
Dynamic Modeling in Inductive Inference

John Case and Timo Kötzing�

Department of Computer and Information Sciences,
University of Delaware, Newark, DE 19716-2586, USA

{case,koetzing}@cis.udel.edu

Abstract. Introduced is a new inductive inference paradigm, Dynamic
Modeling. Within this learning paradigm, for example, function h learns
function g iff, in the i-th iteration, h and g both produce output, h gets
the sequence of all outputs from g in prior iterations as input, g gets all
the outputs from h in prior iterations as input, and, from some iteration
on, the sequence of h’s outputs will be programs for the output sequence
of g.

Dynamic Modeling provides an idealization of, for example, a social
interaction in which h seeks to discover program models of g’s behavior
it sees in interacting with g, and h openly discloses to g its sequence of
candidate program models to see what g says back.

Sample results: every g can be so learned by some h; there are g that
can only be learned by an h if g can also learn that h back; there are ex-
tremely secretive h which cannot be learned back by any g they learn, but
which, nonetheless, succeed in learning infinitely many g; quadratictime
learnablity is strictly more powerful than lintime learnablity.

This latter result, as well as others, follow immediately from general
correspondence theorems obtained from a unified approach to the para-
digms within inductive inference.

Many proofs, some sophisticated, employ machine self-reference,
a.k.a., recursion theorems.

1 Introduction and Motivation

In Computational Limit Learning of Computable Functions mapping the
non-negative integers to same, an algorithmic learner is iteratively given more and
more finite information generated by a computable target function. From this in-
formation, the learner, in each iteration, (may) synthesize a (suitably interpreted)
natural number as output. In the literature, many criteria of successful learning
have been proposed. Each such learning criterion defines precisely, possibly among
other things, in what way the information will be generated by the target func-
tion and how the sequence of iteratively generated outputs and the target function
have to relate for the learning to be considered successful. Sometimes each output
number will be interpreted as (numerically naming) a program, other times each

� The authors would like to thank Samuel E. Moelius III for various fruitful discussions,
especially on reactive learnees.

Y. Freund et al. (Eds.): ALT 2008, LNAI 5254, pp. 404–418, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Dynamic Modeling in Inductive Inference 405

number will represent a prediction for a yet unseen data point. It is helpful for the
present paper to briefly consider some illustrative examples.

Ex-learning [Gol67] exemplifies the category of identification. h Ex-learns tar-
get g iff, in the i-th iteration, h outputs a conjecture on input g(0) . . . g(i − 1)
and there are j, e such that ∀k ≥ j : h(g(0) . . . g(k − 1)) = e and e is a program
for g.1 Such a program e could be carried away and used offline.

Nv-learning [Bār71, BB75] exemplifies the category of extrapolation. h Nv-
learns target g iff, h is total and, in the i-th iteration, h outputs a conjecture on
input g(0) . . . g(i − 1) and there is a j such that ∀k ≥ j : h(g(0) . . . g(k − 1)) =
g(k).2 The successful extrapolants h(g(0) . . . g(k−1)), k ≥ j, can be used online.

Coord-learning [MO99] exemplifies the category of coordination. h Coord-
learns a target g iff, in the i-th iteration, h and g both produce output, h gets
the sequence of all outputs from g in prior iterations as input, g gets all the
outputs from h in prior iterations as input, and, from some iteration on, the
sequence of h’s outputs will be the same as the sequence of g’s outputs. The
finally successfully coordinated matching outputs can be used online.

We see above that, while Coord-learning features a reactive learnee g, Ex-
and Nv-learning feature a passive learnee g.

Passive Learnee Reactive Learnee

Off-Line Identification ??

On-Line Extrapolation Coordination

In the just above table, there is a missing, not heretofore studied category en-
try for offline with reactive learnee. We refer to this category as dynamic modeling,
and it is the subject of the present paper.XBc-learning exemplifies the category of
dynamic modeling. h XBc-learns a target g iff, in the i-th iteration, h and g both
produce output,hgets the sequence of all outputs from g inprior iterations as input,
g gets all the outputs from h in prior iterations as input, and, from some iteration
on, the sequence of h’s outputs will be programs for the output sequence of g.3

In cognitive science, theory of mind refers to ones having a model (or models) of
another’s thoughts, emotions, and perspectives — including those different from
ones own. Ideally, one might have a program (or programs) generating the behav-
ior of the other, but — the behavior presented by the other would, in reality, be
all and only that resulting from crossfeeding between oneself and the other. While
one is attempting to synthesize program(s) for the other, a technique to employ

1 The term ‘Ex’ stands for explanatory [CS83].
2 The term ‘Nv’ stands for next value [Bār71].
3 X we pronounce cross, and it is short for crossfeed. Of course crossfeeding of data is

common to both the categories of coordination and dynamic modeling. In Section 3 we
use the X also in talking about the former category. Bc stands for behaviorally correct
[CS83].

