
for all x ∈ {0, 1}N , where we write x|I to denote the bit string composed of only those
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positions i with i ∈ I . We call n := |I | the relevant size of our optimization problem.
We regard two models of uncertainty.

1. Initial segment uncertainty model: We assume that I is an initial segment of
[1. . .N ], that is, that I = [1. . .n] for some n ≤ N . This model was proposed
and investigated in [6]; it is motivated there by applications in the design of testing
sequences for finite state machines [27].

2. Unrestricted uncertainty model: In this model, we allow I to be an arbitrary subset
of [1. . .N ] having cardinality n = |I | ≤ N . Since position-dependent mutation
rates cannot reasonably cope with such problems, it was posed as open problem
in [6] whether there are evolutionary algorithms that can deal with this stronger
type of uncertainty.

1.1 PreviousWork

Cathabard et al. [6], were the first to consider, from a theoretical point of view, evolu-
tionary algorithms in environments with unknown solution lengths. Cathabard et al.
regard the initial segment uncertainty model and assume that the solution length is
sampled from a fixed and known distribution D with finite support. More precisely,
they assume that the solution length n is sampled from a truncated version of the
geometric distribution, in which the probability mass for values greater than some
threshold N is shifted to the event that n = N . In this situation, the algorithm designer
has access to both the upper bound N for the solution length and the success probability
q of the distribution.

Cathabard et al. analyze a variant of the (1 + 1) EA in which each bit is flipped
with probability 1/N and they also study a variant with position-dependent bit-flip
probabilities. In the latter, the i-th bit is flipped independently of all other bits with
probability pi = 1/(i + 1). For any fixed choice of vector of bit flip probabilities �p,
we denote the corresponding algorithm with (1 + 1) EA �p.

Catahabard et al. consider the classic benchmark problems OneMax defined by
Om : {0, 1}n → R, x �→ ∑n

i=1 xi and LeadingOnes defined by Lo : {0, 1}n →
R, x �→ max

{
i ∈ {0, 1, . . . , n} | ∀ j ≤ i : x j = 1

}
. They show that, for their two

choices of �p, the (1 + 1) EA �p has an expected run time which is polynomial in
N and n, where the expectation is taken with respect to the solution length and the
random decisions of the algorithm. An overview of the precise bounds obtained in [6]
is given in Table 1.

1.2 Our Results

We extend the work of Cathabard et al. in several ways. In a first step (Sect. 3) we
show that the regarded mutation probabilities are sub-optimal. Making use of the light
upper tail of the (truncated) geometric distribution, we design bit flip probabilities
that yield significantly smaller expected run times (for both the OneMax and the
LeadingOnes function). For LeadingOnes, we complement this finding by a lower
bound that proves that no mutation probabilities can yield a performance that is better
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Table 1 Expected run times of the (1 + 1) EA �p with �p = (pi )i∈N in the initial segment uncertainty
model regarded in [6] in which the solution length n is sampled from the truncated geometric distribution
D = TruncGeo(N , q) with 1/N ≤ q ≤ 1/2

Problem Cor. 4 Results from [6] Thms. 7 (OM), 10 (LO)

pi = 1/N pi = 1/(i + 1) pi = q/2 pi = q

OneMaxD Θ
(
N log 1

q

)
O

(
1
q2

log N
)

Θ
(
1
q log 1

q

)
Θ (N log N )

LeadingOnesD Ω
(
1/q2

)
Θ (N/q) Θ

(
1/q3

)
Θ

(
1/q2

)
Θ (N/q)

The algorithm designer knows N , i.e., an upper bound for the solution length n

by more than a constant factor than our suggested ones. Table 1 summarizes our
findings and compares them to the results from [6].

While in the setting of Cathabard et al. we are in the convenient situation that we
have full knowledge of the distribution D from which the solution length is sampled,
one may wonder if this knowledge is necessary. We therefore study in Sect. 4 what can
be done in the initial segment uncertainty model without any prior knowledge about
the solution length. In this situation we require that the algorithm designer chooses bit
flip probabilities (pi )i∈N such that, regardless of the solution length n, the expected
performance of the (1 + 1) EA �p using bit flip probabilities �p = (p1, . . . , pn) is as
small as possible. It is not obvious that this can be done in polynomial time. In fact, for
both algorithms studied by Cathabard et al. as well as for any uniform choice (pi = p
for all i ∈ N) of the bit flip probabilities, the expected run time on this problem is
exponential in n if N is exponential in n (cf. Theorems 13 and 14).

We show (Theorems 15 and 16) that not only this problem can be tack-
led with position-dependent bit flip probabilities, but, quite surprisingly, we shall
also see that this can be done in a way that yields almost optimal run times.
Indeed, for LeadingOnes our results are only a (log(n))1+ε factor worse than
the best possible Θ(n2) run time bound. This factor can be made even smaller.
The precise runtime bounds are O(n(log(n))2 log(2)(n) . . . log(s−1)(n)(log(s)(n))1+ε)

and O(n2 log(n) log(2)(n) . . . log(s−1)(n)(log(s)(n))1+ε), for OneMax and Leadin-
gOnes, respectively, where s is an arbitrary positive integer and log( j) denotes the
j-fold iterated logarithm (cf. Equation (6)).
In Sect. 5we provide a secondway to deal with unknown solution lengths.We intro-

duce an alternative variant of the (1+ 1) EA in which the bit flip probability, which is
uniformly and independently applied to each bit position, is chosen according to some
(fixed) distribution at the beginning of each iteration. For suitably chosen distributions
Q, the expected run times of the respective (1 + 1) EAQ on OneMax and Leadin-
gOnes are of the same asymptotic order as those of the previously suggested solution
with position-dependent bit flip probabilities (pi )i∈N. In particular, for LeadingOnes
the expected run times are, simultaneously for all possible solution lengths n, almost
of the same order as the expected run time of a best possible (1+ 1) EA knowing the
solution length in advance.

This second approach has an advantage over the position-dependent bit flip proba-
bilities in that it effectively ignores bits that do not contribute anything to the fitness
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function (irrelevant bits). Unlike all previously suggested solutions, it can therefore
deal with the unrestricted uncertainty model. These EAs therefore provide a posi-
tive answer to the above-mentioned question posed by Cathabard et al. [6, Sect. 6]
concerning the ability of EAs do deal with unrestricted uncertainty.

Summarizing the above, we see that the EA variants—with either position-
dependent or random mutation rates in the initial segment uncertainty model and
using randommutation rates in the unrestricted uncertainty model—are only by a fac-
tor of O(log(n) log(2)(n) . . . log(s−1)(n)(log(s)(n))1+ε) slower than the performance
of the (1 + 1) EA on LeadingOnes when the relevant bits are known to the algo-
rithms. Since the unrestricted model contains the initial segment model as a very small
subcase (oneOneMax and LeadingOnes instance of size n instead of

(N
n

) ≥ (N/n)n

OneMax and n!(Nn
)
LeadingOnes instances) 1, these results raise the question if one

can obtain a superior performance from using position-dependent mutation rates in
the much more restricted initial segment uncertainty model. We address this question
in Sects. 6 and 7, where we investigate how good the above-described results are.

For LeadingOnes, our lower bounds show that our run time results from Sects. 4
and 5 are very tight (e.g., up to an O((log(s)(n))ε) factor for arbitrary s ∈ N). This
in particular implies that for the LeadingOnes problem, not much can be gained by
using position-dependentmutation rates in the heavily restricted initial segmentmodel.
Much stronger than that, we show that the (1+ 1) EA with any mutation operator that
treats zeros and ones symmetrically, that is, that uses an arbitrary distribution on the
subsets of [1. . .N ], selects a random subset according to this distribution, and then
flips exactly the bits in this set, cannot obtain a better performance in either the initial
segment or the unrestricted model than the (1 + 1) EA with position-dependent rates
(in the initial segment model) or the (1+ 1) EA with random mutation rates (in either
model). This shows in a very strong sense that the two uncertainty models are equally
difficult when optimizing LeadingOnes.

We said above that we have very good lower bounds. We would have liked to claim
that we have matching upper and lower performance bounds. We cannot do so, as
we observe a curiosity of this optimization under uncertainty problem: There is no
asymptotically best performance. More precisely, for any function T : N → N such
that there is an algorithm solving LeadingOnes instances with unknown length n in
expected time at most T (n), there is a function T ′ : N → N such that T ′ = o(T )

and there is an algorithm solving LeadingOnes instances with unknown length n in
expected time at most T ′(n).

For the case of OneMax we get an analogous result for the unrestricted uncer-
tainty model: any choice of distribution Q over bit flip probabilities can be improved
with a distribution Q′ so that using bit flip probabilities chosen from Q′ lead to an
asymptotically better run time than using those chosen from Q. For the case of the
initial segment uncertainty model it continues to be open whether there is an optimal
run time, or whether there are lower bounds similar to those for LeadingOnes.

1 Note here that in the initial segment model, we assume that the set of LeadingOnes instances is not
invariant under permutation, that is, for a fixed n there is just the usual LeadingOnes instance measuring
the largest segment [1. . .i] ⊆ [1. . .n] that contains only 1-bits. For the unrestricted model, we assume that
the LeadingOnes instance is implemented on the set I of relevant bits in an arbitrary ordering of the bit
positions. See Sect. 2.1 for precise definitions.
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Table 2 Overview of Results, where “Initial” denotes the initial segment uncertainty model and the second
row indicates whether bit flips are made with a uniform or a position-dependent bit flip probability (in one
case chosen at random in each iteration)

Setting Bit flips OneMax LeadingOnes

Initial, random length ∼ Geo(q) unif. O(q−1 log q−1) Thm. 7 O(q−2) Thm. 10

Ω(q−2) Thm. 3

Initial, adversarial length unif. 2Ω(n) Thm. 13 2Ω(n) Thm. 14

pos.-dep. O(n(log n)2+ε) Cor. 17 O(n2(log n)1+ε) Cor. 17

ω(n2 log n) Thm. 34

Unrestricted uncertainty unif./rand. O(n(log n)2+ε) Cor. 21 O(n2(log n)1+ε) Cor. 21

ω(n(log n)2) Cor. 40 ω(n2 log n) Cor. 35

Results regarding the Random Length Model use the geometric distribution with parameter q, where
1/N < q < 1/2 and ε > 0. The bounds for fixed bit flip probabilities and uniform and randomized bit
flip probabilities in the adversarial model are O(n(log(n))2 log(2)(n) . . . log(s−1)(n)(log(s)(n))1+ε) and

O(n(logb(n))2 log(2)
b (n) . . .) for OneMax, and O(n2 log(n) log(2)(n) . . . log(s−1)(n)(log(s)(n))1+ε) and

O(n2 logb(n) log(2)
b (n) . . .) for LeadingOnes, where s ∈ N, ε > 0, and b < e are arbitrary

Our run time results are summarized in Tables 1 and 2 . This work builds on results
that we have previously announced in [11,13].

2 Problem Setting and Algorithms

Weuse this section to fix notation (Sect. 2.1), tomake precise themodels of uncertainty
(Sect. 2.2), and to define the EAvariants capable of copingwith uncertainty (Sect. 2.3).

2.1 Basic Notation, Summability, OneMax, and LeadingOnes

We use the following standard notation. We write N to denote the positive integers.
We write [a. . .b] to denote the set of integers no less than a and no larger than b. We
abbreviate [n] := [1. . .n].

A sequence �p is a mapping �p : N → R, which equivalently can be written as
�p = (pn)n∈N. We alternate between these two notations. A sequence �p = (pn)n∈N is
said to be monotonically decreasing if, for all n ∈ N, it holds that pn ≥ pn+1. It is
summable if the sequence (Sn)n∈N of partial sums of absolute values Sn := ∑n

i=1 |pi |
converges.

We aremostly interested in the asymptotic behavior of our algorithms.We therefore
use a lot Landau’s big- and small-Oh notation. For convenience, we write �p = o(�q)

instead of p(n) = o(q(n)) whenever the variable n is clear from the context.
We regard in this work the two classic benchmark problems OneMax and

LeadingOnes, which, for given n, assign to each bit string x ∈ {0, 1}n the num-
ber of ones in x and the number of initial ones before the first zero entry, respectively;
that is,
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Omn := OneMaxn(x) =
n∑

i=1

xi , and

Lon := LeadingOnesn(x)

= max{i ∈ [0. . .n] | ∀ j ≤ i : x j = 1}.

We omit the subscript n when it is clear from the context.
OneMax and LeadingOnes functions are the two best-studied problems in the

theory of evolutionary computation literature. How the (1 + 1) EA, (1 + λ) EA,
(μ+1) EA, and (μ+λ) EA optimize these functions is relatively well understood [1,
18,20,24,30] (with the exception of the runtime of the (μ+λ) EA on LeadingOnes).
For the performance of the (1 + 1) EA, not only the asymptotic order of magnitude
is known [20], namely Θ(n log n) for OneMax and Θ(n2) for LeadingOnes, but
even more precise results. Ending a series of works [14,15,20,29] on the expected
runtime E[T ] of the (1 + 1) EA on OneMax, the very precise estimate of E[T ] =
en ln(n)+c1n+ 1

2e ln(n)+c2+O((log n)/n) for concrete constants c1, c2 was proven
in [22]. For the expected runtime of the (1+ 1) EA on LeadingOnes, the exact value
of E[T ] = 1

2n
2((1 − 1

n )−n+1 − 1 + 1
n ) was determined, independently, in [5,29].

We regard in this workOneMax and LeadingOnes functions of unknown solution
length. If a distribution D is known from which the solution length is sampled we
consider the expected run time of our algorithms onOneMaxD and LeadingOnesD ,
respectively, which are the problems Omn respectively Lon with random solution
length n ∼ D. Note here that the expectation is taken both with respect to the random
solution length and with respect to the random samples of the algorithm.

2.2 Models of Uncertainty

The focus of our work is on how evolutionary algorithms optimize objective functions
that only depend on a small subset of the decision variables. Hence we assume that
there is a large search space {0, 1}N , but our objective function f can be written as
f (x) = f̃ (x|I ) for some subset I ⊂ [1. . .N ] with n := |I |  N and some function
f̃ : {0, 1}I → R.
It turns out that the dimension N of the large search space is not very relevant for

our results. For this reason we assume that the large search space is in fact {0, 1}N, that
is, the set of all infinite binary sequences. Since the complexity measure we regard is
the number of fitness evaluations (and not the number of elementary operations as in
classic algorithmics), this expansion of the search space has no influence on our run
time statements.

