
Enlarging Learnable Classes

Sanjay Jain1,?, Timo Kötzing2,?? and Frank Stephan3,? ? ?

1 Department of Computer Science, National University of Singapore, Singapore
117417, Republic of Singapore
sanjay@comp.nus.edu.sg

2 Max-Planck-Institut für Informatik, Campus E 1 4, 66123 Saarbrücken, Germany
koetzing@mpi-inf.mpg.de

3 Department of Mathematics, National University of Singapore, Singapore 119076,
Republic of Singapore

fstephan@comp.nus.edu.sg

Abstract. An early result in inductive inference shows that the class
of Ex-learnable sets is not closed under unions. In this paper we are
interested in the following question: For what classes of functions is the
union with an arbitrary Ex-learnable class again Ex-learnable, either
effectively (in an index for a learner of an Ex-learnable class) or non-
effectively? We show that the effective case and the non-effective case
separate, and we give a sufficient criterion for the effective case. Further-
more, we extend our notions to considering unions with classes of single
functions, as well as to other learning criteria, such as finite learning and
behaviorally correct learning.
Furthermore, we consider the possibility of (effectively) extending learn-
ers to learn (infinitely) more functions. It is known that all Ex-learners
learning a dense set of functions can be effectively extended to learn in-
finitely more. It was open whether the learners learning a non-dense set
of functions can be similarly extended. We show that this is not possible,
but we give an alternative split of all possible learners into two sets such
that, for each of the sets, all learners from that set can be effectively
extended. We analyze similar concepts also for other learning criteria.

1 Introduction

One branch of inductive inference investigates the learnability of functions; the
basic scenario given in the seminal paper by Gold [7] is as follows. Let S be a
class of recursive functions; we say that S is explanatorily learnable iff there is
a learner M which issues conjectures e0, e1, . . . with en being based on the data
f(0)f(1) . . . f(n − 1) such that, for all f ∈ S, almost all of these conjectures
are the same index e explaining f , that is, satisfying ϕe = f with respect to an
underlying numbering ϕ0, ϕ1, . . . of all partial recursive functions. In this paper,

? Supported by NUS grants C252-000-087-001 and R252-000-420-112.
?? Major parts of this paper were written when Timo Kötzing was visiting the Depart-

ment of Computer Science at the National University of Singapore.
? ? ? Supported in part by NUS grant R252-000-420-112.

2 S. Jain, T. Kötzing and F. Stephan

we consider learnability by partial recursive learners; with Me we refer to the
learner derived from the e-th partial recursive function.

During the course of time, several variants of this basic notion of explanatory
learning (Ex) have been considered; most notably, behaviorally correct learning
(BC) [1], in which the learner has to almost always output a correct index for
the input function (these indices though are not constrained to be the same).

Another variant considered is finite learning (Fin) where the learner outputs
a special symbol (?) until it makes one conjecture e which is never abandoned;
this conjecture must of course be correct for a function to be learnt. Osherson,
Stob and Weinstein [10] introduced a generalization of this notion, namely confi-
dent learning (Conf), where the learner can revise the hypothesis finitely often;
it must, however, on each function f , even if it is not in the class to be learnt,
eventually stabilize on one conjecture e. In inductive inference, one often only
needs the weak version of this property where the convergence criterion only
applies to recursive functions while the convergence behavior on non-recursive
ones is not constrained (WConf , [14]).

Minicozzi [9] called a learner reliable iff the learner, on every function, either
converges to a correct index or signals infinitely often that it does not find the
index (by doing a mind change or outputting a question mark). One can combine
the notion of reliability and confidence: A learner is weakly reliable and confident
(WConfRel) iff the learner, for every recursive function f , either converges to
an index e with ϕe = f or almost always outputs ? (in order to signal non-
convergence).

The above crtieria and the relations between them have been extensively
studied, giving the following inclusion relations [2, 5–7, 9, 10, 14]:

– Fin ⊂ Conf ⊂WConf ⊂ Ex ⊂ BC;
– ConfRel ⊂WConfRel ⊂ Rel ⊂ Ex ⊂ BC;
– Fin 6⊂ Rel and Rel 6⊂WConf .

Besides inclusion (learnability with respect to which criterion implies learnability
with respect to another criterion), structural questions have also been studied:
Is the union of two learnable classes learnable? Can one extend each learnable
class?

Blum and Blum’s Non-Union Theorem [2] (see also [1]) gave a quite strong
answer to the first question: There are two classes S and S ′ of recursive functions
such that each of them is learnable under the criterion Ex but their union is not
learnable even under the more general criterion BC. Indeed, one can even learn
the class S confidently and the class S ′ reliably. Thus, the Non-Union Theorem
gives an interesting contrast to the fact that both confident learning and reliable
learning are effectively closed under union.

Furthermore, it is interesting to ask how effective the union is. That is, if the
union of two classes is learnable, can one effectively construct a learner for the
union, given programs for the learners of the two given classes? The answer is
“No” in general as can be seen directly by the proof of the Non-Union Theorem.

