
Dynamically Delayed Postdictive Completeness

and Consistency in Learning

John Case and Timo Kötzing

Department of Computer and Information Sciences,
University of Delaware, Newark, DE 19716-2586, USA

{case,koetzing}@cis.udel.edu

Abstract. In computational function learning in the limit, an algorith-
mic learner tries to find a program for a computable function g given
successively more values of g, each time outputting a conjectured pro-
gram for g. A learner is called postdictively complete iff all available data
is correctly postdicted by each conjecture.

Akama and Zeugmann presented, for each choice of natural number
δ, a relaxation to postdictive completeness: each conjecture is required
to postdict only all except the last δ seen data points.

This paper extends this notion of delayed postdictive completeness
from constant delays to dynamically computed delays. On the one hand,
the delays can be different for different data points. On the other hand,
delays no longer need to be by a fixed finite number, but any type of
computable countdown is allowed, including, for example, countdown in
a system of ordinal notations and in other graphs disallowing computable
infinitely descending counts.

We extend many of the theorems of Akama and Zeugmann and pro-
vide some feasible learnability results. Regarding fairness in feasible
learning, one needs to limit use of tricks that postpone output hypothe-
ses until there is enough time to “think” about them. We see, for poly-
time learning, postdictive completeness (and delayed variants): 1. allows
some but not all postponement tricks, and 2. there is a surprisingly
tight boundary, for polytime learning, between what postponement is
allowed and what is not. For example: 1. the set of polytime computable
functions is polytime postdictively completely learnable employing some
postponement, but 2. the set of exptime computable functions, while
polytime learnable with a little more postponement, is not polytime
postdictively completely learnable! We have that, for w a notation for ω,
the set of exptime functions is polytime learnable with w-delayed post-
dictive completeness. Also provided are generalizations to further, small
constructive limit ordinals.

1 Introduction

“Explanatory learning”, or Ex-learning for short, is a standard model of limit
learning of computable functions. In this model a learner is given successively
longer initial segments of a target function. For each initial segment of the target

Y. Freund et al. (Eds.): ALT 2008, LNAI 5254, pp. 389–403, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

390 J. Case and T. Kötzing

function, the learner gives an hypothesis. The learner is said to successfully Ex-
learn the target function iff the infinite sequence of hypotheses generated by the
learner on the initial segments of the target functions converges in the limit to
a (single) correct program for the target function [JORS99].

In some literature on limit learning this intuitively simple success criterion
is used as a minimal requirement for success, and additional requirements are
defined and examined. We call two such extra requirements postdictive com-
pleteness (the hypotheses correctly postdict the data seen so far) and postdic-
tive consistency (the hypotheses do not explicitly contradict the given data)
[Bār74, BB75, Wie76, Wie78].1 There are Ex-learnable sets of functions that
cannot be learned with the additional requirement of postdictive completeness
or consistency.

Akama and Zeugmann [AZ07] presented success criteria that are a little less
restrictive than postdictively complete Ex-learning. Their criteria delay the re-
quirement to postdict a given datum by a fixed natural number δ of (not nec-
essarily distinct) hypotheses output. For ordinary postdictive completeness, if a
learner h has seen so far, on a computable g input, g(0), . . . , g(n − 1), then h’s
corresponding hypothesis, pn, must correctly compute g(0), . . . , g(n − 1).2 For
delay δ, Akama and Zeugmann, require only that, on g(0), . . . , g(n−1), h’s later
hypothesis, pn+δ, must correctly compute g(0), . . . , g(n− 1). Essentially, the de-
lay δ learner could, after seeing g(0), . . . , g(n− 1), run a counter down from δ to
0 to see which future hypothesis must correctly compute g(0), . . . , g(n− 1).

In the present paper we extend this notion of delayed postdictive complete-
ness from constant delays δ to dynamically computed delays. One of the ways
we consider herein to do this involves counting down from notations for con-
structive ordinals. We explain. Everyone knows how to use the natural numbers
for counting, including for counting down. Freivalds and Smith [FS93], as well
as [ACJS04], employed in learning theory notations for constructive ordinals
[Rog67, § 11.7] as devices for algorithmic counting down. Theorems 4 and 5 in
Section 3 provide strong justification for studying the herein ordinal countdown
variants of Postdictive Completeness.

[SSV04] gives a further generalized notion of counting down. They consider
certain partial orders with no computable infinitely descending chains. In the
present paper we consider arbitrary and also computable graphs with no infi-
nite, computable paths, and we algorithmically count “down” along their paths.
Theorem 11, in Section 4.2 below, gives a nice example of a linearly ordered, com-

1 We use the terminology postdictive completeness because the the hypotheses must
completely postdict the data seen to that point. We use the terminology postdictive
consistency because the the hypotheses need only avoid explicit inconsistencies with
the data seen to that point. Such an hypothesis may, then, on some input for which
the data seen to that point tells the answer, go undefined (i.e., go into an infinite
loop) and, thereby, not explicitly contradict the known data. In the literature on
these requirements, except for [Ful88], what we call postdictively complete is called
consistent, and what we call postdictively consistent is called conformal.

2 Note that, for n = 0, the data seen is empty and the output hypothesis, p0, is
unconstrained.

Postdictive Completeness and Consistency 391

putable such graph which nonetheless has infinite paths (just not computable
ones). We call our graphs in the present paper, countdown graphs.

