Fast Building Block Assembly by Majority Vote Crossover

Tobias Friedrich
Hasso Plattner Institute
Potsdam, Germany

Samadhi Nallaperuma
Dept. of Computer Science
The University of Sheffield
Sheffield, United Kingdom

ABSTRACT

Different works have shown how crossover can help with
building block assembly. Typically, crossover might get lucky
to select good building blocks from each parent, but these
lucky choices are usually rare. In this work we consider a
crossover operator which works on three parent individuals.
In each component, the offspring inherits the value present
in the majority of the parents; thus, we call this crossover
operator magority vote.

We show that, if good components are sufficiently preva-
lent in the individuals, majority vote creates an optimal in-
dividual with high probability. Furthermore, we show that
this process can be amplified: as long as components are
good independently and with probability at least 1/2+4, we
require only O(log 57! +loglog n) successive stages of ma-
jority vote to create an optimal individual with high proba-
bility!

We show how this applies in two scenarios. The first sce-
nario is the Jump test function. With sufficient diversity, we
get an optimization time of O(nlogn) even for jump sizes
as large as O(n'/?7¢). Our second scenario is a family of
vertex cover instances. Majority vote optimizes this family
efficiently, while local searches fail and only highly special-
ized two-parent crossovers are successful.

Categories and Subject Descriptors

F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

Keywords

run time analysis, evolutionary algorithm, island model, ma-
jority vote crossover, Jump, vertex cover

1. INTRODUCTION

At the heart of many algorithms within the area of evolu-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GECCO ’16 July 20-24, 2016, Denver, CO, USA

(© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4206-3/16/07.

DOL: http://dx.doi.org/10.1145/2908812.2908884

Timo Kétzing
Hasso Plattner Institute
Potsdam, Germany

Frank Neumann
School of Computer Science
The University of Adelaide
Adelaide, Australia

661

Martin S. Krejca
Hasso Plattner Institute
Potsdam, Germany

Martin Schirneck
Hasso Plattner Institute
Potsdam, Germany

tionary computation is the crossover operator, granting the
algorithm significant power beyond the hill-climbing abili-
ties of most mutation operators. By now, there are several
theoretical run time results that crossover can be benefi-
cial for speeding up the optimization of certain test func-
tions [8, 9, 11, 13, 14, 16, 18]. One key insight from these
works is that crossover can be used to combine the spe-
cific strengths of different individuals. In all these examples
crossover means two-parent crossover on bit string individu-
als. There are also rigorous proofs that crossover is beneficial
for some problem-specific algorithms and representations,
namely coloring problems inspired by the Ising model [17]
and the all-pairs shortest path problem [2].

In this paper we will consider optimization of bit strings of
fixed length n, but in contrast to most previous theoretical
work, we turn our focus to crossover with three instead of
two parents. Note that the combination of good components
from the different parents in two-parent crossover is purely a
matter of chance: since the crossover operator cannot know
which of the parents excels in which part of the bit string,
making the right choice is unlikely (in [8, 11] several run
times contain a term 2%*, where 2k is the number of binary
choices that have to be made correctly by crossover). We
consider a three-parent crossover which will be much better
suited to make the right choice. The operator selects, for
each bit position, the bit value which the majority of the
parents has in this position; thus, we call this operator the
magority vote crossover. It was considered in [3] (under the
name of occurrence-based scanning), but only as a part of
an empirical comparison between several multi-parent tech-
niques. The majority vote crossover is deterministic and its
efficiency hinges on the assumption that good bit values are
more prevalent in the population than bad ones. Note that
any (odd) arity of at least 3 could be chosen, with similar
results as presented in this paper.

We analyze the efficiency of this crossover operator on two
domains: the Jump function (as considered in [8, 11]) as a
motivating example; and on the vertex cover problem (as
considered in [4, 13]). In both cases, the algorithm will use
an initial phase of hill climbing to find local optima. Once
all individuals are stuck in (hopefully sufficiently different)
local optima, the crossover operator can start assembling
better solutions by majority vote. In fact, in Theorem 3.3 we
use that, if three independent individuals are correct in any
given position with a probability of 1—O (1/711/278)7 a single
application of the majority vote crossover will immediately



create the optimum! Note that the probability that out of
three individuals two having a bad bit in the same position
is strongly related to the Birthday Paradox. For the very
same reason we see square roots in the bounds on the error
probability.

In Section 3 we give our results on the Jump function.
We consider three different ways of achieving diversity: low
crossover probability as in [8, 11], explicitly maximizing the
total Hamming distance, and single-receiver island models
as in [13, 18]. For all three cases, we give upper bounds
on the expected optimization time in dependence of the
dimension size n, the jump size k, the number of individ-
uals p and the crossover probability p.. In all cases, the
best bounds are achieved for 4 = 3. In the case of low pc,
our analysis follows [8, 11] and similarly gets an optimiza-
tion time of O(n logn + QCkn) for some constant c. For the
other two cases, p. = 1 is optimal. When explicitly maxi-
mizing the Hamming distance, we can benefit from a wide
spread of the individuals and achieve an optimization time
of O(nlogn + nklogk), even for k linear in n (as long as
k < mn/8). For the single receiver island model, we cannot
hope that our individuals spread as well as with this explicit
mechanism; this means that only k = O(n'/27¢) is possible
(for any fixed ). However, the islands are then successful
within O(nlogn) function evaluations.