We then regard two models of uncertainty about the location of the relevant part of
the problem instance. To remain consistent with previous works, we call both amodel
of unknown solution length despite the fact that in the second model also the relevant
bit positions are unknown.

Initial segment uncertainty:We assume that the set I of relevant bits is an initial
segment [1. . .n] of the outer space {0, 1}N. The number n is not known to the algorithm.
When regarding LeadingOnes as fitness function f , we assume that f respects the
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usual order of the bit-positions, that is, f (x) = Lon(x) = max{i ∈ [0. . .n] | ∀ j ≤ i :
x j = 1}.

Unrestricted uncertainty: We assume that the set I of relevant bits is any subset
ofN of cardinality |I | = n. Neither n nor I is known to the algorithm.When regarding
the LeadingOnes fitness function, we do not assume that it respects the natural order
of the bits. Hence the problem instance is described by I and a bijective mapping σ :
[1. . .n] → I such that f (x) = Lon,I ,σ (x) = max{i ∈ [0. . .n] | ∀ j ≤ i : xσ( j) = 1}.

2.3 Evolutionary Algorithms for DealingWith Unknown Solution Lengths

We now present two ways how evolutionary algorithms can deal with unknown solu-
tion length scenarios. Both are based on modifying the mutation operator. Hence, in
principle, our ideas can be used in conjunction with any evolutionary algorithm in
which mutation is used with significant probability. Nevertheless, to keep things sim-
ple and to not obscure the main ideas, we restrict ourselves to the (1 + 1) EA, the
simplest of all EAs.

The classic (1 + 1) EA, whose pseudocode is given in Algorithm 1, starts by
sampling an initial search point from {0, 1}n uniformly at random. It then proceeds
in rounds, each of which consists of a mutation and a selection step. Throughout the
whole optimization process the (1 + 1) EA maintains a population size of one, and
the individual in this population is always a best-so-far solution. In the mutation step
of the (1 + 1) EA, the current-best solution x is mutated by flipping every bit with
probability 1/n, independently of all other bits. The fitness of the resulting search
point y is evaluated and in the selection step the parent x is replaced by its offspring
y if and only if the fitness of y is at least as good as the one of x . Since we consider
maximization problems here, this is the case if f (y) ≥ f (x). As usual in the theory
of evolutionary algorithms, we are interested in expected run times, i.e., the expected
number of rounds it takes until the (1 + 1) EA evaluates for the first time a solution
of maximal fitness. We therefore do not specify a termination criterion.

Algorithm 1: The (1 + 1) EA with standard mutation probability 1/n for the
optimization of a pseudo-Boolean function f : {0, 1}n → R

1 Initialization: Sample x ∈ {0, 1}n uniformly at random and compute f (x);
2 Optimization: for t = 1, 2, 3, . . . do
3 y ← x ;
4 for i = 1, . . ., n do independently with probability 1/n set yi ← 1 − xi compute f (y);
5 if f (y) ≥ f (x) then x ← y

The first idea to enable the (1+ 1) EA to cope with uncertainty with respect to the
solution length is to use position-dependent mutation rates [6]. This idea makes sense
only for the initial segment uncertainty model. For a given sequence �p : N → [0, 1],
the (1 + 1) EA �p (cf. Algorithm 2) is the standard (1 + 1) EA, except that in the
mutation step the offspring is generated fromflipping the bit in position i with position-
dependent probability pi , independently of all other bits.
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It is not difficult to see that the (1 + 1) EA �p indeed generalizes the standard (1 +
1) EA. In fact, we obtain the (1 + 1) EA from the (1 + 1) EA �p if we set pi = 1/n
for all i ∈ [n] := {1, . . . , n}. We call such mutation vectors with pi = p j for all i, j
uniform mutation rates.

We note that in [6] position-dependent mutation rates were referred to as non-
uniform. In the context of our work, however, position-dependent is more precise,
since we also consider EA variants that are non-uniform with respect to time.

Algorithm 2: The (1 + 1) EA �p with position dependent mutation rates (pi )i∈N
to maximize a pseudo-Boolean function f : {0, 1}N → R with finite number of
relevant bits.
1 Initialization: Sample x ∈ {0, 1}N uniformly at random and compute f (x);
2 Optimization: for t = 1, 2, 3, . . . do
3 y ← x ;
4 for i ∈ N do independently with probability pi set yi ← 1 − xi compute f (y);
5 if f (y) ≥ f (x) then x ← y

The second idea to overcome the challenges of an unknown solution length scenario,
in particular in the unrestricted uncertainty model, is to use a random mutation rate
sampled independently in each iteration from a suitable distribution. More precisely,
let Q be a probability distribution over [0, 1]. For the ease of presentation, we restrict
ourselves to discrete distributions. Then the (1 + 1) EAQ (see Algorithm 3 for the
pseudocode) is again the classic (1 + 1) EA with the sole exception that in each
iteration t a mutation rate pt is sampled from Q and then the offspring is generated
from the parent individual by flipping each bit independently with probability pt , that
is, by performing standard bit mutation with mutation rate pt . Again we see that this
algorithm generalizes the classic (1 + 1) EA, which we obtain for choosing Q to be
1/n deterministically.

We will mostly work with distributions Q that have all their probability mass on
the values {1/i | i ∈ N}. These are most conveniently described via a probability
distribution (pn)n∈N on N, that is, via a sequence �p in [0, 1] such that ∑∞

n=1 pn = 1,
and then takingPrQ( �p)(1/i) = pi . For convenience,we shall allow arbitrary summable
sequences �p in [0, 1] and then set PrQ( �p)(1/i) = pi/

∑
n∈N pn .

Algorithm 3: The (1 + 1) EAQ with mutation rate distribution Q maximizing a
pseudo-Boolean function f : {0, 1}N → R depending only on a finite number of
bits.
1 Initialization: Sample x ∈ {0, 1}N uniformly at random and compute f (x);
2 Optimization: for t = 1, 2, 3, . . . do
3 y ← x ;
4 Sample pt from Q;
5 for i ∈ N do independently with probability pt set yi ← 1 − xi compute f (y);
6 if f (y) ≥ f (x) then x ← y
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For reasons of completeness, we remark that there are a few other theoretical works
using random mutation strengths, however with different targets and with different
distributions. For multi-valued representations, more precisely, when the search space
is [0. . .r−1]n , [7,12] show that a harmonic mutation strength often gives good results.
Very roughly speaking, this means that a variable value k ∈ [0. . .r − 1] is changed to
either k + δ or k − δ with probability proportional to 1/δ, and hence with probability
Θ(log(r)/δ). In [19], it was shown that standard-bit mutation with a randommutation
rate chosen according to a power-lawdistribution cangreatly speed-up the optimization
of non-unimodal functions. We note that the choice of the distribution generally is
important. We could not obtain the performance shown in this work with either a
harmonic or a power-law mutation strength.

3 Initial Segment Uncertainty Model with Random Solution Length

We first consider the setting introduced by Cathabard et al. [6]. After a short presen-
tation of the model in Sect. 3.1, a general lower bound for LeadingOnes (Sect. 3.2),
and the results of [6] in Sect. 3.3, we show that the bounds in [6] can be improved by
using different (uniform) mutation rates (Sect. 3.4).

3.1 TheModel

Cathabard et al. [6] consider the following model. The algorithm designer knows
the distribution D from which the unknown solution length for the initial segment
uncertainty model is drawn; only distributions with finite support are considered, so
the algorithm designer knows an upper bound N on the actual solution length n. He
also knows the class of functions from which the optimization problem is taken (for
example OneMax or LeadingOnes).

Based on this knowledge, the algorithm designer chooses a vector (p1, . . . , pN ) of
bit flip probabilities indicating with which probability a bit is flipped in each round. As
discussed in the previous section, we will also regard a slightly more general model
in which the distributions over N may possibly have infinite support; the algorithm
designer then chooses an infinite sequence of bit flip probabilities �p = (pi )i∈N. After
this choice of bit flip probabilities, the actual solution lengthn is sampled from thegiven
distribution D. Then the (1+1) EA �p (Algorithm 2) is run with mutation probabilities
�p = (p1, . . . , pn) on the given problem with the given problem length. We use
OneMaxD and LeadingOnesD , respectively, to denote the problem of optimizing
OneMax and LeadingOnes, respectively, in this initial segment uncertainty model
with random length drawn from D.

Cathabard et al. [6] consider as distribution D the following truncated geometric
distribution, based on a geometric distribution where the probability mass for values
greater than n are moved to n.

Definition 1 ([6]) The truncated geometric distribution TruncGeo(N , q) with trunca-
tion parameter N and success probability q ∈ (0, 1/N ] satisfies, for all n ∈ N, that
the probability of TruncGeo(N , q) = n is
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⎧
⎪⎨

⎪⎩

q(1 − q)n−1 if 1 ≤ n ≤ N − 1,

(1 − q)n−1 if n = N ,

0 otherwise.

Note that the truncated geometric distribution recovers the geometric distribution
Geo(q) for N = ∞.

It iswell known, respectively canbe found in [6, Proposition1], that for X = Geo(q)

and Y = TruncGeo(N , q) with q ≥ 1/N

E[X ] = q−1 and E[Y ] = Θ(q−1). (1)

Note that we trivially have E[Y ] ≤ E[X ].

3.2 A General Lower Bound for LeadingOnes

What is a good lower bound for the expected run time of any (1+1) EA �p onOneMax
or LeadingOneswhen the length is sampled from some given distribution D onN? If
the algorithmdesigner knew the true length n before he has to decide upon themutation
probabilities (p1, . . . , pn), then the optimal bit flip probability for this solution length
could be chosen. We show that for LeadingOnes, if the true length n is known, any
setting of the bit-flip probabilities leads to an expected run time of Ω(n2) regardless
of the choice of �p.

Lemma 2 For any fixed solution length n and any vector �p = (pi )i∈N of mutation
probabilities, the expected run time of the (1 + 1) EA �p on LeadingOnesn is Ω(n2).

Proof Via arguments analogous to the ones in [5, Sect. 3.3] (see [8, Sect. 2.3] for a
formal proof) it is easy to see that the expected run time E[T ] of the (1 + 1) EA �p on
LeadingOnesn is

E[T ] =
n∑

i=1

1

2pi

1
∏i−1

j=1(1 − p j )
.

Using this bound one can easily show that we can assume without loss of generality
that the mutation probabilities are monotonically increasing, i.e., pi ≤ pi+1 holds
for all i ∈ [n]. Indeed, if pk > pk+1 for some k ∈ [n], the expected run time of the
(1+ 1) EA �p is larger than that of the (1+ 1) EA�q with �q = (q1, . . . , qn), qk = pk+1,
qk+1 = pk , and qi = pi for i /∈ {k, k + 1}.

Let k := �n/2�. We have

k∏

j=1

(1 − p j ) ≤ (1 − pk)
k ≤ e−pkk,
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which gives

E[T ] ≥
n∑

i=k+1

1

2pi

1
∏k

j=1(1 − p j )
≥ n

2

1

2pk
epkk .

This shows that the overall expected optimization time of the (1 + 1) EA �p on
LeadingOnesn is Ω(n exp(pkk)/pk). For all possible choices of pk this expression
is Ω(n2): for pk = O(1/n) we have n/pk = Ω(n2) and exp(pkk) = Θ(1), while for
larger pk we see that exp(pkk)/pk is a growing function. ��

Using these lower bounds for fixed solution lengths, Jensen’s Inequality and the
convexity of n �→ n2, we get the following general lower bound.

Theorem 3 Let D be any distribution onNwith a finite expectation of m. Then for any
sequence �p the expected run time of the (1 + 1) EA �p on LeadingOnesD is Ω(m2).
This bound also applies to the setting in which the algorithm designer can choose the
mutation probabilities �p = (p1, . . . , pn) after the solution length n ∼ D has been
drawn.

Using Eq. (1), we get the following corollary.

Corollary 4 Let N ∈ N and q ≥ 1/N. Let D = TruncGeo(N , q) or D = Geo(q).
For any sequence �p the expected run time of the (1 + 1) EA �p on LeadingOnesD is
Ω(q−2). This bound also applies to the setting in which the algorithm designer can
choose the mutation probabilities �p = (p1, . . . , pn) after the solution length n ∼ D
has been drawn.

We conjecture that analoguous results hold for OneMax. More precisely, we con-
jecture that for any fixed solution length n and any vector �p of mutation rates the
expected optimization time of the (1 + 1) EA �p is Ω(n log n). With this result, Theo-
rems 3 and Corollary 4 would extend to OneMax, with Ω(m2) and Ω(q−2) replaced
by Ω(m logm) and Ω(q−1 log q−1), respectively.

3.3 Known Upper Bounds

Cathabard et al. [6] analyze the run time of the (1 + 1) EA �p with uniform mutation
probabilities �p = (1/N )i∈N and of the (1 + 1) EAi , which is the (1 + 1) EA �p with
�p = (pi )i∈N := (1/(i + 1))i∈N.
For OneMax they obtain the following results.

Theorem 5 (Results for OneMax from [6]) Let N ∈ N, ε ∈ (0, 1), and q = N−ε.
For D = TruncGeo(N , q) the expected run time of the (1+ 1) EA �p on OneMaxD is
Θ(N log q−1) when �p = (1/N )i∈N, while the expected run time of the (1 + 1) EAi

on OneMaxD is O(q−2 log N ).

This result shows that the (1+1)EA �p with �p = (1/N )i∈N outperforms the (1+1)EAi

for q < 1/
√
N , while the latter algorithm is preferable for larger q. As we shall see in
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the following section one should not conclude from this result that position-dependent
bit flip probabilities are the better choice for this problem.

Remark By using a slightly more careful analysis than presented in [6], the bound for
the (1+1) EAi onOneMaxD can be improved to O(q−2 log q−1). In fact, an analysis
similar to the one in Sect. 3.4, that is disregarding outcomes that are much larger than
the expectation,will give that result. It can also be shown that the requirementq = N−ε

is not needed as the O(q−2 log q−1) bound holds for all q > 1/N . It also holds for
the (non-truncated) geometric distribution D = Geo(q).

For LeadingOnes, Cathabard et al. show the following results.