We make use of countdown graphs for delaying the requirement of postdic-
tive completeness (respectively, consistency) by requiring a learner to start an
independent countdown for each datum g(i) seen and to be postdictively com-
plete (respectively, consistent) regarding g(i) as soon as the countdown for g(i)
terminates.3

Section 2 will introduce the notation and concepts used in this paper.
In the prior literature we also see further variants of postdictive completeness

and consistency not based on delay. For example, [CJSW04] surveys with refer-
ences these variants. Roughly, below, when we attach R to the front of a name
of a criterion requiring postdictive completeness or consistency, this means that
the associated learnability must be witnessed by a (total) computable learner
as opposed to just a partial computable learner (defined at least where it min-
imally needs to be); when we attach a T to the front of a name of a criterion
requiring postdictive completeness (respectively, consistency), this means that
the associated learnability must be witnessed by a (total) computable learner
which is postdictively complete (respectively, consistent) on all input functions
regardless of whether the learner actually learns them.

Sections 3 and 4 present our results. All of our results in Section 3 provide
information about polynomial time learners. Furthermore, some of our results
in Section 4.1 entail learnability with linear time learners. These time bounds
are uniform bounds on how much time it takes the learner to conjecture each
hypothesis in terms of the total size of the input data it can use for making this
conjecture. Suppose for discussion p is a polynomial time bound. Pitt [Pit89]
notes that Ex-learning allows unfair postponement tricks, i.e., a learner h can
put off outputting significant conjectures based on data σ until it has seen a much
larger sequence of data τ so that p(|τ |) is enough time for h to think about σ as
long as it needs.4 In this way the polytime restriction on each output does not,
by itself, have the desirable effect of constraining the total learning time. Pitt
[Pit89] then lays out some additional constraints toward avoiding “cheating”
by such postponement tricks. He discusses in this regard what we are calling
postdictive completeness. He also considers further constraints since he wants
to forbid enumeration techniques [JORS99]. For our complexity-bounded results
in Section 4.1 we get by with an extremely fair, restricted kind of linear-time
learner, we call transductive. A transductive learner has access only to its current
datum.

In Section 3 we see, from Theorems 4 and 5 and the proof of the first, that,
for polytime learning, postdictive completeness (and delayed variants): 1. allows
some but not all postponement tricks, and 2. there is a surprisingly tight bound-
ary, for polytime learning, between what postponement is allowed and what
is not. For example: 1. the set of polytime computable functions is polytime

3 Below we refer to a vector of such individual counts as a multicount.
4 Pitt talks in this context of delaying tricks. We changed this terminology due to the

clash with Akama and Zeugmann’s terminology for delayed postdictive completeness.

392 J. Case and T. Kötzing

postdictively completely Ex-learnable (by a complexity-bounded enumeration
technique) employing some postponement, but 2. the set of exptime computable
functions, while polytime Ex-learnable with a little more postponement, is not
polytime postdictively completely Ex-learnable! From Theorem 4, we see that,
for w a notation for ω, the set of exptime functions is polytime Ex-learnable
with w-delayed postdictive completeness. Theorems 4 and 5 also provide gener-
alizations to further, small constructive limit ordinals.

Section 4.1 shows how the different variants of our criteria relate in learning
power. Our main theorem in this section is Theorem 6. For example, it entails
that there is a set of computable functions which is postdictively consistently
learnable (with no delays) by a transductive, linear time learner but is not post-
dictively completely learnable with delays employing any countdown graph.

In Section 4.2, our main result, Theorem 13, entails (including with Corollar-
ies) complete characterizations of learning power in dependence on associated
(computable) countdown graphs. Corollary 16 extends the finite hierarchy given
in [AZ07] into the constructive transfinite.

We omit most proofs due to space constraints. A more complete version of
the present paper can be found online [CK08]. Many of our omitted proofs
use Kleene’s Recursion Theorem [Rog67, page 214, problem 11-4] or the Case’s
Operator Recursion Theorem [Cas74] (and are a bit combinatorially difficult).

2 Mathematical Preliminaries

Any unexplained complexity-theoretic notions are from [RC94]. All unexplained
general computability-theoretic notions are from [Rog67].

Strings herein are finite and over the alphabet {0, 1}. {0, 1}∗ denotes the set
of all such strings; ε denotes the empty string.

N denotes the set of natural numbers, {0,1,2,. . . }. We do not distinguish
between natural numbers and their dyadic representations as strings.5

For each w ∈ {0, 1}∗ and n ∈ N, wn denotes n copies of w concatenated end
to end. For each string w, we define size(w) to be the length of w. As we identify
each natural number x with its dyadic representation, for all n ∈ N, size(n)
denotes the length of the dyadic representation of n. For all strings w, we define
|w| to be max{1, size(w)}. 6

The symbols ⊆,⊂,⊇,⊃ respectively denote the subset, proper subset, superset
and proper superset relation between sets.

For sets A,B, we let A \B := {a ∈ A | a �∈ B}, A := N \A.
We sometimes denote a function f of n > 0 arguments x1, . . . , xn in lambda

notation (as in Lisp) as λx1, . . . , xn f(x1, . . . , xn). For example, with c ∈ N,
λx c is the constantly c function of one argument.

5 The dyadic representation of a natural number x := the x-th finite string over {0, 1}
in lexicographical order, where the counting of strings starts with zero [RC94]. Hence,
unlike with binary representation, lead zeros matter.

6 This convention about |ε| = 1 helps with runtime considerations.

Postdictive Completeness and Consistency 393

A function ψ is partial computable iff there is a Turing machine computing
ψ. R and P denote the set of all (total) computable and partial computable
functions N → N, respectively. If ψ is not defined for some argument x, then
we denote this fact by ψ(x)↑, and we say that ψ on x diverges. The opposite is
denoted by ψ(x)↓, and we say that ψ on x converges.