406 J. Case and T. Kötzing

is to pass on a sequence of remarks such as, “I think you are like . . . ,” (where
. . . might be a program), and, then, attend to the resultantly elicited sequence of
reactions of the other — as one formulates further programs/models of the other.
Of course, in reality, one might, in seeking social understanding, carry out vari-
ants, including highly filtered variants, of the just above scenario. The unfiltered
and very idealized scenario above is, nonetheless, covered by dynamic modeling.

Next we summarize the contents of the remaining sections.
In Section 2 below we present mathematical preliminaries.
Section 3 presents a unified approach to limiting learning criteria. This pays

off in Section 5 where we can then provide general results applying to many
criteria at once and, thereby, quickly obtain some nice corollaries.4

Section 4 involves cooperativeness vs. secretiveness in dynamic modeling. Con-
sidered are dynamic modelers which may or may not, in return, be dynamically
modeled themselves. Proposition 4 implies that no computable g can keep models
of its behavior totally secret; moreover, for any computable g, there are infinitely
many constant functions h that XBc-learn g.5

Surprisingly, Theorem 6 implies that there is a computable g so that, no com-
putable h that XBc-learns g can keep models of its behavior a secret from g, i.e.,
such h gives itself away: g, in turn, XBc-learns h. Positively, such a g is, then, ex-
tremely cooperative: informally, g can figure out the behavior of any computable
h that figures out its behavior. Furthermore, such a g can be chosen to be lintime
computable! The proof (included) of Theorem 6 is particularly elegant.

We say that computable h is extremely uncooperative iff {computable g |
h XBc-learns g ∧ g XBc-learns h} = ∅. Theorem 10 implies there are ex-
tremely uncooperative computable h which, nonetheless, are infinitely successful,
i.e, such that h XBc-learns infinitely many computable g.

Results in Section 4 feature open disclosure of certain learners’ models of
another while not disclosing their own models to the other. For comparison and
contrast, a zero-knowledge proof [BSMP91] permits open, convincing disclosure
of its existence without disclosing how it works.

Section 5 features two general and powerful correspondence theorems (Theo-
rems 17 and 19) regarding many of the criteria discussed above and in Section 3.

The first immediately yields Corollary 18 which implies, for example, that
quadratictime XBc-learnablity is strictly more powerful than lintime XBc-
learnablity.6

4 In Section 3 Ex-learning will be called GEx-learning, where the G is for Gold [Gol67].
Nv-learning will be called RGM, where the R is for (total) computable learner and
learnee, and the M is for Matching. Coord-learning will be called XM-learning.

5 Actually, Proposition 4 is stated for a more restrictive criterion within the dynamic
modeling category.

6 Nothing like this happens for, for example, Ex-learning, since by an extension of
Pitt’s postponement tricks from [Pit89], (otherwise unrestricted) Ex-learning with
lintime learners is just as powerful as Ex-learning. As we’ll see from Theorem 14,
also in Section 5, such extended postponement tricks do, nonetheless, apply to (even
a restricted special case of) the XBc-learning of any computably enumerable set of
computable functions.

Dynamic Modeling in Inductive Inference 407

Theorem 19 immediately yields Corollary 20 which provides a number of learn-
ing criteria hierarchies and separations. An example: the powers of XBc-learning
and of Coord-learning are incomparable.

Many proofs are left out because of space constraints, and many proofs, some
sophisticated, employ machine self-reference techniques, including Kleene Re-
cursion Theorem (krt) [Rog67, page 214, problem 11-4] and Case’s Operator
Recursion Theorem (ort) [Cas74, Cas94]. The latter achieves infinitary self (and
other) reference. See www.cis.udel.edu/~case/papers/DynamicModelingTR.pdf
for a more complete version of the present paper.

2 Mathematical Preliminaries

Any unexplained complexity-theoretic notions are from [RC94]. All unexplained
general computability-theoretic notions are from [Rog67].

N denotes the set of natural numbers, {0,1,2,. . . }. ∗ is a symbol such that, for
all n ∈ N, n < ∗. For two functions f, g and n ∈ N, f =n g means that f and g
differ on at most n arguments, f =∗ g means that f and g differ only on finitely
many arguments.

The symbols ⊆,⊂,⊇,⊃ respectively denote the subset, proper subset, superset
and proper superset relation between sets. P and R, respectively, denote the set
of all partial ans total functions N → N, respectively.

The quantifier ∀∞x means “for all but finitely many x”, the quantifier ∃∞x
means “for infinitely many x”.

We sometimes denote a function f of n > 0 arguments x1, . . . , xn in lambda
notation (as in Lisp) as λx1, . . . , xn f(x1, . . . , xn). For example, with c ∈ N,
λx c is the constantly c function of one argument.

A function ψ is partial computable iff there is a Turing machine computing
ψ. R and P denote the set of all (total) computable and partial computable
functions N → N, respectively. If ψ is not defined for some argument x, then
we denote this fact by ψ(x)↑, and we say that ψ on x diverges. The opposite is
denoted by ψ(x)↓, and we say that ψ on x converges.