The confidently learnable class S above consists of all the functions f such
that f(0) is an index for f , and the class S ′ consists of all the functions f which

Enlarging Learnable Classes 3

are almost everywhere 0 (Blum and Blum [2] used slightly different classes S
and S ′ which were {0, 1}-valued; our S and S ′ makes the presentation simpler).
Now consider the union of S ′ with a class Se, where Se contains ϕe in the case
that ϕe is total and ϕe(0) = e; otherwise Se is empty. It is easy to show that, for
each e, the class Se ∪ S ′ is explanatory (Ex) learnable. If this union would be
effective, giving rise to a learner Mh(e) for the class Se∪S ′, then one could make a
learner N for S ∪S ′ as follows: for non-empty sequences σ, N(σ) = Mh(σ(0))(σ);
a contradiction to the non-union theorem.

This example suggests to study four notions of when the unions of a given
class S with another class is Ex-learnable:

1. S is (non-constructively) Ex-unionable iff for every Ex-learnable class S ′,
the class S ∪ S ′ is Ex-learnable;

2. S is constructively Ex-unionable iff one can effectively convert every Ex-
learner for a class S ′ into an Ex-learner for the class S ∪ S ′;

3. S is singleton-Ex-unionable iff for every total computable g, S ∪ {g} is Ex-
learnable.

4. S is constructively singleton-Ex-unionable iff there is a recursive function
which assigns, to every index e, an Ex-learner for the class S ∪ {ϕe} if ϕe is
total and for the class S if ϕe is partial.

The same notions can also be defined for other learning criteria like finite, con-
fident and behaviorally correct learning. We get the following results:

1. If a class S has a weakly confident learner then it is constructively single-
ton-Ex-unionable.

2. If a class S has a weakly confident and reliable learner then it is construc-
tively Ex-unionable.

3. There is a class which is Ex-unionable and BC-unionable but does not
satisfy any of the constructive unionability properties.

4. For finite learning, we show that unionability with classes and constructive
union with singletons fails for all non-empty classes; only non-constructive
unions with singletons is possible in the case that every pointwise limit of
functions in the class is again in the class.

All our results for the cases of purely Ex-learning are summarized in Figure 1.
Forming the union with another class or adding a function are specific meth-

ods to enlarge a class. Thus, it is natural to ask when a learnable class of functions
can be extended at all, without prescribing how to do this. Case and Fulk [4]
addressed this question and showed, for the principal learning criteria Ex and
BC, that one can extend learners to learn infinitely more functions whenever
the learner satisfies a certain quality, say learns a dense class of functions. This
enlargement can be done constructively (under this precondition). Furthermore,
one can non-constructively extend any learnable class for many usual learning
criteria like Fin,Conf ,Rel,ConfRel,WConf ,WConfRel,Ex and BC. Case
and Fulk [4] left open two particular questions:

1. Is there a method to extend constructively every learner Me which does not
Ex-learn a dense class of functions?

4 S. Jain, T. Kötzing and F. Stephan

WConfRel

WConf

ConstrSingEx-Unionable

ConstrEx-Unionable

SingEx-Unionable = Ex-learnable

Ex-Unionable

Fig. 1. The inclusion relations for the various unionability notions. It is unknown
whether the dotted arrows might also go in the converse direction. All inclusions are
given by arrows (and possibly reversed dotted arrows) and the concatenations of these.

2. How much nonconstructive information is needed in order to extend every
learner Me to learn infinitely many more functions? I.e., in how many classes
does one have to split the learners so as to have constructive extension for
each of the classes?

Theorem 25 answers the first question negatively – such a method does not exist.
On the other hand, the answer to the second question is that only a split

into two classes is necessary. This result is not based on the information about
whether the class is dense or not; instead it is based on the information about
whether there exists a σ such that for no extension τ of σ: M(τ)↓ 6= M(σ)↓. In
Theorem 27 we show that there is a recursive function h such that Ex(Mh(e,b))
is a proper superclass of Ex(Me) whenever either b = 1 and such a σ exists or
b = 0 and such a σ does not exist.

2 Preliminaries

Let N denote the set of natural numbers. The symbols ⊆,⊂,⊇,⊃ respectively
denote subset, proper subset, superset and proper superset. For strings α and β,
we let α � β denote that α is a prefix of β. We let 〈·, ·〉 denote a fixed computable
pairing function from N×N to N, which is increasing in both its arguments. We
assume that 〈0, 0〉 = 0.

Let ϕ denote a fixed acceptable programming system [12] for the class of all
partial recursive functions. Let ϕi denote the i-th program in this programming
system. Then, i is called the index or program for the partial recursive function

Enlarging Learnable Classes 5

ϕi. LetR denote the set of all total recursive functions and P denote the set of all
partial recursive functions. Let R0,1 denote the set of all total recursive functions
f with range(f) ⊆ {0, 1}. Let K denote the diagonal halting set {x : ϕx(x)↓}.
For a function η, let η(x)↓ denote that η(x) is defined, and η(x)↑ denote that
η(x) is not defined. We let pad be a 1–1 recursive function such that, for all i, j,
ϕpad(i,j) = ϕi. Please find unexplained recursion theoretic notions in Rogers’
book [12]. We let S range over sets of recursive functions.

Let σ, τ range over finite sequences. We often identify a total function with
its sequence of values, f(0)f(1)f(2) . . .; similarly for finite sequences. Let f [n] =
f(0)f(1) . . . f(n− 1). We use the notation σ � τ to denote that σ is a prefix of
τ (an initial subfunction of τ). Let Λ denote the empty sequence. Let |σ| denote
the length of σ. Let Seq denote the set of all finite sequences.