In Section 4 we consider a family of instances for the vertex
cover problem from [4, 13]. These instances are very hard
to optimize when only relying on mutation, and they have
been used to show the efficiency of crossover [13]. However,
the crossover presented in [13] was tailored to the particular
problem instances. In particular, it was not unbiased with
respect to the encoding of the problem (see [12] for a discus-
sion on unbiasedness), but rather expected the problem to
be encoded in certain blocks. The crossover was then cho-
sen such that it can combine these blocks. We show that
majority vote crossover does not need any such assumptions
on the encoding, but can optimize the instances efficiently,
using a single receiver island model, where each island runs
a simple hill climbing search heuristic (we consider Steepest
Ascent and Random Local Search).

Finally, in Section 5 we consider probability amplification
by trees of majority vote crossover. These trees are complete
ternary trees of some height h. All leaves run a simple search
heuristic; all interior nodes apply majority vote on the three
children (without performing any kind of selection). We
show that, if at each leaf and for each bit position the prob-
ability to have found the correct bit setting is at least 1/2+4,
we require only a height of h = O(log 5! +loglog n) suc-
cessive stages of majority vote to create an optimal individ-
ual with high probability. This corresponds to a tree with
0(571 log n) many nodes. This strategy can be used in both
the setting of the Jump function as well as vertex cover to
allow a significantly larger error in the local search heuristic.

2. SETTING AND PROBLEMS

In this paper we are concerned with optimizing pseudo-
Boolean functions f: {0,1}" — R over bit strings of fixed
length n. We interpret the value f(x) as the fitness of an
individual @, that is, the quality of the candidate solution
with respect to a given problem. One such function, Jump,
was introduced by Jansen and Wegener [8] and is defined,

662

for any positive integer 1 < k < n, as
. k+ \a:\l s

n— ‘m‘l )
where |z[1 = Y1 | @; is the number of 1-bits in . Observe
that, for the Jump function, the fitness of an individual
depends only on the number of 1s. Any individual & with
|e|]1 = n — k is locally optimal; we refer to this area of
the search space as the plateau. However, the only global
maximum is the all-ones string 1". Between the plateau and
the global optimum is a gap of Hamming distance k£, which
has to be jumped over in order to optimize the function, thus
the name.

Furthermore, we investigate the minimum vertex cover
problem. Given a graph, minimum vertex cover is the prob-
lem of finding a set of vertices of minimum size, the cover,
such that every edge is incident to at least one of the ele-
ments in the set. This optimization problem is well-known
to be NP-hard [5, 10]. In this work we focus on certain
instances of the vertex cover problem defined by Neumann
et al. [13]. They consist of m copies of a complete bipartite
graph where the two partitions have [ and [ 4 k vertices, re-
spectively. More precisely, we fix positive integers k, [, and
m; for each ¢ with 1 <14 < m, let G; = (V;, E;) be a graph
as follows. Its set of vertices V; = \/;(1) U Vi(z) is the disjoint
union of two subsets with \Vi(l)\ = [ and |V¢<2)| =1+ kK,
E; = {{u,v}|u € Vi(l) ANv € Vi(2>} is its set of edges. The
graph G = | |" | G is then defined as the disjoint union of
the components G;. We let s = 2] + k denote the number of
vertices in each component and n = ms be the total num-
ber of vertices in the graph. The discrepancy k serves as a
measure of the disparity of the two partitions. Obviously,
for any 4, a cover of component GG; must contain at least all

J (@) if lg)y <n—kor |z =n;
ump,, (x
P otherwise;

vertices of Vi(l) or all of Vi(Qz the only minimum vertex cover
for the whole graph G is | |-, V") For any component G,
we refer to the cover consisting of only the vertices in Vi(l) as
globally optimal and the cover consisting of only the vertices
in Vi(Q) as locally optimal.

Both problems exhibit the common pattern of strong local
optima, which are hard to escape during the optimization.
In order to tackle this issue, we investigate the performance
of the majority vote crossover operator [3], ®mv. This op-
erator, given three bit strings of the same length, outputs a
string in which every position is the result of the majority
vote of the respective bits in the input. More formally, for
any three individuals x, y, z € {0,1}" and on every position
1 < i < n, the crossover is defined as
x;, if i =1Y,;;

z;, otherwise.

(I)mv(mv Y, Z)i = {
The operator is symmetric in its arguments and the result
deterministically depends on the input. We point out that
the candidate solutions need to be drawn randomly with-
out replacement as otherwise a duplicated individual would
determine the outcome of the whole vote.

2.1 Algorithms

To achieve the diversity we need, we employ several mecha-
nisms. The first one is a (u + 1) GA [8] combined with the
majority vote crossover operator, see Algorithm 1. This ge-
netic algorithm maintains a population of p individuals and,



in each iteration, chooses one of them uniformly at random
and mutates it by flipping each bit independently with prob-
ability 1/n. Afterward, if the fitness of the new individual
is at least as good as the worst fitness of the population, it
replaces one fitness-worst solution drawn uniformly at ran-
dom. With probability p., a majority vote crossover among
three (different) randomly chosen individuals occurs and the

result is not mutated, as this would defeat the purpose of
the majority vote crossover. Note that the maintenance of

set Imin, the set of indices of fitness-worst individuals, needs
w fitness evaluations during the initialization phase and sub-
sequently comes with no extra cost as the evaluations in line
11 provide all necessary information. It will be clear from
the results in Section 3 that this additional effort in the be-
ginning is asymptotically negligible.