We say that a partial function ψ converges to p iff ∀∞x : ψ(x)↓ = p.
[RC94, §3] describes an efficiently numerically named or coded7 programming

system for multi-tape Turing machines (TMs) which compute the partial com-
putable functions N → N. Herein we name this system ϕ. ϕp denotes the partial
computable function computed by the TM-program with code number p in the
ϕ-system, and Φp denotes the partial computable runtime function of the TM-
program with code number p in the ϕ-system. In the present paper, we employ
a number of complexity bound results from [RC94, §§ 3 & 4] regarding (ϕ,Φ).
These results will be clearly referenced as we use them.

We fix the 1-1 and onto pairing function 〈·, ·〉 : N × N → N from [RC94],
which is based on dyadic bit-interleaving. Pairing and unpairing is computable
in linear time. π1 and π2, respectively, denote the unpairing into the left and
right component of a given coded pair, respectively.

For all f, g ∈ R we let 〈f, g〉 denote λi 〈f(i), g(i)〉.
Whenever we consider tuples of natural numbers as input to TMs, it is under-

stood that the general coding function 〈·, ·〉 is used to (left-associatively) code
the tuples into appropriate TM-input.

A finite sequence is a mapping with a finite initial segment of N as domain
(and range, N). ∅ denotes the empty sequence (and, also, the empty set). The
set of all finite sequences is denoted by Seq. For each finite sequence σ, we will
denote the first element, if any, of that sequence by σ(0), the second, if any,
with σ(1) and so on. last(σ) denotes the last element of σ, if any. #elets(σ)
denotes the number of elements in a finite sequence σ, that is, the cardinality of
its domain.

We use � (with infix notation) to denote concatenation on sequences. For any
natural number x, we let x denote the sequence of length one with only element
x, and we let xn be the code of the sequence of length n, each element being x.

From now on, by convention, f , g and h with or without decoration range over
(partial) functions N → N, x, y with or without decorations range over N and
σ, τ with or without decorations range over finite sequences of natural numbers.

Following [LV97], we fix a coding 〈·〉Seq of all sequences into N (= {0, 1}∗) –
with the following properties.

The set of all codes of sequences is decidable in linear time. The
time to encode a sequence, that is, to compute λk, v1, . . . , vk 〈v1, . . . , vk〉Seq
is O(λk, v1, . . . , vk

∑k
i=1 |vi|). Therefore, the size of the codeword is

also linear in the size of the elements: λk, v1, . . . , vk |〈v1, . . . , vk〉Seq| is

7 This numerical coding guarantees that many simple operations involving the coding
run in linear time. This is by contrast with historically more typical codings featuring
prime powers and corresponding at least exponential costs to do simple things.

394 J. Case and T. Kötzing

O(λk, v1, . . . , vk

∑k
i=1 |vi|).8 We also have λ〈σ〉Seq #elets(σ) is linear time com-

putable; λ〈σ〉Seq, i
{
σ(i), if i < #elets(σ);
0, otherwise,

is linear time computable; and

∀σ : #elets(σ) ≤ |〈σ〉Seq|. (1)

Henceforth, we will many times identify a finite sequence σ with its code num-
ber 〈σ〉Seq. However, when we employ expressions such as σ(x), σ = f and σ ⊂ f ,
we consider σ as a sequence, not as a number.

For a partial function g and i ∈ N, if ∀j < i : g(j)↓, then g[i] is defined to be
the finite sequence g(0), . . . , g(i− 1).

A pre-order is a pair (A,≤A) such that ≤A is a transitive and reflexive binary
relation on A.

Church and Kleene introduced systems of ordinal notations. See Rogers
[Rog67, § 11.7]. For us, a system of ordinal notations is a pair (N ,≤N) and
associated functions kN , pN , qN ∈ P and νN mapping N into the set of all con-
structive ordinals, such that N ⊆ N, and, for all u, v ∈ N , we have: u ≤N v
iff νN (u) ≤ νN (v); if νN (u) = 0, then kN (u) = 0; if νN (u) is successor ordinal,
then kN (u) = 1 and νN (pN (u)) + 1 = νN (u); if νN (u) is limit ordinal, then
kN (u) = 2 and ϕqN (u) is a monotonic increasing computable function such that
νN ◦ ϕqN (u) converges to νN (u).

Note that ≤N is not necessarily computable. If it is, then (N ,≤N) is called
computably related.

For countdown in polynomial time, we use feasibly related feasible systems
of ordinal notations [CKP07]. In such systems, many predicates and operations
on notations are feasibly computable. For example, one can use the (efficiently)
coded tuple 〈an, . . . , a0〉 as a notation for the ordinal ωn · an + . . . ω0 · a0. The
resulting system of ordinal notations gives a notation to all ordinals < ωω and
allows for polytime comparing, adding and so on.

Note that, for any constructive ordinal α, there is a computably related system
of ordinal notations which gives a notation to α [Rog67]; furthermore, there is
also a feasibly related feasible system of ordinal notations giving a notation to
α [CKP07].

In this paper we consider several indexed families of learning criteria. We
proceed somewhat abstractly to avoid needless terminological repetitions.