We say that a partial function ψ converges to p iff ∀∞x : ψ(x)↓ = p.
[RC94, §3] describes an efficiently numerically named or coded7 programming

system for multi-tape Turing machines (TMs) which compute the partial com-
putable functions N → N. Herein we name this system ϕ. ϕp denotes the partial
computable function computed by the TM-program with code number p in the
ϕ-system, and Φp denotes the partial computable runtime function of the TM-
program with code number p in the ϕ-system. By [RC94, Lemma 3.13], s-m-n,
which provides for algorithmic storage of data in programs, has a lintime in-
stance in this system. Hence, it can be shown that this system also has a lintime
instance of 1-1 ort.

7 This numerical coding guarantees that many simple operations involving the coding
run in linear time. This is by contrast with historically more typical codings featuring
prime powers and corresponding at least exponential costs to do simple things.

408 J. Case and T. Kötzing

Whenever we consider tuples of natural numbers as input to functions, it is
understood that a fixed efficient pairing function 〈·, ·〉 (as in [RC94]) is used to
code (left-associatively) the tuples into a single natural number.

A finite sequence is a mapping with a finite initial segment of N as domain
(and range, N). ∅ denotes the empty sequence (and, also, the empty set). The
set of all finite sequences is denoted by Seq. For each finite sequence σ, we will
denote the first element, if any, of that sequence by σ(0), the second, if any, by
σ(1) and so on. #elets(σ) denotes the number of elements in a finite sequence
σ, that is, the cardinality of its domain. last(σ) denotes the last element of σ (if
any).

For a partial function g and i ∈ N, if ∀j < i : g(j)↓, then g[i] is defined to be
the finite sequence g(0), . . . , g(i− 1).

We take N = {0, 1}∗ for ease of measurement of the size of each natural
number. Following [LV97], we fix an easily computed and inverted coding of
all finite sequences of natural numbers into N so that the size of any sequence,
defined as the size of its coding, is sensible for measuring the computational
complexity of functions which take sequences as inputs. In particular the size of
any sequence σ should be linear in #elets(σ) and the size of each natural number
in σ.

We let LinF, PF and EXPF be the set of all lintime, polytime and exptime
computable functions, respectively.

Henceforth, we will many times identify a finite sequence σ with its code num-
ber 〈σ〉Seq. However, when we employ expressions such as σ(x), σ = f and σ ⊂ f ,
we consider σ as a sequence, not as a number.

There are 1-1 function pad and function unpad1, both ∈ LinF and such that
for all n, e: ϕpad(n,e) = ϕe and unpad1(pad(n, e)) = n.

3 Unified Approach to Limit Learning Criteria

In this section, in the interest of generality, we give many definitions for limit
learning also involving non-algorithmic learning. Nonetheless, all of the re-
sults given in the present paper concern only algorithmic (including complexity
bounded) learning.

3.1 Definitions

Any set C ⊆ P is a learner admissibility restriction; intuitively, a learner admis-
sibility restriction defines which functions are admissible as potential learners,
e.g., P ,R,LinF,

Every computable operator P×R → P2 is called a sequence generating oper-
ator; intuitively, a sequence generating operator defines how learner and learnee
interact to generate two infinite sequences, one for learner-outputs (we call this
sequence the learner-sequence) and one for learnee-outputs.8 For example, for
8 Essentially, these computable operators are the recursive operators of [Rog67] but

with two arguments and two outputs and restricted to the indicated domain.

Dynamic Modeling in Inductive Inference 409

Ex-learning (to be renamed in Section 3.2), for a (then, passive) learnee g, its
learnee outputs would be g(0), g(1), Below, in general, even for reactive
learnees, we refer to the sequence of learnee-outputs as a data-sequence.

For h ∈ P , g ∈ R and β a sequence generating operator, we call the first
component of β(h, g) the learner-sequence of h given g (denoted by β1(h, g)),
the second the data-sequence of g given h (denoted by β2(h, g)).

Every subset of P2 is called a sequence acceptance criterion. Intuitively, a
sequence acceptance criterion defines which learner-sequences are considered a
successful learning of a data-sequence. Any two such sequence acceptance criteria
δ and δ′ can be combined by intersecting them. For ease of notation we write
δδ′ instead of δ ∩ δ′.

A learning criterion (or short criterion) is a 3-tuple consisting of a learner
admissibility restriction, a sequence generating operator and a sequence accep-
tance criterion. Let C, β, δ, respectively, be a learner admissibility restriction, a
sequence generating operator and a sequence acceptance criterion, respectively.
For h ∈ P, g ∈ R we say that h (C, β, δ)-learns g iff h ∈ C and β(h, g) ∈ δ.
For h ∈ P and S ⊆ R we say that h (C, β, δ)-learns S iff, for all g ∈ S, h
(C, β, δ)-learns g. The set of (C, β, δ)-learnable sets of computable functions is

Cβδ := {S ⊆ R | ∃h ∈ P : h (C, β, δ)-learns S}. (1)

We refer to the sets Cβδ as in (1) as learnability classes. Instead of writing
the tuple (C, β, δ), we will ambiguously write Cβδ. For h ∈ P, the set of
all computable learnees (C, β, δ)-learned by h is denoted by Cβδ(h) := {g ∈
R | h (C, β, δ)-learns g}.

