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Abstract We study the problem of generalizing from a finite sample to a language
taken from a predefined language class. The two language classes we consider
are subsets of the regular languages and have significance in the specification of
XML documents (the classes corresponding to so-called chain regular expressions,
CHAREs, and to single-occurrence regular expressions, SOREs). The previous liter-
ature gives a number of algorithms for generalizing to SOREs providing a trade-off
between quality of the solution and speed. Furthermore, a fast but non-optimal algo-
rithm for generalizing to CHAREs is known. For each of the two language classes we
give an efficient algorithm returning a minimal generalization from the given finite
sample to an element of the fixed language class; such generalizations are called
descriptive. In this sense of descriptivity, both our algorithms are optimal.

Keywords Subregular language learning · Single-occurrence regular expression ·
Chain regular expression · Descriptive generalization

1 Introduction

The present paper follows and refines an approach for XML schema inference from
positive examples that was introduced by Bex et al. [4]. The basic problem setting is
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as follows. Given a set of XML documents, generate a schema that describes these
documents, while being compact and preferably human readable.

Bex et al. approach this problem by learning deterministic regular expressions
from positive examples; i. e., they consider the following problem: Given a finite set
S of positive examples from an unknown target language L, find a deterministic reg-
ular expression for L. These regular expressions can immediately be used as element
type declarations in DTDs (Document Type Definitions), and while XSDs (XML
Schema Documents) require additional effort, algorithms that infer regular expres-
sions can also be used as a component of XSD inference algorithms (see [4, 5] for
further explanations). In particular, as argued in [4], the results in [16] show that XSD
inference requires deep insights into regular expression inference – as Bex et al. put
it, “one cannot hope to successfully infer XSDs without good algorithms for inferring
regular expressions”.

Using a classical technique from Gold [12], Bex et al. prove in [3] that even
the class of deterministic regular expressions is too rich to be learnable from pos-
itive data. While, strictly speaking, the learnability criterion of Gold-style learning
as defined in [12] (which is also called learning in the limit from positive data or
explanatory learning) is different from the setting in [3, 4],1 its non-learnability
results still provide valuable insights into necessary restrictions. In particular, Gold-
style learning shows that, when learning from positive data, one has to balance
the need for generalization (as in most cases, a regular expression that generates
exactly the example is not considered a good hypothesis) with the need to avoid
overgeneralization.

While there are numerous papers on restrictions on the class of regular languages
that lead to learnability, apart from a few exceptions (e. g. [7]), most of these restric-
tions prior to [4] have been based on properties of automata. As explained in [4],
this is problematic, as even under those restrictions, converting the inferred automa-
ton to a regular expression can lead to an exponential size increase. In order to
achieve learnability of concise deterministic regular expression, Bex et al. propose
single-occurrence regular expressions (short SOREs), regular expressions where each
terminal letter (or element name) occurs at most once. These SORES are determinis-
tic by definition, and as an additional benefit, this restriction ensures that the length
of the inferred expressions is at most linear in the number of different terminal
letters.

The corresponding SORE inference algorithm RWR from [4] works as follows.
First, it constructs a so-called single-occurrence automaton (short SOA, as introduced
by Garcı́a and Vidal [11]). RWR then attempts to convert the SOA step by step into
a SORE. As the class of SORE languages is a proper subset of the class of SOA

languages, this conversion is not always possible. In these cases, RWR attempts to
repair the SOA, and constructs a SORE that generates a generalization of the language
of the SOA. In order to generalize as little as possible, [4] suggests different orderings

1Gold-style learning uses a growing set of samples and requires that the learner converges toward a correct
hypothesis in finite time, while this setting uses only a single finite set for each inference instance.
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on the set of repair rules, as well as the variant RWR2
�, which uses additional heuristics

and can have an exponential running time. Nonetheless, these variants may still infer
SOREs that are not inclusion-minimal generalizations of the input sample (within the
class of all SOREs).

In order to deal with insufficient data, Bex et al. propose a further restriction
on SOREs, the so-called chain regular expressions (short: CHAREs), and introduce
the corresponding inference algorithm CRX. Analogously to RWR, CRX may infer
CHAREs that are not inclusion-minimal generalizations.

The present paper focuses on inferring SOREs and CHAREs that are inclusion-
minimal generalizations. This approach to regular expression inference is based
on a slightly different angle than Gold-style learning, namely on the learning
paradigm of descriptive generalization that was introduced by Freydenberger and
Reidenbach [10].

While Gold-style learning usually assumes that an exact representation of the tar-
get language is present in the hypothesis space, and that the learner is provided with
sufficient positive information to correctly recognize the target language, descrip-
tive generalization views the hypothesis space and the space of target languages as
distinct.

For a class D of language representation mechanisms (e. g., a class of automata,
regular expressions, or grammars), a language representation δ ∈ D is called D-
descriptive of a sample S if its language L(δ) is an inclusion-minimal generalization
of S, i. e., S ⊆ L(δ) and there is no γ ∈ D with S ⊆ L(γ ) ⊂ L(δ). To the authors’
knowledge, the first class D for which the existence of descriptive representations
was examined is the class of NE-patterns, where Angluin [1] introduces the notion of
descriptive patterns in the context of exact learning from positive data (see [19] for a
survey on the influence of pattern languages in this area). While the other mentioned
example mechanisms are probably more familiar to many readers, most research
on descriptive representations has focused on various classes of pattern languages
(see [9, 10] for some examples).

This concept allows us to define D-descriptive generalization as a natural exten-
sion of Gold-style learning: Instead of attempting to learn an exact representation
of the target language L from a sample S, the learner has to infer a representation
δ ∈ D that is D-descriptive of L. In other words, δ is a generalization of S that is as
inclusion-minimal as possible within D.

Descriptive generalization explicitly separates the hypothesis space from the class
of target languages, while still providing a natural quality criterion for generalization
from positive examples. In the present paper, we consider the class of SOREs and
the class of CHAREs as hypothesis spaces D, and examine the problem of inferring
D-descriptive generalizations from finite samples.

As in [4], we approach this problem by first computing a SOA-descriptive SOA.
As we shall see, this approach has the advantages that the descriptive SOA is uniquely
defined, can be computed efficiently, and its language is included in the language of
every descriptive SORE or CHARE.

The main contribution of the present paper are two algorithms, Soa2Sore and
Soa2Chare, that can be used to transform any given SOA into a SORE (resp.
CHARE) that is SORE-descriptive (resp. CHARE-descriptive) of the language of that
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SOA. That is, given a sample S, these algorithms can be used to compute a general-
ization of S that is inclusion-minimal (or, in the terminology of [4], optimal) within
the class of SOREs or CHAREs (respectively).

In addition to this, Soa2Chare and Soa2Sore are efficient: Soa2Chare runs
in time O(m) (compared to O(m + n3) for CRX), Soa2Sore in time O(nm) (com-
pared to O(n5) for RWR), where m is the number of edges and n the number of
vertices in the SOA.

The paper is structured as follows. Section 2 contains some mathematical prelim-
inaries, followed by some informative properties of the language classes considered.
Section 3 discusses CRX as well as RWR and its variants in the context of descriptive
regular expressions. In particular, we show that for each of these algorithms, there
are samples over small alphabets where the algorithm does not compute a descrip-
tive CHARE or SORE. Sections 4 and 5 contain the algorithms Soa2Chare and
Soa2Sore, respectively, as well as proofs of their correctness and running time. In
Section 6, we discuss the use of these algorithms for less restricted language classes,
while Section 7 contains some example DTDs that were generated by a prototype
implementation of the algorithms. Finally, Section 8 concludes the paper.

A preliminary version of this article appeared as [8]. Apart from some minor
changes, the present version was improved as follows.

– All proofs that were omitted from [8] have been included.
– A mistake in the algorithm for finding descriptive SOREs (more precisely: in its

subroutine “bend”) was fixed.
– Sections 6 and 7 were added.

2 Preliminaries

Let ∅ denote the empty set and let ε denote the empty word. With |x|, we denote the
length of x if x is a word, or the number of elements in x if x is a set. We use ⊆ (and
⊂) to denote the inclusion (respectively proper inclusion) of sets. The difference of
two sets A, B is denoted by A \ B and defined as {a ∈ A|a /∈ B}. A word v is a
factor of a word x ∈ �∗ if there exist u, w ∈ �∗ such that x = uvw. A digram is a
factor of length 2. Let term(w) denote the set of all letters occurring in a word w, and
extend this to languages by defining term(L) := ⋃

w∈L term(w).
The concatenation operator is extended to languages by defining L1 · L2 := {w1 ·

w2 | w1 ∈ L1, w2 ∈ L2} for languages L1 and L2. For every language L, we define
L0 := {ε}, Ln+1 := L · Ln for all n ≥ 0, and L+ := ⋃

n≥1 Ln.

2.1 Introducing SORE, CHARE, SOA

This section introduces the classes of regular expressions and automata used in this
paper. We mostly follow the notations of [4].

Definition 1 Let � be a finite alphabet (the set of terminal letters, also called element
names). Every letter a ∈ � is a regular expression and defines the language L(a) :=
{a}. Furthermore, ε and ∅ are regular expressions, with languages L(ε) := {ε} and
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L(∅) := ∅. If α is a regular expression, then α+ and α? are regular expressions,
where L(α+) := (L(α))+ and L(α?) := L(α) ∪ {ε}. Furthermore, if α and β are
regular expressions, then α | β and α ·β are also regular expressions, with L(α | β) :=
L(α) ∪ L(β) and L(α · β) := {uv | u ∈ L(α), v ∈ L(β)}.

For sake of convenience, we sometimes omit the concatenation operator (i. e., we
write αβ instead of α · β), and add or omit parentheses. For a regular expression α,
we use term(α) to denote the set of terminal letters that occur in α. We call two
regular expressions α, β alphabet-disjoint if term(α) ∩ term(β) = ∅. Two regular
expressions α and β are equivalent if L(α) = L(β). For any set A = {a1, . . . , an} ⊆
� (n ≥ 1), we use the notation ALT (A) to denote the regular expression ALT (A) :=
(a1 | · · · | an), with ALT (∅) = ε (ALT stands for alternation). In a strict sense, this
definition requires an ordering on the letters to be sound, but for the purpose of this
paper, this is of no concern, and we assume that ALT (A) = ALT (B) if A = B.

The full class of regular expressions is too strong both for DTDs (which allow
only deterministic regular expressions) and for learning from positive data (which
requires language classes that are sufficiently sparse, cf. [12]). As proven in [3], even
the class of deterministic regular expressions is still too large to be learnable from
positive data. Hence, [4] proposes the following subclasses of deterministic regular
expressions.

Definition 2 (SORE/CHARE) Let � be a finite alphabet. A single-occurrence regu-
lar expression (or SORE) is a regular expression over � in which each terminal letter
occurs (at most) once.

A chain regular expression (or CHARE) is a SORE over � of the form f1 · . . . · fn

(n ≥ 0), where each fi is a chain factor, i. e., a SORE of the form (a1 | · · · | ak),
(a1 | · · · | ak)?, (a1 | · · · | ak)

+, or (a1 | · · · | ak)
+?, where k ≥ 1, and each aj is a

terminal letter.
A language L is called a SORE language (or a CHARE language) if there exists a

SORE (or a CHARE) α with L(α) = L.

In other words, a CHARE consists of a concatenation of alphabet-disjoint chain
factors. We illustrate these definitions with a few short examples.

Example 3 Consider the regular expressions α := (a)?(b | c)+, β := (ab)+, and
γ := abaa. Here, α is a CHARE (and, hence, also a SORE), as it consists of two
alphabet-disjoint chain factors.

On the other hand, β is a SORE (every letter occurs only once), but not a CHARE

(as it is not composed of chain factors). In fact, not only is β not a CHARE, one can
also prove that L(β) is not a CHARE language.2

2The proof uses a kind of pumping argument. Assume there exists a CHARE β ′ with L(β ′) = L(β). By
definition, β ′ must contain a and b. If a and b are not in the same chain factor of β ′, then at least one of
the digrams ab or ba cannot occur in any word of L(β ′). But if a and b are in the same chain factor of β ′,
the same line of reasoning implies that this chain factor must be followed by + or +?. Therefore, there are
words in L(β ′) that contain the digrams aa or bb, which contradicts L(β ′) = L(β).
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Finally, γ is not a SORE (and therefore not a CHARE), and one can prove that
L(γ ) is not a SORE language.3

While the focus of this paper is on learning regular expressions, most of our
technical reasoning uses the following class of automata.

Definition 4 (SOA) Let � be a finite alphabet, and let snk,src be distinct symbols
that do not occur in �. A single-occurrence automaton (short: SOA) over � is a finite
directed graph A = (V , E) such that

(1) {src,snk} ∈ V , and V ⊆ � ∪ {src,snk},
(2) src has only outgoing edges, snk has only incoming edges, and every v ∈ V

lies on a path from src to snk.

We call term(A) := V \ {src,snk} the set of terminal letters in A. We define the
relation →A on V by →A := E, and use →A and →A to denote the transitive and
reflexive-transitive hull of →A. The language L(A) that is accepted by A is the set
of all words w = a1 · · · an (n ≥ 0) such that src→A a1→A · · · →A an→A snk. A
language L is called a SOA language if there exists a SOA A L(A) = L. Two SOAs
A and B are equivalent if L(A) = L(B).

In order to ease understanding, we use specific language for vertices v in a SOA

depending on the context: If the context is that of automata, we refer to it as a state;
in the context of graph operations as a vertex.