For each C ⊆ P and δ ⊆ R2, we say that the pair (C, δ) is a learning criterion
(for short, criterion). The set C is called a learner admissibility restriction, and
intuitively serves as a limitation on what functions will be considered as learners.
Typical learner admissibility restrictions are P ,R, as well as complexity classes.
The predicate δ is called a sequence acceptance criterion, intuitively restricting
what output-sequences by the learner are considered a successful learning of a
given function. For h ∈ P , g ∈ R we say that h (C, δ)-learns g iff h ∈ C and
(λx h(g[x]), g) ∈ δ. For h ∈ P , g ∈ R, we call λx h(g[x]) the learning-sequence
of h given g. Here’s an example δ, herein called Ex. Let Ex = {(〈p, d〉, q) ∈
8 For these O-formulas, |ε| = 1 helps.

Postdictive Completeness and Consistency 395

R2 | p converges to some e ∧ ϕe = q}. Intuitively, (〈p, d〉, q) ∈ Ex means that
the learning-sequence 〈p, d〉 successfully learns the function q iff: for some i, p(i)
is a correct program number for q, and this hypothesized program number will
never change after that point i. N.B. For this example, the learning-sequence is
a sequence of coded pairs and Ex completely disregards the second component
d. Some other sequence acceptance criteria below make use of d as an auxiliary
output of the learner. In these cases, d will code countdowns until some events
of interest must happen. For h ∈ P and S ⊆ R we say that h (C, δ)-learns S
iff, for all g ∈ S, h (C, δ)-learns g. The set of (C, δ)-learnable sets of computable
functions is Cδ := {S ⊆ R | ∃h ∈ C : h (C, δ)-learns S}. Instead of writing the
pair (C, δ), we will ambiguously write Cδ. We will omit C if C = P .9 One way to
combine two sequence acceptance criteria δ and δ′ is to intersect them as sets.
We write δδ′ for the intersection, and we present examples featuring countdowns
in the next section.

We can turn a given sequence acceptance criterion δ into a learner admissi-
bility restriction T δ by admitting only those learners that obey δ on all input :
T δ := {h ∈ P | ∀g ∈ R : (λx h(g[x]), g) ∈ δ}.

The following two definitions formalize the intuitive discussion about count-
down graphs as given above in Section 1.

A graph is a pair (G,→), where G ⊆ N and → is a binary relation on G. We
will use infix notation for →. For each graph (G,→), we say that τ is a G-path iff
#elets(τ) > 0, ∀i < #elets(τ) : τ(i) ∈ G and ∀i < #elets(τ)−1 : τ(i) → τ(i+1).
For each graph G, let �G denote the set of all G-paths. (S,R) is a subgraph of
(G,→), iff S ⊆ G and R is → restricted to (S × S).

For allm,n ∈ N, we writem→∗ n (respectively,m→+ n) iff there is a G-path
τ such that τ(0) = m, last(τ) = n (respectively, additionally #elets(τ) > 1). We
sometimes write G for (G,→). A graph (G,→) is said to be computable iff G

and → are computable. Note that G ∈ G is computable iff �G is computable. For
a graph (G,→) we sometimes identify m ∈ G with {n ∈ G | m →+ n}. With
every pre-order (A,≤A) we associate the graph (A,>A), where, for all a, b ∈ A,
a >A b iff (b ≤A a and a �≤A b).

A graph (G,→) is called a countdown graph, iff ¬∃r ∈ R∀i ∈ N : r(i) →
r(i + 1). Note that if G is a countdown graph, then so is every subgraph of G.
Let G, Gcomp, respectively, denote the set of all and all computable countdown-
graphs, respectively.

Example countdown graphs can be obtained from systems of ordinal nota-
tions. Let (N ,≤N) be a system of ordinal notations. Then, (N ,≤N) is a pre-
order without infinite descending chains, so the graph associated with (N ,≤N)
is a countdown graph. If (N ,≤N) is computably related, then the associated
graph will be computable.

9 Thus, every sequence acceptance criterion denotes at the same time a learning cri-
terion and the set of learnable sets. It will be clear from context which meaning is
intended. An example: Ex, then, denotes sequence acceptance criterion Ex, learning
criterion (P ,Ex) and set PEx of (P ,Ex)-learnable sets.

396 J. Case and T. Kötzing

In Theorem 11 below we give one example of a countdown graph not based
on a system of ordinal notations.

Soon we define what postdictive completeness, respectively consistency, with
respect to G ∈ G means. Intuitively, every learner is required to have two outputs:
a hypothesis, and a countdown output. For any learnee g ∈ R, if the learner sees
g[i], the countdown output will need to encode one countdown for each j < i.
As soon as the countdown for a given data item is over, the hypothesis has to be
postdictively complete, respectively consistent, for that data item. We will refer
to the countdown output of a learner as a multicount (as it represents more than
one countdown). We refer to a learning-output of hypothesis and multicount as
a hypothesis-multicount.

The set of all multicountdown sequences is defined as M := {σ ∈ Seq | ∀i <
#elets(σ) : (σ(i) ∈ Seq ∧ #elets(σ(i)) = i)}.10

An example multicountdown sequence is σ0 := 〈〉Seq, 〈3〉Seq, 〈2, 3〉Seq,
〈1, 2, 2〉Seq, 〈0, 1, 2, 1〉Seq, 〈0, 0, 2, 2, 2〉Seq, 〈2, 0, 2, 3, 1, 1〉Seq, 〈0, 0, 2, 7, 0, 0, 5〉Seq.
σ0 can be displayed as a matrix like this:

σ0 =

x
n

0 1 2 3 4 5 6 7

0
1
2
3
4
5
6

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

3 2 1 0 0 2 0
3 2 1 0 0 0

2 2 2 2 2
1 2 3 7

2 1 0
1 0

5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2)

In (2) each column is a multicount. For example, column x = 4 represents the
multicount σ0(4) = 〈0, 1, 2, 1〉. Each row of (2) provides the successive values of
a particular countdown. For example, the n-th row of (2) (without initial empty
entries) is the n-th countdown of σ0. As we will see below, for an associated
learnee g, the n-th row will be relevant to g(n).

