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Abstract. In language learning in the limit, we study computable de-
vices (learners) learning formal languages. We consider learning tasks
paired with restrictions regarding, for example, the hypotheses made
by the learners. We compare such restrictions with each other in order
to study their impact and depict the results in overviews, the so-called
maps. In the case of explanatory learning, the literature already provides
various maps.
On the other hand, in the case of behaviourally correct learning, only
partial results are known. In this work, we complete these results and
provide full behaviourally correct maps for different types of data presen-
tation. In particular, in all studied settings, we observe that monotone
learning implies non-U-shaped learning and that cautiousness, semantic
conservativeness and weak monotonicity are equally powerful.

Keywords: Language Learning in the Limit · Behaviourally Correct
Learning · Learning Restrictions · Map.

1 Introduction

Motivation In his seminal work, Gold [10] introduced the language learning
in the limit framework. Here, a learner (a computable function) successively
receives positive information about a target language (a subset of the natural
numbers). With each new datum, the learner produces a conjecture which lan-
guage it believes to be presented. Once these guesses converge to a single, correct
explanation of the target language, we say that the learner successfully learned
the target language.

This is known as explanatory learning and denoted as1 TxtGEx. We focus
on the semantic version thereof, namely behaviourally correct learning [5,22],
denoted as TxtGBc. Here, almost all conjectures of the learner have to be
correct (but do not need to be syntactically identical). Naturally, each single
language may be learned by a learner which always suggests (a conjecture for)
this language. Thus, we focus on learning classes of languages learnable by a
single learner.

1 Particularly, a text (Txt) provides positive information about the target language,
from which Gold-style (G) learners then infer their conjectures. Lastly, Ex for stands
for explanatory learning.
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These learning criteria are extended or altered to study the impact of cer-
tain restrictions. These may limit which hypotheses are allowed, for example
requiring them to follow a monotone behaviour or by constraining when changes
of conjectures are allowed, or the data representation, for example, by leaving
out information on the order the data is presented. An overview of the studied
restrictions can be found in Section 2. A particular branch of study focuses on
the pairwise relation between such restrictions. The findings are then depicted
in overviews, so-called maps. The literature already provides maps of explana-
tory learners with various modes of data representation [11,15,16]. However, for
behaviourally correct learning only partial results on the pairwise interaction of
different restrictions are known so far [2,7,8,9,12,17].

Our Contribution In this work, we provide the missing relations. This way, we
obtain a full picture regarding the pairwise relation of the studied restrictions.
We provide the collected findings in Figure 1. In particular, we observe in all
studied settings that classes of languages that can be learned by learners which
never discard correctly conjectured elements, that is, monotone learners, can
also be learned by learners which never change their mind from a correct guess,
that is, non-U-shaped learners. These results are presented in Lemma 1 and
Theorems 3 and 5. Furthermore, we find that learners which base their guess
solely on the set of elements presented change their mind only when witnessing
inconsistent information, see Theorem 2. We note that analogous results hold in
the explanatory setting [14,15,16]. However, one difference between these settings
is that neither learners which may change their mind only when inconsistent,
nor learners which never fall back to a proper subset of a previous guess depend
on the order or amount of data presented, see Theorem 2.

Another contribution of this work pertains to normal forms of learners. Par-
ticularly interesting are strongly Bc-locking learners [15]. These learners have,
on each text for a target language, a Bc-locking sequence, that is, a sequence
which contains enough information for the learner to be correct and never change
its mind any more regardless what information from the target language it re-
ceives [3,12]. With Theorem 4, we complete the literature by showing that for
all considered restrictions the learners may be assumed strongly Bc-locking.

Future Work We leave studying one important restriction to future work:
decisiveness [21]. Here, a learner may never get back to a previous, rejected
hypothesis. In particular, it is open to resolve whether each class of languages
a monotone learner learns can be learned decisively. We note that Theorem 2
shows that decisiveness is no restriction for learners which base their hypotheses
solely on the set of elements, that is, set-driven learners.