A strongly connected component of a SOA A is a non-empty and inclusion-
maximal set C of vertices of A such that for all a, b ∈ C, a→∗

Ab and b→∗
Aa

holds. A strongly connected looped component of a SOA A is a non-empty and
inclusion-maximal set C of vertices of A such that for all a, b ∈ C, a→+

Ab and
b→+

Aa holds. In other words, if →+
A is interpreted as the reachability relation in

A, every strongly connected looped component contains exactly those vertices that
are mutually reachable. Thus, a strongly connected component may be a single-
ton without an edge, while a singleton strongly connected looped component must
have a self-loop. By definition, all strongly connected looped components of a SOA

are disjoint, and src and snk cannot be part of any strongly connected looped
component.

Although their definition is somewhat different, it is easy to see that SOAs
are a subclass of DFAs. In particular, a SOA can be converted into a DFA by
labeling every edge with the state that it points to. Further, every state that has
an edge to the sink is made a final state. This is illustrated by the following
example.

3This is best proven using techniques that will be introduced further down: In Remark 8, we observe
that L(SOA(L(γ ))) �= L(γ ). According to Corollary 16, this implies that L(γ ) is not a SOA lan-
guage. As every SORE language is a SOA language (according to Lemma 9), L(γ ) is not a SORE

language.
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Example 5 In the picture below, we have a SOA on the left side, and the correspond-
ing DFA to the right side. Note that, for depicting SOAs, we use the symbol “•” as a
symbol for the source, and “ ” as a symbol for the sink.

Both automata generate the same language as the regular expression α :=
((ac+?b)((ac+?b) | (c+b))+?)?.

In this paper, we frequently use SOAs to approximate languages. For this, we rely
on the following definition.

Definition 6 For every w ∈ �∗, let f irst (w) and last (w) denote the first
resp. last letter of w, and let gram2(w) be the set of all digrams in w. We extend
these functions on words to functions on languages by defining f irst (L) :=
{f irst (w) | w ∈ L}, last (L) := {last (w) | w ∈ L}, and gram2(L) :=⋃

w∈L gram2(w).
For every language L ⊆ �∗, we define the SOA approximation of L, SOA(L), by

SOA(L) := (VL, EL), where VL := term(L) ∪ {src,snk}, and EL contains the
edges

– (src, a) for every a ∈ f irst (L),
– (a,snk) for every a ∈ last (L),
– (a, b) for all a, b ∈ � with ab ∈ gram2(L),
– (src,snk) if ε ∈ L.

Using this terminology, the approach for SOA learning presented in [11] can be
summarized as follows. Given a finite set S, compute SOA(S). In [4], the resulting
algorithm is called 2T-INF. The following observation follows immediately from
Definition 6.

Corollary 7 For every language L, computing SOA(L) is only as hard as computing
f irst (L), last (L), and gram2(L).

Hence, SOA(L) can be constructed for languages from classes that are larger
than the classes of finite or regular languages, e. g., for context-free languages; see
Section 6.2 for a detailed discussion.

It is easy to see from the definition that L(SOA(L)) ⊇ L holds for every language
L (in fact, we shall see in Proposition 15 that L(SOA(L)) is always the least general
approximation of L that is possible with a SOA language). This inclusion can be
proper as follows.
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Remark 8 Note that even for finite languages L, the equality L(SOA(L)) = L is
not necessary; e. g., consider L = {abaa}. Then SOA(L) contains an edge from
src to a, from a to b, from b to a, from a to itself, and from a to snk. Hence,
aa ∈ L(SOA(L)), while aa /∈ L.

There are SOA languages that are not SORE languages. One example is the lan-
guage L(α) from Example 5, but proving this using only techniques that have been
introduced at this point requires considerable effort.4 On the other hand, we have that
every SORE language is a SOA language (in other words, the SOA approximation of
a SORE language is exact).

Lemma 9 ([4], proof of Proposition 9) Given any SORE α, we have
L(SOA(L(α))) = L(α).

Moreover, according to Corollary 7, SOA(L(α)) can be derived directly from
every SORE α.

Lemma 9 allows us to define SOA(α) as a notational shorthand for SOA(L(α)).
Similarly, we use →α to denote the relation →SOA(α).

More importantly, we shall use Lemma 9 to develop a handy syntactic character-
ization of the inclusion for SOREs (and CHAREs), which is based on the inclusion
of SOAs. We say that a SOA A covers a SOA B if A is a supergraph of B –
in other words, term(A) ⊇ term(B) holds, and a→B b implies a→A b for all
a, b ∈ term(B). This definition leads to the following characterization of SOA

inclusion.

Lemma 10 ([11], Theorem 3.1) For every pair A, B of SOAs, L(A) ⊆ L(B) if and
only if A is covered by B.

Although Lemma 10 is stated in [11] without proof (the authors cite Garcı́a’s PhD
thesis), it is easily proven considering the definition of SOA(L).

Combining Lemma 10 with Lemma 9, we are able to characterize inclusion of
SOREs as follows.

Lemma 11 For every pair α, β of SOREs, L(α) ⊆ L(β) if and only if SOA(α) is
covered by SOA(β).

This obviously implies that two SOREs (or CHAREs) are equivalent if their cor-
responding SOAs are equivalent. More importantly, Lemma 11 provides a simple
syntactic and characteristic criterion for inclusion. While the algorithms in Sections 4
and 5 do not check for inclusion, their correctness proofs make heavy use of the fact
that SORE inclusion depends on the presence of edges in the corresponding SOA.

4The most straightforward way to prove this is to use techniques that are introduced in Section 5: Apply
the algorithm Soa2Sore to the SOA, which returns the SORE (ab?c+?)+?, which is not equivalent to α.
By Theorem 27, this means that L(α) is not a SORE language.
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Before we introduce the other central definition of this paper in Section 2.2, we
discuss some concepts which will be useful.

One can verify with little effort that the classes of SOA-, SORE-, or CHARE lan-
guages are not closed under many of the operations that are commonly studied in
formal language theory (e. g., concatenation, union, complementation, intersection
with regular languages, morphism, inverse morphism). One of the few operations
under which all these classes is closed is projection. Let � be an alphabet. A projec-
tion from � to T ⊆ � is a morphism πT : �∗ → T ∗ that is defined by πT (x) := x

for all x ∈ T , and πT (x) := ε for all x ∈ � \ T . We extended this to languages
canonically, i. e., πT (L) := {πT (w) | w ∈ L}.

Lemma 12 The classes of SORE-, CHARE-, and SOA languages are closed under
projection.

Proof Let T ⊆ �. Regarding SOREs, consider an arbitrary SORE α over �. For
every letter a ∈ term(α) with a /∈ T , replace a with ε, and call the resulting
expression α′. As α was a SORE, α′ is a SORE as well, and it is easily seen that
L(α′) = πT (L(α)). Hence, πT (L(α)) is a SORE language.

Regarding CHAREs, consider an arbitrary CHARE β over �. By definition, there
exist pairwise alphabet-disjoint chain factors f1, . . . , fn (n ≥ 0) with β = f1 ·. . .·fn.
We now define Ai := term(fi) and Ti := Ai ∩ T for each 1 ≤ i ≤ n. For each
1 ≤ i ≤ n, we define chain factors f ′

i and f ′′
i in the following way: If Ti = ∅, let

f ′
i := f ′′

i := ε. Otherwise, let

f ′
i :=

{
ALT (Ti) if fi = ALT (Ai) or fi = ALT (Ai)?,
ALT (Ti)

+ if fi = ALT (Ai)
+ or fi = ALT (Ai)

+?.

and

f ′′
i :=

{
f ′

i ? if Ai �⊆ T or ε ∈ L(fi),

f ′
i if Ai ⊆ T and ε /∈ L(fi).

Finally, let β ′′ := f ′′
1 · . . . · f ′′

n , and remove all chain factors f ′′
i = ε from β ′′. Again,

it is easy to see that L(β ′′) = πT (L(β)), which means that πT (L(β)) is a CHARE

language.
Finally, regarding SOAs, consider an arbitrary SOA A over �. We construct a SOA

A′ from A by iteratively removing letters; i. e., in each step, a letter a ∈ (term(A)\T )

and its associated edges are deleted, and for every pair of vertices u and v such that
u→Aa and a→Av holds, an edge (u, v) is added. Then L(A′) = πT (L(A)); hence,
πT (L(A)) is a SOA language.

The main approach in the present paper (as well as in [4]) is converting SOAs into
SOREs or CHAREs. During this process, it is occasionally convenient to work with
a model that can be viewed as an intermediary step between a SOA and a regular
expression.
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Definition 13 Let � be a finite alphabet, and let snk,src be distinct symbols that
do not occur in �. A generalized single-occurrence automaton (or generalized SOA)
over � is a finite directed graph A = (V , E) such that

(1) {src,snk} ⊆ V , and all vertices in V \ {src,snk} are pairwise alphabet-
disjoint SOREs; and

(2) the edge relation E is such that src has only outgoing edges; snk has only
incoming edges, and every v ∈ V lies on a path from src to snk.

The relations →A, →∗
A, →+

A on V are defined analogously to (non-
generalized) SOA. We extend term to generalized SOAs by defining term(A) :=⋃

v∈V \{src,snk} term(v).
The language L(A) is defined to be the set of all w ∈ term(A)∗ for which there

exist a n ≥ 0, vertices v1, . . . , vn ∈ V \ {src,snk}, and words w1, . . . , wn ∈
term(A)∗ such that src→Av1→A · · · →Avn→Asnk, w = w1 · · · wn, and wi ∈
L(vi) holds for every 1 ≤ i ≤ n.

Note that generalized SOAs accept the same class of languages as SOAs: As
the SOREs are required to be alphabet-disjoint, every generalized SOA can be
transformed into a SOA by replacing each SORE with its SOA.

Just as for SOAs, we again use specific language for vertices of generalized SOAs
depending on context. In addition to the words state and vertex, in the context of
manipulating the SORE v (since every vertex is a SORE), we talk about the SORE as
the label of v.

2.2 Descriptivity

This section introduces the notion of descriptive expressions and automata, which is
one of the central aspects of the present paper.

Definition 14 Let D be a class of regular expressions or finite automata over some
alphabet �. A δ ∈ D is called D-descriptive of a non-empty language S ⊆ �∗ if
L(δ) ⊇ S, and there is no γ ∈ D such that L(δ) ⊃ L(γ ) ⊇ S.

In other words, an expression or automaton that is D-descriptive of a language S

generates a language that is a generalization of S that is ⊆-minimal within languages
described by elements of D. If the class D is clear from the context, we simply write
descriptive instead of D-descriptive.

As stated in [11] (using different terminology), for every finite language S,
SOA(S) is SOA-descriptive of S. This extends to infinite languages as well; for
SOREs and CHAREs, we can also prove the existence of descriptive regular expres-
sions. Note that this proof is non-constructive; in later sections we will be concerned
with efficiently finding descriptive CHAREs and SOREs.

Proposition 15 Let � be a finite alphabet. For every language L ⊆ �∗, SOA(L)

is SOA-descriptive of L, and there exist a SORE-descriptive SORE δs and a CHARE-
descriptive CHARE δc.
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Proof We begin with the claim for SOAs. First, note that every edge in SOA(L)

corresponds to a first letter, a last letter, or a digram of a word in L. Hence, these
edges must occur in every SOA A with L(A) ⊇ L. By Lemma 10, this means that
for every such SOA A, L(A) ⊇ L(SOA(L)) ⊇ L. In particular, there is no SOA

A with L(SOA(L)) ⊃ L(A) ⊇ L, as this would imply L(SOA(L)) ⊃ L(A) ⊇
L(SOA(L)). Therefore, SOA(L) is descriptive of L.

Regarding the second claim, let D ∈ {CHARE, SORE} and assume that there is
a language L over some finite alphabet � such that no expression α ∈ D is D-
descriptive of L. This implies that there is an infinite sequence (βi)i≥0 of expressions
from D with α = β0, and L(βi) ⊃ L(βi+1) ⊇ L for all i ≥ 0. This contradicts the
fact that there is only a finite number of non-equivalent SOREs (and, hence, CHAREs)
over �. Hence, for every language L, a CHARE-descriptive CHARE and a SORE-
descriptive SORE must exist.

An immediate consequence of Proposition 15 is the following observation.

Corollary 16 For every language L, L(SOA(L)) = L iff L is a SOA language.

More importantly, Proposition 15 implies that the algorithm 2T-INF from [4]
that was mentioned in the previous section can be used to compute SOA-descriptive
SOAs for finite sample sets. Moreover, together with Corollary 7, this shows that
constructing a descriptive SOA for an arbitrary language L is as hard as computing
the sets first(L), last(L), and gram2(L).

As we shall see, computing descriptive SOREs or CHAREs is less straightforward.
First, note that the first part of the proof of Proposition 15 implies the following
observation.

Corollary 17 Let � be a finite alphabet, and let L ⊆ �∗. For every SORE

(or CHARE) δ that is SORE-descriptive (resp. CHARE-descriptive) of L, L(δ) ⊇
L(SOA(L)) holds.

Hence, if some SORE (or CHARE) is descriptive of a language L, it must be
descriptive of L(SOA(L)) as well. This allows us to compute descriptive SOREs and
CHAREs not from a sample L, but from its SOA approximation SOA(L).