Algorithm 1: (1 + 1) GA with majority vote crossover,
Inin is the set of all indices of fitness-worst individuals;
concept from [8]

1 for i € {1,...,u} in parallel do
2 L 2" « individual drawn w.a.r. from {0,1}";
3 repeat
4 with probability p. do
5 (i,7, k) < indices drawn u.a.r. from {1,..., u};
6 Y By (ma)’ O m(k));
7 else
8 i + index drawn u.a.r. from {1,..., u};
9 y « flip each bit in = with probability 1/n;
10 | < index drawn u.a.r. from Iyin;
11 | if f(y) > f(=) then
12 '\ —y;

13 until one individual is optimal;

For Theorem 3.2 we equip this algorithm with a different
selection policy, namely, we discard the fitness-worst indi-

vidual which has minimal Hamming distance to the rest of

the population (see Section 3 for details).

As a third diversity mechanism, we use the single receiver

island model as given by Watson and Jansen [18]. That is,
we run g independent instances, the islands, of a given it-
erative search heuristic A. Furthermore, in each iteration,
we apply the majority vote crossover operator to three is-
lands chosen uniformly at random and store the solution in
the so-called receiver island. See Algorithm 2 for a detailed
description.

We want to point out that throughout this paper we con-
sider u, i.e., the population size or the number of islands,
respectively, to be bounded from above by some polynomial
in the length n of the bit string.

The search heuristic A manipulates the currently best so-
lution as a bit string, possibly in a randomized fashion. In
this paper we compare as choices for A the method of Steep-
est Ascent [15] and Random Local Search (RLS) [7]. Steep-
est Ascent examines all 1-neighbors of the currently best so-
lution and chooses one that maximizes the fitness increase,
i.e., a neighbor with the best fitness. Random Local Search
also flips exactly one bit of the given input string, but this
time it is chosen uniformly at random among all possible bit
positions.

663

10

Algorithm 2: Single receiver model with p islands run-
ning A; concept from [18].

for i € {1,...,u} in parallel do
L 2" « individual drawn w.a.r. from {0, 1}";

repeat
for i € {1,...,pu} in parallel do
Y — A@@);
if f(ym) > f(:cm) then
| 2@ ey,
(4,4, k) < indices drawn u.a.r. from {1,...,u};
z© « &, (m“),m(ﬂ,m(’f));

until (* is optimal;

© 00 N kW N

3. THE JUMP FUNCTION

In this section we consider the Jump test function as a first
example where the majority vote crossover leads to very
good run times. Since we require sufficient diversity to be
present in the population, we consider the following three
sources of diversity.

First, we consider the (1 + 1) GA (Algorithm 1) and set
the crossover probability vanishingly low; this way, the pop-
ulation will make a random walk and gain diversity by ran-
dom genetic drift. This approach was also taken by Jansen
and Wegener [8] for the uniform crossover, and, in fact, our
analysis follows closely the one in [8]. Our result is given in
Theorem 3.1.

Second, we consider (again) the (u + 1) GA, this time with
a tie-breaking rule in the selection operator which explic-
itly aims at increasing diversity. In particular, we consider
breaking ties such that the total pairwise Hamming distance
of the population is maximized. More formally, we let du
denote the Hamming distance and measure the diversity of
a population P = {&V) ... &™)} (considered as a multiset)
as

D(P) = Z du(z,y).

x,ycP

Selection will choose for replacement a fitness-worst individ-
ual @ € Inin, breaking ties by trying to maximize

D(P\{z})=D(P) —2 ) du(,y).

yeP

Further ties are broken by uniform random choice. Our
result regarding this mechanism is given in Theorem 3.2.
We would like to point out that computing D(P) takes time
O(;fn) per iteration. However, as usual in this setting of
optimization, we only measure the computational effort of
the algorithms presented in this paper w.r.t. the number of
iterations and the number of fitness evaluations.

Finally, we consider a single receiver island model (Algo-
rithm 2), which naturally exhibits significant diversity. Its
islands each run an instance of the (1 + 1) EA [7]. Note that
this is a special case of the (1 + 1) GA introduced in the last
section with population size yu = 1 and crossover probability
pe = 0, that is, it flips every bit of the input independently
with probability 1/n.

Next, we state the results regarding low crossover proba-
bilities and using the tie-breaking procedure described above
as an explicit diversity mechanism.



Theorem 3.1. Let p > 3 and consider the (u+ 1) GA with
crossover probability pc = k/n optimizing Jump,, with k =
o(y/n). Then, in expectation, an optimal solution is sampled

within O (,tm + nlogn + e7ku2k+3n) iterations.

Theorem 3.2. Let k <n/8 and 3 < u < n/(2k). Consider
the (u+ 1) GA with crossover probability pe bounded away
from 1 by a constant optimizing Jump,. Suppose that ties
in the selection phase are handled by mazrimizing the sum of
all Hamming distances between any two individuals. Then,
the expected number of iterations until an optimal solution
is sampled is O(un + nlogn + w>nklog(uk) + pet).