Theorem 6 (Results for LeadingOnes from [6]) For N, ε, q, and D as in Theorem 5,
the expected run time of the (1 + 1) EA �p with �p = (1/N )i∈N on LeadingOnesD is
Θ(Nq−1), while the expected run time of the (1 + 1) EAi on LeadingOnesD is
Θ(q−3).

Thus also for LeadingOnes the (1+1) EAi performs better than the (1+1) EA �p with
�p = (1/N )i∈N when q > 1/

√
N while the uniform (1 + 1) EA �p should be preferred

for smaller q.

Remark As in the OneMax case, the Θ(q−3) bound for the (1 + 1) EAi holds more
generally for all geometric distributions Geo(q) with parameter q > 1/N .

Theorem 6 shows that on LeadingOnesD the (1 + 1) EAi loses a factor of 1/q
with respect to the lower bound given by Corollary 4. This will be improved in the
following section.

3.4 Optimal Upper BoundsWith UniformMutation Probabilities

We show that, for D being the (truncated or non-truncated) geometric distribution,
there exist bit flip probabilities �p = (pi )i∈N such that the expected run time of the
(1 + 1) EA �p on OneMaxD and LeadingOnesD is significantly lower than those of
the two algorithms studied by Cathabard et al. For LeadingOnes the expected run
time of our algorithmmatches the lower bound given in Corollary 4 and is thus optimal
in asymptotic terms.

In both cases, i.e., both for OneMaxD (Theorem 7) and for LeadingOnesD (The-
orem 10), the mutation rates yielding the improvement over the results in [6] are
uniform. Our results therefore imply that for LeadingOnes, unlike conjectured in
[6], one cannot gain more than constant factors from using position-dependent muta-
tion probabilities.

The key observation determining our choice of the mutation probability is the fact
that the (truncated) geometric distribution has a light upper tail, so that it is preferable
to choose the mutation probability in a way that minimizes the expected optimization
time of the (1 + 1) EA when faced with a solution size of average lengths. Hence, if
we know the parameters of the distribution, we can choose the mutation probability
such that it is (almost) reciprocal in each position to the expected length of the solution
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(which we stated in Equation (1) to be proportional to q−1). Thus, in the setting of
[6], i.e., for the truncated geometric distribution with parameters N and q, we set
pi := q/2 for all i ∈ N. Our approach naturally also works for the (non-truncated)
geometric distribution Geo(q), which also has a light upper tail.

We remark without proof that similar results hold for distributions that are strongly
concentrated around the mean, e.g., binomial distributions, and also strongly concen-
trated unbounded distributions, such as Poisson distributions.

Theorem 7 For N ∈ N let 1/N ≤ q = q(N ) < 1/2. Let �p := (q/2)i∈N. For
D = Geo(q) and D = TruncGeo(N , q), the expected run time of the (1+ 1) EA �p on
OneMaxD is Θ(q−1 log q−1).

We note that the lower bound is immediate. With constant probability, the random
instance has length Ω(q−1). Since our (1 + 1) EA �p flips bits independently with
probability q/2, the classic coupon collector type argument (see Lemma 10 in [20])
gives that with probability Ω(1) after cq−1 ln(q−1) iterations, where c is a suitable
constant, there is a bit position which was initially zero and which was not flipped in
any mutation operation. Hence in this case, which shows up with constant probability,
the run time is more than cq−1 ln(q−1). This immediately shows that the expected run
time is Ω(q−1 ln(q−1)).

For the proof of the upper bound we will use the following upper bound from [29]
for the expected run time of the (1 + 1) EA on OneMax. A similar upper bound can
be found in [31, Theorem 4.1].

Lemma 8 ([29, Theorem 8]) For a fixed length n and a uniform mutation vector �p =
(p)i∈N with 0 < p < 1, the expected run time of the (1 + 1) EA �p on OneMaxn is at
most (ln(n) + 1)/(p(1 − p)n).

Proof (of Theorem 7) We first consider D = TruncGeo(N , q). We do not worry about
constant factors in this analysis and thus bound some expressions generously.

Using Lemma 8 we can bound the expected run time of the (1 + 1) EA �p on
OneMaxD from above by

N−1∑

n=1

q(1 − q)n−1(ln(n) + 1)

q/2(1 − q/2)n
+ (1 − q)N−1(ln(N ) + 1)

q/2(1 − q/2)N
. (2)

To bound the last summand in this expression, we first observe that (using the binomial
theorem), for all positive n,

(1 − q
2 )n =

(
1 − q + q2

4

)n/2
> (1 − q)n/2. (3)

This shows that the last summand in (2) is at most

2(1 − q)N/2−1(ln(N ) + 1)/q,

which is O(q−1 log q−1). This can be seen as follows. For q ≥ 2 ln ln(N )/N it holds
(using the inequality 1−q ≤ exp(−q)) that (1−q)N/2−1 ≤ exp(−qN/2) ≤ 1/ ln(N )
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and thus 2(1−q)N/2−1(ln(N )+1)/q = O(1/q), while for 1/N ≤ q ≤ 2 ln ln(N )/N
we have (for some suitably chosen constant C)

(1 − q)N/2 ln(N ) ≤ (1 − 1/N )N/2 ln(N ) ≤ C(ln(N ) − ln(2 ln ln N ))

= C ln(N/(2 ln ln N )) ≤ C ln(1/q).

Using again (3) we bound the first part of the sum (2) by

2

1 − q

N−1∑

n=1

(1 − q)n(ln(n) + 1)

(1 − q/2)n
≤ 2

1 − q

N−1∑

n=1

(ln(n) + 1)(1 − q)n/2

= 2
N−1∑

n=1

(ln(n) + 1)(1 − q)n/2−1.

To show that this expression is O(q−1 log q−1) we split the sum into blocks of length
k := �1/q� and use again the inequality 1 − q ≤ exp(−q). This shows that the last
expression is at most

2
�N/k�−1∑

j=0

k∑

	=1

exp
(
−q

(
jk+	
2 − 1

))
(ln ( jk + 	) + 1)

≤ 2k
�N/k�−1∑

j=0

exp
(
− 1

k

(
jk
2 − 1

))
(ln ( j + 1) + ln (k) + 1)

= O (k ln k) ,

where the last equality can be best seen by first considering that
∑�N/k�−1

j=0 exp(− 1
k

(
jk
2 − 1))(ln(k) + 1) = Θ(log k), while

∑�N/k�−1
j=0 exp(− 1

k (
jk
2 − 1))(ln( j + 1)) =

O(1). Summarizing the computations above we see that (2) is of order at most
q−1 log q−1.

For D = Geo(q) the computations are almost identical. By Lemma 8 and (3) the
expected run time of the (1 + 1) EA �p on OneMaxD is at most

2

1 − q

∞∑

n=1

(1 − q)n(ln(n) + 1)

(1 − q/2)n

≤ 2
∞∑

n=1

(1 − q)n/2−1(ln(n) + 1) = O(q−1 log q−1),

which can be seen in a similar way as above by splitting the sum into blocks of size
k := �1/q� and using 1 − q ≤ exp(−q). ��

It is interesting to note that the expected run time increases to between Ω(N ) and
O(N log N ) when the mutation probability is chosen to be �p = (q)i∈N. This can
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easily be seen as follows. For the upper bound we use Lemma 8 (ignoring the “+1”
terms which are easily seen to play an insignificant role) to obtain that the expected
run time of the (1 + 1) EA �p with �p = (q)i∈N on OneMaxTruncGeo(N ,q) is at most

N−1∑

n=1

q(1 − q)n−1 ln n

q(1 − q)n
+ (1 − q)N−1 ln N

q(1 − q)N

=
N−1∑

n=1

ln n

1 − q
+ O(log(N )/q)

= ln((N − 1)!)
1 − q

+ O(N log N )

= O(N log N ).

Wecan derive a strong lower bound ofΩ(N log N ) in the case of 2−N/3 ≤ q ≤ 1/N
from the following one for static solution lengths. See also [31, Sect. 6] for very strong
lower bounds.

Lemma 9 ([29, Theorem 9]) For a fixed length n and a uniform mutation vector �p =
(p)i∈N, the expected run time of the (1 + 1) EA �p on OneMaxn is at least (ln(n) −
ln ln n − 3)/(p(1 − p)n) for 2−n/3 ≤ p ≤ 1/n and at least (ln(1/(p2n)) − ln ln n −
3)/(p(1 − p)n) for 1/n ≤ p ≤ 1/(

√
n log n).

Thus, the expected run time of the (1 + 1) EA �p with �p = (q)i∈N and 2−N/3 ≤
q ≤ 1/N on OneMaxTruncGeo(N ,q) is at least

∑N−1
n=1 q(1 − q)n−1 (ln(n)−ln ln n−3)

q(1−q)n
≥

∑N−1
n=1

1
2
ln n
1−q = 1

2
ln((N−1)!)

1−q = Ω(N log N ). Similarly we can get a lower bound of

Ω(N ) in case of 1/N ≤ q ≤ 1/(
√
N log N ) by using the lower bound of 1/(q(1−q)n)

for any fixed solution length n.
We now turn our attention to theLeadingOnes problems, where a similar approach

as above yields the following result.

Theorem 10 Let N ∈ N and 1/N ≤ q ≤ 1/2. Let �p := (q/2)i∈N. For D =
TruncGeo(N , q) and D = Geo(q), the expected run time of the (1 + 1) EA �p on
LeadingOnesD is Θ(q−2).

We will derive this result from the following lemma, which was independently
proven in [5, Theorem 3], [29, Corollary 2], and in a slightly weaker form in [26,
Theorem 1.2].

Lemma 11 ([5], [29], and [26]) For a fixed length n and a mutation vector �p = (p)i∈N
with 0 < p < 1/2, the expected run time of the (1 + 1) EA �p on LeadingOnesn is
exactly

(
1/(2p2)

) (
(1 − p)−n+1 − (1 − p)

)
.

Proof (of Theorem 10) We first consider the case that the solution length is sampled
from the truncated geometric distributionTruncGeo(N , q). ByLemma11 the expected
run time of the (1 + 1) EA �p on LeadingOnesD is
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N−1∑

n=1

q(1 − q)n−1 2

q2

(
(1 − q/2)−n+1 − (1 − q/2)

)
+ A, (4)

where A is the summand that accounts for the event that the solution length is N , i.e.,

A = (1 − q)N−1 2

q2

(
(1 − q/2)−N+1 − (1 − q/2)

)
= O

(
q−2

)
.

To bound expression (4), we use inequality (3), which for n = 1 provides (1−q)1/2 <

1−q/2. Using this inequality (in the first and the last step in the computations below),
and ignoring the “−(1−q/2)” term in (4), we can bound the expected run time of the
(1 + 1) EA �p on LeadingOnesD from above by

2

q

N−1∑

n=1

(
(1 − q)n−1

(1 − q/2)n−1

)

+ O
(
q−2

)
≤ 2

q

∞∑

n=0

(1 − q)n/2 + O
(
q−2

)

= 2

q

1

1 − (1 − q)1/2
+ O

(
q−2

)
= O(q−2).

Similar computations, again using that (1 − q)1/2 < 1 − q/2 show that for D =
Geo(q) the expected run time of the (1+1) EA �p on LeadingOnesD is bounded from
above by

2

q

∞∑

n=1

(1 − q)n−1

(1 − q/2)n−1 ≤ 2

q

∞∑

n=0

(1 − q)n/2 = 2

q

1

1 − (1 − q)1/2
≤ 4

q2
.

��
Just as for OneMaxD (with D = TruncGeo(N , q)) we see that also on

LeadingOnesD the expected run time increases (in this case to Θ(N/q)) when the
mutation probability is chosen to be �p = (q)i∈N. By Lemma 11 this run time equals

N−1∑

n=1

q(1 − q)n−1 1

2q2

(
(1 − q)−n+1 − (1 − q)

)
+ A

= 1

2q

N−1∑

n=1

(1 − (1 − q)n) + A

= 1

2q

(

N − 1 − 1 − (1 − q)N

q
+ 1

)

+ A

= Θ(N/q) + A,

where A is the summand that accounts for the event that the solution length is N , i.e.,

A = (1 − q)N−1 1

2q2

(
(1 − q)−N+1 − (1 − q)

)
= Θ

(
q−2

)
.
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4 Initial Segment Uncertainty Model with Arbitrary Solution Length

In the setting described in Sect. 3 it is assumed that the algorithm designer has quite a
good knowledge about the solution length. Not only does he know an upper bound of
N , but he may also crucially exploit its distribution. Indeed, we make quite heavy use
in Theorems 7 and 10 of the fact that the (truncated) geometric distribution has a light
upper tail. Since situationsmay exist in which one cannot rely on somuch information,
we regard in this section a more general setting in which no prior information is given
about the possible solution length n. That is, we regard a setting in which the solution
length can be an arbitrary positive integer. In this setting neither do we have any upper
bounds on n nor any information about its distribution.

As before, our task is to decide upon on a sequence (pi )i∈N ofmutation probabilities
0 ≤ pi ≤ 1. An adversary may then choose the solution length n and we run the
(1+1)EA �p with �p = (p1, . . . , pn). In practical applications, this can be implemented
with a (possibly generous) upper bound on the problem size.

We first show that uniform fixed bit flip probabilities necessarily lead to exponential
run times (see Sect. 4.1). We then show two ways out of this problem. In Sect. 4.2 we
consider position-dependent bit flip probabilities and in Sect. 5 we show that we can
have an efficient algorithm with uniform bit flip probabilities if we choose the bit flip
probability randomly in each iteration.

4.1 Non-suitability of Uniform Bit Flip Probabilities

It seems quite intuitive that, if nothing is known about the solution length, there is not
much we can achieve with uniform bit flip probabilities. In fact, for any fixed mutation
probability p ∈ [0, 1], we just need to choose a large enough solution length n to see
that the (1 + 1) EA �p with uniform mutation probability p is very inefficient.

More precisely, using the following statement (which is a simplified version of [31,
Theorem 6.5]), we get the lower bound regarding optimizing OneMax with uniform
bit flip probabilities stated in Theorem 13.

Theorem 12 (from [31]) Let 0 < ε < 1 be a constant. Let p = O(n−2/3−ε) and
�p := (p)i∈N. On any linear function, the expected optimization time of the (1+1)EA �p
is bounded from below by

(1 − o(1))
1

p(1 − p)n
min

{

ln(n), ln

(
1

p3n2

)}

.