For any sequence generating operator β, we can turn a given sequence accep-
tance criterion δ into a learner admissibility restriction Tβδ by admitting only
those learners that obey δ on all possible input :

Tβδ := {h ∈ P | ∀g ∈ R : β(h, g) ∈ δ}.

3.2 Examples

In this section we give many examples illustrating our definitions and give an
overview as to how our notation covers criteria from the literature. Past this
section, we will not be concerned with every example given in this section, but
some of them will be employed.

Example 1. Two typical learner admissibility restrictions are P and R. Fur-
thermore, any set of functions computable with a resource restriction (such as
the set of all lintime computable functions) may be used as a learner admissi-
bility restriction. For each sequence generating operator β and each F ⊆ R, the
set Relβ,F of all functions reliable on F [Min76, BB75] (defined below) is also a
learner admissibility restriction.

Relβ,F := {h ∈ P | ∀g ∈ F ∀p, q ∈ P : (β(h, g) = (p, q)
∧ p converges to some p′) ⇒ ϕp′ = q}.

410 J. Case and T. Kötzing

When denoting criteria with P as the learner admissibility restriction, we will
omit P .

Example 2. We define the following example sequence generating operators.
All learners give an initial conjecture, say, of 0, based on no data.

– Goldstyle [Gol67]: G : P × R → P × R, (h, g) �→ (λi h(g[i]), g).
– Iterative [Wie76]: It : P × R → P × R, (h, g) �→ (p, q) such that p(0) = 0,

∀n : p(n+ 1) = h(q(n), p(n)) and q = g.
– Transductive: Td : P × R → P × R, (h, g) �→ (p, q) such that p(0) = 0,

∀n : p(n+ 1) = h(q(n)) and q = g.
– Crossfeeding [MO99] X : P×R → P×P, (h, g) �→ (p, q) such that ∀n p(n) =
h(q[n]) ∧ q(n) = g(p[n]).

– Learnee Iterative: Li : P × R → P × P, (h, g) �→ (p, q) such that ∀n p(n) =
h(q[n]) ∧ q(0) = 0 ∧ ∀n : q(n+ 1) = g(p(n), q(n)).

“G” is a reference to Gold [Gol67]. Intuitively, G takes a learner h and a learnee
g, and feeds longer and longer initial segments of g into h, considering the suc-
cessive outputs as coding an infinite sequence of hypotheses. The second output
is just g, meaning that the target concept to be learned is all of g. In this setting,
the learner gets a lot of information about the learnee, while the learnee does
not react at all to the learning process. For It and Td defined above, a learner
for the latter has less information at its disposal than for the former.

Regarding X, learner and learnee have symmetrical information in each it-
eration. Li lessens the information that the learnee has in a similar way that
iterative learning lessens the information of the learner.

The first three bullets given in Example 2 involve passive learnees, while the
last two examples involve reactive learnees.

We note the following three important properties relating G and X, which
are of importance to this paper. Let f, g, h, p, q ∈ P .

X(h, g) = (p, q) ⇒ G(h, q) = (p, q). (2)
X(h, g) = (p, q) ⇒ G(g, p) = (q, p). (3)
X(h, λσ f(#elets(σ))) = G(h, f). (4)

Example 3. We define the following sequence acceptance criteria.

– Explanatory: Ex = {(p, q) ∈ P2 | p converges to some p′ and ϕp′ = q}.
– Explanatory with up to a ∈ N ∪ {∗} errors [CS83, BB75]:

Exa = {(p, q) ∈ P2 | p converges to some p′ and ϕp′ =a q}.
– Behaviorally correct [CS83, Bār74b]: Bc = {(p, q) ∈ P2 | ∀∞n ϕp(n) = q}.
– Behaviorally correct with up to a ∈ N ∪ {∗} errors [CS83]:

Bca = {(p, q) ∈ P2 | ∀∞n ϕp(n) =a q}.
– Matching [Bār71, BB75, MO99]: M = {(p, q) ∈ P × R | p =∗ q}.

All the above criteria include global restrictions on the path to successful learning.
The following defines several criteria only involving local restrictions.

Dynamic Modeling in Inductive Inference 411

– Postdictively complete [Bār74a, BB75, Wie76]: Pcp = {(p, q) ∈ R2 | ∀n∀i <
n : ϕp(n)(i) = q(i)}.

– Hypotheses are programs for total functions [CS83]: T = {(p, q) ∈ R2 | ∀n :
ϕp(n) ∈ R}.

– Always giving hypotheses: R2.

The idea of dividing a learning criterion is not entirely new. For example,
Freivalds et. al. [FKS95] defined admissible sequences for a given function, which
basically defines a binary predicate on a pair of infinite sequences.

We can now express several learning criteria as defined in the prior literature
(left-hand-side below) with our notation system (right-hand-side below). Recall
that the default learner admissibility restriction is P ; hence, all learning criteria
displayed just below are for algorithmic learners.