Due to space constraints, the proofs of these two theorems
are omitted. The proof of Theorem 3.1 is similar to the one
of Theorem 7 of Kotzing et al. [11]. It considers a single
run of the optimization process as a chain of conditional
events. For each event we then bound the probability that
its outcome is favorable. The proof of Theorem 3.2 is a
standard drift argument.
We now consider the performance of island models.

Theorem 3.3. Let u > 3 and consider the single receiver
island model running p instances of the (1 + 1) EA optimiz-

ing Jump,, with k = O(n%%) where € > 0 is some arbitrary
constant. Then, the majority vote crossover operator ®my
samples an optimal individual on the receiver island within
O(nlogn) iterations w.h.p> This corresponds to a total of
O(pnlogn) fitness evaluations.

Proof. The first step requires that three islands, drawn uni-
formly at random, sample an individual on the plateau after
O(nlogn) iterations with high probability; this follows di-
rectly from Theorem 7 of Doerr and Goldberg [1] and a union
bound.

In the second step we prove that, conditioning on the first
step being successful, the crossover operator succeeds again
with high probability. Jump, considers only the number
of 1s, the remaining k bits with value 0 in each individual
on the plateau are uniformly distributed. We now bound
the probability of the event £ that the three individuals
chosen in the first step share no 0. If this is the case, the
majority vote crossover operator samples the optimum in a
single step. We have

Note that, by the constraint imposed on k, we have n > 3k
for n sufficiently large. We observe
) 2

Pr(€) > <(n_k%))2 _ ((n n’?k)kf > ((n ;Sk)k

()
6k

2k
:(1_%) >1-—
n

n
by Bernoulli’s inequality. Here, n® = [[*_ (n+1 —i) de-

notes the falling factorial. Due to k = O(néfs)7 event &
occurs with high probability. Combining the two bounds
implies the theorem. O

We use the term with high probability for a success proba-
bility of at least 1 —n™ ¢ for some constant ¢ > 0.

664

4. VERTEX COVER

We now turn the discussion to the minimum vertex cover
problem. Recall that we investigate instances G consisting
of m separate components, each of which is a complete bi-
partite graph with partitions of size [ and I+ k, respectively.
In total, G has n = ms vertices, s = 2] + k per component.

Candidate solutions for the vertex cover problem can be
represented as bit strings of length n. Every position corre-
sponds to a specific vertex of the graph, a 0 denotes that this
vertex is not chosen for the cover, and a 1 denotes that the
vertex is chosen. We use the same fitness function as in [4],
i.e., for every individual « € {0,1}", its fitness is defined as
f(x) = (n+1) u(x)+]|x|1, where u(x) denotes the number of
uncovered edges in . Thus, in this section we are concerned
with minimizing a given function. The choice of the fitness
function has two immediate consequences: first, any elitist
algorithm optimizing f prioritizes reducing the number of
uncovered edges over reducing the number of chosen ver-
tices due to the large penalty of n + 1 per uncovered edge.
Second, every mutation operator manipulating exactly one
bit in @ alters |x|; and, hence, the fitness value. Note that
in this representation the globally and locally optimal states
of a component have Hamming distance s > 1.

We consider Steepest Ascent and Random Local Search
in turn. For both algorithms, we show that they find a
locally optimal state of G where each component is correct
with sufficiently high probability; then we conclude that, for
the single receiver island model, the majority vote crossover
®,,,v constructs the global optimum with high probability at
the receiver island. Comparing these two approaches illus-
trates necessary trade-offs between an (almost) deterministic
search and a random one in terms of run time and chance
of success.

4.1 Steepest Ascent

Lemma 4.1. Consider Steepest Ascent running on G. As
long as not all edges of G are covered by solution @ Steep-
est Ascent chooses the vertex incident to the most uncovered
edges. In particular, in any component, it always chooses
a verter from the partition with fewer unchosen vertices.
When all edges are covered, Steepest Ascent, again in ev-
ery component, discards the vertices from the partition which
was not chosen completely. Once all components are either
locally or globally optimal, the currently best solution re-
mains unchanged.

Proof. As mentioned earlier, Steepest Ascent always prefers
decreasing the number of uncovered edges. Only afterward
the number of vertices in the cover is reduced since every bit
flip not changing u(:t:(i)) contributes at most 1 to the total
fitness. By construction, the number of uncovered edges in-
cident to a vertex is exactly the number of unchosen vertices
in the other partition of the same component. This means
choosing a vertex from the partition with fewer unchosen
vertices covers more edges. Once a cover has been found,
i.e., in every component one of the two partitions has been
chosen completely, all and only the chosen vertices from the
other partition are expendable; other bit flips would increase
(worsen) the fitness by 1 or even uncover a previously cov-
ered edge. If all components are either locally or globally
optimal and there is at least one only locally optimal, this
optimum could only be escaped if one switches the parti-
tions in a locally optimal component. This is impossible



using only one-bit flips as the corresponding solutions have
Hamming distance s. Note that along the way all ties are
broken uniformly at random. O

As a consequence of Lemma 4.1, the method of steepest as-
cent deterministically finds the minimum vertex cover of G
when initialized with the empty subgraph, 0. During the
search, it flips exactly the bits corresponding to | |I-, Viu),
hence, finding the optimal solution in time polynomial in n.
This supports the assessment in [4] that greedy algorithms
perform well on these instances. Even in our probabilis-
tic setting the behavior described above hugely benefits the
expected optimization time and the success probability as
shown in the next theorem.