Theorem 13 Let p ∈ [0, 1] be a constant and �p := (p)i∈N. Then there exists a positive
integer n0 ∈ N such that, for all n ≥ n0, the expected run time of the (1 + 1) EA �p on
OneMaxn is 2Ω(n).

It is quite intuitive that for large p the expected optimization time of the (1+1)EA �p
with �p = (p)i∈N is very large also for small problem sizes, as in this case typically
too many bits are flipped in each iteration. This has been made precise by Witt, who
showed that for p, n with p = Ω(nε−1), the expected run time of the (1 + 1) EA �p is
2Ω(nε) with probability at least 1 − 2−Ω(nε) [31, Theorem 6.3].
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For LeadingOnes we get a similar lower bound from Lemma 11.

Theorem 14 Let p ∈ (0, 1/2) be a constant and �p := (p)i∈N. Then the expected run
time of the (1 + 1) EA �p on LeadingOnesn is 2Ω(n).

Proof From Lemma 11 we have that the expected run time of the (1 + 1) EA �p is, for
n large enough,

1

2p2

(
(1 − p)−n+1 − (1 − p)

)
≥ 1

2

(
epn−p − 1

) = 2Ω(n).

��

4.2 Initial Segment Uncertainty Model with Position-Dependent Bit Flip
Probabilities

As discussed, one way to achieve efficient optimization with unknown solution length
is by using position-dependent mutation rates, that is, different bit positions have
different probabilities associated for being flipped during a mutation operation. We
shall make use of summable sequences �p to define these bit-flip probabilities. For the
convenience of the reader, some basic facts and definitions of summable sequences
are summarized in Section A in the “Appendix”.

The advantage of using summable sequences is that the probability of flipping only
one single bit is always constant, regardless of the total number of bits considered, i.e.,
regardless of the problem length n. This is in contrast to the sequence (1/(i + 1))i∈N
considered in [6], which is not summable, and which has a chance of (1/2)

∏n
i=2(1−

1/(i + 1)) = 1/n of flipping only the first bit and a chance of (1/n)
∏n−1

i=1 (1− 1/(i +
1)) = 1/n2 of flipping only the nth bit. For this reason the (1+1)EAi is very inefficient
for the setting in which the solution length can be arbitrary.

Using the following two theorems for OneMax and LeadingOnes, respec-
tively, we will be able to show in Corollary 17 that not knowing the solution
length n does not harm the expected run time more than by a factor of order
log(n) log(2)(n) . . . log(s−1)(n)(log(s)(n))1+ε with respect to the best known (and, in
case of LeadingOnes according to Lemma2 optimal) boundwhen the problem length
is known a priori.

We start with the theorem regarding OneMax.

Theorem 15 Let �p = (pi )i∈N be a monotonically decreasing summable sequence
withΣ := ∑∞

i=1 pi < 1. Then the expected run time of the (1+1) EA �p onOneMaxn
is at most log n/(pn(1 − Σ)) = O(log n/pn).

Proof Wemake use of the multiplicative drift theorem [17, Theorem 3] and show that
for every n and every search point x with n − k ones, the probability to create in one
iterationof the (1+1)EA �pwith �p a searchpoint ywithOneMaxn(y) > OneMaxn(x)
is at least of order k/pn . This can in fact be seen quite easily by observing that the
probability to increase the OneMax-value of x by exactly one is at least
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kpn

n∏

j=1

(1 − p j ) ≥ kpn

⎛

⎝1 −
n∑

j=1

p j

⎞

⎠ ≥ kpn

⎛

⎝1 −
∞∑

j=1

p j

⎞

⎠

= kpn(1 − Σ),

where the first (elementary) estimate is known as Weierstrass product inequality, see,
e.g., [9]. From this an upper bound of log n/(pn(1 − Σ)) for the run time of the
(1 + 1) EA �p follows immediately from the multiplicative drift theorem. ��

Next we consider LeadingOnes. The proof follows along similar lines as the one
for OneMax and uses a fitness level argument instead of multiplicative drift (using
additive drift would also be possible). The following statement will be generalized in
Lemma 27 but suffices for the considerations made in this section.

Theorem 16 Let �p = (pi )i∈N be amonotonically decreasing summable sequencewith
Σ := ∑∞

i=1 pi < 1. The expected run time of the (1 + 1) EA �p on LeadingOnesn is
at most n/(pn(1 − Σ)) = O(n/pn).

Proof Let n, k ∈ Nwith k < n and let x ∈ {0, 1}n withLo(x) = k−1. The probability
to get in one iteration of the (1 + 1) EA �p a search point y with Lo(y) > Lo(x) is at
least

pk

k−1∏

j=1

(1 − p j ) ≥ pk

⎛

⎝1 −
k−1∑

j=1

p j

⎞

⎠ ≥ pk(1 − Σ) ≥ pn(1 − Σ).

By a simple fitness level argument (see, e.g., the work by Sudholt [29] for back-
ground and examples of this method), the expected run time of the (1 + 1) EA �p on
LeadingOnesn is thus at most n/(pn(1 − Σ)). ��

It is well known that, for every constant ε > 0, the sequence (1/(i(log i)1+ε))i∈N is
summable (this can be proven via Cauchy’s condensation test). It is alsomonotonically
decreasing in i . Theorems 15 and 16 therefore imply that the expected run time of the
(1+1)EA �p onOneMaxn is O(n(log n)2+ε) and O(n2(log n)1+ε) forLeadingOnesn
when �p = (pi )i∈N := (1/(2Si(log i)1+ε))i∈N with S := ∑∞

i=1 1/(i(log i)
1+ε).

This bound can be improved by regarding the following sequences of iterated log-
arithms. For every b > 1, ε ≥ 0, r > 0, and all positive integers s, set

ps,εb (r) := 1/

(

r(log(s)
b (r))1+ε

s−1∏

j=1

log( j)
b (r)

)

, (5)

where, for each b > 1, j ∈ N≥2, and r > 0, we set

log( j)
b (r) :=

{
logb(log

( j−1)
b (r)), if log( j−1)(r) ≥ b;

1, otherwise;
(6)
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with log(1)
b (r) := logb(r) if r ≥ b and log(1)

b (r) := 1 otherwise. When, in the
following, the subscript b indicating the base of the logarithm is omitted, it can be
assumed to be equal to two.

It is furthermore well known that, for every ε > 0 and every s ≥ 1, the sequence
(ps,ε2 (n))n∈N is summable, cf. [21, page 48]. Together with Theorems 15 and 16 , this
gives the following bounds.

Corollary 17 Let s ∈ N and ε > 0. Set �p := (ps,εi )i∈N. Then the expected run time of
the (1 + 1) EA �p is

– O(n(log(n))2 log(2)(n) . . . log(s−1)(n)(log(s)(n))1+ε) on OneMaxn, and
– O(n2 log(n) log(2)(n) . . . log(s−1)(n)(log(s)(n))1+ε) for LeadingOnesn.

A natural question arising from the construction in (5) is the summability of those
sequences in which the iterated logarithms in the denominator are not interrupted; that
is, of the sequences (p∞

b (n))n∈N with elements

p∞
b (n) := 1/

(

n
∞∏

j=1

log( j)
b (n)

)

. (7)

It is known in the mathematics literature (cf. also Theorem 43 in the “Appendix”) that
these sequences (p∞

b (n))n∈N are summable if and only if the base b of the logarithm
satisfies b < e := exp(1). This yields the following bounds.

Corollary 18 Let b < e and �p := (p∞
b (n))n∈N. The expected run timeof the (1+1)EA �p

is

– O(n(logb(n))2 log(2)
b (n) . . .) on OneMaxn, and

– O(n2 logb(n) log(2)
b (n) . . .) on LeadingOnesn.

5 Unrestricted Uncertainty Model

In the conclusions of [6] the authors ask the following: how canwe optimize efficiently
when an upper bound N on the problem length is known, but only n bits at unknown
positions are relevant for the fitness? It is not difficult to see that our previous solutions
with position-dependent bit flip probabilities will not be able to assign appropriate bit
flip probabilities to the relevant bit positions. However, any uniform choice of bit flip
probabilities will effectively ignore irrelevant bit positions. In this section we therefore
consider the (1 + 1) EAQ , described as Algorithm 3 in Sect. 2.3, a variation of the
(1+1)EAwhere the bit flip probability p is chosen randomly from a distribution Q on
(0, 1) in each iteration (the distribution Q does not change over time). This mutation
probability is then applied independently to each bit, i.e., each bit of the current best
solution is independently flipped with probability p.
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To make the problem more explicit, we are asked to find a distribution Q on [0, 1]
such that the (1 + 1) EAQ efficiently optimizes for any n ∈ N and any pairwise
different b1, . . . , bn ∈ N the functions

OneMaxb1,...,bn (x) :=
n∑

i=1

xbi , respectively

LeadingOnesb1,...,bn (x) := max{i ∈ [0. . .n] | ∀ j ≤ i : xb j = 1}.

In Theorems 19 and 20 we show that such a distribution Q exists. That is, there is
a distribution Q such that the corresponding (1 + 1) EAQ efficiently optimizes any
OneMaxb1,...,bn and any LeadingOnesb1,...,bn function, regardless of the number of
relevant bits and regardless of their positions.

We start with our main result regarding OneMax.

Theorem 19 Let (pi )i∈N ∈ (0, 1)N be a monotonically decreasing summable
sequence. Set Σ := ∑∞

j=1 p j . Let Q be the distribution which assigns the muta-
tion probability 1/i a probability of pi/Σ .

For any pairwise different positive integers b1, . . . , bn the expected run time of the
(1 + 1) EAQ on OneMaxb1,...,bn is O (log(n)/p2n).

Proof Let n ∈ N and b1, . . . , bn be pairwise different positive integers.
The probability to sample a mutation probability between 1/(2n) and 1/n is

2n∑

j=n

p j ≥ np2n .

We disregard all iterations in which we do not sample a mutation probability between
1/(2n) and n (they can only be beneficial). Thus, on average, we consider at least one
iteration out of 1/(np2n).

Assuming that x is a search point with n − 	 ones (in the relevant positions) and
that the sampled bit flip probability p satisfies 1/(2n) ≤ p ≤ 1/n, the probability of
gaining one of the remaining 	 ones in a relevant position and not flipping any other
relevant bit is

	p(1 − p)n−1 ≥ 	/(2n)(1 − 1/n)n−1 ≥ 	/(2en).

Thus, we have an expected progress in each iteration of at least

	

2en
np2n = O (	p2n) .

Therefore, by the multiplicative drift theorem [17, Theorem 3], we need in expectation
O(log(n)/p2n) iterations to optimize function OneMaxb1,...,bn . ��

For LeadingOnes we obtain the following.
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Theorem 20 Let (pi )i∈N and Q as in Theorem 19. For any pairwise different
b1, . . . , bn ∈ N the expected run time of the (1 + 1) EAQ on LeadingOnesb1,...,bn is
O (n/p2n).

Proof Let n ∈ N and b1, . . . , bn be pairwise different positive integers.
This proof follows along similar lines as the one for OneMax. We have again that

the probability to have a bit flip probability between 1/(2n) and 1/n in an iteration is
at least np2n .

Let x be a search point with LeadingOnesb1,...,bn (x) = 	. Given a mutation prob-
ability p between 1/(2n) and 1/n, the probability to create in one iteration of the
(1 + 1) EAQ a search point y of fitness greater than 	 is at least

p(1 − p)	−1 ≥ (1/(2n)) (1 − 1/n)n−1 ≥ 1/(2en).

Thus, we have an expected progress in each iteration of at least

1

2en
np2n = O(p2n).

Therefore, by the fitness level method (see again [29] for a discussion of this method),
we need in expectation O(n/p2n) iterations to optimize LeadingOnesb1,...,bn . ��

Similarly to Corollaries 17 and 18 we obtain the following bounds.

Corollary 21 Let n ∈ N and b1, . . . , bn be pairwise different positive integers.
For s ∈ N, ε > 0, �p := (ps,εi )i∈N, and Q = Q( �p) the expected run time of the

(1 + 1) EAQ is

– O(n(log(n))2 log(2)(n) . . . log(s−1)(n)(log(s)(n))1+ε) for OneMaxb1,...,bn , and
– O(n2 log(n) log(2)(n) . . . log(s−1)(n)(log(s)(n))1+ε) for LeadingOnesb1,...,bn .

For b < e, �p = (p∞
b (n))n∈N, and Q = Q( �p) the expected run time of the (1 +

1) EAQ is

– O(2n(logb(2n))2 log(2)
b (2n) . . .) for OneMaxb1,...,bn , and

– O(2n2 logb(2n) log(2)
b (2n) . . .) for LeadingOnesb1,...,bn .

6 Lower Bounds for LeadingOnes in Both Uncertainty Models

In this section, we prove very sharp lower bounds for the optimization of the Leadin-
gOnes function in the twouncertaintymodels via the twoalgorithmclasses (1+1)EA �p
and (1+1)EAQ . Our first result and the central step towards proving the lower bounds
is proposing a fairly general class of algorithms that extends both previous algorithm
classes (Sect. 6.1).We then show that all three lead to the same run time profiles for the
initial segment model (Theorem 26). Since the (1+ 1) EAQ algorithm class gives the
same performance on instances defined on any subset of the bit positions, this general
result connects the two uncertainty models and shows that none of our algorithms can
have a better performance in the weaker initial segment model.
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Given that all algorithm classes are equally powerful, we then concentrate in
Sect. 6.2 on the performance of the (1 + 1) EA �p in the initial segment uncertainty
model. In Theorem 34we show that, for all s ∈ N,Ω(n2 log(n) log(2)(n) . . . log(s)(n))

is a lower bound for the expected run time of the LeadingOnes instance of length n.
By carefully constructing for each sequence �p a sequence �q such that the asymptotic
performance of (1 + 1) EA�q is strictly better than the one of (1 + 1) EA �p, we also
show that there is no best asymptotic performance on the initial segment Leadin-
gOnes problem in the (1+ 1) EA �p algorithms class (and likewise in the (1+ 1) EAQ

class), cf. Sect. 6.2.2.

6.1 Four Algorithm Classes with Equal Power in the Initial Segment Uncertainty
Model

To conveniently prove lower bounds for the two algorithm classes (1 + 1) EA �p and
(1+ 1) EAQ , we define the following algorithm class which generalizes both. Conse-
quently, a lower bound for the new algorithm class immediately is a lower bound for
both previously regarded ones.