The impact of the data presented during learning varies depending on the
studied restriction [6,7,8,17]. For example, cautious or semantically conservative
learners do not rely on the order or amount of data presented while monotone
learners do. Future work may resolve how the provided data impacts decisive
and non-U-shaped learners.
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Fig. 1: A depiction of the relation between the studied restrictions (compare
Section 2) for Gold-style and partially set-driven (see Figure 1(a)) as well as
set-driven learning (see Figure 1(b)). Solid and dashed lines imply trivial and
non-trivial inclusions (both bottom-to-top), respectively. Greyly edged areas il-
lustrate a collapse of the enclosed learning criteria. There are no further collapses.

Structure of the Work This work is structured as follows. In Section 2, we
shortly discuss important concepts for this work. In the remaining sections, we
discuss the initial situation for the respective studied mode of data representation
and provide our results to complete the particular map. Due to space limitations,
we shift the full preliminaries and some proofs to the appendix.

2 Language Learning in the Limit

In this section, we shortly introduce important concepts for language learning in
the limit. For the full preliminaries, also containing a discussion on to the used
notation, we refer the reader to Appendix A.

We learn languages L ⊆ N (recursively enumerable sets) using learners (com-
putable functions). Hereby, information about the target language is successively
provided by texts (lists containing all and only the positive information about
the target language). An interaction operator β provides the learner with the
information to make its guess. In this work, we consider the interaction oper-
ators Sd for set-driven learning [25], which provides the learner only with the
set of elements, Psd for partially set-driven learning [3,24], where the learners
additionally receive a counter of the total elements presented so far, and G for
Gold-style learning [10], where the learners also obtain information on the order
the elements are presented in.
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We consider the following learning criteria. Initially, for explanatory learning
(Ex, [10]) the learner is expected to converge to a single, correct hypothesis
when presented a target language. In our work, we focus on a relaxation thereof:
We expect the learner to converge to a semantically correct hypothesis, while
it may change its mind syntactically. This is known as behaviourally correct
learning (Bc, [5,22]). We consider further restrictions. In non-U-shaped learning
(NU, [2]) the learner may never discard a correct guess. For consistent learning
(Cons, [1]) each hypothesis must include the information it is based on. We
also consider various monotonic restrictions [13,19,26]. For strongly monotone
learning (SMon) the learner may not discard elements present in any previous
guess, while formonotone learning (Mon) this applies only to the set of correctly
guesses elements. On the other hand, for weakly monotone learning (WMon) the
learner must not discard any elements while its hypothesis is consistent with the
information seen. Similarly, in cautious learning (Caut, [21]) the hypotheses may
never fall back to the proper subset of a previous hypothesis, and, as a relaxation
thereof, in target-cautious learning (CautTar, [15]) the hypotheses may not be
a proper superset of the target language. For semantically conservative learning
(SemConv, [17]) the learner may not change a hypothesis while it is consistent
with the data given. Lastly, in semantically witness-based learning (SemWb,
[17]) the learner must justify each mind change. We combine any two restrictions
δ and δ′ by intersecting them and denote this as δδ′. With T we denote the
absence of a learning restriction.

In this work, we denote a learning criterion as Txtβδ. Here, Txt signalizes
that we are learning from text, β indicates the interaction operator and δ is the
restriction required to hold on all texts belonging to some target language. Given
a learner h, we write Txtβδ(h) for the set of all languages h Txtβδ-learns. The
set of, for all learners h′, all Txtβδ(h′) is denoted as [Txtβδ] and referred to as
learning power of Txtβδ-learners. Note that we solely consider total learners,
as all behaviourally correct learners may be assumed total [17].

Certain sequences may contain especially valuable information for learners.
A Bc-locking sequence contains sufficient information on the target language
so that the learner does not change its mind (semantically) from a correct hy-
pothesis any more, regardless what information from the target language it wit-
nesses [3,12]. It is known that every Bc-learner has a Bc-locking sequence [3],
however, there are learners and texts where no initial sequence of the text is a
Bc-locking sequence [3]. We call a learner h strongly Bc-locking if every text
of every language it learns contains an initial sequence serving as a Bc-locking
sequence [15,16,17].