For each σ ∈ M and n < #elets(σ) − 1 we define row(n, σ) := 〈σ(n +
1)(n), . . . , σ(#elets(σ) − 1)(n)〉Seq. For σ0 as presented above in (2), we have,
for example, row(4, σ0) = 〈2, 1, 0〉Seq. Each row(n, σ) is a countdown.

We will consider a given countdown sequence τ as terminated with respect to
a given countdown graph G ∈ G, iff τ �∈ �G. We then say that “τ has terminated”
or “τ has bottomed out”. For a given multicountdown sequence we will define
the set of all n such that the n-th countdown has (started and) bottomed out
just below. For all σ and all G ∈ G, define ⊥G(σ) = {n < #elets(σ) − 1 | σ �∈
M ∨ row(n, σ) �∈ �G}. We omit the subscript G whenever no confusion can arise.

We pronounce ⊥ as “bottom”. For σ ∈ M, ⊥(σ) is the set of all countdown
numbers where the countdown has terminated.

Let us, for example, consider the finite countdown graph G on {0, 1, 2, 3}
with the natural >-order on N. For σ0 depicted above in (2), we have ⊥G(σ0) =
10 Of course, σ(i) ∈ Seq means that the number σ(i) is the code of a sequence.

Postdictive Completeness and Consistency 397

{0, 1, 2, 3, 6}. The example of rows n = 4 and n = 5 shows that reaching a
minimal element (in this case 0) of G does not imply immediate termination of
the countdown. The example of rows n = 2 and n = 3 shows how countdowns
terminate when not obeying the graph relation. Note that the countdown for
row n = 6 has terminated immediately when it started, as it started with 5, and
〈5〉Seq is not a G-path. From rows n = 4 and n = 6 we see that the different
countdowns do not have to terminate in row order.

Next we define two families of sequence acceptance criteria, employing count-
downs as described above. The rest of the paper will be concerned with studying
these criteria in various settings.

Definition 1. For G ∈ G let, for all p, d, q ∈ R,

– PcpG(〈p, d〉, q) :⇔ ∀x∀n ∈ ⊥G(d[x]) : ϕp(x)(n)↓ = q(n); and
– PcsG(〈p, d〉, q) :⇔ ∀x∀n ∈ ⊥G(d[x]) : ϕp(x)(n)↓ ⇒ ϕp(x)(n) = q(n).

For all g ∈ R and h, f ∈ P , we say that 〈h, f〉 works postdictively completely (re-
spectively, consistently) on g with G-delay iff (λi (〈h(g[i]), f(g[i])〉), g) ∈ PcpG

(respectively, PcsG). We omit “with G-delay”, if no confusion can arise.

3 Complexity Results

For this section only, let N be a feasibly related feasible system of ordinal no-
tations for at least the ordinals < ω2. Let w be a notation for ω in N . For
each n ∈ N, n denotes a notation for n in N , such that λn n is computable in
polytime. We will assume for all constructive ordinals α,

∀n ∈ N, u ∈ N : (u is notation in N for α+ n) ⇒ n ≤ u.11 (3)

Definition 2. Let exp denote the function λx 2x. Furthermore, for all n, we
write expn for the n-times application of exp. In particular, exp0 denotes the
identity. For all k let ExpkPrograms := {e | e ∈ N ∧ ∃p polynomial ∀n ∈
N : Φe(n) ≤ expk(p(|n|))} and EXPkF := {ϕe | e ∈ ExpkPrograms}. Also,
we let ExpPrograms := Exp1Programs, EXPF := EXP1F, PolyPrograms :=
Exp0Programs and PF := EXP0F.

For g ∈ PF we say that g is computable in polytime, or also, feasibly computable.
Recall that we have, by (1), ∀σ : #elets(σ) ≤ |σ|.

Definition 3. Let S, T be such that

∀p, x, t : S(p, x, t) =

{
ϕp(x), if Φp(x) ≤ |t|;
0, otherwise;

(4)

∀p, x, t : T (p, x, t) =

{
1, if Φp(x) ≤ |t|;
0, otherwise.

(5)

11 Specific systems of ordinal notations seen in the literature typically, perhaps always,
satisfy (3).

398 J. Case and T. Kötzing

We now use the notion introduced above for subscripting our criteria with
ordinal notations instead of countdown graphs.

Theorem 4
(a) PF ∈ PFPcp0Ex.
(b) EXPF ∈ PFPcpwEx.
(c) ∀n : EXPnF ∈ PFPcpw·nEx.

Furthermore, each of (a), (b) and (c) is witnessed by a respective learner 〈h, f〉
such that range(h) ⊆ PolyPrograms, ⊆ ExpPrograms and ⊆ ExpnPrograms,
respectively.