Theorem 4.2. Let u > 3 and consider the single receiver
island model running Steepest Ascent optimizing the vertex
cover instance G with k > (1 + ¢)Inm + 21, where ¢ > 0 is
an arbitrary constant. Then, an optimal solution is sampled
within n+1 dterations w.h.p., using a total ofO(unQ) fitness
evaluations.

In order to establish this result, we want to use a similar
argument as in the proof of Theorem 3.3. Thus, we show
that each of the m components of G is either locally or glob-
ally optimal after n iterations and, for some suitable positive
constant ¢, at most O(m%ﬂ) of them are only locally op-
timal. The last step is then the same as for optimizing the
Jump function on bit strings of length m.

Proof. A single run of the hill-climbing process described in
Lemma 4.1 is finished in at most n iterations as every bit
is flipped at most once. We note that in every step each of
the p islands has to evaluate the fitness of all n neighbors
of the currently best solution. After this period, every com-
ponent of each solution is, deterministically, either globally
or locally optimal. One can think of such a solution as bit
strings of length m. Every bit represents a component with a
0 standing for a locally optimal component and a 1 standing
for a globally optimal one. We have shown in Theorem 3.3
that with high probability ®.,. creates an optimal solution
in one step if there are, in each string, at most O(m%_c)
0s. Furthermore, the outcome of the majority vote of the
respective component equals the one for any vertex within
this component. Hence, if the above requirement is met, the
theorem follows.

We bound the probability of a component being (only) lo-
cally optimal after n iterations. The deterministic behavior
of Steepest Ascent, see Lemma 4.1, reduces the question of
whether the smaller or the larger partition is discovered first
to the question which partition has fewer unchosen nodes af-
ter the initialization phase in the beginning. We pessimisti-
cally assume that, if both partitions have the same score,
the component is going to be locally optimal. During the
initialization, each vertex is chosen with probability p = %
independently of the other choices, thus, the number of cho-
sen vertices per partition is binomially distributed. For any
natural number a, let X, ~ Binom(a, p) be the random vari-
able denoting how many vertices out of a have initially been
chosen for the cover. The number of unchosen vertices in
Vi(l) therefore equals [ — X; and the number for Vi(2> equals
l 4+ k — Xi1k. The component becomes locally optimal just
in case the former value is not smaller than the latter. Ob-
serve that due to symmetry, for any two natural numbers a

665

and b, the random variables (a — X,) and X, are identically
distributed, the same holds for (X, + X3) and Xq45. Hence,
we get the following equation.

Pr(l - X >1l+k *Xl-Hc) = PI‘(Xl > l+k’le+k)
= Pr(X) + Xipx > [+ k) = Pr(X, > [ + k).

As the success probability p equals 1/2, we can employ a
special form of the Chernoff-Hoeffding Theorem [6] to bound
the last probability.

=sp

k k ~2)
PriX;>l+—-+=)<e
r( s 2+ 5 +2) se

We now require that there are in each solution asymptot-

ically less than y/m locally optimal components w.h.p. To

that end, for any island 1 <4 < u, we define a random vari-

able Zy,; ~ Binom(m,exp(—k®/(4l + 2k))), denoting the

number of locally optimal components in ¥} Regarding
their expected value, we have

—21

_ k2 _k 1—c
E(Zm,i) =me T+2k <me 2 <m 2

The last inequality is due to k& > (1 + ¢)Inm + 2I. Using
Chernoff and union bounds, one verifies that the probabil-
ity that none of the Z,, ;-s, for any polynomial number of

1—¢
islands, exceeds m ™2 by more than a constant factor is at

least 1 — exp(—Q(ml%s)). O

Intuitively speaking, as long as the sizes of the two parti-
tions are not too similar, Steepest Ascent only needs a linear
number of iterations but the number of fitness evaluations
on each island is quadratic — it spends most of its compu-
tational resources in determining the one bit position that
maximizes the fitness decrease.

4.2 Random Local Search

In the following we investigate how randomization of the
search can help reduce the expected number of fitness eval-
uations. For this we use the paradigm of Random Local
Search, that is, in every step and on each island we flip ex-
actly one bit chosen uniformly at random. Utilizing RLS to
optimize vertex cover instances has already been extensively
studied in [4]. Namely, it has been shown that RLS covers
a single component G; in expected time O(slogs) and the
probability of finding the larger partition equals the relative
share of the smaller one. The next lemma is a reformulation
of these results for our setting. We add the assertion that
their run time bound holds not only in expectation but even
with high probability.

Lemma 4.3. Consider RLS running on one island optimiz-
ing a single component G;. Then, after O(slog s) iterations
it is either globally or locally optimal w.h.p. The probability
of G; being only locally optimal equals 1/s.

Proof. We are only concerned with bounding the probability
that G; is at least locally optimal after O(slog s) iterations.
The other statements immediately follow from Theorem 1
and Theorem 4 of Friedrich et al. [4].

RLS behaves similarly to Steepest Ascent as described in
Lemma 4.1. While not all edges are covered, no bit flips
discarding vertices are accepted; on the other hand, every
bit flip covering a previously uncovered edge is accepted.