3 Set-Driven Map

In set-driven learning, unrestricted learners may be assumed cautious and con-
sistent at the same time [8]. Furthermore, semantically conservative and seman-
tically witness-based learners may be assumed consistent and equally power-
ful [17]. As a matter of fact, they are even as powerful as their Gold-style coun-
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terpart [7]. In this section we show that all of these learners are equal regarding
their learning power. In particular, we exploit two known concepts. First, we use
the same approach as when showing that set-driven learners may be assumed
target-cautious [8] to show that without loss of generality they are also non-U-
shaped, see Lemma 1. Using this, we can obtain semantically conservative learn-
ers (see Theorem 2) in a similar fashion as when making semantically conserva-
tive learners so everywhere [7]. In particular, we can override wrong hypotheses
of the learners using witnessing elements (as, by target-cautious learning, incor-
rect guesses cannot overgeneralize the target language) and right hypotheses are
never discarded (by non-U-shaped learning).

Lemma 1. Every TxtSdBc-learner h may be assumed to be target-cautious
(CautTar), non-U-shaped (NU) and consistent (Cons) simultaneously.

Theorem 2. We have that

[TxtSdBc] = [TxtSdCautBc] = [TxtGCautBc] =

= [TxtSdSemWbBc] = [TxtGSemWbBc].

Now, the set-driven map is completed, as monotone learning is a restriction,
but strictly more powerful than strongly monotone learning [12].

4 Partially Set-Driven Map

Theorem 2 already shows that semantically conservative, semantically witness-
based, cautious and weakly monotone learning coincide in the partially set-driven
setting. However, these restrictions are known to be restrictive [12,17]. Further-
more, they are known to be incomparable to monotone learning [12], while both
are more powerful than strongly monotone learning [12]. Non-U-shaped learning
separates from the mentioned restrictions [12,17]. However, non-U-shaped learn-
ing is a restriction for Gold-style learners [2,9] and, equivalently, for partially
set-driven learners [8]. Note that for explanatory learners this is not the case [4].

We complete this map by showing that monotone learning implies non-U-
shaped learning, see Theorem 3. In particular, we create a new hypothesis by
adding all information obtainable by some future hypothesis generated from all
seen elements. If this generates a correct hypothesis, no future hypotheses may
be wrong, as otherwise the current hypothesis must contain further elements.

Theorem 3. We have that [TxtPsdMonBc] ⊆ [TxtPsdNUBc].

Proof. Let h be a TxtPsdMonBc-learner. Note that h is, without loss of gen-
erality, strongly Bc-locking [17]. Let furthermore L = TxtPsdMonBc(h). We
provide a TxtPsdNUBc-learner h′ which learns L. For all finite sets D ⊆ N,
all t <∞ and all s ∈ N≥1, define

W 0
h′(D,t) = D,
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W s
h′(D,t) =

⋃
(D′,t′) with

(D,t)⪯(D′,t′)⪯(W s−1

h′(D,t)
,t+s)

W s−1
h(D′,t′).

Finally,Wh′(D,t) =
⋃

s∈N W s
h′(D,t). Intuitively, the learner h

′ produces its hypoth-

esis on (D, t) iteratively. At stage s, W s
h′(D,t) enumerates all elements witnessed

by the learner h on some hypothesis extending (D, t) using elements witnessed
so far, that is, elements in W s−1

h′(D,t).

We show that h′ TxtPsdNUBc-learns L. Let L ∈ L and T ∈ Txt(L). We
provide a proof in two steps.

1. We first show that there exists an n0 such that Wh′(content(T [n0]),n0) = L.
2. Afterwards, we show that, for all n, whenever Wh′(content(T [n]),n) = L we

have, for all n′ > n, also Wh′(content(T [n′]),n′) = L.

For the first, let n0 be such that (D, t) := (content(T [n0]), n0) is a Bc-locking
information for h on L. Then, by definition of h′, we have Wh′(D,t) ⊇Wh(D,t) =
L. For the other direction, we show that for all s ∈ N we have W s

h′(D,t) ⊆ L by
induction on s. We get the statement for s = 0 immediately. Assuming it holds
for s ∈ N, we show it for s + 1. Since W s

h′(D,t) ⊆ L, we have that (D′, t′) with

(D, t) ⪯ (D′, t′) ⪯ (W s
h′(D,t), t+ s+ 1) is also a Bc-locking information for h on

L. In particular, we have Wh(D′,t′) = L. This results in

W s+1
h′(D,t) =

⋃
(D′,t′) with

(D,t)⪯(D′,t′)⪯(W s
h′(D,t)

,t+s+1)

W s
h(D′,t′) ⊆ L.