Arbitrary Mutation on Infinite Bit Strings: The (1+ 1) EAP. In simple words,
we consider all algorithms that can be defined as follows. Let P be a probability
measure on the set Ω = {0, 1}N of infinite bit strings. The (1 + 1) EAP, when run
on the finite subset I ⊂ N of bit positions, is the classic (1 + 1) EA except that the
mutation operator (informally speaking) samples a random element X from Ω and
then flips exactly those bits i ∈ I for which Xi = 1.

To make this formally correct, we need a mild excursion into probability theory.
For all n ∈ N and a1, . . . , an ∈ {0, 1}, we call the set

C(a1, . . . , an) := {x ∈ Ω | ∀i ∈ [n] : xi = ai }

a cylinder in Ω . Let A be the σ -algebra generated by all cylinders. The precise
structure of A is not overly important in the remainder except that it contains the
following sets C(y).

For a finite set I ⊂ N denote by {0, 1}I the set of all finite binary sequences with
indices in I , formally, all y : I → {0, 1}. For y ∈ {0, 1}I , let

C(y) := {x ∈ Ω | ∀i ∈ I : xi = yi }.

Then A contains all such sets C(y).
Formally speaking, {C(y) | y ∈ {0, 1}I } generates a sub-σ -algebra of A, which

is isomorphic to {0, 1}I . Consequently, any probability measure P on the measurable
space (Ω,A) gives rise to a probability measure PI on {0, 1}I (with the power set as
σ -algebra) defined by

PI (y) := P[C(y)]

for all y ∈ {0, 1}I .
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Building on these considerations, we can define the mutation operator of the (1 +
1) EAP when running on a finite set I ⊂ N of bit positions as follows. The offspring
stemming from a parent x ∈ {0, 1}I is x ⊕ y, where y ∈ {0, 1}I is chosen randomly
from the distribution PI . Here ⊕ denotes the bit-wise exclusive-or. In other words, we
flip those bits i of x for which yi is one.

Next we argue that the (1+ 1) EA �p and (1+ 1) EAQ classes are subclasses of the
class of all algorithms (1 + 1) EAP.

– Let �p = (pi )i∈N be any sequence in [0, 1]. Then the (1 + 1) EA �p, when run on
a finite bit set I , performs mutation by flipping each bit i ∈ I independently with
probability pi . When defining a probability measure P on Ω by setting

P[C(a1, . . . , an)] =
∏

i∈[n];ai=1

pi
∏

i∈[n];ai=0

(1 − pi )

for all cylinders, then the (1+1) EA �p and the (1+1) EAP are the same algorithm.
– Let Q be a discrete distribution on [0, 1]. Then the (1 + 1) EAQ , when run on
a finite bit set I , performs mutation by first sampling a number q from Q and
then flipping each bit i ∈ I independently with probability q. When defining a
probability measure P on Ω by setting

P[C(a1, . . . , an)] =
∑

q

Q(q)
∏

i∈[n];ai=1

q
∏

i∈[n];ai=0

(1 − q),

then the (1 + 1) EAQ and the (1 + 1) EAP are the same algorithm.

For this reason, any lower bound for the best performance achievable with an
algorithm from the class (1 + 1) EAP immediately carries over to the subclasses
(1 + 1) EA �p and (1 + 1) EAQ . Now that we regard the same class (1 + 1) EAP of
algorithms for the two uncertainty models of an unknown initial segment [n] and an
unknown set I of relevant bits, it is clear that a lower bound for the first case carries
over to the second. Since our lower bound for the first case will essentially match our
upper bounds for both models (as they are equal), it suffices in the following to regard
the model of an unknown initial segment I = [n] of bits on which the LeadingOnes
function to be optimized is defined.

The next step towards the solution of our problem is the following surprising result
that for any algorithm (1 + 1) EAP there is a randomized local search algorithm
(flipping a single randomly chosen bit as mutation operation) that has exactly the
same performance on all initial segments (Lemma 22).

Generalized Randomized Local Search on Infinite Bit Strings: RLS �p. Let
p1, p2, . . . be non-negative numbers with

∑
n∈N pn ≤ 1. Then the algorithm RLS �p is

a special case of the (1 + 1) EAP that

– flips exactly the i th bit with probability pi
– and flips no bit with probability 1 − ∑

n∈N pn .
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More formally, RLS �p equals (1 + 1) EAP for the measure P defined by P[C(a1, . . . ,
an)] :=

⎧
⎪⎨

⎪⎩

pi , if ai = 1 and a j = 0 for j ∈ [n] \ {i},
0, if there are i, j ∈ [n] with i �= j and ai = 1 = a j ,

1 − ∑
n∈N pn, a j = 0 for j ∈ [n].

Lemma 22 LetP be any probability measure onΩ = {0, 1}N. Then there is a sequence
of non-negative numbers �p = (p1, p2, . . .)with

∑
n∈N pn ≤ 1 such that, for Leadin-

gOnes, the randomized local search algorithm RLS �p and (1 + 1) EAP when run on
any initial segment of bits have exactly the same run time distribution.

To prove this lemma, we need the auxiliary result that in any run of an (1+ 1) EAP

algorithm at any time t the random individual X (t) is identically distributed within
each fitness level. This elementary observation has been used previously in [5,16,29]
to analyze the optimization of fixed length LeadingOnes instances.

Lemma 23 Consider a run of an (1+1) EAP algorithm on the LeadingOnes function
defined on the initial segment [n]. Denote by X (0) the random initial individual and
by X (t), t ∈ N, the random individual forming the one-element population of the
(1 + 1) EAP after the t-th iteration. Then, for any two search points x, y ∈ {0, 1}n
with Lo(x) = Lo(y), we have Pr[X (t) = x] = Pr[X (t) = y].
Proof We proceed by induction over time. For t = 0, the claim is obvious since
X (0) is simply a bit string chosen uniformly at random from {0, 1}n , so we even have
Pr[X (t) = x] = Pr[X (t) = y] for all x, y ∈ {0, 1}n .

Assume the claim to hold for some t ≥ 0. Since the distribution of X (t+1) is a convex
combination of the distributions of X (t+1) conditional on the events Lo(X (t)) = i ,
i ∈ [0. . .n], it suffices to show the claim conditioning on Lo(X (t)) = i for some
i ∈ [0. . .n] (by the law of total probability). So let us assume that X (t) = i for some
i ∈ [0. . .n]. Since the claim is trivial for i = n, let us assume i < n. Then, with
probability one, the first i bits of X (t) are one and X (t)

i+1 = 0. For all j > i + 1,

the bits X (t)
j are independently and uniformly distributed in {0, 1} by our induction

hypothesis.
Let Y ∈ {0, 1}n be the random mutation mask used in the (t + 1)-st iteration, that

is, Y j = 1 if and only if the mutation step in this iteration flipped the j-th bit. We
again condition on each possible outcome y ∈ {0, 1}n of Y and prove the claim in this
case. Hence let y ∈ {0, 1}n and condition on Y (t) = y. We need to show that X (t+1)

in this situation is uniformly distributed within each fitness level. We consider three
cases.

Case 1: If y is such that y j = 1 for some j ≤ i , then the mutation offspring has
a lower fitness than X (t) and is not accepted. Hence X (t) and X (t+1) are identically
distributed and the claim is obvious.

Case 2: If y is such that y j = 0 for all j ≤ i + 1, then the mutation offspring has
fitness equal to Lo(X (t)) and is accepted. The distribution of this X (t+1) is identical to
the one of X (t), since the first i +1 bits are not changed and the last n− (i +1) bits are
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obtained from an exclusive-or of the last n − (i + 1) bits of X (t), which are uniformly
distributed in {0, 1}n−(i+1), and a fixed bit string, namely the last n− (i + 1) bits of y.
Since such an exclusive-or is a bijection of {0, 1}n−(i+1), this part of X (t+1) remains
uniformly distributed in {0, 1}n−(i+1).

Case 3: We consider finally the case that yi+1 = 1 and y j = 0 for all j ≤ i . In
this case, the mutation offspring and hence also X (t+1) have a fitness larger than i .
With the same argument as in the previous case, we see that the last n − (i + 1) bits
remain independently and uniformly distributed. Consequently, when conditioning on
the fitness of X (t+1) being some j ≥ i +1, the bits with index larger than j +1 remain
independently and uniformly distributed. This again shows the claim. ��
Proof (of Lemma 22) For n ∈ N, let Cn := C(a1, . . . , an) with a1 = . . . = an−1 = 0
and an = 1. Let pn := P[Cn]. Since the sets (Cn)n∈N are disjoint, we have

∑
n∈N pn ≤

1. We show that the (1 + 1) EAP and RLS �p have an identical optimization behavior.
Let n ∈ N and consider the optimization of LeadingOnes on the initial segment

[n] both via the (1+ 1) EAP and RLS �p. By Lemma 23, both algorithms at any time t
have the property that the parent individual X (t) is uniformly distributed within each
fitness level. Consequently, the distribution of X (t) is fully described by the fitness
level densities (Pr[Lo(X (t)) = i])i∈[0...n]. To show that X (t) has the same distribution
for the (1+ 1) EAP and RLS �p, it therefore suffices to show that both algorithms have
the same fitness level densities.

Wedo so by induction. There is nothing to show for t = 0, since the initial individual
is chosen uniformly at random in both algorithms. Assume that at some time t ≥ 0
both algorithms have the same fitness level densities. We show that this is also true
at time t + 1. Since Pr[Lo(X (t+1)) = i] = ∑n

j=0 Pr[Lo(X (t+1)) = i | Lo(X (t)) =
j]Pr[Lo(X (t)) = j] and since the Pr[Lo(X (t)) = j] are identical for both algorithms,
it suffices to show that both algorithms have identical Pr[Lo(X (t+1)) = i | Lo(X (t)) =
j] for all i, j ∈ [0. . .n].
Let j ∈ [0. . .n]. Since there is nothing to show for j = n, let us assume j < n. For

the (1+ 1) EAP, the probability to leave the j-th fitness level is the probability to flip
the ( j + 1)-st bit and to not flip bits 1, . . ., j . By definition of the (1+ 1) EAP, this is
exactly P[C j+1]. The second algorithm RLS �p, obviously, leaves the j-th fitness level
if and only if the ( j + 1)-st bit is the single bit that is flipped, which by definition
happens with probability p j+1 = P[C j+1]. For both algorithms, conditional on that
the j-th fitness level being left, the bits with index larger than j + 1 are independently
and uniformly distributed. Consequently, the number of additional fitness levels gained
in addition to the ( j + 1)-st one is also equally distributed. ��

We note in the following lemma that, for LeadingOnes, the class of algorithms
(1 + 1) EA �p regarded in [11] is equal in power to the class of algorithms RLS �p.
Together with Lemma 22, this shows that all three classes of algorithms are equally
powerful, and in particular, that the subclass (1 + 1) EA �p regarded in [11] was of
maximal power.

Lemma 24 For any sequence of non-negative numbers �p = (p1, p2, . . .) with∑
n∈N pn ≤ 1 there is a sequence �q = (q1, q2, . . .) of numbers in [0, 1] such that
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RLS �p and (1 + 1) EA�q for each initial segment of bits have the same run time distri-
bution on LeadingOnes.

Proof Let us assume that we have pn < 1 for all n ∈ N, as otherwise trivially �q := �p
suffices. Let q1 := p1 and recursively qn := pn/

∏n−1
j=1(1− q j ). Using induction, it is

not difficult to see that qn = pn/(1−∑
j<n p j ). Furthermore, since 1−∑

j<n p j ≤
pn , this also shows that qn ≤ 1. As discussed earlier, this (1 + 1) EA�q is a special
case of the (1+ 1) EAP with P[C(a1, . . . , an)] = ∏

i∈[n];ai=1 qi
∏

i∈[n];ai=0(1− qi ).
In particular, for a1 = . . . = an−1 = 0 and an = 1, we have P[C(a1, . . . , an)] =
qn

∏n−1
i=1 (1 − qi ), which by construction equals pn . Consequently, if we redo the

construction of the proof of Lemma 22 with this (1 + 1) EAP, we obtain our original
RLS �p algorithm. Consequently, the (1 + 1) EA�q just constructed has an identical
performance with RLS �p. ��

An advantage of the class RLS �p is that the expected run times are easy to compute.
The following result will be used inLemma27 to bound the run time of the (1+1)EA �p.
The proof is inspired by the analysis of the expected run time of the (1 + 1) EA on
LeadingOnes in [5], however, we are not aware of a previous analysis of the run time
of RLS on LeadingOnes. We note that, while this work was under review, a general
analysis of (1+1)-type algorithms on LeadingOnes via stochastic domination was
proposed in [8], which implies our result. Since this proof is very different from ours,
and to keep our work self-contained, we still present our original proof.

Lemma 25 Let �p = (p1, p2, . . .) be a sequence of non-negative numbers with∑
n∈N pn ≤ 1. Then the expected run time of RLS �p optimizing the LeadingOnes

function on the initial segment [n] is 1
2

∑n
i=1

1
pi
, where 1

0 := ∞.

Proof Let n ∈ N. Denote by E the expected run time of RLS �p on LeadingOnes in
[n]. If there is an i ∈ [n] with pi = 0, then with positive probability RLS �p never finds
the optimum, hence E = ∞ as claimed. So let us assume that all pi are positive.

Denote by Ei the expected run time of RLS �p when starting with a random search
point of fitness i . Then, trivially, En = 0. For i < n, we observe that when starting
with a random search point of fitness i we only make progress when the (i+1)-st bit is
flipped. The expectedwaiting time for this event is 1

pi+1
. If this event happens, since the

bits with index higher than i+1 are independently and uniformly distributed, wemove
up to fitness level i+	with probability pi,i+	 := 2−	, 	 = 1, . . . , n− i−1, and move
up to fitness level n with probability pi,n := 2−(n−i−1). Since in any case the resulting
search point is uniformly distributed on its fitness level, see Lemma 23, we have Ei =
1

pi+1
+ ∑n

j=i+1 pi, j E j = 1
pi+1

+ ∑n−1
j=i+1 2

−( j−i)E j . Regarding the corresponding

expression for Ei+1, we see that
∑n−1

j=i+2 2
−( j−i)E j = (Ei+1 − 1

pi+2
)/2. Substituting

this suitably into the expression for Ei , we obtain Ei = 1
pi+1

+ Ei+1 − 1
2pi+2

. Now an

elementary induction for i = n − 1 down to 0 shows Ei = 1
pi+1

+ 1
2

∑n
j=i+2

1
p j
.