Furthermore, if L(SOA(L)) is not a SORE language (or not a CHARE language),
a SOA for some SORE that is descriptive of L can be obtained as follows: iterate
through all sets of missing edges in a ⊆-increasing way; for each set, check whether
adding these edges turns the SOA into accepting a SORE language. The main question
is whether this approach is efficient: as it can be necessary to add a substantial number
of new edges in order to turn a SOA into a SOA that corresponds to a descriptive
expression (see Proposition 18 just below), such a brute force approach is probably
not advisable.

The next proposition lists these and other numbers about counting and descriptive
SOREs and CHAREs; it is also of independent interest in order to understand the
classes of SOREs and CHAREs better. From [3, Proof of Theorem 3.1] we know that
any SORE language has a SORE of length at most 10n − 4, which gives a bound of
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2O(n log n) on the number of different SORE languages. Our results are summarized
in Table 1. Recall that regular expressions are called equivalent if they generate the
same language.

Proposition 18 Let � be a finite alphabet of n alphabet symbols. We have the
following, for some constant r .

(1) The number of pairwise non-equivalent CHAREs is c(n) with n! 22n ≤ c(n) ≤
n! 23n.

(2) The number of pairwise non-equivalent SOREs is s(n) with n! 23n−r log n ≤
s(n) ≤ n! 27n.

(3) There is a sample S ⊆ �∗ such that S has 2n pairwise non-equivalent
descriptive SOREs.

(4) There is a sample S ⊆ �∗ such that S has n! pairwise non-equivalent
descriptive CHAREs.

(5) There is a SOA with 
(n) edges such that a descriptive SORE with a minimal
number of edges in the corresponding SOA has 
(n2) edges.

(6) There is a SOA with 
(n) edges such that a descriptive CHARE with a minimal
number of edges in the corresponding SOA has 
(n2) edges.

Proof We start with showing (1). We have n! 22n ≤ c(n), as any sequence of all and
only the elements from {ai | i ∈ N}, each with one of the four possibilities of adding
+ (for repetition) or ? (for optional), give non-equivalent CHAREs. On the other hand,
we can bound the number of syntactically different CHAREs as follows. There are
n! different choices for the order of the terminal symbols. For a given order of the
terminal letters, we associate any binary string x of length n−1 with the CHARE that
uses the given order of terminal letters, and, for all i ≤ n, adds a new chain factor for
the i + 1th letter iff x at place i has a 1 (and use the same chain factor otherwise).
For a CHARE with k chain factors, there are 4k different choices for the annotation
of the chain factors (none, ?, +, or +?). Thus, there are at most

n−1∑

k=1

n! 4k

(
n − 1

k

)

≤ n! 4n
n∑

k=0

(
n

k

)

= n! 23n

possibilities for syntactically distinct CHAREs, which gives the upper bound.

Table 1 A summary of the numbers presented in Proposition 18

Class Num of languages Descriptive Edges to add

CHARE n! 22n ≤ c(n) ≤ n! 23n ≥ n! 
(n2)

SORE n! 23n−r log n ≤ s(n) ≤ n! 27n ≥ 2n 
(n2)

SOA 2n2+O(n) 1 ×

For each of the classes of languages generated by CHAREs, SOREs, and SOAs, the table lists the number of
different languages in the class, the maximum number of descriptive expressions or automata for a given
sample S ⊂ �∗, and the maximum number of edges that need to be added to SOA(S) in order to obtain a
SOA that corresponds to a descriptive CHARE or SORE. In all cases, n denotes the size of �
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We now discuss (2). We view a SORE as a binary tree with any internal node
labeled by “ | ” (for the disjunction) or “·” (for concatenation), and all leaves labeled
by distinct alphabet symbols; furthermore, any node (including the leaves) can be
additionally labeled by “+” (for repetition) and/or “?” (for optional). We use the
intuitive translation of such trees as syntax trees of SOREs; clearly, any SORE on
n alphabet symbols can be equivalently written as such a tree. The number of dif-
ferent binary trees with k leaves is known as the sequence of Catalan numbers and
is asymptotically 22k−
(log k). A much more precise bound is known; however, this
bound will suffice for our rough estimates. With two different choices for the label
of all internal nodes and four different choices for each node for the “+” and/or “?”
label, we get a maximal number of

n! 22n−
(log n)2n42n ≤ n! 27n

many different non-equivalent SOREs. Regarding the lower bound, consider now all
such syntax tree with all internal nodes labeled “·” and “+”, and all leaves possibly
labeled by “+”. It is easy to check that this corresponds to pairwise non-equivalent
SOREs. This gives a lower bound of

n! 22n−
(log n)2n = n! 23n−
(log n).

Regarding (3), we note that the sample S = {ab1ab2ab3ab4 . . . abna} has 2n

pairwise non-equivalent descriptive SOREs as follows. For any partition of {bi | 1 ≤
i ≤ n} into two disjoint (but possibly empty) sets B1 and B2, we have that
(ALT (B1)?aALT (B2)?)+ is a SORE-descriptive of S (recall that ALT (∅) = ε). We
see that these SOREs are descriptive by applying either the SORE construction algo-
rithm from [4] (which finds a SORE equivalent to a given SOA, if existent) or ours
from Section 5 and observing a strict generalization.

Regarding (4), we note that, for all n ≥ 2, the sample {a2
i | 1 ≤ i ≤ n} has

n! pairwise non-equivalent descriptive CHAREs (namely all CHAREs of the form
ap(1)? . . . ap(n)?, where p is a permutation of {1, . . . , n}).

Regarding (5), suppose n ≥ 1 and consider the sample S = {aiai+1 | 1 ≤ i < n}∪
{a1, an}. The SOA corresponding to S has 
(n) edges. Let α be a SORE-descriptive
of S; we will show that, for all i, j with i < j < n, we have ai→αaj . Let x be the
least common ancestor of ai and aj in the syntax tree of α. As there is a word in
L(α) which starts with aj , the child of x which contains aj generates words starting
with aj symmetrically, the child of x which contains ai generates a word ending
with ai . Thus, we are done if x is labeled by concatenation and ai is in the left
child of x (and aj in the right). It is straightforward to see that the other cases will
similarly necessitate ai→αaj , by using ai→+

S aj . This also implies that a1? . . . an?
is the only SORE that is descriptive of S (modulo equivalence; as equivalent SOREs
like (a1? . . . an?)? are also descriptive of S).

We have that (6) follows from the proof of (5), as the only SORE-descriptive SORE

for the sample in that case is also a CHARE.

In particular, note that Proposition 18 also demonstrates that a given sample can
have numerous different descriptive SOREs (or CHAREs). Note that the number
of different CHARE- and SORE languages can be better approximated using more
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advanced tools from combinatorics (including a more precise counting, for example
with the inclusion-exclusion principle, and the use of sophisticated bounds for known
number sequences, such as the Bell numbers). Finally, if we are only interested in the
number of different such languages modulo renaming of the terminal letters, then the
same bounds without the factor n! hold.

3 Descriptivity Versus CRX and RWR

Proposition 18 demonstrates that the number of non-equivalent descriptive SOREs
(or CHAREs) for a sample can be exponential in the size of the alphabet. There-
fore, the present paper only examines the question how a single descriptive SORE (or
CHARE) can be found for a sample, instead of looking for an enumeration of all these
expressions.

As explained in Section 2.2 (in particular, Corollary 17), descriptive CHAREs
and SOREs can be obtained from the descriptive SOA, and moreover, for every lan-
guage L and every SORE α, L(α) ⊇ L(SOA(L)) must hold. This observation
motivates our inference approach for SOREs and CHAREs: Given a sample S, first
compute the SOA-descriptive single-occurrence automaton SOA(S), using 2T-INF.
As explained in [11], this can be done in time O(ln), where l := ∑

s∈S |s|, and
n := |term(S)|.

Using the algorithm Soa2Chare (Section 4) or Soa2Sore (Section 5), SOA(S)

is then turned into a descriptive CHARE or SORE (respectively). Before we discuss
these algorithms and the respective proofs in detail, we observe that the algorithms
CRX and RWR and their variants from [4] do not always compute descriptive CHAREs
or SOREs.

For the CHARE algorithm CRX, this is quite easy to see: As pointed out in [4] (as
a remark after Theorem 35), on the sample S = {abc, ade, abe}, the algorithm CRX
returns the CHARE a?b?c?d?e?, while δ := a(b | d)(c | e) is a better approximation
of S. In fact, we shall be able to see that δ is not only better, but CHARE-descriptive.
This can be verified by observing that δ is the output of Soa2Chare on SOA(S),
and referring to Theorem 21 further down.

The proofs for the non-descriptivity of the SORE algorithm RWR and its variants
require more effort; we proceed by giving a description of RWR, followed by a proof
of their non-desriptivity in Section 3.2.

3.1 Description of RWR

In this section we describe the algorithm RWR from [4] in some detail. For a more
formal definition of RWR and the rules it uses, as well as any variants, we refer to
[4]. This algorithm takes a SOA A as input and, by step-by-step modifications, turns
it into smaller and smaller generalized SOAs, until a generalizing SORE can be read
off the only remaining vertex (apart from source and sink).

The modifications concern either one or two states of the SOA; two types of rules
are distinguished: rewrite rules and repair rules. First, rewrite rules are applied, as
long as any are possible. From [4] we know that these rules will turn any SOA into
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an equivalent SORE, if possible. If, at some point, none of the rules are applicable,
then we know that the input SOA is not equivalent to a SORE, and the repair rules are
used to generalize (which will then enable rewrite rules to continue). Let A be a SOA

used as input to RWR. The rewrite rules concerning only one state are as follows.

– Iteration r+: If there is a vertex labeled r with a self-loop, remove the self-loop
and change the label of the vertex to r+.

– Optional r?: If there is a vertex labeled r with the source as predecessor, the sink
as a successor, and there is an edge from source to sink, remove the edge from
source to sink and change the label of the vertex to r?.

The rewrite rules concerning two states have similar syntactic criteria. For clarity,
we give semantic criteria only. Let r and s be labels of two vertices of A. We try
contracting these two vertices (in a graph-theoretic sense, i.e., with appropriate edge
modifications) into a vertex labeled one of

r | s, r · s, r? · s, r · s?, r? · s?

and possibly with a self loop. If one of these leads to a generalized SOA accepting
the same language, then we keep the contraction, and continue from this generalized
SOA. In [4] equivalent rules are stated, but with syntactic criteria which are easy to
check (but tedious to state).

When no more rewrite rules are applicable, then either only one state apart from
source and sink remains (which allows us to read off the SORE), or the original SOA

was not equivalent to a SORE and we need to generalize. RWR uses the following
(syntactic) repair rules which generalize the SOA.

– Repair r | s: If there are two vertices r and s of A which share a successor or a
predecessor, add edges to A to make all successors of r or s successors of both
r and s; similarly with the predecessors. If there is an edge between r and s, add
an edge in the opposite direction as well; add self loops on both r and s unless
where the label of the vertex has a “+” at the root of the syntax tree.

– Repair r · s?: If there are two vertices r and s of A such that r is the only prede-
cessor of s, add edges to A to make all successors of r or s (except s) successors
of both r and s; add a self-loop on r only if the label of r does not have a “+” at
the root of its syntax tree.

– Repair r?·s: If there are two vertices r and s of A such that s is the only successor
of r , add edges to A to make all predecessors of r or s (except r) predecessors of
both r and s; add a self-loop on s only if the label of s does not have a “+” at the
root of its syntax tree.

– Repair r? · s?: Let r and s be vertices of A such that s is a successor of r; add
edges to A to make all successors of r or s successors of both r and s; similarly
with the predecessors; for both r and s, introduce self-loops only on vertices
which do not have a label with “+” at the root of its syntax tree. Furthermore, for
all predecessors u of r and all successors v of s, add an edge from u to v.

The repair rules are applied only if none of the rewrite rules is applicable, and
the first applicable rule from the list above is applied. After each application of a
repair rule, rewrite rules are used again as long as possible. This terminates with a

Theory Comput Syst (2015) 57:1114–11581128



generalized SOA with only a single state different from source and sink; its label is
the output of RWR.

3.2 RWR-Variants and Descriptivity

In this section we give theorems regarding properties of RWR-variants. In particular,
we show that every variant fails to find a descriptive SORE on some input. First, we
formally show that RWR does not always return a descriptive SORE.

Theorem 19 For � a finite alphabet with |�| ≥ 3 and all orderings of the repair
rules of RWR, there is a (finite) set of samples S ⊆ �∗ such that RWR on S produces
a SORE which is not SORE-descriptive.

Proof Let a, b, c ∈ � be three different symbols from �. First, consider the sample
{aba, ab}. The corresponding SOA does not allow rewrite rules and requires repair;
below this SOA is depicted, along with two possible repairs, corresponding to the two
possible repairs “Repair a | b” and “Repair a? · b?”.

The SOAs resulting from the two repairs accept (a | b)+ and (a | b)∗, respectively,
which is not descriptive of {aba, ab}, as witnessed by δ1 := (a(b?))+ (a SORE which
accepts the given sample aba and ab, but not, for example, b, which is accepted by
any of the SOAs derived from repair rules above).

Second, consider the sample S = {ab, ac, acac}. The corresponding SOA A is
depicted as follows.

A descriptive SORE for S is δ2 := (a(b | c))+, which we prove as follows. In com-
parison to A, the SOA that corresponds to δ2 adds only a single edge, the edge from a

to b. So the only possibility for a SORE language L(γ ) with L(A) ⊆ L(γ ) ⊂ L(δ2)

is L(A) itself. However, L(A) is not a SORE language, which can be seen, just as
in Proposition 18, by applying either the SORE construction algorithm RWR from [4]
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or our algorithm Soa2Sore from Section 5 (which both compute a SORE equiva-
lent to a given SOA, if existent) and observing a strict generalization. Hence, δ2 is
SORE-descriptive of S. (We note without proof that (ac?)+b? is another SORE that
is descriptive of S. Necessarily, its language is incomparable to L(δ2).)