Proof of (a). This proof employs a complexity-bounded enumeration technique
[JORS99]. By [RC94, Theorem 3.13], there is a linear time computable patch0

such that,

∀σ∀x : ϕpatch0(σ)(x) =

{
σ(x), if x < #elets(σ);
0, otherwise;

(6)

and all outputs of patch0 are programs computable in linear time.
By [RC94, Theorems 4.13(b) & 4.17] there is a linear time computable e such

that PF = {ϕe(j) | j ∈ N} and ∀j ∈ N : e(j) ∈ PolyPrograms. From [RC94,
Corollary 3.7] S and T from (4) and (5) above are polytime computable.12 Then,
by [RC94, Lemmas 3.15 & 3.16], it is easy to see that there is h ∈ PF such that

∀σ : h(σ) =

⎧
⎪⎪⎨

⎪⎪⎩

e(j),
if there is a minimal
j ≤ |σ| : ∀x < #elets(σ) :
(T (e(j), x, σ) ∧ S(e(j), x, σ) = σ(x));

patch0(σ), otherwise.

(7)

To show that h converges on all g ∈ PF: Let g ∈ PF. Let j0 be minimal such
that ϕe(j0) = g. Let p be a polynomial such that ∀x : Φe(j0)(x) ≤ p(|x|). We then
have the following.

– ∀∞n, j0 ≤ n ≤ |g[n]| (by (1)).
– ∀∞n∀j < j0 : g[n] �⊆ ϕe(j) (as j0 minimal such that ϕe(j0) = g).
– We have ∀∞x : Φe(j0)(x) ≤ x.13 Hence, ∀∞n∀x ≤ n : Φe(j0)(x) ≤ n.14

Therefore, using (1), ∀∞n∀x < n : T (e(j0), x, g[n]); hence, also ∀∞n∀x < n :
S(e(j0), x, g[n]) = ϕe(j0)(x) = g(x).

By the three items above, we have ∀∞n : h(g[n]) = e(j0). Let f = λσ 0. Obvi-
ously, 〈h, f〉 witnesses PF ∈ Pcp0Ex. The furthermore clause follows from the
choice of e and patch0. (of (a))
12 N.B. S and T above are variants of the S and T featured in [RC94, Corollary 3.7].
13 By [RC94, §2.5, (9)], there are a, b ∈ N such that ∀x : 2|x| ≤ a · x + b; thus,

there is d > 0 such that ∀∞x : 2|x| ≤ d · x. Clearly, ∀∞x : p(|x|) ≤ 1
d
2|x|. Thus,

∀∞x : p(|x|) ≤ x.
14 Let n0, n1 be such that ∀x ≥ n0 : Φe(j0)(x) ≤ x and ∀x < n0 : Φe(j0)(x) ≤ n1. Then,

for all n ≥ max{n0, n1} and for all x ≤ n, we have (if x < n0) Φe(j0)(x) ≤ n1 ≤ n,
and (otherwise) Φe(j0)(x) ≤ x ≤ n.

Postdictive Completeness and Consistency 399

We will not give proofs for (b) and (c), as they are only slight modifications
of the proof for (a). Note that (a) and (b) are both special cases of (c).

Theorem 5

(a) ∀n ∈ N : EXPF �∈ PFPcpnEx.
(b) ∀k, n ∈ N : EXPk+1F �∈ PFPcpw·k+nEx.

We will not prove (b), but only its simpler to prove special case (a).
Proof of (a). Suppose by way of contradiction otherwise as witnessed by n and
〈h, f〉. Note that {σ | ∃g ∈ EXPF, σ ⊂ g} = Seq; thus, 〈h, f〉 ∈ T Pcpn.

Define g ∈ R according to the following informal definition in stages. gs

denotes g as defined until before stage s.
g0 = ε
stage s = 0 to ∞

if h(gs � 0 � 0n) = h(gs)
then gs+1 = gs � 1 � 0n

else gs+1 = gs � 0 � 0n

Claim 1: h does not converge on g.
We show the claim by showing ∀s : h(gs+1) �= h(gs). As 〈h, f〉 ∈ T Pcpn, we

have for all s ∈ N and each j ∈ {0, 1}, λi ≤ n f(gs � j � 0i) is not a n-path, as
there is no path of length n+ 1 in n; hence, ϕh(gs�j�0n

)(#elets(gs)) = j.
If now h(gs � 0 � 0n) = h(gs), then ϕh(gs+1)(#elets(gs)) =

ϕh(gs�1�0n
)(#elets(gs)) = 1 �= 0 = ϕh(gs�0�0n

)(#elets(gs)) = ϕh(gs)(#elets(gs));
thus, h(gs+1) �= h(gs).

If h(gs � 0 � 0n) �= h(gs), then h(gs+1) = h(gs � 0 � 0n) �= h(gs).
(of Claim 1)

Claim 2: g ∈ EXPF.
By the construction of g, we have ∀s : gs ∈ {0, 1}s·(n+1). Hence, to compute g(x)
for any given x, it suffices to execute stages 0 through x of the above algorithm
to get gx+1, from which g(x) can then be extracted. Therefore, it suffices to show
that, for all s, the stages 0 through s of the above algorithm can be done with
an appropriate timebound.

Let p be a polynomial upper-bounding the runtime of h such that ∀x : x ≤
p(x). For any stage s, the time to execute stage s is in O(λs p(|gs � 0n+1|) +
p(|gs|)) = O(λs p(|gs| + n+ 1)) =15O(λs p(s · (n + 1) + n+ 1)) = O(λs p(s)).
Therefore, for all s, the time to execute all stages 0 to s is bounded above by
O(λs (s+ 1) · p(s)) ⊆ O(λs 2p′(|s|)) for some polynomial p′.16

(of Claim 2) (of (a))

15 O(|gs|) = O(#elets(gs)).
16 Find k such that O(p) = O(λx xk). By [RC94, §2.5, (9)], there are a, b such that

x ≤ a · 2|x| + b. Thus, there is are c, d, c′, d′ such that ∀x : p(x) ≤ c · xk + d ≤
c · (a · 2|x| + b)k + d ≤ c′ · 2k·|x| + d′.