Since the initial individual is chosen uniformly at random from {0, 1}n , we have
E = ∑n−1

i=0 2−i−1Ei , where we exploited En = 0 already. Using our knowledge about
the Ei , we obtain E = 1

2

∑n
i=1

1
pi

as claimed. ��
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The above insight allows us to completely describe the possible performances of
(1+1)EAP, (1+1)EA �p, and RLS �p algorithms on LeadingOnes defined on an initial
segment of unknown length of an infinite sequence of bits. To make things precise, we
call the function E : N → R the initial segment run time profile of such an algorithm
if its expected run time on the LeadingOnes function defined on the bits with indices
in [n] equals E(n).

Theorem 26 (characterization of initial segment run timeprofiles)Let E : N → R.
The following four properties are equivalent.

(i) There is a sequence q : N → [0, 1] with ∑∞
n=1 qn ≤ 1 such that for all n ∈ N,

we have E(n) = 1
2

∑n
i=1

1
qi
.

(ii) E is the initial segment run time profile of the (1+ 1) EAP for some distribution
P.

(iii) E is the initial segment run timeprofile of the (1+1)EA �p for some �p : N → [0, 1].
(iv) E is the initial segment run time profile of RLS �p for some �p : N → [0, 1] with∑∞

n=1 pn ≤ 1.

If these properties are fulfilled, then q in (i) equals �p in (iv).

6.2 Computing Concrete Lower Bounds for LeadingOnes

In the remainder of this section, we use Theorem 26 to compute concrete run time
bounds for the (1+1)EA �p. These bounds then immediately yield performance bounds
for all the other settings covered by Theorem 26. We note that some (but not all) of
the subsequent run time results can alternatively be obtained by directly analyzing the
summable sequences described in Theorem 26.(i). Such an approach would, however,
not give any additional insights into the sequences �p underlying the (1+ 1) EA �p with
initial segment run time profile E , thus motivating us to study this algorithm directly.

6.2.1 Initial Segment Run Time Profile of the (1 + 1) EA�p

Lemma 22 can be used to precisely determine the initial segment run time profile of the
(1+1) EA �p. From this we can easily compute the following upper and lower bounds.
This result extends Theorem 16, which assumes that �p is monotonically decreasing
and summable.

Lemma 27 Let �p = (pn)n∈N be a sequence of positive numbers. Let S0 := 0 and Sn :=∑n
i=1 pi for all n ∈ N. The expected optimization time E[T �p(n)] of the (1+1) EA �p on

the LeadingOnes instance of length n in the initial segment uncertainty model can
be bounded by

1

2

n∑

i=1

exp(Si−1)

pi
≤ E[T �p(n)] ≤ 1

2

n∑

i=1

exp(2Si−1)

pi

where the upper bound is valid only when pn ≤ 1
2 for all n ∈ N.
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If �p is monotonically decreasing, p1 ≤ 1/2, and there exists a constant c such that,
for all n, pn/pn/2 ≥ c, then E[T �p(n)] = n exp(Θ(Sn))/pn. For summable sequences
satisfying these additional requirements, we thus have E[T �p(n)] = Θ(n/pn).

Proof By Lemma 22 the initial segment run time for the (1 + 1) EA �p equals that of
RLS�q with �q = (pn

∏
j<n (1 − p j ))n∈N. To this sequence we apply Lemma 25 to see

that the expected run time of the RLS�q and thus of the (1 + 1) EA �p equals

E[T �p(n)] = 1

2

n∑

i=1

⎛

⎝

⎛

⎝
∏

j<i

(1 − p j )

⎞

⎠ pi

⎞

⎠

−1

. (8)

We use the inequalities e−2x ≤ (1 − x) ≤ e−x , valid for all x ≤ 1/2, to get the
following estimates.

To bound the expected run time from below, we observe that

E[T �p(n)] = 1

2

n∑

i=1

⎛

⎝

⎛

⎝
∏

j<i

(1 − p j )

⎞

⎠ pi

⎞

⎠

−1

≥ 1

2

n∑

i=1

⎛

⎝

⎛

⎝
∏

j<i

exp(−p j )

⎞

⎠ pi

⎞

⎠

−1

= 1

2

n∑

i=1

⎛

⎝

⎛

⎝exp

⎛

⎝−
∑

j<i

p j

⎞

⎠

⎞

⎠ pi

⎞

⎠

−1

= 1

2

n∑

i=1

exp(Si−1)

pi
. (9)

If �p is monotonically decreasing then Sn ≤ 2Sn/2, showing that

E[T �p(n)] ≥ 1

2

n∑

i=n/2+1

exp(Sn/2)

pn/2

≥ 1

2

n

2

exp(Sn/2)

pn/2
. (10)

If, in addition, for some constant c > 0 we have pn/pn/2 ≥ c, then it can be easily
seen from (10) that there is a constant d such that

E[T �p(n)] ≥ n
exp(dSn)

pn
.
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We now turn to the upper bound. We have

E[T �p(n)] = 1

2

n∑

i=1

⎛

⎝

⎛

⎝
∏

j<i

(1 − p j )

⎞

⎠ pi

⎞

⎠

−1

≤ 1

2

n∑

i=1

⎛

⎝

⎛

⎝
∏

j<i

exp(−2p j )

⎞

⎠ pi

⎞

⎠

−1

= 1

2

n∑

i=1

⎛

⎝

⎛

⎝exp

⎛

⎝−
∑

j<i

2p j

⎞

⎠

⎞

⎠ pi

⎞

⎠

−1

= 1

2

n∑

i=1

exp(2Si−1)

pi
. (11)

For all positive sequences �p the series (Sn)n∈N is monotonically increasing. If �p is
monotonically decreasing, then (11) shows that

E[T �p(n)] ≤ n

2

exp(2Sn)

pn
.

��
Asa side remark,wemention as immediate consequence ofLemma27 the following

bounds on the range in which those sequences leading to an optimal performance of
the (1+1)EA �p on LeadingOnes are placed. Informally, they are somewhere between
(1/n2)n∈N and (1/n)n∈N.

Corollary 28 Let �p be a sequence of positive terms such that, for all n ∈ N, pn ≤ 1/n2.
Then the expected run time of (1+ 1) EA �p on the LeadingOnes instance of length n
in the initial segment uncertainty model is Ω(n3).

If, for all n ∈ N, pn ≥ 2/n, this expected run time is also Ω(n3).

Proof Suppose first that, for all n ∈ N, pn ≤ 1/n2. Right fromLemma 27, we compute
E[T �p(n)] ≥ 1

2

∑n
i=1

1
i2

= Ω(n3).
Suppose now, for all n ∈ N, pn ≥ 2/n. Using Lemma 27 again as well as∑k
j=1 1/k ≥ ln(k), we compute

E[T �p(n)] ≥ 1

2

n∑

i=1

exp

⎛

⎝
i−1∑

j=1

2/ j

⎞

⎠ ≥ 1

2

n∑

i=1

(i − 1)2 = Ω(n3).

��
From Lemma 27 we also get, via simple algebraic operations, the following result,

which allows us to multiply a summable sequence with constant factors without harm-
ing the asymptotic run time profile.
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Lemma 29 Let �p : N → [0, 1] be a summable sequence with
∑

i∈N pi =: p, c > 0,
and �q = (qi )i∈N with qi := c · pi .

For c ≤ 1 it holds that E[T�q(n)] ≤ E[T �p(n)]/c.
When c > 1 and qi ∈[0, 1/2] for all i ∈N, thenE[T�q(n)] ≤ (exp(2cp)/c)E[T �p(n)].

Proof Wefirst regard the case that c ≤ 1.Note that in this case, for all j , 1
1−cp j

≤ 1
1−p j

.
Therefore, by equation (8), for all n ∈ N,

E[T�q(n)] = 1

2

n∑

i=1

1

qi

∏

j<i

1

1 − q j
= 1

2

n∑

i=1

1

cpi

∏

j<i

1

1 − cp j
≤ 1

2

n∑

i=1

1

cpi

∏

j<i

1

1 − p j

= 1

2c

⎛

⎝
n∑

i=1

1

pi

∏

j<i

1

1 − p j

⎞

⎠ = 1

c
E[T �p(n)].

To treat the case c > 1 we first recall that 1+ x ≤ exp(x). Since we have required
that cp j ≤ 1/2, we can thus bound

1

1 − cp j
= 1 + cp j

1 − cp j
≤ exp

(
cp j

1 − cp j

)

≤ exp(2cp j ).

Therefore, we obtain for all n ∈ N that

E[T�q(n)] = 1

2

n∑

i=1

1

qi

∏

j<i

1

1 − q j
= 1

2

n∑

i=1

1

cpi

∏

j<i

1

1 − cp j

≤ 1

2c

n∑

i=1

1

pi

∏

j<i

exp(2cp j ) <
1

2c

n∑

i=1

1

pi
exp

⎛

⎝2c
∑

j∈N
p j

⎞

⎠

= exp(2cp)

2c

n∑

i=1

1

pi
≤ exp(2cp)

c
E[T �p(n)].

��

6.2.2 No Separation Between Summable and Non-summable Sequence

Given the bounds proven so far, one may be tempted to believe the best performing
(1+ 1) EA �p is based on a summable sequence �p. Furthermore, one may ask whether
between summable and non-summable sequences there is a strict separation in the
performance of the (1 + 1) EA �p on LeadingOnes in the sense that, for example,
there exists a bound B such that for every non-summable sequence �q the expected
optimization time of the (1 + 1) EA�q on LeadingOnes is greater than B while for
some summable sequence �p the expected run time of the (1 + 1) EA �p is at most B.
Regardless of how one makes such a claim precise, the following observations show
that it cannot hold. More precisely, we show that for every summable sequence �p
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there exists a non-summable sequence �q such that the expected performance of the
(1+1) EA�q on LeadingOnes is of strictly smaller order than that of the (1+1) EA �p.
Less surprisingly, the converse also holds.

Theorem 30 (A) For any given summable sequence �p with positive terms 0 < pn < 1
there exists a non-summable sequence �q of terms 0 < qn < 1 such that the expected
optimization times T �p and T�q of the (1 + 1) EA �p and (1 + 1) EA�q , respectively, on
the LeadingOnes instance of length n in the initial segment uncertainty model satisfy
E[T�q ] = o(E[T �p]).

(B) Likewise, for every non-summable sequence �q of positive terms 0 < qn < 1
there exists a summable sequence �p of elements 0 < pn < 1 such that E[T �p] =
o(E[T�q ]) for T �p and T�q defined as above.

To prove Theorem 30 we need a few auxiliary statements. The first lemma, infor-
mally, says that it suffices to regard those RLS �p whose underlying sequences are
monotonically decreasing.

Lemma 31 Let �p : N → (0, 1) be a summable sequence with
∑

i∈N pi ≤ 1. Then
there exists a monotonically decreasing summable sequence �q : N → (0, 1) with∑

i∈N qi = ∑
i∈N pi such that, for all n ∈ N, E[TRLS�q (n)] ≤ E[TRLS �p (n)], where

we denote by E[TRLS�q (n)] and E[TRLS �p (n)] the expected run time of the RLS�q and
RLS �p, respectively, on the LeadingOnes instance of length n in the initial segment
uncertainty model.

Proof Note that, since p is summable, there is a maximal value among the pi . Thus, it
is possible to sort the sequence in non-increasing order (by defining the next element
of the sequence as the largest unused value). Let q be this sorted sequence.

Let n ∈ N. Let p′
1, . . . , p

′
n be an enumeration of p1, . . . , pn in non-increasing

order. Then p′
i ≤ qi for all i ∈ [1. . .n] and thus

E[TRLS�q (n)] = 1
2

n∑

i=1

1
qi

≤ 1
2

n∑

i=1

1
p′
i

= 1
2

n∑

i=1

1
pi

= E[TRLS �p (n)].

��
The second auxiliary statement will allow us to assume that the sequence �p does

not decrease extremely fast.

Lemma 32 Let �p : N → (0, 1) be a summable sequence with
∑

i∈N pi ≤ 1. Then
there exists a summable sequence �q : N → (0, 1) with

∑
i∈N qi = ∑

i∈N pi such that,
for all n ∈ N, qn ≤ ∑

j>n q j and E[TRLS�q (n)] ≤ 2 E[TRLS �p (n)], where E[TRLS�q (n)]
and E[TRLS �p (n)] are defined as in Lemma 31.

Proof We show that we can shift probability mass to larger-indexed positions, if
needed.

For all n ∈ N let qn := pn . We modify �q iteratively with a single pass starting
from i = 1, maintaining the total sum of the sequence as an invariant. For all i , do the
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following. If qi ≤ ∑
j>i q j , we do not modify qi and continue with the definition of

qi+1. If, on the other hand, qi >
∑

j>i q j , we let ci = qi/2 and update qi ← qi − ci
and qi+1 ← qi+1 + ci . Note that this maintains our invariant. Now we continue
with checking qi+1, possibly modifying qi+1 for a second time, but never changing it
afterwards.

Clearly, these modifications converge (point-wise) in the limit to a sequence q with
the same sum as the sequence p. Furthermore, for all n ∈ N, we have qn ≤ ∑

j>n q j ,
as any large qi were cut in half and the other half was shifted to higher indices,
guaranteeing that qi is at most as large as the sum of the following values.

Since we have, for all i ∈ N, qi ≥ pi/2, we get

E[TRLS�q (n)] = 1
2

n∑

i=1

1
qi

≤ 1
2

n∑

i=1

2
pi

= 2 E[TRLS�q (n)].

��
A corresponding statement can be shown to hold for the (1 + 1) EA �p.

Lemma 33 Let �p : N → (0, 1) be a summable sequence with
∑

i∈N pi = c < 1.
Then there exists a summable sequence �q : N → (0, 1) such that, for all n ∈ N,
qn ≤ ∑

j>n q j and E[T�q(n)] ≤ 2 E[T �p(n)], where by T �p(n) (T�q(n)) we denote the
run time of the (1+1) EA �p ((1+1) EA�q) on the LeadingOnes instance of length n in
the initial segment uncertainty model, respectively. Moreover, it holds that

∑
i∈N qi ≤

c/(1 − c).