An application of “Repair a · b?” on A and then, after rewriting, of “Repair [ab?] ·
c?” gives the following.

This SOA corresponds to the SORE (ab?c?)+, and its language is a strict superset
of L(δ2) for the (descriptive) SORE δ2 = (a(b|c))+ (for example abc is generated
by the former and not the latter). Deceiving the rule “Repair r? · s” is symmetric to
deceiving “Repair r · s?”.

In [4], Bex et al. propose a variant of RWR that is called RWR2
�, which uses a natural

number � as a branching parameter. The algorithm explores the (recursive) outcomes
of the best � candidates for a repair rule, choosing the ones that lead to a minimal
number of words of length at most 2n (= 2|�|) in the language generated by the
resulting SORE.

Theorem 20 For all � > 0 there is a finite alphabet � with |�| = 3� and a finite
set of samples S ⊆ �∗ such that RWR2

� on S produces a SORE which is not SORE-
descriptive.

Proof We first assume � = 1; consider again the sample {ab, ac, acac} with the
following corresponding SOA.

The three applicable repair rules are b | c, a ·b? and a ·c? (plus some rules of the type
“r? · s?”, which explode the number of accepted words). This leads to the following
SOAs.

In order to determine which of the rules RWR will choose, we analyse the proper-
ties of these three SOAs, which we summarise in Table 2. Thus, we see that second
possibility accepts a minimal number of words of length at most 6 (= 2|�|), which
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Table 2 Properties of the languages discussed in the proof of Theorem 20

RegEx α |L(α)≤6| Exp growth basis Recurrence Base cases

(ab | ac)+ 14
√

2 ≈ 1.41 2fα(n − 2) 0, 2, 0

(abc | ac)+ 7 ≤ 1.33 fα(n − 2) + fα(n − 3) 0, 1, 1

(a | ac)+b? 51 (1 + √
5)/2 ≈ 1.62 fα(n − 1) + fα(n − 2) 1, 3, 5

For each regular expression α, fα(n) denotes the number of words in L(α) of length n; given in the table
are the number of words of length at most 6 generated by α, the constant c such that fα grows roughly as
cn, the recurrence relation for the (fα(n))n∈N, as well as fα(n) for n ∈ {1, 2, 3}

means that only this option will be explored, the first and the third wi ll be discarded.
After rewriting by RWR, this results in the following SOA.

The minimal repair for this results in (ab?c?)+, which is not descriptive as witnessed
by (a(b | c))+ as in the proof of Theorem 19.

For � > 1, we use � independent copies of the sample used for � = 1 (i.e., using
different alphabet symbols). Thus, RWR2

� will fail on at least one of these copies.

4 Descriptive CHAREs

In this section, we give the first main algorithm of this paper, Soa2Chare, which
efficiently computes descriptive CHAREs from given SOAs.

4.1 The CHARE Algorithm

The algorithm Soa2Chare uses a number of subroutines, which are written with
a dot-notation similar to some modern object oriented programming languages. For
example “A.contract(U, �)” denotes the application of the subroutine “contract” to
the SOA A with parameters U and �. For a given SOA A, we let A.src and A.snk
denote the source and the sink of A, respectively. The following subroutines are used
in Soa2Chare.

– “contract” on SOA A takes a subset U of vertices of A and a label �. The proce-
dure modifies A such that all vertices of U are contracted to a single vertex and
labeled � (edges are moved accordingly).

– “constructLevelOrder” on SOA A = (V , E) assumes that A is acyclic and
assigns a level number to every vertex v ∈ V , where the level number of a vertex
v ∈ V is defined to be the length of the longest path from A.src to v. Hence,
A.src is on level number 0, and for every other vertex v, the level number is
one more than the highest level number of the immediate successors of v.

– “isSkipLevel” on SOA A and a level number i returns true if level i is a skip
level. A level i is a skip level if there exist vertices u, v ∈ V with (respective)
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level numbers ju < i and jv > i such that u→Av. In other words, one can skip
level i by transitioning from u to v.

Note that the use of “contract” can turn the SOA into a generalized SOA. Intuitively
speaking, the algorithm Soa2Chare works as follows:

(1) Replace each strongly connected looped component A ⊆ V with a vertex that
is labeled with the regular expression ALT (A)+. This turns A into a (possibly
generalized) SOA that is a DAG.

(2) Every vertex in the DAG is assigned a level number.
(3) Every level is turned into one or more chain factors. If a level contains more

than one non-letter vertex, or if a level is a skip level, ? is appended to every
chain factor on that level.

The following theorem states that Soa2Chare can be used to compute CHARE-
descriptive CHAREs in an efficient manner.

Theorem 21 For any given SOA A, Soa2Chare finds a CHARE that is CHARE-
descriptive of L(A) in time O(m), where m is the number of transitions of A.

Before we discuss the proof of Theorem 21 further down, we illustrate the
behavior of Soa2Chare with an Example.

Example 22 Let S = {abaf , abef, ccdf }. The corresponding SOA, SOA(S), is
depicted as follows.
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First, Soa2Chare removes all cycles by contracting strongly connected looped
components. This leads to the following generalized SOA.

Apart from the levels for A.src and A.snk, this generalized SOA has three levels:
The first level with the vertices (a | b)+ and (c)+, the second level with the vertices
d and e, and the third level with the vertex f . As there is an edge between (a | b)+
and f , the second level is a skip level. Thus, the levels lead to the respective CHAREs
(a | b)+?(c)+?, (e | d)?, and f , which are concatenated to (a | b)+?(c)+?(e | d)?f .
By Theorem 21, this CHARE is CHARE-descriptive of S.

Proof of Theorem 21. We first prove termination and running time, followed by the
proof of correctness.

Termination and running time Termination is obvious, as the two loops (in lines 2
and 7) are executed only a bounded number of times.

Let n denote the number of vertices and m denote the number of edges in the input
SOA. In the while-loop in line 2, the input SOA is transformed into an acyclic gen-
eralized SOA. Using Tarjan’s algorithm for finding strongly connected components
(cf. [6, Section 22.5]), this part can be realized in time O(m + n).

Computing the level order and annotating, for each level, whether that level is a
skip level, can also be done in time O(m + n), analogously to a topological sorting.

Finally, each vertex in the generalized SOA is turned into a chain factor. This takes
time O(n). Hence, the individual steps sum up to a time of O(m + n), which results
in a total time of O(m), as n ≤ m holds by definition.

Correctness First, it is quite easy to see that Soa2Chare computes a CHARE. Note
that, in order to prove that this CHARE is descriptive of the sample S, we do not
need to argue about every CHARE γ with L(γ ) ⊇ S, but only about those with
L(Soa2Chare(SOA(S))) ⊇ L(γ ) ⊇ S.

This allows us to use Lemma 11 from two directions: On the one hand, every edge
(and hence, every path) that is present in SOA(S) must be present in SOA(γ ), on the
other hand, SOA(γ ) must not contain any edges that do not occur in SOA(δ).

Before we consider the main part of the proof, we first develop some technical
tools that deal with strongly connected looped components.

Lemma 23 Let α be a CHARE. A set A ⊆ term(α) is a strongly connected looped
component in SOA(α) if and only if α contains a chain factor of the form ALT (A)+
or ALT (A)+?.

Proof We begin with the if direction. Assume that some CHARE α contains a chain
factor α′ with α′ = ALT (A)+ or α′ = ALT (A)+? for some finite and non-empty
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set A ⊆ �. By definition, a→αb holds for all letters a, b ∈ A. Furthermore, let
α = α1α

′α2 for appropriate (possibly empty) CHAREs α1, α2. For every vertex v ∈
term(α1)∪{A.src} and every a ∈ A, we observe v→+

α a, but not a→+
α v. Likewise,

for every vertex v ∈ term(α2) ∪ {A.snk} and every a ∈ A, we observe a→+
α v, but

not v→+
α a. Hence, A is a strongly connected looped component in SOA(α).

For the only if direction, we assume that there is a (non-empty) set A ⊆ term(α)

that is a strongly connected looped component in SOA(A). Now, let α = α1 . . . αn

for some n, where each αi is a chain factor. As A is a strongly connected looped
component, a→+

α b holds for all a, b ∈ A. Therefore, there is an k with Ak :=
term(αk) ⊇ A (otherwise, there would exist a, b ∈ A, a ∈ term(αi), b ∈ term(αj ),
i < j , which would imply a→+

α b, but not b→+
α a). Moreover, as a→+

α a holds for
all a ∈ A, αk is equal to ALT (Ak)

+ or ALT (Ak)
+?. Finally, if Ak ⊃ A, there would

exist an b ∈ Ak \A with b→αa→αb for all a ∈ A. As b /∈ A, this would imply that A

is not a strongly connected looped component, and contradict our initial assumption.
Hence, Ak = A, and αk ∈ {ALT (A)+, ALT (A)+?}.

As Soa2Chare turns every strongly connected looped component A into a chain
factor ALT (A), we observe that Soa2Chare does not change these components.

Corollary 24 Let � be an alphabet. For every finite and non-empty set S ⊆ �∗,
and every set A ⊆ term(S), the following holds. A is a strongly connected looped
component in SOA(S) if and only if A is a strongly connected looped component in
SOA(Soa2Chare(SOA(S)).

Finally, according to Lemma 11, this immediately leads to the following
observation:

Corollary 25 Let S ⊆ �∗ be a finite set, and let δ := Soa2Chare(SOA(S)). For
every CHARE γ with L(δ) ⊇ L(γ ) ⊇ S, SOA(γ ) must contain exactly the same
strongly connected looped components as SOA(S) and SOA(δ).

We now posses all the tools we need to execute the main element of the proof of
correctness of Soa2Chare.

Lemma 26 Let � be an alphabet, let S ⊆ �∗ be a non-empty set, and let δ :=
Soa2Chare(SOA(S)). Then L(δ) = L(γ ) holds for every CHARE γ with L(δ) ⊇
L(γ ) ⊇ S.

Proof of Lemma 26. We shall prove Lemma 26 by proving a stronger claim, namely
that δ = γ holds. This claim only holds if we allow for a slight abuse of the =
symbol; as for the remainder of this proof, we shall interpret α = β to mean that
α and β are identical modulo reordering of the terminals symbols inside the chain
factors (i. e., (a | b) = (b | a) holds, but (a)(b) �= (b)(a)).

Before we proceed to the actual proof, we begin with a preliminary observation.
In line 5, the algorithm Soa2Chare partitions the vertices of SOA(S) into levels
0 to n (with n ≥ 1). Note that with the exception of levels 0 and n (which contain
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only A.src and A.snk, respectively), each level i leads to a sub-CHARE δi , which
consists of one or more chain factors. Hence, Soa2Chare implicitly defines a fac-
torization δ = δ1 . . . δn−1, where each δi was derived from level i. Note that δ = ε

holds for the special case of n = 1.
We prove Lemma 26 using induction on this n, i. e., the level number assigned

to A.snk (which can also be understood as the number of levels after A.src, and
n − 1 is the number of factors in the factorization δ1 . . . δn−1 as given above). More
specifically, we prove the following claim for every n ≥ 1.

Claim 1. Let � be an alphabet, let S ⊆ �∗ be a non-empty set for which the
level construction step of Soa2Chare creates levels 0 to n, and let
δ := Soa2Chare(SOA(S)). Then δ = γ holds for every CHARE γ with L(δ) ⊇
L(γ ) ⊇ S.

Base case. For n = 1, SOA(S) contains only the vertices A.src and A.snk, and
S = {ε} must hold. As δ = ε and L(δ) = S, L(δ) ⊇ L(γ ) ⊇ S implies γ = ε = δ

for every CHARE γ .

Inductive step. Now assume that Claim 1 holds for some n ≥ 1. Let S be a set for
which the level construction step of Soa2Chare creates levels 0 to n + 1, let δ :=
Soa2Chare(SOA(S)) with δ = δ1 . . . δn, where each δi was derived from level i,
and let γ be a CHARE such that L(δ) ⊇ L(γ ) ⊇ S with γ = γ1 . . . γm (m ≥ 1),
where each γi is a chain factor. W. l. o. g. term(δ) = term(γ ) = term(S) = �.

We define the CHARE δ′ := δ1 . . . δn−1 (with δ′ := ε if n = 1), and the set
S′ := πterm(δ′)(S). In other words, δ′ is obtained by removing level n from the level
construction for S; thus, δ′ = Soa2Chare(SOA(S′)) holds by definition. The proof
is based on the following claim.

Claim 2 . There exists some i with 1 ≤ i ≤ m such that δn = γi . . . γm.

Proof of Claim 2. When building δn, Soa2Chare constructs the sets B and C for
level n, where B contains all vertices on level n that are labeled with + (and, hence,
represent some strongly connected looped component that was contracted in lines
2–4), while C contains all vertices with level number n that represent single letters.
Note that at most one of the sets B and C may be empty. Hence, exactly one of the
following cases holds:

(1) B = ∅, C �= ∅, level n is not a skip level,
(2) B = ∅, C �= ∅, level n is a skip level,
(3) |B| = 1, C = ∅, level n is not a skip level,
(4) |B| = 1, C = ∅, level n is a skip level,
(5) |B| ≥ 2, C = ∅,
(6) B �= ∅, C �= ∅.