Hence, trying every possible bit flip at least once during
this phase is sufficient to find a (not necessarily optimal)
vertex cover. A standard argument now shows that this
happens with high probability within O(slogs) iterations:
the probability of flipping a fixed bit in one iteration is 1/s.
Hence, the probability of flipping this bit at least once during
(c+ 1)sln s iterations, ¢ > 0 a constant, equals

1 (c+1)slns
1— (1 - 7) >1—e (efins — g (D)
5 2

A union bound over all s bit positions now yields the desired
result.

An identical argument shows that, once a cover has been
obtained, another phase of O(slogs) steps suffices to re-
move all expendable vertices, again w.h.p. For this, note
that no new vertices are added during the second phase.
These two bounds combined imply that RLS is successful in
time O(slogs) with high probability. O

Theorem 4.4. Let u > 3 and consider the single receiver
island model running RLS optimizing the vertex cover in-
stance G with k = Q(Zm%*'e), where €, again, is some
arbitrary positive constant. Then, an optimal solution is
sampled within O(nlogn) iterations w.h.p., using a total of
O(unlogn) fitness evaluations.

Proof. The concentration result in Lemma 4.3 is not ad-
versely affected by considering all m components after a
phase of O(nlogn) iterations. Moreover, a union bound
shows that it also holds for three islands chosen uniformly
at random. That is, after so many steps all components of
the respective solutions are at least locally optimal w.h.p.
During this first phase any island uses only a constant num-
ber of fitness evaluations per iteration.

For the second phase — the application of the majority
vote crossover — to be successful, we require that at most
O(m%_g) components per island are locally optimal. For
each island ¢ with 1 < < u, let Z,,, ; be the random variable
denoting the number of locally optimal components on 3.
Once again, due to Lemma 4.3, the Z,, ;-s are i.i.d. according
to the binomial distribution with parameter [/s. We have,
for any 1,

,8)

The asymptotic estimate is due to k being in the order of

l 1

Q (lm%“). The reasoning why none of the random variables,
regarding the islands used in the process, overshoot their
expected value by more than a constant factor w.h.p. is the
same as in the proof of Theorem 4.2. O

S. PROBABILITY AMPLIFICATION

In the remainder of this work, we introduce a hierarchical
architecture in which the majority vote crossover facilitates
a rapid amplification of the success probability of a given
randomized search heuristic. The setting is motivated by
the algorithms we examined in the previous sections, but is
not restricted to them. Consequently, we will present this
method in more general terms.

We consider a complete ternary tree, called the mv-tree, in
which every inner node computes the majority vote crossover
of its three children; each leaf is running some randomized

666

search heuristic A. The algorithm A does not need to op-
timize the string entirely. However, there are two essential
requirements in order to let the mv-tree amplify the success:

1. For every bit position in the result of A, the probability
of this bit being set correctly is strictly larger than 1/2.

2. The bits which are incorrectly set are uniformly dis-
tributed among all n bit positions.

Under these requirements we show that the probability of
a bit position being set correctly increases quickly as the
result of the crossover is propagated upward in the tree. The
question naturally arises how many layers are needed until
this probability exceeds a given threshold. As it turns out,
the chance of success proliferates extensively under majority
vote. In the rest of this section, we prove the following
theorem, which is the main result.

Theorem 5.1. Let § > 0, possibly dependent on n, be such
that the probability for any bit position in the result of al-
gorithm A being set correctly is at least %+ 0. Then, for
any fixed ¢ > 0, an muv-tree of height @(log 571 +loglog n)
suffices to amplify this probability to at least 1 — n™°.

As this allows for a cleaner analysis, we focus on minimiz-
ing the probability of failure instead of directly quantifying
the amplification of the success. By definition, the result
of the majority vote crossover deterministically depends on
the input strings, hence, we observe the following behavior
in each inner node of the tree. Let p denote (an upper bound
on) the probability that a bit position in any of the three
children is erroneously set. Then the probability that this
defect still occurs in the result of the majority vote is

3p*(1—p) +p° = 3p” - 2p°.

We therefore define the error decreasing function as dec(p) =
3p? — 2p® for all p € [0,1]. Function dec is monotonically
increasing on the unit interval and has fixed points in %,
0 and 1, of which the latter two are attractive. More pre-
cisely, for any p € (0, %)7 we have dec(p) < p; thus, the error
probability indeed approaches zero. We establish bounds on
the decay of failure under iterated applications of dec, i.e.,
we bound the mapping ¢ — dec’(p). This task is split into
two major parts corresponding to two ranges of p. First, in
Lemma 5.2, we investigate initial values which are close to
the fixed point %, namely, % <p< % The analysis of the
second range, 0 < p < %, can be found in Lemma 5.3. As we
will see, the underlying process is fundamentally different in
behavior on these two domains.

As 0 denotes the quantity by which the initial success
probability exceeds one half, we can denote the error proba-
bility by p = 1 —4. In the following lemma, we only consider
values of § lying strictly between 0 and i. We introduce
some additional technical notation. For all considered § and
natural numbers ¢, let gs be an auxiliary function defined as

1 (1
=3 dec<2 6).

Intuitively, gs measures how fast the error probability moves
away from the fixed point % if its initial value was %,5 . Note
that, for any parameter d, gs is monotonically increasing in ¢
and we have gs(0) = . The relevance of this function stems
from the fact that in the moment in which g;(t) exceeds 1,
dec’ (3 — 6) falls below this value.

gs(t)



Lemma 5.2. For any parameter 0 < § < i, we define the

crossing point as t5 = min{t € N | gs(t) > 1}. Then, for all
t < t3, we have (11/8)'6 < gs(t) < (3/2)%6.