Proof By Theorem 26 there exists a summable sequence p̃ = ( p̃i )i∈N such that the
initial segment run time profile of the RLS p̃ equals that of the (1 + 1) EA �p. The
construction of p̃ in the proof of Lemma 22 shows that, for all n, p̃n = pn

∏
j<n(1−

p j ) < pn and thus

∑

i∈N
p̃i ≤

∑

i∈N
pi = c. (12)

For this sequence p̃, by Lemma 32, there exists a summable sequence q̃ with∑
i∈N q̃i = ∑

i∈N p̃i ≤ ∑
i∈N pi = c and such that, for all n ∈ N, it holds that

q̃n ≤ ∑
j>n q̃ j and E[TRLSq̃ (n)] ≤ 2 E[TRLS p̃ (n)]. To this sequence q̃ we apply

Lemma 24 to obtain a sequence q such that the initial segment run time profile of
RLSq̃ and the (1 + 1) EA�q are identical, which implies

qn
∏

k<n

(1 − qk) = q̃n (13)

and

E[T�q(n)] = E[TRLSq̃ (n)] ≤ 2 E[TRLS p̃ (n)] = 2 E[T �p(n)]

for all n ∈ N.
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From (13) and q̃n ≤ ∑
j>n q̃ j , we get that

qn = q̃n
∏

k<n(1 − qk)
≤

∑

j>n

q̃ j
∏

k<n(1 − qk)
≤

∑

j>n

q̃ j
∏

k< j (1 − qk)
=

∑

j>n

q j .

It remains to show that �q is summable with
∑

i∈N qi ≤ c
1−c . To show this, we use (12)

and (13) and compute

n∑

i=1

qi =
n∑

i=1

q̃i
1 − ∑

j<i q̃ j
≤

n∑

i=1

q̃i
1 − ∑

j∈N q̃ j
≤ c

1 − c
.

��

We are now ready to prove part (A) of Theorem 30.

Proof (of Theorem 30.(A)) Let �p be a summable sequenceof positive terms0 < pn < 1.
We first argue that, without loss of generality, we can assume that

∑
i∈N pi =

exp(−1) and that, for all n ∈ N, pn ≤ ∑
j>n p j . Since �p is summable, p :=

∑
i∈N pi < ∞. In a first step we set, for all i ∈ N, p(1)

i := pi/(2p) to obtain

a summable sequence �p (1) : N → (0, 1/2) with
∑

i∈N p(1)
i = 1/2. To �p (1)

we apply Lemma 33 to obtain a summable sequence �p (2) : N → (0, 1) with
c := ∑

i∈N p(2)
i ≤ 1 such that, for all n ∈ N, p(2)

n ≤ ∑
j>n p(2)

j and E[T �p (2) (n)] ≤
2 E[T �p (1) (n)]. We finally set p(3)

i := p(2)
i /(c exp(1)) to obtain a summable sequence

�p (3) : N → (0, 1/2) with
∑

i∈N p(3)
i = 1/ exp(1). By construction, we also have

p(3)
n ≤ ∑

j>n p(3)
j for all n ∈ N. It remains to show that we did not harm the initial

segment run time profile by more than a multiplicative Θ(1) factor. This follows from
applying Lemma 29 twice; once to �p and p(1) and once to p(2) and p(3), respectively.

In the following, by replacing �p with �p (3) if needed, we may therefore assume that∑
i∈N pi = exp(−1) and that, for all n ∈ N, pn ≤ ∑

j>n p j .
We are now ready to define sequence �q . To this end, for every i ∈ N, set ri :=∑
j≥i p j . Set

qi := pi
2ri+1 ln(1/ri+1)

= − pi
2ri+1 ln(ri+1)

.

Note that, for i ∈ N≥2, we have 0 < ri < exp(−1) and thus qi > 0. Since for all i we
have pi ≤ ri+1 by assumption (see our discussion above), and since 1/ ln(1/ri+1) < 1
(this follows from ri+1 <

∑
i∈N pi = exp(1) and the monotonicity of the function

x �→ 1/ ln(1/x)), we also have qi ≤ pi/(2ri+1) ≤ 1/2. Thus, 0 ≤ qi ≤ 1/2 for all
i ∈ N.

Next we prove that (qi )i∈N is non-summable. To this end, we first observe that the
function x �→ 1/(x ln(1/x)) is monotonically decreasing in the interval (0, exp(−1));
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this can easily be seen by taking the derivative.We can therefore estimate, for all n ∈ N,

qi = pi
2ri+1 ln(1/ri+1)

= ri − ri+1

2ri+1 ln(1/ri+1)

≥
∫ ri

ri+1

1

2x ln(1/x)
dx = −

∫ ri

ri+1

1

2x ln(x)
dx . (14)

This shows

n∑

i=1

qi ≥ −1

2

∫ r1

rn+1

1

x ln(x)
dx = 1

2

∫ ln(rn+1)

ln(r1)

1

x
dx = 1

2
[ln(|x |)]ln(r1)ln(rn+1)

= 1
2 ln (| ln(rn+1)|) − ln (| ln(r1)|) = 1

2 ln (ln(1/rn+1)) (15)

where we have used in the second step the substitution rule
∫ b
a f (g(x))g′(x)dx =

∫ g(b)
g(a) f (x)dx with f (x) = 1/x and g(x) = ln(x) aswell as the rule− ∫ g(b)

g(a) f (x)dx =
∫ g(a)

g(b) f (x)dx and in the last step we have used that r1 = 1/e implies that
ln (| ln(r1)|) = ln(1) = 0. We note that, since �p is summable, we have that (ri )i∈N
converges to 0, which shows that ln (ln(1/rn+1)) diverges. This proves that the partial
sums

∑n
i=1 qi diverge and the series �q = (qi )i∈N is hence not summable.

It remains to show that E[T�q ] = o(E[T �p]). To this end, we first recall from the
proof of Lemma 27 that the expected run time of the (1 + 1) EA�q on LeadingOnes
is at most

1

2

n∑

i=1

exp(2Si−1(�q))

qi
,

where, for i ∈ N we denote by Si (�q) := ∑i
j=1 qi the i-th partial sum of �q and

S0(�q) := 0. Likewise, we know that the expected run time of the (1 + 1) EA �p on
LeadingOnes is at least

1

2

n∑

i=1

exp(Si−1( �p))
pi

.

As formalized in Lemma 45, it therefore suffices to show that

exp(2Si−1(�q))

qi
= o

(
exp(Si−1( �p))

pi

)

= o

(
1

pi

)

,

where the last step uses the summability of �p.
We recall from (14) that qi = ri−ri+1

2ri+1 ln(1/ri+1)
. Using that 1

x ln(1/x) ≤ 2
2x ln(1/(2x))

for 0 < x < 1/2 and that r j = r j+1 + p j ≤ 2r j+1, we can thus bound qi ≤
∫ ri
ri+1

1
x ln(1/x)dx . With this inequality at hand, the same algebraic transformations as

in (15) show that
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Si−1(�q) =
i−1∑

j=1

q j ≤ ln(ln(1/ri )).

We thus obtain

exp(2Si−1(�q))

qi
≤ 2ri+1 ln(1/ri+1) exp (2 ln (ln(1/ri )))

pi

= 2ri+1 ln(1/ri+1)(ln(1/ri ))2

pi
= o(1/pi ),

where the last step follows from the fact that the term ri+1 ln(1/ri+1)(ln(1/ri ))2 ≤
ri+1(ln(1/ri+1))

3, which converges to zero for i → ∞ (since for all s ∈ R the term
x(ln(x))s converges to zero for x → 0 and ri+1 → 0 for i → ∞). ��

We now prove the second part of Theorem 30.

Proof (of Theorem 30.(B)) Let �q be a non-summable sequence of positive terms 0 <

qn < 1. For all n ∈ N, set Sn := ∑n
i=1 qi . Let p1 := q1/2 and, for all n ≥ 2, let

pn := qn/(2S2n ). It is easily seen that 0 < pn < 1/2 for all n.
To see that �p := (pi )i∈N is summable, we estimate, for n ≥ 2

pn = Sn − Sn−1

2S2n
≤ 1

2

∫ Sn

Sn−1

1

x2
dx

and, thus,

n∑

i=1

pi ≤ 1

2

(
q1 +

∫ Sn

S1

1

x2
dx

)
≤ C

for some constant C .
Using the summability of �p, from Lemma 27 we obtain that, for some constant

C ′ > 0,

E[T �p(n)] ≤ C ′
n∑

i=1

1

pi
≤ 2C ′( 1

q1
+

n∑

i=2

S2i
qi

)

while

E[T�q(n)] ≥ 1

2

n∑

i=1

exp(Si−1)

qi
≥ 1

2

n∑

i=1

exp(Si − 1)

qi
.

Since �q is non-summable, we have that Si diverges to infinity. This gives S2i =
o (exp(Si )). The desired statement E[T �p] = o

(
E[T�q ]

)
now follows from a direct

application of Lemma 45. ��

123



740 Algorithmica (2019) 81:703–748

6.2.3 Limiting Behavior

The previous results show, in particular, that there is no best possible (1+ 1) EA �p for
LeadingOnes: whatever the sequence underlying the (1 + 1) EA �p looks like, there
exists another one giving strictly better performance. It is nevertheless interesting to
understand which absolute performance guarantees can be achieved. This is the aim
of the following statement.

Theorem 34 Let b > 1. For every sequence �p of positive terms 0 < pn < 1 and
for all s ∈ N the run time T �p of the (1 + 1) EA �p on the LeadingOnes instance of

length n in the initial segment uncertainty model satisfiesE[T �p(n)] = ω(n/ps,0b (n)) =
ω(n2 logb(n) log(2)

b (n) . . . log(s)
b (n)).

Forb ≥ e it also holds thatE[T �p(n)]=ω(n/p∞
b (n)) = ω(n2 logb(n) log(2)

b (n) . . .).

Proof Let �p be a sequence of positive terms 0 < pn < 1 and s ∈ N. If �p is non-
summable, Theorem 30.(B) tells us that there exists a summable sequence �q of terms
0 < qn < 1 such that E[T �p] = ω(E[T�q ]). We can therefore assume without loss of
generality that �p is summable.

Lemma 27 allows to bound

E[T �p(n)] ≥ 1

2

n∑

i=1

exp(Si−1)

pi
= Ω

( n∑

i=1

1

pi

)

.

ByLemma42 it holds that 1/pi = ω(1/ps,0b (i)) = ω
(
i logb(i) log

(2)
b (i) . . . log(s)

b (i)
)
.

Lemma 45 therefore implies that

E[T �p(n)] = ω

( n∑

i=1

i logb(i) log
(2)
b (i) . . . log(s)

b (i)

)

= ω
(
n2 logb(n) log(2)

b (n) . . . log(s)
b (n)

)
,

where we have used in the last step that, for all i ≥ n/2, i logb(i) log
(2)
b (i) . . . log(s)

b (i)

= Θ(n logb(n) log(2)
b (n) . . . log(s)

b (n)) holds.
The second statement follow similarly using Corollary 44 instead of Lemma 42. ��
As mentioned in the beginning of Sect. 6.2, Theorem 26 implies that all lower

bounds proven for initial segment run time profile of the (1 + 1) EA �p immediately
apply to the (1 + 1) EAQ with Q = Q( �p). The following corollary makes this
explicit.

Corollary 35 Let b > 1. For every sequence �p of positive terms 0 < pn < 1 and for all
s ∈ N the run time TQ( �p) of the (1+ 1) EAQ on the LeadingOnes instance of length

n in the initial segment uncertainty model satisfies E[TQ( �p)(n)] = ω(n/ps,0b (n)) =
ω(n2 logb(n) log(2)

b (n) . . . log(s)
b (n)).
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For b ≥ e it also holds that E[TQ( �p)(n)] = ω(n/p∞
b (n)) = ω(n2 logb(n)

log(2)
b (n) . . .).

7 Lower Bounds for OneMax in the Unrestricted Uncertainty Model

In this section we give lower bounds for the case of OneMax in the unrestricted
uncertainty model (see Theorem 39). However, we start with a few technical lemmas.
The first two lemmas are essentially just applications of Chernoff bounds, the third is
a combination of the other two.

Lemma 36 ([10, Proposition 2]) Consider the (1+ 1) EA with mutation probability p
on OneMax instance of length n in the unrestricted uncertainty model and a current
search point with k incorrectly set bits. If k ≤ 0.6n, then the probability that the search
point of the next iteration has at most k/2 incorrectly set bits is exp(−Ω(k)).

Proof Suppose the current search point is x ∈ {0, 1}n with k ≤ 0.6n incorrectly set
bits. The next search point is now derived by flipping each bit in x independently with
probability p. Thus, an application of [10, Proposition 2] gives the desired result. ��
Lemma 37 Consider the (1+1) EAwith mutation probability p onOneMax instance
of length n in the unrestricted uncertainty model and a current search point with
k ≤ n/4 incorrectly set bits. Then the probability that the offspring of mutation is
accepted is at most exp(−cpn) for some constant c. Furthermore, the bound also
holds when conditioning on a specific incorrect bit flipping.

Proof The claim follows using the Chernoff bound as follows. The expected number
of correct bits that are flipped is p(n − k), while the expected number of incorrect
bits that are flipped is pk. Using Chernoff bounds (and a union bound) we see that
the probability to flip less than pk/2 correct bits or more than pk/2 incorrect bits is
exp(−cpn), for some constant c. In order for the offspring to be accepted, we need
to flip at least as many incorrect bits as correct bits. When conditioning on a specific
incorrect bit flipping, only lower order terms change. ��
Lemma 38 Consider the (1+1) EAwith mutation probability p onOneMax instance
of length n in the unrestricted uncertainty model and a current search point with
k ≤ 3

√
n incorrectly set bits. Fix an incorrectly set bit in the current search point and

let X be a 0-1-random variable which is 1 only if the bit is corrected by mutation
applied to the current search point and the mutated individual is accepted. We have,
for some constant c,

E(X) ≤ p exp(−cpn).

Proof We have that p is the probability of flipping the bit. Conditional on this bit
flipping we have a probability of accepting the offspring of exp(−cpn), as given in
Lemma 37. ��
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The main theorem of this section is our lower bound for optimizing OneMax in
the unrestricted uncertainty model.