Ex ↔ GEx
Bc ↔ GBc
Nv ↔ RGM
Nv′ ↔ GR2M

Nv′′ ([Pod74]) ↔ GM
Cons ↔ GPcpEx

R-Cons ↔ RGPcpEx
T-Cons ↔ TGPcpGEx

Reliable on R ↔ RelRGEx
It ↔ ItEx

learneable by a player ([MO99]) ↔ XM
learneable by a total player ([MO99]) ↔ RXM

A sequence acceptance criterion δ is said to be degenerate iff ∃(p, q) ∈ δ : p =∗

λx ↑. All sequence acceptance criteria given above are non-degenerate, and the
authors don’t know of any degenerate sequence acceptance criteria implicit in the
prior literature. We conjecture that any degenerate sequence acceptance criteria
would be useless to model learning. Hence, the present paper will solely focus
on non-degenerate such criteria.

It is easy to see that, for non-degenerate δ, we have for all C ⊆ P that the
learnability classes CXδ and CXR2δ are equal.

Similarities between extrapolation (like GM) and coordination (like XM)
have been pointed out in [CJM+05]. In particular, blind learnees are defined as
functions where each output only depends on the length of it’s input, and with
each function g ∈ R, a blind learnee g′ = λσ g(#elets(σ)) is associated. The
mapping Θ = λg g′ is then a natural embedding of learnees in the G-sense to
learnees in the X-sense, more formally, for all δ ⊆ P ×R and S ⊆ R,S ∈ Gδ ⇔ Θ(S) ∈ Xδ. (5)

The special case of (5) with δ = M is used in [CJM+05].

4 Cooperation and Secretiveness

The main emphasis of the present paper, as seen in Section 1, features XBc-
learning, but, based on the thinking of Section 3, one might wonder why we didn’t

412 J. Case and T. Kötzing

talk about XEx-learning. We’ll talk about it now. Suppose h XEx-learns g. The
learner-sequence of h interacting with g, is, then, a total, almost everywhere
constant function. Suitable g, then, easily XEx-learn h.9

The proposition just below implies that, any computable g gets XBc-learned
by some computable h. Hence, any g can have its secrets learned by some learner.
The interesting thing, then, is whether, when h XBc-learns g, h can keep models
of itself secret from g. This is considered in Theorem 6 further below.

Proposition 4. Let g ∈ R. Then there are infinitely many (total) constant
functions h XBc- (in fact, XEx-) learning g.

Proof. Let n ∈ N. There is, by krt, en such that, with

p = λx pad(n, en), (7)

∀x : ϕen(x) = g(p[x]). (8)

Let hn ∈ R such that
∀σ : hn(σ) = pad(n, en). (9)

There is q ∈ R such that X(hn, g) = (p, q). Then we have, for all t and x, we
have

ϕp(t)(x) =
(7)

ϕpad(n,en)(x) = ϕen(x) =
(8)

g(p[x]) =
choice of q

q(x). (10)

Hence, hn XBc-learns g. Trivially, we have for all l �= m, hl �= hm. This
shows that there are infinitely many different (constant) functions XEx-learning
g.

Definition 5. We define the following sequence acceptance criteria.

– Cooperative Bc: Bcc = {(p, q) ∈ R2 | ∀∞n ϕp(n) = q ∧ ∀∞n ϕq(n) = p}
(= BcBc−1).

– Secretive Bc: Bcs = {(p, q) ∈ R2 | ∀∞n ϕp(n) = q ∧ ¬∀∞n ϕq(n) = p}
(= BcBc−1).

Clearly, for all h, g ∈ R, h XBcc-learns g iff, h XBc-learns g and g XBc-learns
h; similarly, h XBcs-learns g iff, h XBc-learns g and g does not XBc-learn h.

It is easy to see that there are computable functions which are not XBcc-
learnable, for example λσ #elets(σ).10 At first glance, it seems likely that all
computable functions can be XBcs-learned, as, by Proposition 4 above, for
9 We have, more generally, that

∃g ∈ R ∀h ∈ R : h XEx-learns g ⇒ g XEx-learns h. (6)

10 For all g ∈ R, and p, q ∈ R such that X(λσ #elets(σ), g) = (p, q), we have that p is
the identity on N; hence, λσ #elets(σ) does not XBc-learn g.

Dynamic Modeling in Inductive Inference 413

any given function g, there are infinitely many functions h XBc-learning g. We
were, then, surprised that not all computable functions can be XBcs-learned,
as seen below in Theorem 6. Intuitively, this theorem means that there is a
g ∈ R such that, for all h ∈ P , if h XBc-learns g, then h has to give away
enough information about itself so that g will be able to XBc-learn h. Even more
surprisingly, such a g can be chosen to be lintime computable! On the other hand,
Theorem 6 also has a positive interpretation: it is possible to find a function
g that will XBc-learn every function h that XBc-learns g – in other words,
there are extremely cooperative functions that will cooperate with any function
XBc-learning them. We denote the set of extremely cooperative functions with
EC := {h ∈ R | ∀g ∈ R : g XBc-learns h⇒ hXBc-learns g}.11

Theorem 6 (Secretiveness Fails)

∃g ∈ LinF : {g} �∈ XBcs.