Proof. Function gs observes the following recurrence for any
natural number ¢:

L dec <dect (% - 6)) = % - dec(% - g(s(t))
(5 -aw) +2(5-a0)

595(0) = 2(g5(1))”.

gs(t+1)

W N = N

It is now easy to see that gs(t) < (%)té indeed holds.

The more interesting part is bounding gs(t) from below.
This is established by an induction over all ¢t < t5. Note that
0 < t5, as g5(0) = 6 < 1, and the inequality g5(0) > (%‘1)05
obviously holds. Now assume that the induction hypothesis
is true for some ¢ < t3. In this case, we get

as(t-+1) = (3 = 2(0s(0)" ) as(0)

(35 ()

Next, we turn to values of p between zero and one quarter.

O

1

Lemma 5.3. For any natural number t and 0 < p < g,

have (5/8p)% < dect(p) < (3/4)%

we

Proof. Both inequalities are shown by an induction over ¢.
The lower bound clearly holds for dec®(p) = p < %. Now
assume that it is true for some natural number t. We get

dec'™ (p) = dec(dec’(p)) > dec <(2p) Qt)

o)) (@) =)

<2

The first inequality uses both the induction hypothesis and
the monotonicity of function dec.
The upper bound follows by a similar but somewhat sim-

pler argument using that ((3/4)2t)3 is always smaller than
ot+1
O

(3/4)""

In other words, if the process of error minimization is
started with an initial value close to %, it takes relatively
long time to get the error under % as the gap only grows
exponentially. However, once this crossing point has been
passed, the process is massively accelerated, the error prob-

ability now tends double exponentially toward zero.

Proof of Theorem 5.1. Naturally, this proof is also done in
two steps. In the first one, we give matching upper and
lower bounds on the time in which the initial error shifts
from % — 0 to i, i.e., on the crossing point t; as defined in
Lemma 5.2. In the second step, we do the same for the time
the mv-tree needs to further decrease the error probability

below n~¢ for some prescribed constant ¢ > 0. If § is a

667

constant or the initial error is already below one quarter,
the first step is asymptotically irrelevant.

Let p = % — 0 be the probability that a bit in the result
of algorithm A — the leaves of the mv-tree — is set incor-
rectly. As we have seen above, 5 = min{t|gs(t) > 1} is the
smallest number ¢ such that after ¢ layers the chance of fail-
ure is at most 1/4. By Lemma 5.2 we have (1)'d < gs(t),
therefore,

€

t) 1:>t 1
g]a(<4 <og%46.

Thus, choosing t; = O(log 571) suffices. A similar calcula-

tion, using (%)té > gs5(t), verifies the matching lower bound
of t; = Q(log 671).

For the second step, we can assume that p is a constant not
greater than i and, hence, apply Lemma 5.3. That is, we get
dec’(p) = ©(n~°) for some ¢t with ¢t = ©(loglogn). In total
we need @(log 571 +loglog n) layers for the optimization.

O

To conclude our work, we revisit the optimization pro-
cesses of the previous sections, in particular, our vertex cover
instances. We already know that, after a sufficient number
of steps, RLS manages to either locally or globally optimize
each component of graph G individually. Furthermore, the
probability of a component being locally optimal is [/s. We
now show that the optimization by the mv-tree set on top of
RLS comes with (asymptotically) no extra cost and is even
capable of handling an arbitrarily small discrepancy between
the two partitions.

Theorem 5.4. Consider an mu-tree of height O(logs +
loglogn), each of its leaves running an instance of RLS on
a vertex cover instance G with k > 0. Then, an optimal so-
lution arrives at the root within O(nlogn) iterations w.h.p.,
using a total ofO(msQ(log ms)z) fitness evaluations.

Proof. We want to employ the above theorem for this proof,
however, the result of RLS working on graph G does not
meet an important requirement: as one bit in a component
is set erroneously, just in case all of them are, given that
all components are at least locally optimal, the incorrectly
set bits are not uniformly distributed. We circumvent this
obstacle by again analyzing the time it takes to optimize a
string of length m in which every bit position corresponds to
a whole component instead of a single vertex. This method is
justified by the observation that, according to Theorem 4.4,
after O(n logn) iterations each component of any solution on
a polynomial number of islands (leaves) is either locally or
globally optimal w.h.p. In this case the majority vote of the
components determines the outcome of the respective votes
of the vertices involved. Observe that now the remaining
defects in the bit string are indeed uniformly distributed as
the components are optimized independently.