Case (1): If B = ∅ and C �= ∅, and level n is not a skip level, δn = ALT (B) holds.
Then level n of the construction contains exactly the vertices in C, and for all vertices
v ∈ � ∪ {snk} and all c ∈ C, c→Sv if and only if v = snk. Furthermore, as level
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n is not a skip level, there is no vertex v ∈ (� ∪ {src}) \ C with v→Ssnk. By
definition, these observations still hold if →S is replaced with →δ .

According to Lemma 11, SOA(δ) covers SOA(γ ), which in turn covers SOA(S).
Hence, for all vertices v ∈ (� ∪ {src}), v→γsnk holds if and only if v ∈ C.
Therefore, term(γm) = C and ε /∈ L(γm) must hold. This is only satisfied if
γm = ALT (C) or γm = ALT (C)+. We can exclude the latter case, as C is not
a strongly connected looped component in SOA(S) or SOA(δ), and Corollary 25
applies. Hence, γm = ALT (C) = δn follows.

Case (2): If B = ∅ and C �= ∅, and level n is a skip level, δn = ALT (C)?. As in
Case (1), we can observe that for all vertices v ∈ � ∪ {snk} and all c ∈ C, c→Sv

(and c→δv) if and only if v = snk. But as n is a skip level, this only allows us
to conclude that all elements of C must be placed in the last chain factor of γ ; i. e.,
C ⊆ term(γm). Furthermore, as the elements of C do not belong to any strongly
connected looped component, Corollary 25 yields that γm �= ALT (term(γm))+ and
γm �= ALT (term(γm))+?.

In order to prove term(γm) = C, assume that C ⊂ term(γm), i. e., there exists a
letter a ∈ term(γm) \ C. (Note that this is only possible if n ≥ 2, otherwise, we can
conclude that term(γm) = C and skip to the next paragraph.) As γm cannot contain
+ or +?, we observe that for all vertices v ∈ � ∪ {snk}, a→γ v holds iff. v = snk.
Therefore, there can be no c ∈ C with a→+

γ c, and as SOA(γ ) covers SOA(S), there

is also no c ∈ C for which a→+
S c holds. In other words, all paths from src to

vertices of C must lead through other vertices than a; hence, there is a vertex v on
level n − 1 ≥ 1 with v→Sc for some c ∈ C. Hence, we have v→γ a, but not v→δa,
which contradicts L(δ) ⊇ L(γ ). We conclude term(γm) = C.

We now know that γm ∈ {ALT (C), ALT (C)?}. As level n is a skip level, there
exists a vertex v ∈ {src} ∪ (� \ C) with v→Ssnk. Hence, ALT (term(C))? = δn

must hold.

Case (3): If |B| = 1, C = ∅, and level n is not a skip level, then δn = ALT (Bm)+
for some set Bm ⊆ � with B = {ALT (Bm)+}. By definition of Soa2Chare, this
is only possible if Bm is a strongly connected looped component in SOA(S), and for
all vertices v ∈ � ∪ {src}, v→Ssnk holds only if v ∈ Bm.

If term(γm) �= Bm, then SOA(γ ) does not contain the same strongly connected
looped component as SOA(S) and SOA(δ), or there is some letter c /∈ Bm with
c→γsnk. In either case, there is a contradiction to L(γ ) ⊇ S or L(γ ) ⊆ L(δ) and
Corollary 25. Hence, term(γm) = Bm must hold.

Furthermore, if γm ∈ {ALT (Bm), ALT (Bm)?}, Bm is also not a strongly con-
nected looped component in SOA(γ ) (a contradiction to L(γ ) ⊇ S). Hence, either
γm = ALT (Bm)+ or γm = ALT (Bm)+? holds. Assume for the sake of the argu-
ment that ε ∈ L(γm). Then there exists a vertex v ∈ term(γ1 . . . γm−1) ∪ {snk}
with v→γ snk, but v→δδ does not hold (otherwise, n would be a skip level). We
conclude γm = ALT (Bm)+ = δn.

Case (4): If |B| = 1, C = ∅, and level n is a skip level, then δn = ALT (Bm)+? for
some set Bm ⊆ � with B = {ALT (Bm)+}. As in Case (3), we are able to derive that
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either γm = ALT (Bm)+ or γm = ALT (Bm)+?. Taking the skip level into account
as in Case (2), we conclude γm = ALT (Bm)+? = δn.

Case (5): If |B| ≥ 2 and C = ∅, there exist a k ≥ 2 and k disjoint non-empty
sets Bm−k+1, . . . , Bm ⊆ � with B = {ALT (Bm−k+1)

+, . . . , ALT (Bm)+}, and
δn = ALT (Bm−k+1)

+? . . . ALT (Bm)+?. In order to increase readability, let i :=
(m − k + 1).

According to the definition of Soa2Chare, every Bj is a strongly connected
looped component in SOA(S), and each Bj was placed in level n of the construction.
Therefore, due to Corollary 25, for every j with i ≤ j ≤ m, γ contains a chain
factor ALT (Bj )

+ or ALT (Bj )
+?. Hence, for all j with i ≤ j ≤ m, term(γj ) = Bj

and γj ∈ {ALT (Bj )
+, ALT (Bj )

+?} must hold – otherwise, SOA(γ ) would contain
edges to or from the letters of Bj that do not occur in SOA(δ), a contradiction to
Lemma 11.

Finally, as all vertices in B are on level n of the level construction, there exist
vertices u ∈ (� ∪ {src}) \ (

⋃m
j=i Bj ) and b ∈ Bm with u→Sb as well as a vertex

b′ ∈ Bi with b′→Ssnk. In order to ensure these reachabilities in γ , each chain factor
γj must be able to generate ε. Hence, γj = ALT (Bj )

+? holds for all j (i ≤ j ≤ m),
and we conclude δn = γi . . . γm.

Case (6): If B �= ∅ and C �= ∅, there exist a k ≥ 1 and sets Bm−k, . . . , Bm−1 with
B = {ALT (Bm−k)

+, . . . , ALT (Bm−1)
+}, and

δn = ALT (Bm−k)
+? . . . ALT (Bm−1)

+?ALT (C)?.

Using reasoning that is analogous to Case (5), we are able to conclude that γj =
ALT (Bj )

+? for all j with (m − k) ≤ j ≤ (m − 1).

All that remains to do is proving γm = ALT (C)?. Once again according to the
reasoning we used in all previous cases, term(γm) = C must hold, as otherwise, we
would introduce edges not present in SOA(δ), or lose edges present in SOA(S). Due
to Corollary 25, we know that γm /∈ {ALT (C)+, ALT (C)+?}; and due to the same
reachability argument as for the γj in Case (5), ε ∈ L(γm) must hold. We conclude
γm = ALT (C)? and, hence, δn = γm−k . . . γm.

As we now know that there is an i with 1 ≤ i ≤ m such that δn = γi . . . γm, we
can combine δ = δ′δn and L(δ) ⊇ L(γ ) = L(γ1 . . . γm) to

L(δ′δn) ⊇ L(γ1 . . . γi−1δn).

By splitting off δn, we conclude

L(δ′) ⊇ L(γ1 . . . γi−1).

Due to our induction assumption, this implies δ′ = γ1 . . . γi−1. Hence, δ = δ′δn =
γ1 . . . γm holds, which completes the proof.
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As Claim 1 holds for all n ≥ 1, L(δ) ⊇ L(γ ) ⊇ S implies δ = γ (with the caveat
that terminals inside chain factors of γ and δ might have a different order). Hence,
L(δ) = L(γ ), and Lemma 26 follows immediately.

According to Lemma 26, there is no CHARE γ for which
L(Soa2Chare(SOA(S))) ⊃ L(γ ) ⊇ S holds. As we have, by definition,
L(Soa2Chare(SOA(S))) ⊇ S, we know that the result of Soa2Chare on
SOA(S) is CHARE-descriptive of S, which concludes the proof of correctness.

5 Descriptive SOREs

In this section, we give the second main algorithm of this paper, which efficiently
computes descriptive SOREs from given SOAs.

5.1 SORE Algorithm

As in Section 4, we use dot-notation to denote the application of subroutines. Like-
wise, for a given SOA A, we let A.src and A.snk denote the source and the sink
of A, respectively. We let V be the set of vertices in A and E the set of edges.

– For any vertex v ∈ V , we let A.pred(v) denote the set of all predecessors of v in
A; similarly, A. � (v) denotes the set of all successors.

– For any vertex v ∈ V , we let A.reach(v) := {u ∈ V | v→∗
Au} be the set of all

vertices reachable from v.
– “contract” on SOA A takes a subset U of vertices of A and a label �. The proce-

dure modifies A as follows. All vertices in U are removed; a new vertex labeled �

is added; for each edge (v, u) ∈ E with v ∈ V \ U and u ∈ U , we remove (v, u)

and add an edge (v, �); similarly, for each edge (u, v) ∈ E with v ∈ V \ U and
u ∈ U , we remove (u, v) and replace with an edge (�, v). We call this method
whenever we identify a subset of vertices for which we can compute a descriptive
generalization (the label is then this generalizing SORE).

– “extract” on SOA A takes as argument a set of vertices U (of A); it does not
modify A, but returns a new SOA with copies of all vertices of U as well as two
new vertices for source and sink; all edges between vertices of U are copied, all
vertices in U having an incoming edge (in A) from outside of U have now an
incoming edge from the new source, and all vertices in U having an outgoing
edge (in A) to outside of U have now an outgoing edge to the new sink. We use
this method whenever we identified a subpart of the SOA to recurse on.

– “first” returns all vertices v such that the only predecessor of v is the source.
These are particularly interesting, since our algorithm will work on the SOA by
starting from the source and progressing through the links. In particular, in a
cycle-free SOA, all other successors of the source are reachable via some element
from A.first().

– “addEpsilon” on SOA A adds a new vertex labeled ε and an edge from A.src
to this new vertex; let U ⊆ V be the set of all successors of the source which
are not in A.first(); for each edge from A.src to an element u ∈ U , remove
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this edge and add an edge from the new ε vertex to u. This is used to be able
to treat all successors of the sink equally (in particular, in a cycle-free SOA, this
ensures that every node after the source is reachable from the source only by
passing through an element from A.first(); this additional vertex makes sure that
A.first() is exactly the first layer of the SOA).

– “exclusive” on SOA A on argument v (a vertex of A) returns the set of all vertices
u such that A.src � →+

A\vu, where A \ v is defined as the SOA A with the vertex
v (and all incident edges) removed. Intuitively, the exclusive set of a vertex v is
the set of all vertices which necessarily require v in order to be reached from the
source. We will use this method to find sets of vertices to recurse on: whenever
a part of the SOA can be exclusively reached via a fixed vertex, we can recurse
on this set of exclusive vertices.

– Finally, the most difficult subroutine is called “bend” and is used to prepare the
treatment of strongly connected looped components of the input SOA A. We
let U := A. � (A.src); with A \ U we denote the graph which has vertices
and edges as in A with all vertices (and incident edges) from U deleted. We let
W1 := A.pred(A.snk) and let W2 be the set of all vertices d ∈ V \ (A. �
(A.src) ∪ A.pred(A.snk)) such that there is c ∈ W1 with c→+

A\Ud. We let
W := W1 ∪ W2. Intuitively, W is the set of all elements that can be reached in
any number of steps from a predecessor of the sink without crossing a successor
of the source. Then the subroutine replaces (bends) all edges from an element
in W to a successor of the source by an edge from the same vertex in W to
the sink. See Example 28 for an illustration. Note that the application of bend
ensures that no element of A. � (A.src) can be reached from any element of
A.pred(A.snk).

Furthermore, we use the following three subroutines for the creation of labels.

– “plus” on label � returns (�)+.
– “concatenate” on labels � and �′ returns � · �′.
– “or” on labels � and �′ returns � | �′.

The algorithm Soa2Sore is given in Algorithm 2. On a more intuitive level, the
algorithm performs the following phases.

(1) Recurse on all strongly connected looped components; replace each with a
vertex, labeled with the result of the recursion.

(2) After the SOA is a directed acyclic graph (DAG), focus on the set F of all ver-
tices which can be reached from the source directly, but not via other vertices;
make sure that there are no vertices which can be reached directly and via other
vertices (if necessary, add an auxiliary vertex labeled ε).

(3) Recurse on the sets of vertices exclusively reachable from a vertex in
F and contract these sets to vertices labeled with the result of the
recursion.

(4) Combine vertices of F with “or,” recurse again on what is exclusively reachable
from this new vertex.

(5) Once only one item is left in F , merge it with the sink and recurse on the
remainder.
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Note that the algorithm introduces ? by way of constructing “or ε.” This can be
cleaned up by postprocessing the resulting SORE.

The following theorem states the correctness and the running time of the
algorithm.

Theorem 27 The algorithm Soa2Sore, given a SOA A as input, finds a descrip-
tive SORE for L(A) in time O(nm), where n is the number of alphabet symbols
used in A, and m is the number of transitions in A. Furthermore, this algo-
rithm produces a SORE such that the corresponding SOA has the same strongly
connected components as the input SOA, and the same set of successors of the
source.

Before we get to the proof of Theorem 27, we give two examples of Soa2Sore.
The first example illustrates how strongly connected looped components are treated.
The second illustrates the use of “exclusive”.

Example 28 Consider the following SOA.
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The labeled vertices of this SOA consist of a single strongly connected looped com-
ponent, an application of “bend” computes the set W = {c, d} with W1 = {c} and
W2 = {d}, which leads to the following SOA.