400 J. Case and T. Kötzing

4 General Results

4.1 Results Mostly Not Comparing Graphs

The following theorem shows the relationship between the different learning
criteria as defined in this paper.

Theorem 6. We have the following.

∀G ∈ Gcomp : T PcpGEx = T PcsGEx. (8)

RPcs∅Ex \ (
⋃

G∈G
PcpGEx) �= ∅. (9)

RPcp∅Ex \ (
⋃

G∈G
T PcpGEx) �= ∅. (10)

Pcp∅Ex \ (
⋃

G∈Gcomp

RPcsGEx) �= ∅. (11)

Furthermore, the separations (9) and (10) are witnessed by sets of functions
such that the positive part of the separation is witnessed by a (fair) learner
computable in linear time working transductively.

Our proof of (8) above is an extension of Fulk’s proof of the G = ∅ case [Ful88].

Proof of (10). 17 Let S := {g ∈ R | (0 � (π1 ◦ g), g) ∈ Pcp∅Ex}. Obvi-
ously, S ∈ LinFTdPcp∅Ex ⊆ RPcp∅Ex. Let G ∈ G. Suppose, by way of
contradiction, S ∈ T PcpGEx as witnessed by 〈h0, f0〉. Define, for all e ∈ N,
Se := {σ | ∀i < #elets(σ) : π1(π1(σ(i))) = e}. Note that Se is uniformly com-
putable in e. By KRT, there is e such that ϕe is defined as the union over an
infinite, with respect to sequence-extension strictly increasing, family of finite
sequences (σs)s∈N recursively specified as follows.

σ0 := ∅; (12)
∀s : σs+1 := μσ ∈ Se σs ⊂ σ ∧ h0(σ) �= h0(σs). (13)

We reason by induction that, for all s, σs is defined. Clear for σ0. Let s be
such that σs is defined. Let τ , τ ′ ∈ Se be two extensions of σs such that τ
and τ ′ differ at position #elets(σs) (the first position not in σs), and #elets(σs)
is in the bottomed-out set of f0 after f0 gets any one of the sequences τ or
τ ′ as input. Then, as 〈h0, f0〉 ∈ T PcpG, ϕh0(τ)(#elets(σs)) = τ(#elets(σs)) �=
τ ′(#elets(σs)) = ϕh0(τ ′)(#elets(σs)). Hence, for at least one σ ∈ {τ, τ ′}, h0(σ) �=
h0(σs).

We have a contradiction, as trivially ϕe ∈ S and 〈h0, f0〉 does not T PcpGEx-
identify ϕe. (for (10))

17 An anonymous referee pointed out that (10) can be proven by showing that all sets
in T PcpGEx can be reliably learned, as it is known that not all reliably learnable
sets are RPcp∅Ex-learnable [CJSW04]. We give this proof as a particularly short
examplar of many proofs omitted in Section 4.

Postdictive Completeness and Consistency 401

Theorem 7. Let G ∈ G. Then T PcpGEx is closed under computably enumer-
able unions.

Our proof for Theorem 7 makes use of the notion of reliability [Min76, BB75].

Theorem 8. We have ⋃

G∈G
PcsGEx ⊂ Ex. (14)

Furthermore, the separation is witnessed by a (fair) learner computable in linear
time working transductively.

4.2 Dependencies on the Countdown Graphs

Next we define a pre-order, ≤CD, on G. We will see that ≤CD characterizes
relative learning-power in dependence on countdown graphs.

Definition 9. For two graphs G,G′ we write G ≤CD G′ (read: G is countdown
reducible to G′) iff there is a k ∈ R, such that

(i) for all y ∈ G: k(y) ∈ G′;
(ii) for all τ � y ∈ �G such that #elets(τ) > 0, we have k(τ) →G′ k(τ � y).

Intuitively, k maps any G-path into a vertex of G′.18 Clearly, ≤CD is a pre-order.

Proposition 10. Let G,G′ ∈ G. Let k ∈ R. The following are equivalent.

(a) G ≤CD G′ as witnessed by k;
(b) ∀τ ∈ �G : (λi < #elets(τ) k(τ [i+ 1])) ∈ �G′.

Next we exhibit nice example countdown graphs and indicate how they compare
by ≤CD.
ω denotes the order-type of the natural numbers ordered by ≤, ω−1 denotes

the order-type of the natural numbers ordered by ≥.

Theorem 11. There is a computable total ordering ≤R on N of order-type
ω + ω−1 such that there are no computable infinitely descending chains with
respect to ≤R; hence, (N, >R) is a countdown graph.

For the rest of this section, let ≤R be as in Theorem 11, and let R denote the
countdown graph (N, >R).

Example 12. Let (N ,≤N), (N ′,≤N ′) be computably related systems of ordinal
notations. Then we have

(a) N ≤CD N ′ ⇒ N ′ gives a notation to at least all the ordinals N gives a
notation to;

18 Neither of mapping G vertices into G′ vertices nor mapping G paths into G′ paths
will give us the same characterization results that we have in Theorem 13 below.

402 J. Case and T. Kötzing

(b) N ≤CD R ⇔ N gives a notation to all and only the ordinals < ω · i+ j for
some i ∈ {0, 1}, j ∈ N; and

(c) R �≤CD N .