Proof. By 1-1, lintime ort there is 1-1 g ∈ LinF such that

∀τ, x : ϕg(τ)(x) = last(g−1(ϕlast(τ)(x+ 1))).12 (11)

Let h ∈ P be such that g ∈ XBc(h). Let p, q ∈ R be such that X(h, g) = (p, q).
Since (p, q) ∈ Bc, there is n0 such that

∀n ≥ n0 : ϕp(n) = q. (12)

Claim: ∀∞n : ϕq(n) = p.

Proof. We have

∀n ≥ n0 + 1, x : ϕp(n−1)(x+ 1) =
(12)

q(x+ 1) =
choice of q

g(p[x+ 1]). (13)

Hence, for all n ≥ n0 + 1 and all x,

ϕq(n)(x) =
choice of q

ϕg(p[n])(x) =
(11)

last(g−1(ϕp(n−1)(x+ 1)))

=
(13)

last(g−1(g(p[x+ 1]))) = last(p[x+ 1]) = p(x). (14)

(for claim)

Hence, by the claim, g ∈ XBcc(h); therefore, {g} �∈ XBcs.
(for theorem)

[MO99] examined uncooperativeness of coordinators. In particular, two sets
of total computable functions are constructed such that any learner learning
all of the functions from one of the sets cannot coordinate with any function
11 It is easy to see that EC = {h ∈ R | XBcs−1(h) = ∅}.
12 Note that ϕg(τ)(x) might be undefined for various reasons, for example last is not

total. Furthermore, note that accessing g−1 is a valid use of ort.

414 J. Case and T. Kötzing

from the other set. Furthermore, [CJM+05] extended this result showing that
for all k ≥ 2, one can find k such sets of uncooperative learners. Below, we give
an analog of this result for cooperation in the XBcc-sense, where we give an
infinite family of uncooperative sets, so that any learner that can XBc-learn any
of the functions in one of the sets cannot XBc-learn any of the functions of any
other set.

Theorem 7 (Incompatible Mutual Cooperation Camps). There is a 1-1
e ∈ R such that for allm,n, ϕe(m,n) total and, defining Sn := {ϕe(m,n) ∈ R | m ∈
N}, for each n all members of Sn XBcc-learn each other, while each function
h ∈ P XBcc-learns functions from at most one of the sets in {Sn | n ∈ N}.
The theorem just above can be shown by an application of the Generalized
Delayed Recursion Theorem [Cas74, Theorem 23].

As a contrast to the extremely cooperative functions as defined above, we say
that h ∈ R is extremely uncooperative iff XBcc(h) = ∅ (i.e., h cooperates with
no function). The set of all extremely uncooperative functions is denoted by EU .
Trivially, EU �= ∅, as EU contains each function h that doesn’t XBc-learn any
function. Interestingly, EU is rather big in the sense that the closure under LinF
composition of EU is equal to R.13 However, many of the functions h ∈ EU will
not XBc-model anything. We define a (computable) operator below, turning a
given learner h into an uncooperative learner h′, which intuitively doesn’t lose
too much of the learning power of h.

Furthermore, Theorem 10 below states the existence of h ∈ EU with XBc(h)
infinite.

Definition 8. For all h ∈ R there is, by lintime ort, h′ ∈ LinF such that

∀σ, x : ϕh′(σ)(x) =

⎧
⎨

⎩

ϕh(σ)(x),
if σ = ∅ ∨ ∃s ≥ #elets(σ), t :
ϕϕh(σ)(s)(t)↓ �= h′(ϕh(σ)[t])↓;

↑, otherwise.
(15)

Intuitively, h′ makes conjectures mostly behaviorally equivalent to those of h,
but modified so that the conjectures are definitely wrong as soon as the input
seems to learn the outputs of h′.

Define Ψ = λh ∈ R h′. N.B. For each h ∈ R, Ψ(h) ∈ LinF.

Lemma 9. Let h ∈ R. Then XBcc(Ψ(h)) = ∅.
Theorem 10 (Extremely Uncooperative Infinitely Successful Learn-
ers). There are functions h ∈ R such that XBcs(Ψ(h)) is infinite, but
XBcc(Ψ(h)) = ∅ (i.e., no function XBc-learned by Ψ(h) can XBc-learn Ψ(h)).

The next theorem intuitively implies that requiring a learner to be extremely un-
cooperative will decrease its learning power with respect to plain uncooperative
learning.

Corollary 11. EUXBcs ⊂ RXBcs.14

13 Let f ∈ R, let p be such that ϕp = λx ↑. Then f ′ = λx pad(f(x), p) ∈ EU . Define
a = λx unpad1(x) ∈ LinF. Then a ◦ f ′ = f .

14 Less surprisingly, one can also show ECXBcc ⊂ RXBcc.

Dynamic Modeling in Inductive Inference 415

5 General Crossfeeding

Most lemmas, propositions and theorems of this section carry over with slightly
modified hypotheses to the case of Li in the place of X.

Just below is a proposition with corollary regarding which sequence accep-
tance criteria allow dynamical modeling all of R.