After resolving the strongly connected looped component containing a and b (all
other are not “looped”) and contract, we get the following.

We can split off the first vertex twice now (as line 11 applies twice), recursing finally
on the remaining SOA as follows.

This results in d | ε, or, equivalently, d?. Going back through the recursions, we get

((ab)+cd?)+.

Example 29 Consider now the following SOA.

For this SOA, line 17 applies and recurses on the upper arc; after contraction, this
gives

which results in (ab) | c as desired (no generalizations were made).

5.2 Proof of Theorem 27

In this section we are concerned with proving Theorem 27. We start with a lemma
which is used in its proof. Intuitively, we use the function shown existent in the
lemma to turn SOREs into a “canonical form”, in order to ease the comparison of
the computed SORE with the supposedly smaller descriptive SORE (see the proof for
details).
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Lemma 30 There is a function f on SOREs such that, for each SORE α,L(f (α)+) =
L(α+) \ {ε} and, for all a ∈ α. � (α.src) and c ∈ α.pred(α.snk) we have
c � →f (α)a.

Proof We define f as a function on SOREs recursively as follows. For all symbols
a and SOREs α0, α1, we let

f (ε) = ∅;
f (a) = a;

f (α+
0 ) = f (α0);

f (α0 | α1) =

⎧
⎪⎪⎨

⎪⎪⎩

∅, if L(α0) = {ε} = L(α1);
f (α0), else if L(α1) = {ε};
f (α1), else if L(α0) = {ε};
f (α0) | f (α1), otherwise;

f (α0 · α1) =

⎧
⎪⎪⎨

⎪⎪⎩

f (α0 | α1), if ε ∈ L(α0) ∩ L(α1);
α0 · f (α1), else if ε ∈ L(α0);
f (α0) · α1, else if ε ∈ L(α1);
α0 · α1, otherwise.

Let a SORE α be given. We omit the straightforward induction which shows
L(f (α)+) = L(α+) \ {ε}.

Let a ∈ α. � (α.src) and c ∈ α.pred(α.snk). We show the claim by induction
on the syntax tree of f (α). Clearly, the root of f (α) is not labeled +.

Suppose now the root is labeled “or.” Then either a and c are in different subtrees
of the root, in which case we have c � →f (α)a; or a and c are in the same subtree, in
which case the claim follows by induction.

Suppose now the root is labeled with concatenation. We make the following two
remarks. If a is in the right subtree of the root, then the left subtree allows ε (as
a ∈ α. � (α.src)). Similarly, if c is in the left subtree of the root, then the right
subtree allows ε (as c ∈ α.pred(α.src)). We consider different cases as follows.

If a and c are both in the left subtree, then the right subtree allows ε, so the claim
follows by induction. If a and c are both in the right subtree, then the left subtree
allows ε, so the claim follows, again, by induction. If a is in the left subtree, and
c in the right, then, trivially, c � →f (α)a. If c is in the left subtree, and a in the
right, then both subtrees allow ε. Thus, the definition of f (α) gives immediately that
c � →f (α)a.

We are now ready to prove Theorem 27.
Proof of Theorem 27 Let a SOA A be given. We proceed by first reasoning about
termination and running time. After that, we will inductively show correctness, by
assuming all recursive calls to be correct.

Termination and running time As for the termination, we first note that the algo-
rithm starts by breaking up strongly connected looped components. As remarked
at the end of the definition of the “bend” subroutine, the case of line 5 can only
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apply finitely often, as each “bend” operation breaks up a strongly connected looped
component. Line 9 can never apply twice in a row, so it suffices to show that all other
cases can only apply finitely often. All later cases contract vertices; this reduces the
number of vertices, which can only increase by “addEpsilon”. It is easy to see that for
each application of “addEpsilon” at least three vertices are contracted before another
application of “addEpsilon”, which shows termination.

We refer to [6] for standard graph algorithms, such as finding strongly connected
(looped) components.

As the algorithm never introduces self-loops, the running time on a SOA A is at
most the running of A with all self-loops removed plus n. Thus, it suffices to show
that Soa2Sore has a running time of O(nm) on self-loop free SOAs. Note that we
use without further mention that n < m, which implies O(n + m) = O(m).

We first bound the running time on acyclic SOAs. We topologically sort the ver-
tices of A (this takes O(m) time). We now iteratively construct an annotation of
all the vertices of G with subsets of A.first(), corresponding to what vertices they
are reachable from. We start by annotating each vertex of G that corresponds to
a vertex v ∈ A.first() with {v} and all others with ∅ (in time O(n)). We now
iterate through all vertices u from first to last in the topological sort of G and,
for each successor w of u, we add to the current annotation of w the annota-
tion of u (assuming unit time for this kind of set operations; overall, this will
then take O(m) time). This results in the desired annotation of A, in a total of
O(m) time.

Extracting the “exclusive” sets for all elements of A.first() can now be done
in O(m) time. From these annotations we can also find a pair of vertices with
⊆-maximal reach-sets in time O(m).

Any two additions of ε-vertices are balanced in between by splitting off of a start-
ing vertex, as given in line 11. As for all other operations, the algorithm can make at
most n contractions; hence, there can be only O(n) recursive calls. This results in an
overall time of O(nm) for acyclic SOAs.

We now turn to the general case. Finding strongly connected looped com-
ponents takes time O(m), using well-known algorithms, for example Tarjan’s
algorithm. Soa2Sore first recurses on all strongly connected looped components,
and then on the directed acyclic graph obtained by contracting all strongly con-
nected looped components. The “bend” operation on a strongly connected looped
component splits this component, as no vertex linked to the sink can now reach
any of the elements of the “first” set. The running time is maximized when
the recursions are as unbalanced as possible; this happens, when each “bend”
operation splits off only one vertex, and the remaining SOA is still strongly con-
nected. This results in splitting off n times, with a time of O(m) for finding
strongly connected looped components each time, plus the final work on acyclic
SOAs.

This shows that the overall running time is O(nm).

Correctness The statements about strongly connected components and the succes-
sors of the source are straightforward: Strongly connected components are only
produced by adding +, and that is done exactly on SOREs for which the input
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has a strongly connected components; as for the successors of the source, no
case of the algorithm introduces new ones. Furthermore, it is clear that the result
is a SORE.

Let a generalized SOA A′ be given, let A be a copy of A′ where all labels are
replaced with single distinct symbols. Let δ = Soa2Sore(A) and let γ be a SORE

such that L(A) ⊆ L(γ ) ⊆ L(δ).
We argue by induction that L(δ) = L(γ ) (i.e., we assume that Theorem 27 holds

for all recursive calls that Soa2Sore makes on A). We distinguish a number of
different cases, depending on which clause was used for Soa2Sore(A).

Case 1 : The clause in line 3 or the clause in line 4 was used.
This case is trivial.

Case 2 : The clause in line 5 was used.
Let U be as chosen in line 6. Let A0 = A.extract(U) and B0 = A.extract(U).bend();
let z be a symbol not in term(A) and B1 = A.contract(U, z). Let δ̂0 =
Soa2Sore(B0) and let δ0 = δ̂0

+
. We let δ1 be Soa2Sore(B1).

Let T be the syntax tree of γ . For each vertex x of T , we call x plussed iff inserting
a + in T at x does not change the language defined by T .

Claim 1. There is a plussed vertex x in T such that, for the subtree γ0 rooted at x,
we have term(γ0) = term(U).

Proof of Claim 1. Let u be the plussed vertex furthest down in T such that term(u)

contains term(U); such a vertex has to exist in T , as →γ is a superrelation of →A,
where U is a strongly connected component.

Let c ∈ term(u) and let a ∈ term(U). Then a→+
γ c and c→+

γ a; thus, a→+
δ c and

c→+
δ a, since →δ is a superrelation of →γ . As →δ has the same strongly connected

components as →A, and U is the strongly connected component containing a, we
get c ∈ term(U).

Let f be as shown existent in Lemma 30, and let x be the plussed vertex highest
up in T such that term(x) = term(U). Let γ̂0 be the subtree of γ rooted at x; let γ1
be derived from γ by substituting the subtree at x with a leaf labeled z if ε �∈ L(γ0)

and (z | ε) otherwise. Let γ0 = f (γ̂0). Clearly, it suffices to show that L(γ0) = L(δ0)

and L(γ1) = L(δ1).

Claim 3. L(B1) ⊆ L(γ1) ⊆ L(δ1).

Proof of Claim 2. In order to avoid unnecessary case distinctions, we first introduce
two new and distinct terminal symbols � and �, where � is used as a word-start
symbol, and � as a word-end symbol. To this end, we define γ ′

1 := �γ1� (δ′
1, δ′, and

γ ′ are defined analogously). In addition to this, we define a SOA B ′
1 with L(B ′

1) =
�L(B1)� and a SOA B ′ with L(B ′) = �L(A)�. (This is easily done by inserting
new vertices labeled � or � between the source and its successors, or the sink and its
predecessors, respectively).
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We first prove L(B ′
1) ⊆ L(γ ′

1) ⊆ L(δ′
1). After this is established, the claim

follows by observing that projection preserves inclusion. L(B ′
1) ⊆ L(γ ′

1) : Let

a, b ∈ term(B ′
1) \ {z} and suppose a→B ′

1
b. We have a→B ′b, and, hence, a→γ ′b.

Then a→γ ′
1
b follows from the definition of γ ′

1.
Let a ∈ term(B ′

1) \ {z} and suppose a→B ′
1
z. Thus, there is a b ∈ term(U) such

that a→B ′b, and, hence, a→γ ′b. Then a→γ ′
1
z follows from the definition of γ ′

1.
Let b ∈ term(B ′

1) \ {z} and suppose z→B ′
1
b. Thus, there is an a ∈ term(U) such

that a→B ′b, and, hence, a→γ ′b. Then z→γ ′
1
b follows from the definition of γ1.

L(γ ′
1) ⊆ L(δ′

1) : Let a, b ∈ term(γ ′
1) \ {z} and suppose a→γ ′

1
b. From the def-

inition of γ ′
1 it is now easy to see that a→γ ′b, and, hence, a→δ′b. Thus, we get

a→δ′
1
b.

Let a ∈ term(γ ′
1) \ {z} and suppose a→γ ′

1
z. Thus, there is a b ∈ term(U) such

that a→γ ′b, and, hence, a→δ′b. We have now a→δ′
1
z.

Let b ∈ term(γ ′
1) \ {z} and suppose z→γ ′

1
b. Thus, there is an a ∈ term(U) such

that a→γ ′b, and, hence, a→δ′b. We have now z→δ′
1
b.

Hence, L(B ′
1) ⊆ L(γ ′

1) ⊆ L(δ′
1), which is equivalent to �L(B1)� ⊆ �L(γ1)� ⊆

�L(δ1)�. As inclusion is preserved under projection, this implies πT (L(B ′
1)) ⊆

πT (L(γ ′
1)) ⊆ πT (L(δ′

1)) which proves the claim (for T := � \ {�, �}).
Thanks to the claim we can now apply the induction hypothesis to see that L(γ1) =

L(δ1).
Similarly, we now show γ0 and δ0 to be equivalent by showing L(B0) ⊆ L(γ0) ⊆

L(δ0). From the induction hypothesis we know that B0. � (B0.src) = δ0. �
(δ0.src); this shows that γ0. � (γ0.src) has to coincide with these sets. In
particular, we have now

γ0.succ(γ0.src) = B0.succ(B0.src) = A0.succ(A0.src). (1)

Claim 3. We have that

B0.pred(B0.snk) ⊆ γ0.pred(γ0.snk) ⊆ δ0.pred(δ0.snk).

Proof of Claim 3. The statement γ0.pred(γ0.snk) ⊆ δ0.pred(δ0.snk) follows
straightforwardly from the choice of γ0.

Let c ∈ B0.pred(B0.snk). Suppose first that there is an element d ∈ term(A) \
term(U) such that c→Ad. Then c→γ d, and, thus, c ∈ γ0.pred(γ0.snk). Therefore,
A0.pred(A0.snk) ⊆ γ0.pred(γ0.snk).

Suppose now, by way of contradiction, that there is a b with

b ∈ B0.pred(B0.snk) ∧ b /∈ γ0.pred(γ0.snk). (2)

Then b /∈ A0.pred(A0.snk). Hence, the edge from b to B0.snk was added by the
bend routine, and we know that b ∈ W2 must hold. Therefore,

b �∈ A0.pred(A0.snk) ∧ b �∈ A0. � (A0.src). (3)
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Furthermore, there exist an a with

a ∈ A0.succ(A0.src) ∧ b→A0a (4)

and a c such that

b ∈ B0.pred(B0.src) (5)

with the property (∗): b can be reached from c without crossing any elements of
A0.succ(A0.src).

Let T0 be the syntax tree of γ0, and let x ′ be the lowest vertex below which all
three letters a, b, and c occur. Let γ ′

0 be the subexpression of γ0 that corresponds to
the subtree that has x′ as root. Due to the choice of x′, this vertex must be labeled
with a binary operator, which implies that it has a left and right subtree, to which we
refer as TL and TR , respectively. We call the corresponding expressions γL and γR .
Hence, γ ′

0 is either (γL · γR), or (γL | γR). The following reasoning applies to both of
these two cases.