Let σ · τ denote concatenation of sequences, where σ is finite. When it is
clear from context, we often drop · and just use στ for concatenation. For a
finite sequence σ 6= Λ, let σ− be σ with the last element dropped, that is,
σ− · σ(|σ|) = σ. Let [S] = {f [n] | f ∈ S}. Thus, [R] = Seq. For notation
simplification, [f] = [{f}]. A class S is said to be dense if [S] = [R]. A class S
is everywhere sparse iff for all τ ∈ Seq, there exists a τ ′ � τ such that τ ′ 6∈ [S].
A total function f is an accumulation point of S iff there exist pairwise distinct
functions g0, g1, . . . in S such that, for all n ∈ N, f [n] � gn.

A learner is a partial-recursive mapping from finite sequences to N∪{?}. We
let M , N and P range over learners and let C range over classes of learners. Let
M0,M1, . . . denote an acceptable numbering of all the learners.

We say that M converges on function f to i (written: M(f)↓ = i) iff for all
but finitely many n, M(f [n]) = i. If M(f)↓ = i for some i ∈ N, then we say
that M converges on f (written: M(f)↓). We say that M(f) diverges (written:
M(f)↑) if M(f) does not converge to any i ∈ N. We now describe some of the
learning criteria.

Definition 1. Suppose M is a learner and f is a total function.

(a) [7] We say that M Ex-learns f (written: f ∈ Ex(M)) iff (i) for all s, M(f [s])
is defined, and (ii) there exists an i such that ϕi = f and, for all but finitely
many n, M(f [n]) = i.

(b) [1, 6] We say that M BC-learns f (written: f ∈ BC(M)) iff, (i) for all s,
M(f [s]) is defined, and (ii) for all but finitely many n, ϕM(f [n]) = f .

(c) [1, 6] We say that M Fin-learns f (written: f ∈ Fin(M)) iff (i) for all s,
M(f [s]) is defined, and (ii) there exist n and i such that ϕi = f , for all
m < n, M(f [n]) =?, and for all m ≥ n, M(f [n]) = i.

(d) [6] We say that M Exn-learns f (written: f ∈ Exn(M)) iff (i) M Ex-learns
f and (ii) card({m | ? 6= M(f [m]) 6= M(f [m+ 1])}) ≤ n.

We say that M makes a mind change at f [m+1] if ? 6= M(f [m]) 6= M(f [m+1]).

Definition 2. Let I be a learning criterion (defined above or later in this paper):

(a) We say that M I-learns S (written: S ⊆ I(M)) iff M I-learns each f ∈ S.

6 S. Jain, T. Kötzing and F. Stephan

(b) We say that S is I-learnable iff there exists a learner M which I-learns S.
(c) I = {S | ∃M [S ⊆ I(M)]}.

Definition 3. (a) [10] We say that M is confident iff (i) M is total and (ii) for
all total f , M(f)↓ or for all but finitely many n, M(f [n]) =?.

(b) We say that M is weakly confident iff (i) M is total and (ii) for all f ∈ R,
M(f)↓ or for all but finitely many n, M(f [n]) =?.

(c) [2, 9] We say that M is reliable iff (i) M is total and (ii) for all total f , M(f)↓
implies M Ex-learns f .

(d) We say that M is weakly reliable iff (i) M is total and (ii) for all f ∈ R,
M(f)↓ implies M Ex-learns f .

(e) We say that M is confident and reliable iff M is total and, either M Ex-learns
f or M(f [n]) =? for all but finitely many n.

(f) We say that M is weakly confident and reliable iff M is total and, for all
f ∈ R, either M Ex-learns f or M(f [n]) =? for all but finitely many n.

Definition 4. We say that M Conf -learns S if M Ex-learns S and M is con-
fident. Similarly, we define Rel, WConf , WRel, ConfRel and WConfRel
learning criteria where we require the learners to be reliable, weakly confident,
weakly reliable, confident and reliable, and weakly confident and reliable respec-
tively.

For all the learning criteria considered in this paper, one can assume without
loss of generality that the learners are total. In particular, from any learner M ,
one can effectively construct a total learner M ′ such that, for all the learning
criteria I considered in this paper, I(M) ⊆ I(M ′) (this can be shown essentially
using the same proof as for I = Ex used by [10]). We often implicitly assume
such conversion of learners into total learners. The following proposition shows
that learners for unions of confidently learnable classes can be effectively found;
similarly for learners of unions of reliably learnable classes.

Proposition 5 (Blum and Blum [2], Minicozzi [9], Osherson, Stob and
Weinstein [10]). Each criterion I from Conf , WConf , Rel, WRel, ConfRel,
WConfRel is closed effectively under union: there exists a recursive function
hI such that, if Mi I-learns S and Mj I-learns S ′ then MhI(i,j) I-learns S ∪ S ′.

Definition 6. [13] A set S ⊆ R is two-sided classifiable iff there is a machine
M such that, for all f ∈ R,

(i) if f ∈ S, then ∀∞x [M(f [x]) = 1];
(ii) if f 6∈ S, then ∀∞x [M(f [x]) = 0].