Theorem 39 Let Q be a discrete distribution over mutation probabilities from (0, 1).
Let (di )i∈N ∈ (0, 1)N be any non-summable sequence.

For infinitely many n ∈ N, the expected run time of the (1 + 1) EAQ on OneMax
instance of length n in the unrestricted uncertainty model is at least c log(n)/dn for
some constant c.

The idea behind the proof is to assign a quality q(n) of how suitable a distribution
Q is for optimizing a OneMax instance of length n. Clearly, whenever Q chooses a
bit flip probability of around 1/n, optimization can proceed well; smaller probabilities
are slower in optimizing OneMax, higher probabilities are even disruptive. We show
that (a) the sequence q(n) is summable, showing that it is infinitely often smaller than
any given non-summable sequence; and (b) the expected progress (i.e., the drift) is at
most kq(n) when still k bits are missing. Together this gives the claimed lower bound.

Proof (of Theorem 39) Let c be as given by Lemma 38 and let D be the set of values
assumed by Q. Define q : (0,∞) → R such that, for all x > 0,

q(x) =
∑

p∈D
p exp(−cpx)P(Q = p).

Wewill now show that the integral over q is finite. For this wewill exchange an integral
with a (possibly infinite) sum, which we can do with Fubini’s Theorem, given that the
function we integrate over is non-negative and we show that one of the two terms is
finite, which will be provided by the remainder of the chain of inequalities.

∫ ∞

0
q(x)dx =

∫ ∞

0

∑

p∈D
p exp(−cpx)P(Q = p)dx

=
∑

p∈D

∫ ∞

0
p exp(−cpx)P(Q = p)dx

=
∑

p∈D

[
p

−cp
exp(−cpx)

]∞

0
P(Q = p)

=
∑

p∈D

1

c
P(Q = p)

= 1

c
.

Note that the function q is monotonically decreasing. This and the fact that the
integral is finite imply that

∑∞
n=1 q(n) is finite. Thus, there are infinitely many n such

that q(n) ≤ dn , since (dn)n is a non-summable sequence. Let one such n be given.
Consider the optimization of (1 + 1) EAQ on OneMax and suppose we currently

have k wrong bits. Using Lemma 36 we know that, with high probability, the process
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will have between 3
√
n and 3

√
n/2 incorrect bits at some point. We consider the process

starting from such a point in time and show that the remaining time is as large as
desired.

Let M be the set of incorrect bit positions and fix a mutation probability p. For each
i ∈ M let Xi be the 0-1-variable indicating that this bit position is fixed in the next
iteration. Using Lemma 38, we have, for all i ∈ M , E(Xi ) ≤ p exp(−cpn). Thus, the
total drift in incorrect bit positions is bounded from above by

E

(
∑

i∈M
Xi

)

=
∑

i∈M
E (Xi ) ≤ kp exp(−cpn).

Consider now drawing a mutation probability p ∼ Q. Regarding the drift Δ in incor-
rect bit positions we have

E(Δ) ≤
∑

p∈D
kp exp(−cpn)P(Q = p) ≤ kq(n) ≤ kdn .

We now want to use the lower bound multiplicative drift theorem from [31]. The main
requirement of this theorem is the upper bound on the expected drift on the number
of incorrect bits as derived above; thus, in the language of [31, Theorem 2.2], we
chose δ = dn . The requirement of not making big jumps is fulfilled with β = 1/2 by
Lemma 36 while we have k ≥ 3

√
n/4. ��

From Theorem 39, Lemma 42, and Corollary 44 we obtain the following result.

Corollary 40 For all b ≥ e and all distributions Q over (0, 1) there exists a constant
c > 0 such that for infinitely many n ∈ N the expected run time of the (1 + 1) EAQ

on a OneMax instance of length n in the unrestricted uncertainty model is at least
c log(n)/p∞

b (n) = Ω(n(logb(n))2 log(2)
b (n) log(3)

b (n) . . .).
Likewise, for all s ∈ N and all distributions Q over (0, 1), there exists a constant

c > 0 such that, for infinitely many n ∈ N, the expected run time of the (1 + 1) EAQ

on a OneMax instance of length n in the unrestricted uncertainty model is at least
c log(n)/p(s,0)

b (n) = Ω(n(log(n))2 log(2)(n) . . . log(s)(n)).

In contrast to the case of LeadingOnes, our results for OneMax only pertain
to the unrestricted uncertainty model, but not the initial segment uncertainty model.
This latter model turns out to be harder to give good lower bounds for because of the
following phenomenon. While for LeadingOnes early bits must not flip for making
progress, for OneMax early bits may flip in exchange of later flips. If these later bits
flip more rarely (and are thus more costly to optimize), such an exchange may actually
be beneficial. It remains open how this effect can be analyzed.

8 Summary and Outlook

We have analyzed the performance of variants of the (1 + 1) EA in the presence of
unknown solution lengths. We studied the use of position-dependent mutation proba-
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bilities and showed that, when optimizing LeadingOnes, they are unnecessary if the
distribution of the solution length is known and has a light tail (in the sense that no
asymptotic gain is possible). We have also shown that position-dependent mutation
rates are crucial in settings in which we do not have any knowledge about the solution
length. Surprisingly, in the latter situation, a sequence of (position-dependent) muta-
tion probabilities exists such that the corresponding (1 + 1) EA is almost optimal,
simultaneously for all possible solution lengths. For optimizing OneMax we have
shown analogous good upper bounds and conjecture that, just as for LeadingOnes,
these bounds are asymptotically tight.

Wehave also investigated a setting inwhich the relevant bit positions canbe arbitrary
in number and position. Possibly even more surprisingly, even this can be handled
quite efficiently by a (1 + 1) EA variant for the two test functions OneMax and
LeadingOnes.

Finally, we have proved the first non-trivial lower bounds for the regarded
(1+1) EA �p and (1+1) EAQ algorithm classes. These were made possible by a result
showing that both classes have the same performance when optimizing LeadingOnes
in the initial segment uncertainty model. If this is not a particularity of the Leadin-
gOnes function but rather a general phenomenon, then this would suggest to rather
use the easier to understand (1+1) EAQ class. Note that, for a (1+1) EAQ algorithm,
for many problems the run time on a subinstance of length n can be upper bounded by
the reciprocal of the probability that the mutation rate is in [1/2n, 2n] times the worst-
case run time of the (1 + 1) EA with mutation rate in the interval [1/2n, 2n] on this
instance (without uncertainty). This estimate is valid if additional iterations with other
mutation rates cannot be harmful. This is the case, e.g., for run time analyses using
the fitness level method. The next step towards increasing our understanding on the
relation of these algorithm classes would be to prove tight bounds for the (1+1) EA �p
class on the OneMax function in the initial segment uncertainty model, a problem
that we unfortunately could not solve.

We believe the setting of unknown solution length to be relevant for numerous real-
world applications.As a next step toward a better understanding of how this uncertainty
can be tackled efficiently with evolutionary algorithms, we suggest to investigate more
challenging function classes, e.g., starting with the class of all linear functions. It is
not clear a priori if bounds similar to the ones presented in Sect. 4 can be achieved for
such problems.
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(PGMO) of the Jacques Hadamard Mathematical Foundation (FMJH).

Appendix A: Summable Sequences

In this section we recall definitions and results regarding summable sequences.
A sequence �p = (pi )i∈N is summable if the sequence (Sn)n∈N of partial sums of

absolute values Sn := ∑n
i=1 |pi | converges.
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The run time guarantees in Theorems 15, 16, 19, and 20 all decrease with increasing
sequence �p. In the hope of finding best possible parameters for the (1 + 1) EA �p and
the (1 + 1) EAQ it is therefore natural to ask for a largest summable sequence p.
The following statement shows that such a sequence does not exist. More precisely,
for every summable sequence �p, there is a summable sequence which decreases more
slowly than �p. Such constructions are well known in the mathematics literature, cf.
[2] for an easily-accessible example proving Theorem 41.

Theorem 41 (Folklore)For every summable sequence �p := (pn)n∈N of positive terms
pn > 0 there exists a summable sequence �q := (qn)n∈N such that �q = ω( �p).

Likewise, for every non-summable sequence �q there exists a non-summable
sequence �p such that �p = o(�q).

It is interesting to note that, in both statements of Theorem 41, the sequence �q can
be chosen in a way that the expected run times of the (1 + 1) EA �p when fed with
sequence �p and �q , respectively, satisfy E[T�q ] = o(E[T �p]) (this is not automatically
the case when �q = ω( �p)). But since this result also follows from Theorem 30, we do
not prove these statements explicitly.

We have introduced in equation (5) (Sect. 4.2) the sequences (ps,εb (n))n∈N.We have
also discussed that it was shown in [21, page 48] that for every ε > 0 and every s ≥ 1,
the sequence (ps,ε2 (n))n∈N is summable. In the same work, Hardy also mentions that,

for all s ∈ N, the sequence (ps,02 (n))n∈N is not summable; he attributes this result
to De Morgan and Bertrand. From this result we easily get the following statement,
which we need in the proof of our lower bounds in Sect. 6.2.3.

Lemma 42 Let b > 1 and let �p be a summable sequence of positive terms
0 < pn < 1. Then, for all s ∈ N, 1/pn = ω(1/ps,0b (n)); i.e., 1/pn =
ω(n logb(n) log(2)

b (n) . . . log(s)
b (n)).

Proof We show the statement for b = 2. The general case follows from observing
that, for all s ∈ N and all b > 1, 1/ps,0b (n) = Θ(1/ps,02 (n)).

We thus need to show that for all summable sequences �p of positive terms 0 <

pn < 1, all integers s ∈ N, and all positive constants C > 0 there exists an integer
n0 = n0( �p, s,C) such that, for all n ≥ n0, it holds that 1/pn ≥ C/ps,02 (n) =
Cn log2(n) log(2)

2 (n) . . . log(s)
2 (n).

For the sake of contradiction we assume that this is not the case. Then there exists
a summable sequence �p of positive terms 0 < pn < 1, an integer s ∈ N, and a
constant C > 0 such that for all n0 ∈ N there exists an integer n ≥ n0 such that
1/pn ≤ C/ps,02 (n) = Cn log2(n) log(2)

2 (n) . . . log(s)
2 (n). This implies that there exists

a subsequence �q of �p such thatqn ≥ 1/
(
Cn log2(n) log(2)

2 (n) . . . log(s)
2 (n)

)
. However,

the result of DeMorgan andBertrand states that this sequence is not summable. Hence,
�p cannot be summable. ��
Furthermore, we have mentioned in Sect. 4.2 that the summability of the sequence

(p∞
b (n))n∈N (cf. equation (7)) crucially depends on the base b of the logarithm. Indeed,

using Cauchy’s condensation test, one can show the following.
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Theorem 43 The sequence (p∞
b (n))n∈N is summable if and only if b < e := exp(1).

More precisely,

1. For all b > 1 and all s ∈ N it holds that
∑n

i=1 p
(s,0)
b (i) = Θ

(
log(s+1)(n)

)
.

2. For all 1 < b < e := exp(1),
∑n

i=1 p
∞
b (i) = Θ(1).

3.
∑n

i=1 p
∞
e (i) = Θ(log∗(n)).

4. For all b > e,
∑n

i=1 p
∞
b (i) = exp(Θ(ln∗(n))).

Proof For this proof, we set

e(s) := exp(s)(1) = exp(exp(. . . (exp
︸ ︷︷ ︸

s times

(1)))).

Let s ∈ N and b > 1. We apply integration by substitution, in the formulation of
Theorem 46 below and with ϕ = expb, s + 1 times to the function x �→ p(s,0)

b (x).

Using bx p(s,0)
b (bx ) = p(s−1,0)

b (x) and that the derivative of expb is expb times ln(b)
we obtain, for n ≥ e(s),

∫ n

e(s)
p(s,0)
b (x)dx =

∫ ln(s+1)(n)

0
(ln(b))s+1 dx = Θ(ln(s+1)(n)) = Θ(log(s+1)(n)).

Thus, we also get (using p∞
b monotonically decreasing)

n∑

i=2

p∞
b (i) ≤

∫ n

1
p∞
b (x)dx ≤

ln∗(n)∑

j=0

∫ e( j+1)

e( j)
p∞
b (x)dx

=
ln∗(n)∑

j=0

∫ e( j+1)

e( j)
p( j,0)
b (x)dx =

ln∗(n)∑

j=0

∫ 1

0
(ln(b)) j+1dx

=
ln∗(n)∑

j=0

(ln(b)) j+1.

Clearly, for b < e, this sum converges for n → ∞. Furthermore, for b = e, this partial
sum equals ln∗(n), while for b > e it is 2O(ln∗(n)) as desired. A corresponding lower
bound can be found analogously. ��

From Theorem 43 we also get the following result.

Corollary 44 Let b ≥ e. For every summable sequence �p it holds that 1/pn =
ω(1/p∞

b (n)) = ω(n logb(n) log(2)
b (n) . . .).

Corollary 44 can be proven in the same way as Lemma 42.
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Appendix B: Useful Tools

We use this section to recall two useful theorems.
The following well-known lemma is applied a few times in our proofs.

Lemma 45 Let �a = (an)n∈N and �b = (bn)n∈N be sequences of positive terms satisfying
�a = o(�b). Set A := (An)n∈N with An := ∑n

i=1 ai and B := (Bn)n∈N with Bn :=∑n
i=1 bi . Assume that B = ω(1). Then A = o(B).

Proof We need to show that for all ε > 0 there exists an integer n(ε) ∈ N such
that An/Bn ≤ ε. Let ε > 0. Since �a = o(�b) there exists an integer nε ∈ N such
that an/bn < ε/2 for all n ≥ nε. Since B = ω(1) there exists nε,B ∈ N such that
∑nε−1

i=1 ai/Bn ≤ ε/2 for all n ≥ nε,B . We therefore obtain for all n ≥ max{nε, nε,B}

An

Bn
=

∑nε−1
i=1 ai
Bn

+
∑n

i=nε
ai

Bn

≤ ε

2
+ ε

∑n
i=nε

bi

2Bn
≤ ε.

��
When we apply integration by substitution, we refer to the following formulation.

Theorem 46 (Integration by Substitution) Let m < n and let I be an Interval. Let
f : I → R be continuous and ϕ : [m, n] → I . Then we have

∫ ϕ(n)

ϕ(m)

f (x)dx =
∫ n

m
f (ϕ(x))ϕ′(x)dx .
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