As c is a predecessor of the sink in γ0, we know that γ ′
0.pred(γ ′

0.snk) ⊆
γ0.pred(γ0.snk) must hold. This implies γR.pred(γR.snk) ⊆ γ0.pred(γ0.snk). Fur-
thermore, if c occurs in γL, then γL.pred(γL.snk) ⊆ γ0.pred(γ0.snk) must hold as
well. Analogously, we can observe that γL. � (γL.src) ⊆ γ0. � (γ0.src) holds;
and if a occurs in γR , then γR. � (γR.src) ⊆ γ0. � (γ0.src). We conclude the
proof of Claim 2 with the following case analysis.

Case 1 : b and c occur in the same subexpression γ ′ ∈ {γL, γR}.
As x′ is the lowest vertex above the three letters a, b, c, the letter a cannot occur in
γ ′. Hence, b ∈ γ ′.pred(γ ′.snk) must hold in order to allow b→γ a (as given by (4)).
But as c occurs in γ ′, this implies b ∈ γ0.pred(γ0.snk), in contradiction to (2).

Case 2 : b occurs in γL and c in γR .
We have that b is only reachable from c if b is an element of γL. � (γL.src), or by
crossing an element of that set. But because of

γL.succ(γL.src) ⊆ γ0.succ(γ0.src) =
(1)

A0.succ(A0.src),

the former contradicts (3) and the latter cannot happen due to (∗).

Case 3 : b occurs in γR and c in γL.
If a occurs in γR , we can observe that the path from c to b (given by (∗)) must cross
an element of A0.succ(A0.src), a contradiction similar to the previous case. But if
a occurs in γL, then b ∈ γR.pred(γR.snk) ⊆ γ0.pred(γ0.snk) follows from b→Aa

given by (4), a contradiction to (2).

Lastly, we turn to pairs of elements from term(U). Claim 4. On term(U), →B0

is a subrelation of →γ0 , which in turn is a subrelation of →δ0 .
Proof of Claim 4 This is straightforward, using the properties of f taken from
Lemma 30.
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This finishes showing L(B0) ⊆ L(γ0) ⊆ L(δ0); thus, using the induction
hypothesis, L(γ0) = L(δ0). This finishes the reasoning for this case.

Case 3 : The clause in line 9 was used.
This case is trivial from the induction hypothesis, as the language is not changed by
the addEpsilon() method.

Case 4 : The clause in line 11 was used.
Let v be the only successor of A.src; let a = v.label(). Note that a is the only

successor of γ.src. Let U = term(δ)\{a}. As A does not have a strongly connected
looped component, neither does SOA(γ ); thus, we have L(γ ) = a · πU(L(γ )). Let
γ ′ equal γ with a replaced by ε and δ′ = Soa2Sore(A.extract(U)). Then we have
L(A.extract(U)) ⊆ L(γ ′) ⊆ L(δ′) and the claim follows by induction.

Case 5 : The clause in line 17 was used.
We now know that A is cycle free and, thus, δ′ does not contain a “+”. Therefore,
without loss of generality, γ does not contain a “+” either (the only + could be on ε

or other terminal-free parts, which is unnecessary).

Let v be as chosen in line 17 and a = v.label(). Let U = A.exclusive(v).
Let B0 = A.extract(U); let z be a symbol not in term(A) and B1 =

A.contract(U, z). Let δ0 = Soa2Sore(B0) and let δ1 = Soa2Sore(B1). By the
induction hypothesis, we have that δ0.first() = {a}. Thus, any word in L(γ ) ⊆ L(δ)

that contains an element of U has to start with an a.

Claim 5. There is a subtree γ0 of γ such that term(γ0) = U .

Proof of Claim 5. Let γ0 be the smallest subtree such that U ⊆ term(γ0). Suppose,
by way of contradiction, there is b ∈ term(γ0) \ U . By the definition of U , we have
that there is b ∈ γ0.first() \ U . From a ∈ γ.first() and A.first() = A. � (A.src) we
get b ∈ γ.first(), and, thus, a and b cannot appear in the same word of L(γ ). Thus,
there is a subtree β of the syntax tree of γ0 where the root is labeled with “or” and
a and b are in different subtrees. In the child tree containing b there cannot be any
elements of U , since all elements of U are reachable from a.

Thus, β cannot be all of γ0, as γ0 was chosen smallest. β cannot descend from
the left child of γ0, as then all elements of U in the right subtree are reachable
via b (or γ0 not smallest); similarly, β cannot descend from the right child of γ0,
as then all elements of U in the left subtree are not reachable from a (or γ0 not
smallest).

Let γ0 be a subtree of γ such that term(γ0) = U ; let γ1 be derived from γ by
substituting the γ0 with a leaf labeled z. Note that ε �∈ L(γ0) because of A. �
(A.snk) = A.first().

We now clearly get L(B0) ⊆ L(γ0) ⊆ L(δ0) and L(B1) ⊆ L(γ1) ⊆ L(δ1). Thus,
this case follows from the induction hypothesis, similarly to Case 2.

Case 6 : The clause in line 21 was used.
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In this case we know that |A.first()| > 1, as no other case applies. Furthermore,
we will use without mention that A is cycle free.

Let u, v as chosen in line 21. Let z be a symbol not in term(A). Let B =
A.contract({u, v}, z). Let δ0 be Soa2Sore(B).

Let a = u.label() and b = v.label(). From u, v ∈ δ.first() we have that there is a
subtree β of γ with “or” at the root and a and b are in different child trees.

Claim 6 :L(β) is a set of letters.

Proof of Claim 6 Suppose, by way of contradiction, there is a word w ∈ L(β) of
length �= 1. From A.first() = A.succ(A.src) we get w �= ε; thus, the length of w

is > 1. Let c be the last symbol of w. As Case 5 does not apply, we have that c is
reachable from two different elements of A.first(); let d0, d1 be two such elements.

Clearly, d0 and d1 are in the same subtree of β; without loss of generality, suppose
they are in the same subtree as a. Thus, everything that is reachable in A from both
a and b is also reachable from d0 and d1; furthermore, c is reachable in A from both
d0 and d1 but not reachable from b (as c is not in the same subtree β as b). This is a
contradiction to the minimality of u, v.

From the claim we get, without loss of generality, that (a | b) is a subexpression of
γ ; thus, β = (a | b). Let γ0 be derived from γ by substituting β with z. Clearly, we
now have L(B) ⊆ L(γ0) ⊆ L(δ0). From the induction hypothesis we get L(γ0) =
L(δ0); thus, L(γ ) = L(δ).

6 Beyond Single Occurrences

This section examines two other aspects of the descriptive generalization algorithms
in the present paper. In Section 6.1, we consider a possible extension to restricted
regular expressions that are not limited to a single number of occurrences of each ter-
minal letter. Section 6.2 briefly discusses the descriptive generalization of language
classes that are generated by mechanisms which are more powerful than SOAs, but
use SOAs, SOREs, or CHAREs as hypotheses.

6.1 Learning k-OREs

While SOREs and SOAs allow only a single occurrence of each terminal letter, Bex
et al. [3] introduced the more general concepts of k-occurrence regular expressions
(k-OREs) and k-occurrence automata (k-OAs). As might be expected, a k-ORE is a
regular expression where every terminal symbol occurs at most k times. Analogously,
while a SOA has only a single state for each terminal letter a, a k-OA allows up to k

states a(1), . . . , a(k), where k ≥ 1. Hence, SOAs are 1-OAS, and SOREs are 1-OREs.
A k-OA is called non-deterministic if it has a state that has two successor states

with identical labels, and a k-ORE is called non-deterministic if its canonical k-OA

(as defined in the next paragraph) is non-deterministic. Unlike SOAs and SOREs,
which are deterministic by definition, the same does not hold for k-OAs and k-OREs
(for further details, see [3]).

Theory Comput Syst (2015) 57:1114–11581148



Similarly to the way SOREs can be translated into SOAs, any given k-ORE can
be converted into a canonical k-OA: Given a k-ORE α over some alphabet �, we
transform α into a SORE α(k) over the marked alphabet �(k), which is defined by

�(k) := {a(i) | 1 ≤ i ≤ k}.

In other words, every occurrence of some letter a is replaced with an occurrence that
is marked with some number (the exact value of each of the marking i is irrelevant to
our purposes, as long as every a(i) occurs at most once). We then transform α(k) into
a SOA A(k) := SOA(α(k)), and obtain the k-OA A over the alphabet � by stripping
the markings from the letters in A(k) (i. e., every a(i) is replaced with a). Note that
A does not depend on the choice of the marking. More importantly, we observe that
L(A) = L(α), as L(A(k)) = L(α(k)).

Furthermore, note that the characteristic inclusion criterion for SOREs (and SOAs)
becomes merely sufficient for deterministic k-OREs (and deterministic k-OAs). This
is easily seen by considering the deterministic 2-ORE α := (ac | bc) and the deter-
ministic SORE (and, hence, also 2-ORE) β := (a | b | c)∗. While L(α) ⊆ L(β) holds,
the canonical OA of β does not cover the canonical OA of α.

Bex et al. propose an algorithm RWR2 that transforms k-OAs into k-OREs. This
algorithm can be paraphrased as follows: First, the input k-OA A is transformed into a
SOA A(k) over the marked alphabet �(k). Then RWR2

1 (i. e., RWR2
� with � = 1) is used

to compute a SORE α(k) (also over �(k)) for this SOA. In the last step, the markings
are stripped from α(k). The resulting k-ORE is called RWR2A.

Although L(RWR2(A)) ⊇ L(A) holds, two problems might occur. Firstly, even
if A is deterministic, RWR2A is not necessarily deterministic; and secondly, even if
L(A) is a k-ORE language, L(RWR2A) = L(A) is not guaranteed (cf. Section 4.2
of [3]).

Nonetheless, for a large class of k-OAs, the transformation does not change
the language, as shown just below (for the definition of Glushkov representations,
see [3]).

Theorem 31 (Bex et al. [3]) If a k-OA A is a Glushkov representation of a target
k-ORE α, then RWR2(A) is equivalent to α. Moreover, if α is deterministic, then so is
RWR2A.

Due to this result, it is possible to use RWR2 as a subroutine of a k-ORE inference
algorithm called iDREGEX. Ignoring more technical aspects that are not relevant to
the present paper, iDREGEX first infers k-OAs and then uses RWR2 to convert these
into k-OREs (for a chosen k).

It is natural to ask what happens if the call of RWR2
1 in RWR2 is replaced with a call

of Soa2Sore. We refer to the resulting algorithm as Koa2Kore. In other words,
given a k-OA A, Koa2KoreA is defined as the result of applying Soa2Sore to
A(k) and then stripping the markings from Soa2Sore(A(k)).

We first observe that, similar to RWR2, Koa2Kore neither preserves determinism,
nor does it guarantee descriptivity.
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Theorem 32 There exist deterministic k-OAs A1,A2 such that:

1. Koa2Kore(A1) is not deterministic, and
2. Koa2Kore(A2) is not D-descriptive of L(A2), where D is the class of

deterministic k-OREs.

Proof We begin with the first claim and define A1 to be the following 3-OA.

It is easily seen that A1 is deterministic. By marking the letters in A1, we obtain the
following SOA A(k)

1 .

Note that any other possible marking of the occurrences of a would suffice for our
purpose. On this SOA, Soa2Sore returns the SORE a(1)?(ba(2))∗a(3), which, after
stripping the markings, yields the 3-ORE a?(ba)∗a. This 3-ORE is not deterministic,
which is easily seen by considering its canonical 3-OA (the single new edge is marked
red).

To prove the second claim, we define the 2-OA A2 as follows (this automaton is also
used in [3] (Section 4.2) to prove that L(RWR2A) �= L(A) can hold).

As pointed out in [3], L(A2) is generated by the deterministic 2-ORE δ :=
bc?a(ba)∗. By applying Soa2Sore to any of the two possible marked version of
A2, we obtain the deterministic 2-ORE α2 := bc?(ab?)+. We observe that,

L(α2) = L(bc?(ab?)+)

= L(bc?(ab?)(ab?)∗)
= L(bc?a(b?a)∗b?)

⊃ L(bc?a(ba)∗) = L(δ) = L(A2)

holds, which means that α2 is not descriptive of L(A2).

On a more positive side, an analogous result to Theorem 31 holds as well.
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Theorem 33 If a k-OA A is a Glushkov representation of a target k-ORE α,
then Koa2Kore(A) is equivalent to α. Moreover, if α is deterministic, then so is
Koa2KoreA.

The proof is analogous to the proof of Theorem 4.8 in [3] (mutatis mutandis).
While Theorem 32 demonstrates that Soa2Sore cannot be generalized into an

algorithm for descriptive k-OREs (at least not in a straightforward manner), Theo-
rem 33 shows that that Koa2Kore can be used as a replacement of RWR2 in the
algorithm iDREGEX in [3].

Although iDREGEX can reliably identify target languages that are k-ORE-
languages, Theorme 32 also proves that this replacement of RWR2 does not lead to
an algorithm for descriptive generalization with respect to deterministic k-OREs. In
order to solve this problem, one would first need to properly extend Soa2Sore to
k-OREs. Accordingly, the authors wish to highlight the following open problem.

Question 1 Is there an efficient algorithm that, given a deterministic k-OA A,
computes a deterministic k-ORE that is descriptive of L(A) (w. r. t. the class of
deterministic k-OREs)?

We briefly discuss a possible approach to this problem in Section 8.
As the k-OA inference step in iDREGEX does not guarantee descriptivity, the

following question is probably of equal importance:

Question 2 Is there an efficient algorithm that, given a finite language S, computes a
deterministic k-OA that is descriptive of S (w. r. t. the class of deterministic k-OAs)?