The next theorem characterizes WConfRel in terms of classification.

Theorem 7. Let S ⊆ R. The following are equivalent:

(a) S is WConfRel-learnable;
(b) A superset of S is Ex-learnable and two-sided classifiable.

Enlarging Learnable Classes 7

3 Initial Results on Unionability

We start with giving the general definition of unionability.

Definition 8. Let I be a learning criterion and S ⊂ R.

(a) S is I-unionable iff, for all I-learnable classes S ′, S ∪ S ′ is I-learnable.
(b) S is constructively I-unionable iff there is an h ∈ R such that, for all e,
S ∪ I(Me) ⊆ I(Mh(e)).

(c) S is singleton-I-unionable iff, for all f ∈ R, S ∪ {f} is I-learnable.
(d) S is constructively singleton-I-unionable iff there is h ∈ R such that, for all

e, Mh(e) I-learns S ∪ {ϕe} ∩ R.

For the various versions of unionability, in the following sections we will consider
in detail which classes are I-unionable for I being Fin, Ex or BC, starting with
Fin-unionability in this section.

Theorem 9 (Blum and Blum [2]). There are classes S and S ′ such that

(a) S is Fin-learnable (and thus S ∈ Conf and S ∈WConf);
(b) S ′ is Rel-learnable;
(c) S ∪ S ′ 6∈ BC.

Thus, both classes S and S ′ are neither Ex-unionable nor BC-unionable. In the
following, we want to characterise Fin-unionability.

Theorem 10. (a) S is Fin-unionable iff S = ∅.
(b) S is constructively Fin-unionable iff S = ∅.
(c) S is constructively singleton-Fin-unionable iff S = ∅.
(d) S is singleton-Fin-unionable iff S is Fin-learnable and S has no recursive

accumulation point.

Proof. (a) and (b) Let S 6= ∅ be a set of total computable functions and let
f ∈ S. For all i, let fi be such that fi(i) = f(i)+1 and, for all x 6= i, fi(x) = f(x).
Then the class S ′ = {fi | i ∈ N} is Fin-learnable, but S∪S ′ is not Fin-learnable.

(c) We keep S and f and fi as in part (a and b) above. Furthermore, we
consider a recursive function g such that ϕg(e) = fs, if e is enumerated into K in
exactly s steps; ϕg(e) = f , if e is not enumerated into K. Furthermore, let h be
a recursive function such that Mh(e) Fin-learns S ∪ {ϕe} ∩ R. Let k(e) be the
first number found, in some algorithmic search, such that Mh(e)(f [k(e)])↓ 6=?.
The function k is total recursive, as, for all e, Mh(e) Fin-learns f . If e is enumer-
ated into K in exactly s steps, then k(g(e)) ≥ s, as otherwise, ϕg(e)[k(g(e))] =
fs[k(g(e))] = f [k(g(e))], and thus Mh(g(e)) cannot Fin-learn both f and ϕg(e).
Hence e is in K iff e is enumerated within k(g(e)) steps into K, a contradiction
to K being undecidable.

(d) Clearly S must be in Fin to be singleton-Fin-unionable.
We first show that Fin-learnable classes with a recursive accumulation point

are not singleton-Fin-unionable. Let S be such that there is a recursive accu-
mulation point f of S. Suppose S ∪ {f} is Fin-learnable, as witnessed by M .

8 S. Jain, T. Kötzing and F. Stephan

Let x be such that M(f [x])↓ 6=?. Furthermore, let f ′ ∈ S, f 6= f ′ be such that
f [x] � f ′. Such an f ′ exists as f is an accumulation point of S. Now M cannot
Fin-learn both f and f ′, as f [x] � f and f [x] � f ′. This is a contradiction to
M Fin-learning S ∪ {f}.

Now suppose S is Fin-learnable as witnessed by M and S has no recursive
accumulation point. Let f ∈ R. We show that S0∪{f} is Fin-learnable. If f ∈ S,
nothing is left to be shown. Suppose f /∈ S; thus, there exists an x such that
f [x] /∈ [S]. Let e be an index for f ; we define N such that, for all σ,

N(σ) =


?, if σ ≺ f [x];

e, if f [x] � σ;

M(σ), otherwise.

It is easy to verify that N Fin-learns S ∪ {f}.

It is clear that every constructively I-unionable class is I-unionable and ev-
ery constructively singleton-I-unionable class is singleton-I-unionable. The next
proposition gives the third straight-forward inclusion.

Proposition 11. Let I ∈ {Fin,Conf ,WConf ,Ex,BC}. If S is constructively
I-unionable then S is constructively singleton-I-unionable.

Proof. Given e, consider the I-learner Mh(e) which always outputs e; if ϕe
is total, then I(Mh(e)) = {ϕe}, else I(Mh(e)) = ∅. Now, due to the construc-
tive I-unionability of S, the class is also constructively singleton-I-unionable by
forming constructively the union with the class I-learnt by Mh(e).