Consider a single individual after being treated by RLS for
some O(nlogn) rounds. Lemma 4.3 states that the proba-
bility of a component being globally optimal is

I+k 1 kzl—"—Q(})
2 S

s 27
This equals the probability of a bit being set correctly. Thus,
even for arbitrarily small discrepancies k > 1, we have § ! =
O(s) in the terms of Theorem 5.1. As a consequence, an




mv-tree of height O(log s 4 log log n) suffices to amplify the
success probability in every position beyond 1 — n™° for
some constant ¢ > 0, this is clearly enough to optimize
the whole underlying graph w.h.p. The additional iterations
needed to propagate the solution from the leaves to the root
is asymptotically negligible compared to the optimization
time of O(nlogn). In fact, an analysis of the inequali-
ties in Lemma 5.2 and Lemma 5.3 not neglecting constant
factors even shows that we can choose the tree to have
height at most log; s + log; log; n. Hence, the mv-tree has
u = O(slogn) leaves. As stated in Theorem 4.4, the opti-
mization process needs at most O(unlogn) fitness evalua-
tions, which is O(ms?(logms)?). O

Applying the same reasoning directly on the level of the
underlying bit strings also shows that an mv-tree can opti-
mize Jump,, for any reasonable jump distance with no extra
cost (compared to Theorem 3.3).

Theorem 5.5. Consider an mu-tree of height O(logn), each
of its leaves running an instance of the (1 + 1) EA on Jump,
with k < 5. Then, an optimal solution arrives at the root
within O(nlogn) iterations w.h.p., using O(n”logn) fitness
evaluations.

6. CONCLUSION

In this work we explored the influence of majority vote
crossover in population-based optimization. We equipped
several Genetic Algorithms, employing different crossover
probabilities and diversity mechanisms, with this operator
and then examined their run times optimizing the Jump
function and structured vertex cover instances. If the fit-
ness function observes multiple local maxima that need to
be combined to find the global optimum, majority vote can
significantly speed up the optimization. In these cases, this
crossover operator naturally benefits from a high diversity
of the underlying population.

From these observations, we derived the hierarchical op-
timization scheme of mv-trees, in which successive major-
ity votes assemble building blocks, incorporating more and
more partial solutions. We showed that in this setting even
a small bias towards the optimum is amplified rapidly.

There are two immediate directions for future work. Ma-
jority vote crossover appears to work best on individuals
drawn randomly from a population with high diversity as
this diminishes the influence of stochastic error. Hence, it
would be interesting to rigorously investigate the robustness
of this operator against noise in the input or in the fitness
function itself. Finally, we believe that mv-trees have large
potential for applications, since they can be used with an
arbitrary given optimization algorithm.

Acknowledgments

The research leading to these results has received funding
from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement no. 618091 (SAGE)
and from the Australian Research Council under grant agree-
ment DP140103400.

References

[1] B. Doerr and L. Goldberg. Adaptive Drift Analysis.
Algorithmica, 65:224-250, 2013.

668

[2] B. Doerr, E. Happ, and C. Klein. Crossover Can
Provably be Useful in Evolutionary Computation.
Theor. Comp. Sci., 425:17-33, 2012.

A. Eiben, P.-E. Raué, and Z. Ruttkay. Genetic
algorithms with multi-parent recombination. In Proc.
of PPSN ’94, pp. 7887, 1994.

T. Friedrich, J. He, N. Hebbinghaus, F. Neumann, and
C. Witt. Approximating Covering Problems by
Randomized Search Heuristics using Multi-Objective
Models. Ewol. Comp., 18:617-633, 2010.

B3l

(4]

[5] M. Garey and D. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York

City, NY, 1979.

[6] W. Hoeffding. Probability Inequalities for Sums of
Bounded Random Variables. Jour. of the ASA, 58:

13-30, 1963.

T. Jansen. Analyzing Evolutionary Algorithms: The
Computer Science Perspective. Springer, Berlin, 2013.

(7l

[8] T. Jansen and I. Wegener. The Analysis of
Evolutionary Algorithms—A Proof That Crossover

Really Can Help. Algorithmica, 34:47-66, 2002.
[9]

T. Jansen and 1. Wegener. Real royal road
functions—where crossover provably is essential.

Discrete Appl. Math., 149:111-125, 2005.

[10] R. Karp. Reducibility Among Combinatorial
Problems. In Complezity of Computer Computations,

pp. 85-103. 1972.

T. Kotzing, D. Sudholt, and M. Theile. How
Crossover Helps in Pseudo-Boolean Optimization. In
Proc. of GECCO 11, pp. 989-996, 2011.

P. K. Lehre and C. Witt. Black Box Search by
Unbiased Variation. In Proc. of GECCO ’10, pp.
1441-1448, 2010.

F. Neumann, P. Oliveto, G. Rudolph, and D. Sudholt.
On the Effectiveness of Crossover for Migration in
Parallel Evolutionary Algorithms. In Proc. of
GECCO ’11, pp. 1587-1594, 2011.

C. Qian, Y. Yu, and Z.-H. Zhou. An analysis on
recombination in multi-objective evolutionary
optimization. Artificial Intelligence, 204:99-119, 2013.

(1]

(12]

(13]

(14]

[15] J. Snyman. Practical Mathematical Optimization: An
Introduction to Basic Optimization Theory and
Classical and New Gradient-Based Algorithms.
Applied Optimization. Springer, New York City, NY,

2005.

[16] T. Storch and I. Wegener. Real royal road functions
for constant population size. Theor. Comp. Sci., 320:

123-134, 2004.

[17] D. Sudholt. Crossover is Provably Essential for the
Ising Model on Trees. In Proc. of GECCO 05, pp.

1161-1167, 2005.

R. Watson and T. Jansen. A Building-Block Royal
Road Where Crossover is Provably Essential. In Proc.
of GECCO ’07, pp. 1452-1459, 2007.

(18]