Proposition 12. Let δ be a sequence acceptance criterion, let C ⊆ P . Then we
have

R ∈ CXδ ⇔ R ∈ CGδ.

We get the following corollary by a theorem of Harrington, cited in [CS83].

Corollary 13
R ∈ XBc∗.

Gold [Gol67] introduced learning by enumeration. Analogous to, but harder to
prove than the case for G-style learning, we have, by the next theorem that any
computably enumerable set of (total) computable functions are XEx-modelable,

Theorem 14 (Dynamic Modeling by Enumeration). Let r ∈ R be an
enumeration of program numbers of (total) computable functions. We have

{ϕr(n) | n ∈ N} ∈ XEx.15

Proof. By ort, there are programs e, e′, as well as an infinite enumeration s ∈ R
of programs such that, with h = ϕe and u = ϕe′ ,16

∀σ : u(σ) = μk ≤ #elets(σ) σ ⊆ X2(h, ϕr(k)); (17)
∀m : ϕs(m) = X2(h, ϕr(m)); (18)
∀σ : h(σ) = s(u(σ)). (19)

By induction, we can show h, u ∈ R. Let n ∈ N. Let g = ϕr(n). We show that
h XEx-learns g. Let p, q ∈ R be such that X(h, g) = (p, q). Obviously, for all
j, u(q[j])↓ ≤ n. Also, u is monotone in the sense that ∀i, j : i ≤ j ⇒ u(q[i]) ≤
u(q[j]). Thus, there is m such that

∀∞j : u(q[j]) = m. (20)

15 In fact, Ex could be replaced by any δ from a wide set of sequence acceptance
criteria.

16 For a number-theoretic (partial) predicate P and n ∈ N, we let

μx ≤ n P (x) =

���
��

x, if ∀y < x : P (y)↓ �= true and P (x)↓ = true;

n + 1, if ∀y < n + 1 : P (y)↓ �= true;

↑, otherwise.

(16)

416 J. Case and T. Kötzing

Hence, p converges. By (17) and (20),

∀∞j : q[j] ⊆ X2(h, ϕr(m)); thus, (21)
q = X2(h, ϕr(m)). (22)

The following completes the proof.

∀∞j : ϕp(j) =
def p

ϕh(q[j]) =
(19) & (20)

ϕs(m) =
(18)

X2(h, ϕr(m)) =
(22)

q. (23)

The enumeration technique used in our proof of the theorem just above can
be modified with techniques from [RC94] so as to obtain a lintime computable
learner for any given computably enumerable set of functions. However, in gen-
eral it is not the case that any XEx-learnable set is also XEx-learnable by a
lintime learner. This will be stated formally in Corollary 18 below, for which we
now give definitions to set it up.

Definition 15. Let δ be a sequence acceptance criterion.

– δ is called non-trivial iff ∀σ : σ � R �∈ Gδ.
– Let D ⊆ R. δ allows for lintime path finding for D iff there is r ∈ LinF such

that, for all σ, τ of equal length and q ∈ D and e with σ ⊆ q = ϕe, we have
(τ � λx r(x, e, σ), q) ∈ δ

We illustrate the definitions by giving the following examples.

Example 16

– Bc∗ is a trivial sequence acceptance criterion, while Ex,Bc,Bcs,Bcc and
M are non-trivial.

– Ex,Bc and Bc∗ allow for lintime path finding for R as witnessed by
r = λx, e, σ e. M allows for lintime pathfinding for total finite variants of
constant functions.17

Note that non-triviality is inherited by subsets, and allowing for lintime path
finding by supersets.

Theorem 17 (Learner Correspondence). Let δ be non-trivial such that δ
allows for lintime path finding for total finite variants of constant functions. Let
C, C′ ⊆ R be closed under generalized composition with LinF and LinF ⊆ C, C′.
Then

CXδ ⊆ C′Xδ ⇔ C ⊆ C′.

Suppose for discussion Q is a polynomial time bound. Pitt [Pit89] notes that
polytime (update) Ex-learning allows unfair postponement tricks, i.e., a learner
h can put off outputting significant conjectures based on data σ until it has
17 M allows for not necessarily lintime path finding for R.

Dynamic Modeling in Inductive Inference 417

seen a much larger sequence of data τ so that Q(|τ |) is enough time for h to
think about σ as long as it needs. In fact, by an extension of Pitt’s postponement
tricks, LinFGEx = GEx. A direct application of Theorem 17, e.g., Corollary 18,
implies that dynamic modeling does not allow for those kinds of postponement
tricks in general.18 We let α, as from [CLRS01, §21.4], be a very slow growing,
unbounded, lintime computable function ≤ an inverse of Ackermann’s function;
let LinF+ε := {ϕe ∈ R | ∃k∀n : Φe(n) ≤ k · |n| · log(|n|) ·α(|n|)+ k}. The classes
LinF and LinF+ε have long been known to separate [HS65].

The following corollary gives a sample of the universal power of Theorem 17.

Corollary 18 (Learner Complexity Matters). Let δ ∈ {Ex,Bc,M}.

(a) LinFXδ ⊂ LinF+εXδ.
(b) PFXδ ⊂ EXPFXδ.