For the criteria Rel, WRel, ConfRel and WConfRel, one cannot translate an
index e into a learner for ϕe of the given type, as one is not able to test in the limit
whether ϕe is partial or total. This obstacle on the way to prove a hypothetical
implication like “constructively Rel-unionable ⇒ constructively singleton-Rel-
unionable” is real and the conjectured implication does not hold: On the one
hand, every Rel-learnable class is constructively Rel-unionable [9]; on the other
hand, Theorem 17 as well as Blum and Blum’s Non-Union-Theorem exhibit a
Rel-learnable class which is not constructively singleton-Rel-unionable.

4 Ex- and BC-Unionable Classes

Case and Fulk [4] investigated Ex- and BC-unionability and obtained the follow-
ing basic result that one can always add a function to a given class; so in contrast
to finite learning, every Ex-learnable class is non-constructively singleton-Ex-
unionable; the same applies to BC-learning.

Proposition 12 (Case and Fulk [4]). If I is either Ex or BC, f ∈ R and S
is I-learnable, then S ∪ {f} is I-learnable.

Theorem 13. Suppose I is either Ex or BC. Suppose S ∈WConfRel. Then
S is constructively I-unionable.

Enlarging Learnable Classes 9

Proof. Suppose S ∈WConfRel as witnessed by M ∈ R. Let h be a recursive
function such that Mh(i) behaves as follows.

Let M ′i be obtained effectively from i such that M ′i is total and I(M ′i) =
I(Mi). If M(σ) =?, then Mh(i)(σ) = M ′i(σ). Otherwise, Mh(i)(σ) = M(σ). It is
easy to verify that Mh(i) I-learns S ∪ I(Mi).

Theorem 14. Suppose I is either Ex or BC. Suppose S ∈ WConf . Then S
is constructively singleton-I-unionable.

Proof. Let f be a recursive function such that Mf(e) always outputs e on any
input. Then, Mf(e) WConf -learns {ϕe}. Let Mi be a WConf -learner for S. Let
hWConf be as from Proposition 5. Then, hWConf (f(e), i) witnesses the theorem.

Corollary 15. Suppose I is either Ex or BC. Let S = {f ∈ R : ϕf(0) = f}.
Then, S is constructively singleton-I-unionable, but not I-unionable.

Theorem 16. There are classes S,S ′ ⊆ R such that

(a) S and S ′ are both Ex-learnable;
(b) S and S ′ are both constructively BC-unionable;
(c) S ∪ S ′ is not Ex-learnable;
(d) S is not constructively singleton-Ex-unionable;
(e) S ′ is constructively singleton-Ex-unionable.

Proof. Kummer and Stephan [8, Theorem 8.1] constructed a uniformly partial-
recursive family ϕg(0), ϕg(1), . . . of functions such that each ϕg(n) is undefined at
most at one place and 1n0 � ϕg(n) for all n. Let S be the set of all total extensions
of functions ϕg(n) which are not total. Let S ′ be set of all total ϕg(n). It is easy
to verify that S and S ′ are both in Ex.

Kummer and Stephan [8] showed that S∪S ′ is BC-learnable. Actually S∪S ′
and every subclass of it is constructively BC-unionable. To see this, let patch be
a recursive function such that ϕpatch(i,σ)(x) = σ(x) if x < |σ|; ϕpatch(i,σ)(x) =
ϕi(x) if x ≥ |σ|.

Now, let any total BC-learner M for some class be given. Now, a new BC-
learner N , obtained effectively from M , learning BC(M) ∪ S ∪ S ′ is defined as
follows:

If there is an n such that 1n0 � σ and no x < |σ| satisfies that ϕg(n)(x)
converges within |σ| steps to a value different from σ(x),

Then N(σ) = patch(g(n), σ),
Else N(σ) = M(σ).

Furthermore, Kummer and Stephan [8] showed that S ∪ S ′ is not Ex-learnable,
hence S and S ′ are not Ex-unionable. As S ′ is Fin-learnable, by Theorem 14,
S ′ is also constructively singleton-Ex-unionable.

Furthermore, S is not constructively singleton-Ex-unionable. Suppose by way
of contradiction that h witnesses that S is constructively singleton-Ex-unionable.

10 S. Jain, T. Kötzing and F. Stephan

Then, the following learner N witnesses that S ∪ S ′ ∈ Ex: If 1n0 � σ for some
n, then N(σ) = Mh(g(n))(σ), else N(σ) = 0. However, by Kummer and Stephan
[8], such a learner does not exist.

Theorem 17. There is a class S which is Ex-unionable, BC-unionable, but is
not constructively singleton-BC-unionable.

Proof. For each n, we will define function fn below. The class S will consist of
all functions of the form fn(0)fn(1) . . . fn(x)y∞ which start with values of some
fn until a point x and are constant from then onwards.

Without loss of generality assume that learner M0 Ex-learns all eventually
constant functions. The functions fn satisfy the following properties:

(I) fn(0) = n;
(II) Each fn is recursive;
(III) The mapping n, x 7→ fn(x) is limit-recursive;
(IV) For each m ≤ n,

either for infinitely many s, (∃x) [ϕMm(fn[s])(x)↓ 6= fn(x)],
or there is a σ � fn such that (∀τ) [ϕMm(στ) is a subfunction of στ].

Note that above properties imply that Mm does not BC-learn fn, for any n ≥ m.
Thus, in particular, fn is not an eventually constant function.