6.2 Approximation of Larger Language Classes

According to Bex et al. [2], a common difficulty in the creation of XML Schema
Definitions is that many non-expert users struggle with the distinction between a
regular expression and a deterministic regular expression (while this is not explicitly
mentioned, the same reasoning also applies to DTDs). One potential solution that is
examined in [2] is taking a user-specified non-deterministic regular expression α and
transforming it into a deterministic regular expression δ such that (in the terminology
of the present paper) δ is D-descriptive of L(α), where D is chosen to be the full
class of deterministic regular expressions. As shown in Theorem 7 in [2], this choice
of D is too large; as there are languages that do not have a descriptive deterministic
regular expression.

In contrast to this, the main results of the present paper show that this approach
is viable if one is willing to use CHAREs or SOREs instead of the full class of deter-
ministic regular expressions. In fact, not only can one compute descriptive CHAREs
or SOREs from non-deterministic regular expression, but from any class of language
representation for which one can compute the descriptive SOA from the descrip-
tion of a language L. This includes a wide range of comparatively powerful classes
of language description mechanisms (e. g., the class of pushdown automata, or the
class of context-free grammars – cf. Hopcroft and Ullman [14], or almost any other
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introductory textbook). While it might not always be obvious whether these sets can
be computed for some given class of descriptors, the following sufficient criterion
might serve as first guidance.

Theorem 34 LetD be a class of language description mechanisms. Then SOA(L(δ))

can be computed for every δ ∈ D if there is an algorithm that, given any δ ∈ D and
any regular language R, decides whether L(δ) ∩ R = ∅ holds.

Proof As the terminal alphabet of every δ ∈ D is fixed, one can simply construct
the regular languages for each possible first letter, each possible last letter, and each
possible combination of 2-factors, and check whether these occur in L(δ). Then
SOA(L(δ)) can be constructed according to Corollary 7 by adding the appropriate
edge for each language where the intersection with L(δ) is non-empty.

As an alternative to the condition from Theorem 34, one can require that D is
effectively closed under intersection with regular languages (i. e., that a description
for L(δ)∩R not only exists, but can be computed) and that the emptiness problem for
D is decidable. As this implies that L(δ) ∩ R = ∅ is decidable, Theorem 34 applies.

Of course, this approach is not without drawbacks. Considering the difference in
expressive power, a SORE (or CHARE) that is descriptive of a context-free language
L might only be a very rough approximation of L. But in addition to this, as the
following theorem shows, it is not even possible to decide whether the descriptive
expression generates the same language.

Theorem 35 For any arbitrary CFG G, the three following questions are
undecidable.

(1) Is L(G) a SOA language?
(2) Is L(G) a SORE language?
(3) Is L(G) a CHARE language?

Proof We proof the theorem for all three cases at once. This proof is a slight
modification of the proof of Theorem 8.11 in Hopcroft and Ullman [14]5 for the
undecidability of the question whether L(G) = �∗ holds for an arbitrary CFG G.

In that proof, Hopcroft and Ullman show that, given an arbitrary Turing machine
M , one can effectively construct a CFG GM with terminal alphabet � = � ∪ Q ∪
{#} such that L(GM) = �∗ holds if and only if L(M) = ∅. In particular, their
construction defines L(GM) to be the set of invalid computations of M , which we
shall refer to as IM . Basically, IM is the set of all strings that do not encode accepting
runs of M (for the exact definition, see [14], Chapter 8.6).

By the definition of invalid computations, f irst (IM) = last (IM) = � and
gram2(IM) = �2 must hold. Hence, SOA(IM) = �∗ holds for every Turing

5Note that the referenced material is not included in Hopcroft et al. [13] (the second edition of [14]).
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machine M . Accordingly, IM is a SOA language if and only if IM = �∗ (other-
wise, we would arrive at the contradictory observation that SOA(IM) = �∗ is not
SOA-descriptive of IM ).

Therefore, given an arbitrary Turing machine M , one can effectively construct a
CFG GM such that L(GM) is a SOA language if and only if L(M) = ∅. The question
whether L(M) = ∅ holds for an arbitrary Turing machine M is undecidable (again,
cf. [14]); hence, the claim follows for SOA languages.

As a descriptive SORE (or a descriptive CHARE) cannot be less general than the
descriptive SOA, the claim immediately follows for SORE languages and CHARE

languages as well.

Theorem 35 shows that, while it is possible to transform CFGs into each of SOAs,
SOREs, and CHAREs with the guarantee of a minimal generalization, it is not possible
to tell whether this step causes a proper generalization (this happens if the origi-
nal language is not a SOA-, SORE-, or CHARE language), or whether the language
remains unchanged (if the original language is expressible in the respective model).
Hence, it is not only impossible to decide how much information is lost during the
transformation (or how many new words are introduced), but also whether there is
any loss of information at all.

Note that this result can be adapted to all those language description mechanisms
that can express IM , or similarly constructed encodings of invalid computations of
Turing machines.

7 Example DTDs

This section contains some example element type declarations that were obtained
by running a prototype implementation of Soa2Chare and Soa2Sore6 against a
sample XML database, as well as a comparison to the declarations from the original
DTD. These examples illustrate what kind of DTDs the algorithms generate, and
what insights they might offer into the analyzed data.

The algorithms were tested against the version of the Mondial database [17] that,
according to the website, has been revised in summer 2009 (the corresponding DTD
states a revision date of April 2009). Note that this version of Mondial considerably
differs from the older version provided by [18], which was used for the experimental
evaluation by Bex et al. [4]. Most importantly, the XML file and the DTD from [17]
are consistent with the data, which is not the case for [18] (as already pointed out
by [4]).

First, note that with the single exception of country, all element type declara-
tions in the Mondial DTD are CHAREs; and all are SOREs. While it would have been
interesting to examine the generalization process on an example where the provided
DTD contains a declaration that is not a SORE, all examples that the authors were
able to locate contained only single occurrences of element names.

6Available at http://www.tks.informatik.uni-frankfurt.de/ddf/downloads
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As most of the other element type declarations are trivial, the test focussed on
the following elements (listed with their respective number of occurrences in the
XML file): city (3261), country (241), desert (62), estuary (220), island
(281), lake (132), mountain (242), organization (152), province (1531),
river (221), sea (40), and source (216).

The element province is the only of the examined elements for which the
both computed CHARE and the computed SORE are identical to the original
declaration:

For each of the elements estuary, mountain, organization, sea, and
source, the computed CHARE is identical to the computed SORE, which in turn is
less general than the definition in the DTD. In each of the cases, the only difference
between is that elements that are marked as optional in the DTD either always occur
in the XML file, or do not occur at all (which means that in the former case, ? is
omitted or * is replaced with +, and in the latter case, optional elements from the
original DTD do not appear in the inferred element type declaration).

The situation is similar, but more interesting, for the elements island and
river. Here, the inferred CHAREs are identical to the declaration in the DTD, but
each of the inferred SOREs is less general. As an example, consider the element
island.

– original declaration in DTD and inferred CHARE:
name,islands?,located*,area?,elevation?,longitude?,

latitude?
– inferred SORE: name,islands?,located*,area?,elevation?,

(longitude,latitude)?

In the original declaration, longitude and latitude are both optional. But as
evidenced by the descriptive SORE, the two elements are not used independently
– neither of them can occur without the other. Unlike CHAREs, SOREs are able to
express such dependencies.

The results for the elements city, desert, and lake can be understood as a
combination of the previous phenomena. Due to removal of options, the CHARE is
less general than the original declaration; and the SORE is even less general due to
dependencies as in the previous example.

The only case where the language that is generated by the inferred descriptive
CHARE is incomparable to the language from the original declaration is for the ele-
ment country. As already mentioned above, this declaration is the only declaration
in the DTD that is not a CHARE.
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It is easily seen that the language that is described by this expression is not a
CHARE language, due to the subexpression (province+|city+).

Of course, the presence of such a non-CHARE expression in the DTD does not
mean that it is necessary to describe the actual data in the XML file. For example,
it might be possible that this subexpression is too general, and that the less general
subexpression (province|city) is a better description of the data. But this is
not the case, as the following descriptive CHARE shows.

Apparently, the non-CHARE subexpression is not too general for the actual
data, as the descriptive CHARE replaces it with the more general expression
province*,city*.

The only reason that the language of the inferred CHARE is incomparable to one of
the original declaration (instead of being strictly more general) is the subexpression
encompassed+ instead of encompassed*.

In contrast to this, the inferred descriptive SORE is less general than the declaration
from the DTD:

Three subexpressions of this SORE are particularly noteworthy. First, note
that (province+|city+) is present, as in the original declaration. Second,
with (population growth,infant mortality?)?, we have a depen-
dency in the actual XML data that was not expressed in the DTD (sim-
ilar to longitude and latitude in the previous example): The ele-
ments population growth and infant mortality are both optional,
but the latter never appears without the former. Finally, the subexpression
(gdp total,gdp agri?,(gdp ind,gdp serv)?)? is another case of such
a dependency.

Although the Mondial XML file might be considered comparatively small, and
its DTD rather simple, the examples in the present section should provide some
insights into the expressive power of CHAREs and SOREs. In particular, these exam-
ples illustrate that SOREs are able to express a certain kind of dependency for optional
elements. Nonetheless, it should be mentioned that in order to be SORE-expressible,
this dependency has to be local (e. g., as for (longitude,latitude)?).

In order to illustrate such an inexpressible dependency, consider the sample S :=
{abc, b}. While a is present if and only if c is present, the two letters are always
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separated by b. Using Soa2Sore on SOA(S) yields the descriptive SORE a?bc?,
which does not express this dependency (and is, in fact, a CHARE).

8 Conclusions and Further Work

This paper introduces algorithms for inferring descriptive SOREs and descriptive
CHAREs: First, use 2T-INF to compute a descriptive SOA, then use Soa2Sore or
Soa2Chare to turn this automaton into a SORE or a CHARE.

In [4], Bex et al. state that their schema inference algorithms “outperform existing
algorithms in accuracy, conciseness, and speed”. Considering the results presented
in Sections 3 to 5, the authors of the present paper feel confident to suggest that
their new strategies outperform the algorithms from [4] at least with respect to both
accuracy and speed. In order to examine the potential practical value of these results,
an extensive experimental evaluation of the algorithms would be very interesting.
This would also give the opportunity to evaluate the quality of the results of the
algorithms, for example with respect to different conciseness measures or how well
they describe the target language.

We now discuss possible extensions, and possible directions for further work. In
order to overcome the problem that SOREs and CHAREs cannot count (beyond the
trivial case of distinguishing between 0 and 1), Bex et al. [4] (Section 8) propose
extending these models with numerical predicates; i. e., one could write a≥1,≤3, with
L(a≥1,≤3) = {a, aa, aaa}. With an additional post-processing step, the algorithms
in [4] can be used to infer CHAREs and SOREs that are extended with counting. This
extension can also be adapted to the approaches in the present paper. Basically, one
replaces each + or +? with appropriate bound that describes how often the expression
under the + is repeated; e. g., the sample {a, aaa} would lead to descriptive expres-
sion a+, additional post-processing would turn this into a≥1,≤3. Note that, in the form
described in [4], this approach can only learn finite languages, as positive data does
not allow do distinguish between a+ and a≤n for sufficiently large n. But this can be
fixed by providing the post-processing algorithm with an additional threshold t , and
removing those upper bounds ≤ n for which n ≥ t with unbounded; e. g., a≥2,≤n

with n ≥ t would become a≥2.
On the topic of probabilistic learning, if one is willing to fix a set of probability

distributions on the sample space, the learning algorithms could be adapted to fea-
ture a variant of stochastic finite learning (introduced by Rossmanith and Zeugmann
[20]). It might be possible to derive algorithms which, with high probability, give
descriptive generalizations from a very small set of (randomly chosen) examples.
This could lead to inference algorithms that do not need to process the whole input,
but only a random subset, which might be interesting for very large datasets.

From the authors’ point of view, Questions 1 and 2 (cf. Section 6.1) are the most
interesting. In other words: Is it possible to extend the inference algorithms discussed
in the present paper from SOAs and SOREs to deterministic k-OAs and deterministic
k-OREs? It seems that one would need to develop not only a good generalization of
SOAs, but also a “good” inclusion criterion, preferably syntactic. This idea is based
on the following observation: While the results in the present paper make no direct
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use of the results and techniques that Freydenberger and Reidenbach [10] developed
for descriptive generalization of pattern languages, both papers rely heavily on the
fact that the inclusion problem for the respective language classes has a syntactic
criterion for inclusion.

The proofs on descriptive generalization of pattern languages in [10] rely on the
fact that inclusion for terminal-free E-pattern languages is characterized by the exis-
tence of a morphism which maps the pattern that generates the superlanguage to the
pattern that generates the sublanguage. This criterion is a versatile tool to prove the
nonexistence of a (pattern) language between the target language and the language of
a descriptive pattern. While the proofs of the present paper cannot make any direct
use of the proofs from [10], the approaches are similar conceptually. In particular, the
line of reasoning in which the correctness proofs of Soa2Chare and Soa2Sore
use the fact that the inclusion problem for SOREs (and CHAREs) is characterized by
the covering of the respective SOAs is structurally similar to the proofs for pattern
languages.

Moreover, although deciding whether such a pattern morphism exists is NP-
complete, the techniques in [10] are not affected by the computational hardness.
Hence, the hardness results on the decidability of the k-ORE-inclusion problem pre-
sented by Martens et al. [15] do not exclude the existence of such a criterion. This
leaves room for hope that Soa2Sore can be extended to k-OREs with k ≥ 2.
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