Theorem 17 can be generalized so as to show RXδ ⊆ PXδ for δ as in Corol-
lary 18.

Theorem 19 (Sequence Acceptance Correspondence). Let δ, δ′ be such
that δ ⊆ R2 and δ′ is non-trivial. We have

Xδ ⊆ Xδ′ ⇔ δ ⊆ δ′.

The following corollary gives a sample of the universal power of Theorem 19.

Corollary 20 (Hierarchies and Separations)

(a) For all a, b ∈ N ∪ {∗} : XBca �⊆ XExb.
(b) For all a, b ∈ N ∪ {∗} : XExa ⊆ XBcb ⇔ a ≤ b.
(c) For all n ∈ N : XM �⊆ XEx∗,XBcn.
(d) For all n ∈ N : XEx∗,XBcn �⊆ XM.

References

[Bār71] Bārzdiņš, J.: Prognostication of automata and functions. Information
Processing 1, 81–84 (1971)

[Bār74a] Bārzdiņš, J.: Inductive inference of automata, functions and programs.
In: Int. Math. Congress, Vancouver, pp. 771–776 (1974)

[Bār74b] Bārzdiņš, J.: Two theorems on the limiting synthesis of functions. In: The-
ory of Algorithms and Programs, Latvian State University, Riga, vol. 210,
pp. 82–88 (1974)

18 However, as we saw from Theorem 14 above, such extended postponement tricks
do, nonetheless, apply to the special case of the XEx-learning of any computably
enumerable set of computable functions.

However, we believe we can show that Theorem 14 doesn’t hold for LinFXPcpEx
in place of LinFXEx; hence, postdictive completeness prevents some postponement
tricks.

418 J. Case and T. Kötzing

[BB75] Blum, L., Blum, M.: Toward a mathematical theory of inductive inference.
Information and Control 28, 125–155 (1975)

[BSMP91] Blum, M., De Santis, A., Micali, S., Persiano, G.: Noninteractive zero-
knowledge. SIAM J. Comput. 20(6), 1084–1118 (1991)

[Cas74] Case, J.: Periodicity in generations of automata. Mathematical Systems
Theory 8, 15–32 (1974)

[Cas94] Case, J.: Infinitary self-reference in learning theory. Journal of Experi-
mental and Theoretical Artificial Intelligence 6, 3–16 (1994)

[CJM+05] Case, J., Jain, S., Montagna, F., Simi, G., Sorbi, A.: On learning to
coordinate: Random bits help, insightful normal forms, and competency
isomorphisms. Journal of Computer and System Sciences 71(3), 308–332
(2005); Special issue for selected learning theory papers from COLT 2003,
FOCS 2003, and STOC 2003

[CS83] Case, J., Smith, C.: Comparison of identification criteria for machine
inductive inference. Theoretical Computer Science 25, 193–220 (1983)

[CLRS01] Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algo-
rithms, 2nd edn. MIT Press, Cambridge (2001)

[FKS95] Freivalds, R., Kinber, E.B., Smith, C.H.: On the intrinsic complexity of
learning. Information and Computation 123(1), 64–71 (1995)

[Gol67] Gold, E.: Language identification in the limit. Information and Control 10,
447–474 (1967)

[HS65] Hartmanis, J., Stearns, R.: On the computational complexity of algo-
rithms. Transactions of the American Mathematical Society 117, 285–306
(1965)

[LV97] Li, M., Vitanyi, P.: An Introduction to Kolmogorov Complexity and Its
Applications, 2nd edn. Springer, Heidelberg (1997)

[Min76] Minicozzi, E.: Some natural properties of strong identification in inductive
inference. In: Theoretical Computer Science, pp. 345–360 (1976)

[MO99] Montagna, F., Osherson, D.: Learning to coordinate: A recursion theoretic
perspective. Synthese 118, 363–382 (1999)

[Pit89] Pitt, L.: Inductive inference, DFAs, and computational complexity. In:
Jantke, K.P. (ed.) AII 1989. LNCS, vol. 397, pp. 18–44. Springer, Heidel-
berg (1989)

[Pod74] Podnieks, K.: Comparing various concepts of function prediction. Theory
of Algorithms and Programs 210, 68–81 (1974)

[RC94] Royer, J., Case, J.: Subrecursive Programming Systems: Complexity and
Succinctness. In: Research monograph in Progress in Theoretical Com-
puter Science, Birkhäuser, Boston (1994)

[Rog67] Rogers, H.: Theory of Recursive Functions and Effective Computability.
McGraw Hill, New York (1967) (Reprinted by MIT Press, Cambridge,
Massachusetts, 1987)

[Wie76] Wiehagen, R.: Limes-erkennung rekursiver Funktionen durch spezielle
Strategien. Electronische Informationverarbeitung und Kybernetik 12,
93–99 (1976)

	Dynamic Modeling in Inductive Inference
	Introduction and Motivation
	Mathematical Preliminaries
	Unified Approach to Limit Learning Criteria
	Definitions
	Examples

	Cooperation and Secretiveness
	General Crossfeeding

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