The construction of fn is done by inductively defining longer and longer
initial segments fn[`n,t] of fn together with the length `n,t. Let `n,0 = 0. In
stage t, `n,t+1 and fn[`n,t+1] are defined as follows: Let m be the remainder
of t divided by n + 1. Search for τ, η, a hypothesis e and an x < `n,t + |τη|
such that ϕMm(fn[`n,t]·τ)(x)↓ 6= (fn[`n,t] · τη)(x). If such τ, η, e, x are found then
`n,t+1 = `n,t + |τη|+ 1 and fn[`n,t+1] = fn[`n,t] · τη · 0 else `n,t+1 = `n,t + 1 and
fn[`n,t+1] = fn[`n,t] · 0.

Note that if the search does not succeed in stage t then it does not succeed in
stage t+n+ 1 either, as that stage also deals with the same m and fn[`n,t+n+1]
is an extension of fn[`n,t]. Therefore each fn is recursive. Furthermore, the fn
are uniformly limit-recursive as one can use the oracle for K to decide whether
the extension exists in each specific case. It is clear that property (IV) of fn
mentioned above is also met by the way each fn is constructed.

Now suppose that a total learner Me Ex-learns or BC-learns a class S ′. Thus
the functions fe, fe+1, fe+2, . . . are not learnt by Me and thus not members of
S ′. Now consider the following new learner N for S ∪ S ′. Let fn,t be the t-th
approximation (as a recursive function) to fn; the fn,t converge pointwise to fn.
N , on input σ of length t > 0, is defined as follows:

If σ � fd for some d ∈ {0, 1, . . . , e},
Then N(σ) is an index for fd for the least such d,
Else if σ = fn,t(0)fn,t(1) . . . fn,t(x)yt−x−1 for some n, y and x < t− 1,
Then N(σ) outputs a canonical index for fn,t(0)fn,t(1) . . . fn,t(x)y∞,
Else N(σ) = Me(σ).

Enlarging Learnable Classes 11

One can easily verify that N Ex-learns f0, f1, . . . , fe and also Ex-learns every
member of S. Furthermore, for each f ∈ S ′ − S − {f0, f1, . . . , fe}, there are
n = f(0), a least x with f(x+1) 6= fn(x+1) and a least x′ > x with f(x′+1) 6=
f(x′). If σ � f is long enough, then fn,|σ| equals fn for inputs below x+ 1 and
|σ| > x′+1 and thus the learner N outputs Me(σ). Hence if Me is an Ex-learner
for S ′ then N is an Ex-learner for S ∪ S ′ and if Me is a BC-learner for S ′ then
N is a BC-learner for S ∪ S ′.

Now assume by way of contradiction that S is constructively singleton-BC-
unionable as witnessed by a recursive function h. We will define a learner N
below. For ease of notation, we define N as running in stages and think of
learners as getting the graph of the whole function as input, and outputting
a sequence of conjectures, all but finitely many of which are programs for the
input function (for BC-learning); for Ex-learning, this sequence of programs
also converges syntactically.

Let f denote the function to be learnt and let n = f(0). Now define a trigger-
event m to be activated iff there is a t > m such that f [m] � fn,t (as defined
above). If f = fn then infinitely many trigger events are eventually activated;
otherwise only finitely many trigger events are eventually activated. On any
input function f , the learner N starts in stage 0.

Stage 〈i, j〉:
In this stage N copies the output of Mh(i) until
(i) the (〈i, j〉+ 1)-th trigger event has been activated and
(ii) there are x, z such that x > j and ϕMh(i)(f [x])(z) 6= f(z).

When both events have occurred, the learner N leaves stage 〈i, j〉
and goes to the next stage 〈i, j〉+ 1.

End stage 〈i, j〉

Note that whenever the input function f is from S, then only finitely many
trigger-events are activated and therefore the construction leaves only finitely
many stages. Hence, the learner N eventually follows the learner Mh(i), for some
i, and thus BC-learns f .

Let n be such that Mn = N . Consider the behaviour of N on fn. As, for
each prefix σ of fn, N BC-learns σ0∞, it follows from property (IV) of fn
that there exist infinitely many x such that, for some z, ϕN(fn[x])(z)↓ 6= fn(z).
Furthermore, infinitely many trigger events are activated on input function being
fn. Thus, inductively, for each stage 〈i, j〉, ϕMh(i)(fn[x])(z)↓ 6= fn(z), for some
x > j. Therefore, for all i, ϕMh(i)(fn[x]) 6= fn, for infinitely many x. Thus, for
each i, Mh(i) does not BC-learn fn. However, as there exists an i such that
fn = ϕi, the learner Mh(i) must BC-learn fn. A contradiction. Thus, S is not
constructively singleton-BC-unionable.

Corollary 18. Due to the implications among the criteria of unionability, the
class S from Theorem 17 also fails to be constructively singleton-Ex-unionable,
constructively BC-unionable or constructively Ex-unionable. Furthermore, S is
not WConf -learnable.

12 S. Jain, T. Kötzing and F. Stephan

The next proposition shows that Ex and BC-unionable classes are everywhere
sparse.

Proposition 19. Suppose I is Ex or BC. Suppose S is not everywhere sparse.
Then S is neither I-unionable nor constructively singleton-I-unionable.

The following theorem generalises the Non-Union-Theorem.