Theorem 13. Let G ∈ Gcomp, G′ ∈ G. We have

T PcpGEx ⊆ T PcpG′Ex ⇔ G ≤CD G′.

Next are three corollaries to Theorem 13 (or its proof). The first two are regard-
ing the other restricted learnability notions of the present paper. The third is
our hierarchy theorem for ordinal notations.

Corollary 14. Let G ∈ Gcomp. We have

T PcpGEx \
⋃

G′∈Gcomp

G 	≤CDG′

PcsG′Ex �= ∅.

Next is a characterization of the graph dependence of relative learning power for
the restricted learning criteria not covered by Theorem 13.

Corollary 15. For all G,G′ ∈ Gcomp we have

G ≤CD G′ ⇔ RPcpGEx ⊆ RPcpG′Ex (15)
⇔ RPcsGEx ⊆ RPcsG′Ex (16)
⇔ PcpGEx ⊆ PcpG′Ex (17)
⇔ PcsGEx ⊆ PcsG′Ex. (18)

Recall that, from Section 2, for a graph G ∈ G and m ∈ G, we ambiguously use
m to refer to the countdown-graph {n ∈ G | m →+ n}. For two sets M,N we
write M # N iff (M �⊆ N ∧ N �⊆M).

Corollary 16. Let (N ,≤N) be a computably related system of ordinal notations.
Let u, v ∈ N . Then we have

u <N v ⇔ u <CD v (19)
⇔ T PcpuEx ⊂ T PcpvEx. (20)

Furthermore, if N gives a notation to at least all ordinals < ω · 2, then

T PcpNEx # T PcpREx. (21)

References

[ACJS04] Ambainis, A., Case, J., Jain, S., Suraj, M.: Parsimony hierarchies for in-
ductive inference. Journal of Symbolic Logic 69, 287–328 (2004)

[AZ07] Akama, Y., Zeugmann, T.: Consistent and coherent learning with δ-delay.
Technical Report TCS-TR-A-07-29, Hokkaido Univ. (October 2007)

Postdictive Completeness and Consistency 403

[Bār74] Bārzdiņš, J.: Inductive inference of automata, functions and programs. In:
Int. Math. Congress, Vancouver, pp. 771–776 (1974)

[BB75] Blum, L., Blum, M.: Toward a mathematical theory of inductive inference.
Information and Control 28, 125–155 (1975)

[Cas74] Case, J.: Periodicity in generations of automata. Mathematical Systems
Theory 8, 15–32 (1974)

[CJSW04] Case, J., Jain, S., Stephan, F., Wiehagen, R.: Robust learning – rich and
poor. Journal of Computer and System Sciences 69, 123–165 (2004)

[CK08] Case, J., Kötzing, T.: Dynamically delayed postdictive completeness and
consistency in machine inductive inference (2008),
http://www.cis.udel.edu/∼case/papers/PcpPcsDelayTR.pdf

[CKP07] Case, J., Kötzing, T., Paddock, T.: Feasible iteration of feasible learning
functionals. In: Hutter, M., Servedio, R.A., Takimoto, E. (eds.) ALT 2007.
LNCS (LNAI), vol. 4754, pp. 34–48. Springer, Heidelberg (2007)

[FS93] Freivalds, R., Smith, C.: On the role of procrastination in machine learn-
ing. Information and Computation 107(2), 237–271 (1993)

[Ful88] Fulk, M.: Saving the phenomena: Requirements that inductive machines
not contradict known data. Inform. and Comp. 79, 193–209 (1988)

[JORS99] Jain, S., Osherson, D., Royer, J., Sharma, A.: Systems that Learn: An
Introduction to Learning Theory, 2nd edn. MIT Press, Cambridge (1999)

[LV97] Li, M., Vitanyi, P.: An Introduction to Kolmogorov Complexity and Its
Applications, 2nd edn. Springer, Heidelberg (1997)

[Min76] Minicozzi, E.: Some natural properties of strong identification in inductive
inference. In: Theoretical Computer Science, pp. 345–360 (1976)

[Pit89] Pitt, L.: Inductive inference, DFAs, and computational complexity. In:
Jantke, K.P. (ed.) AII 1989. LNCS, vol. 397, pp. 18–44. Springer, Heidel-
berg (1989)

[Rog67] Rogers, H.: Theory of Recursive Functions and Effective Computability.
McGraw Hill, New York (1967) (Reprinted by MIT Press, Cambridge,
Massachusetts, 1987)

[RC94] Royer, J., Case, J.: Subrecursive Programming Systems. In: Progress in
Theoretical Computer Science, Birkhäuser (1994)

[SSV04] Sharma, A., Stephan, F., Ventsov, Y.: Generalized notions of mind change
complexity. Information and Computation 189, 235–262 (2004)

[Wie76] Wiehagen, R.: Limes-erkennung rekursiver Funktionen durch spezielle
Strategien. Elek. Informationverarbeitung und Kyb. 12, 93–99 (1976)

[Wie78] Wiehagen, R.: Zur Theorie der Algorithmischen Erkennung. Disserta-
tion B. Humboldt University of Berlin (1978)

http://www.cis.udel.edu/~case/papers/PcpPcsDelayTR.pdf

	Dynamically Delayed Postdictive Completeness and Consistency in Learning
	Introduction
	Mathematical Preliminaries
	Complexity Results
	General Results
	Results Mostly Not Comparing Graphs
	Dependencies on the Countdown Graphs

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