Theorem 20. Let S ⊆ R be Ex-learnable. Then there are S0 ⊆ R and S1 ⊆ R
such that S ∪ S0 and S ∪ S1 are Ex-learnable but S0 ∪ S1 is not BC-learnable.

5 Extendability

In the previous sections, the question was whether a class S can be extended by
either adding a full class S ′ or just a function ϕe without losing learnability; in
this section we ask whether a class can be extended effectively without prescrib-
ing how this should be done. So on one hand, the task becomes easier as it is
not prescribed what to add, on the other hand the task might also become more
difficult as one has to find functions not yet learnt in order to add them (while
previously, they were given by a learner or an index). Before discussing this in
detail, the next definition should make the notion of extending more precise.

Definition 21. Let C be a set of learners and I a learning criterion.

(a) We say that we can infinitely I-improve learners from C iff, for all M ∈ C,
there is a learner N ∈ P such that I(M) ⊆ I(N) and I(N)\I(M) is infinite.

(b) We say that we can uniformly infinitely I-improve learners from C iff there
is a recursive function h such that, for all e with Me ∈ C, I(Me) ⊆ I(Mh(e))
and I(Mh(e)) \ I(Me) is infinite.

Proposition 22. Let C be a set of learners and I be Ex or BC. Suppose there
is a function g ∈ R such that, for all e with Me ∈ C, {ϕg(e,x) | x ∈ N} is
an infinite I-unionable set disjoint from I(Me). Furthermore, assume that one
can determine with a two-sided classifier effectively obtainable from e, for each
recursive function f , whether f ∈ {ϕg(e,x) | x ∈ N}. Then we can uniformly
infinitely I-improve learners from C.

Lemma 23. Suppose C is a set of learners and σ0 ∈ Seq. Suppose for all e, σ
one can effectively find a sequence τe,σ such that if Me ∈ C and σ0 � σ, then
σ � τe,σ and Me(σ) 6= Me(τe,σ). Then we can uniformly infinitely Ex-improve
learners from C.

Proof. By implicit use of the parametric recursion theorem [12], let g be a
recursive function such that, for all e, x,

ϕg(e,x) =
⋃
s

ϕsf(e,x) where ϕ0
g(e,x) = σ0 · e · x and ϕs+1

g(e,x) = τe,ϕs
g(e,x)

.

Enlarging Learnable Classes 13

Now, each Me ∈ C fails to Ex-learn every ϕg(e,x), x ∈ N. Furthermore, there is
a two-sided classifier for each of the classes {ϕg(e,x) | x ∈ N}. The theorem now
follows from Proposition 22.

Case and Fulk [4] showed that every Ex-learner can be infinitely extended. Fur-
thermore, for the subclass of learners learning a dense set of functions, an effec-
tive procedure is implicitly given for turning any such learner into an infinitely
more successful one.

Theorem 24 (Case and Fulk [4]). We can infinitely Ex-improve every learn-
er. Furthermore, we can uniformly infinitely Ex-improve all learners M where
Ex(M) is dense.

As an open question, Case and Fulk [4] asked whether there is another effective
procedure for the complement, that is, for learners that are not dense.

The next theorem answers this question in the negative by showing that there
is no computable function turning any given (index for an) Ex-learner which is
not successful on a dense set into an (index for a) strictly more successful learner
– not even by a single additional function.

Theorem 25. For every recursive function h there is a learner Me such that
[Ex(Me)] 6= [R] and Ex(Mh(e)) is not a strict superset of Ex(Me).

Proof. It suffices to show that for every recursive h, there is an index e with
[Ex(Me)] 6= [R] and either Ex(Mh(e)) 6⊇ Ex(Me) or Ex(Mh(e)) \ Ex(Me) con-
tains at most one function. (As if, for some recursive function h′, for every e,
Mh′(e) is such that Ex(Mh′(e)) exceeds Ex(Me) by at least one function, then
Ex(Mh′(h′(e))) would exceed Ex(Me) by at least two functions).

Suppose, by way of contradiction, that there is a recursive function h such
that, for all e with [Ex(Me)] 6= [R], Ex(Mh(e)) contains Ex(Me) and exceeds it
by at least two functions.

We define a recursive function g implicitly by inductively defining, for any
e ∈ N, a (possibly finite) �-increasing sequence of sequences (σei)i∈N and a
recursive function g by

σe0 = Λ;

∀i [σei+1 is the first σ � σei found such that Mh(e)(σ)↓ 6= Mh(e)(σ
e
i)↓];

ϕg(e) =
⋃
i∈N

σei .

We let k be a recursive function such that, for all e, τ , k(e, τ) is the maximum
i such that σei is defined within |τ | steps. By Kleene’s recursion theorem, there
is a program e such that, for all τ ,

Me(τ) =


g(e), if ∃i [τ � σei];
pad(Mh(e)(τ), k(e, τ)), if ∃i [σei ∪ τ is not single-valued];

↑, otherwise.

14 S. Jain, T. Kötzing and F. Stephan

Now if Me does not learn a dense set of functions, then Ex(Mh(e)) must exceed
Ex(Me) by at least two more functions.

Case 1: ϕg(e) is total.
Then Me Ex-learns only ϕg(e); thus, Mh(e) Ex-learns ϕg(e) by supposition.

However, by construction of σei and g(e), Mh(e) on ϕg(e) makes infinitely many
mind changes, a contradiction.

Case 2: σei is defined only for finitely many i.
Let i be the maximum such that σei is defined. Thus, Me is undefined on any

extension of σei , and, hence, does not learn a dense set. Suppose f ∈ R does not
extend σei . For all j large enough, we now have M(f [j]) = pad(Mh(e)(f [j]), i).
Thus, for large enough j, M(f [j]) is semantically equivalent to Mh(e)(f [j]). Thus,
any function that is not an extension of σei , is Ex-learned by Mh(e) iff it is Ex-
learned by Me. Thus, as Mh(e) never changes its mind beyond σei , on any exten-
sion of σei , it can Ex-learn at most one more function than Me, a contradiction.

As an immediate corollary, we get that we cannot constructively find initial
segments where a given learner does not learn any extension.

Corollary 26. There is no function g ∈ P such that, for all e with Ex(Me) not
dense, we have that g(e) is a finite sequence with g(e) /∈ [Ex(Me)].

Case and Fulk [4] ask whether there is any partitioning of all learners into two
(or at least finitely many) sets such that, for each of the sets, all learners from
that set can be uniformly extended. From Theorem 25 we know that this par-
titioning cannot be according to whether the set of learned functions is dense.
The following theorem answers the open problem by giving a different split of
all possible learners into two different classes.

Theorem 27. Let C be the set of all total learners M such that M changes its
mind on a dense set of sequences. Then we can uniformly infinitely Ex-improve
learners from C and from R \ C.

Proof. It follows from Lemma 23, that we can uniformly infinitely Ex-improve
learners from C. We now consider the case of extending learners from R \ C.
For any given e and t, let τe,t denote the length-lexicographically first sequence
found such that Me does not change its mind on the first t extensions of τe,t.
For any sequence σ and any b we let g(σ, b) denote an index for σb∞. Let h ∈ R
be such that, for all e and σ,

Mh(e)(σ) =

{
g(τe,|σ|, b), if there is b with σ � τe,|σ|b∞;

Me(σ), otherwise.

For all e with Me ∈ R\C, we have that the sequence τe,0, τe,1, . . . converges to a
τe such that Me does not make any mind changes on any extension of τe. Now,
Mh(e) learns Ex(Me) ∪ {τe · b∞ | b ∈ N}. Note that Me can Ex-learn at most
one function extending τe. The theorem follows.

Enlarging Learnable Classes 15

As one can effectively convert any partial learner to a total learner with the same
(or more) learning capacity, the above result also applies for partial learners.

For Fin-learning, extending learners is much easier: any learner that learns
anything at all can be infinitely extended.

Theorem 28. Let I be one of Exm or Conf . There is a function h such that, for
all e with I(Me) 6= ∅, I(Mh(e)) infinitely extends I(Me). Here Mh(e) is confident,
if Me is confident.

Similarly for reliable learning, one can always extend a learner infinitely.

Theorem 29. There is a recursive function h such that, for e with Me reliable,
Mh(e) is reliable and Ex(Mh(e)) infinitely extends Ex(Me).

References

1. Janis A. Bārzdiņš. Two theorems on the limiting synthesis of functions. In Theory
of Algorithms and Programs, Latvian State University, Riga, USSR, 210:82–88,
1974.

2. Lenore Blum and Manuel Blum. Toward a mathematical theory of inductive in-
ference. Information and Control, 28:125–155, 1975.

3. John Case. Periodicity in generations of automata. Mathematical Systems Theory,
8:15–32, 1974.

4. John Case and Mark Fulk. Maximal machine learnable classes. Journal of Com-
puter and System Sciences, 58:211–214, 1999.

5. John Case, Sanjay Jain and Susan Ngo Manguelle. Refinements of inductive infer-
ence by Popperian and reliable machines, Kybernetika, 30:23–52, 1994.

6. John Case and Carl Smith. Comparison of identification criteria for machine in-
ductive inference. Theoretical Computer Science, 25:193–220, 1983.

7. Mark Gold. Language identification in the limit. Information and Control,
10:447–474, 1967.

8. Martin Kummer and Frank Stephan. On the structure of degrees of inferability.
Journal of Computer and System Sciences, 52:214–238, 1996.

9. Eliana Minicozzi. Some natural properties of strong-identification in inductive
inference. Theoretical Computer Science, 2:345–360, 1976.

10. Daniel Osherson, Michael Stob and Scott Weinstein. Systems that Learn: An In-
troduction to Learning Theory for Cognitive and Computer Scientists. MIT Press,
Cambridge, Mass., 1986.

11. Lenny Pitt. Inductive inference, DFAs, and computational complexity. Analogical
and Inductive Inference. Proceedings of the Second International Workshop (AII
1989). Springer LNAI 397:18–44, 1989.

12. Hartley Rogers. Theory of Recursive Functions and Effective Computability. Mc-
Graw Hill, New York, 1967. Reprinted in 1987.

13. Frank Stephan. On one-sided versus two-sided classification. Archive for Mathe-
matical Logic, 40:489–513, 2001.

14. Arun Sharma, Frank Stephan and Yuri Ventsov. Generalized notions of mind
change complexity. Information and Computation 189:235–262, 2004.