For the second claim, let n ∈ N and (D, t) := (content(T [n]), n) be such
that Wh′(D,t) = L, let n′ ≥ n and (D′′, t′′) := (content(T [n′]), n′). Note that
D ⊆ D′′ ⊆ L and t′′ ≥ t. We show that Wh′(D′′,t′′) = L. First, note that (D′′, t′′)
will eventually be considered when enumerating Wh′(D,t), that is, there exists an

s ∈ N such that (D′′, t′′) ⪯ (W s−1
h′(D,t), t+ s). Hence,

Wh′(D′′,t′′) =
⋃
s∈N

⋃
(D′,t′) with

(D′′,t′′)⪯(D′,t′)⪯(W s−1

h′(D′′,t′′),t+s)

W s−1
h(D′,t′) ⊆

⊆
⋃
s∈N

⋃
(D′,t′) with

(D,t)⪯(D′,t′)⪯(W s−1

h′(D,t)
,t+s)

W s−1
h(D′,t′) = Wh′(D,t) = L.

Secondly, we show that for each x ∈ L = Wh′(D,t) we also have x ∈ Wh′(D′′,t′′).
We show (by induction on s) that W s

h′(D,t) ⊆ Wh′(D′′,t′′). For s = 0 we have

W s
h′(D,t) = D ⊆ D′′ = W 0

h′(D′′,t′′) ⊆ Wh′(D′′,t′′). Let the statement be fulfilled
until s. At step s+ 1, we distinguish the following cases.

1. Case: If W s
h′(D,t) = W s+1

h′(D,t), that is, no new element is enumerated, the

statement of the induction step is true immediately.
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2. Case: If W s
h′(D,t) ⊊ W s+1

h′(D,t), let x ∈W s+1
h′(D,t)\W

s
h′(D,t). Note that x ∈ L. Let

(D̃, t̃), with (D, t) ⪯ (D̃, t̃) ⪯ (W s
h′(D,t), t+s), be the information on which x

was witnessed, that is, x ∈Wh(D̃,t̃). By W s
h′(D,t) ⊆Wh′(D′′,t′′) (the induction

assumption), there exists s′′ such that (D̃, t̃) ⪯ (W s′′

h′(D′′,t′′), t
′′ + s′′). Since

h is monotone and x ∈ L we have

x ∈Wh(W s′′
h′(D′′,t′′),t

′′+s′′)

def. of h′

⊆ Wh′(D′′,t′′).

Altogether, we get the desired result. ⊓⊔

5 Gold-Style Learning Map

The overall situation for Gold-style learning is basically analogous to the initial
situation for partially set-driven learning as discussed in Section 4, compare the
literature [2,9,12,17] and Theorem 2. We complete the map by showing that
monotone learning implies non-U-shaped learning, see 5.

We aim to employ a similar approach as for the partially set-driven case. To
that end, we have to overcome two obstacles. Firstly, we show that monotone
Gold-style learners are strongly Bc-locking, see Theorem 4. In particular, this
shows that all restrictions studied in this paper allow for strongly Bc-locking
learning [4,17]. Secondly, Gold-style learners infer from sequences, meaning that
extensions considered at a certain step do not necessarily have to be considered
in later steps (as opposed to partially set-driven learning). We circumvent this
by also enumerating elements from previous guesses on which the learner shows
a monotone behaviour, as they are likely part of the target language.

Theorem 4. Any TxtGMonBc-learner may be assumed strongly Bc-locking.

Proof. This proof is inspired by the proof based on private communication with
Sanjay Jain where, for certain restrictions δ, [TxtPsdδBc] = [TxtGδBc] is
shown [8, Thm. 10]. Let h be a learner and let L = TxtGMonBc(h). We
provide a strongly Bc-locking TxtGMonBc-learner h′ for L as follows. For two
finite sequences σ, σ′, define the auxiliary function g as

Wg(σ′,σ) =
⋂

τ∈content(σ)
≤|σ|
#

Wh(σ′τ) ∩
⋂

σ′′≤σ′,
σ′′∈content(σ′)∗#

⋃
τ ′′∈content(σ′)∗#

Wh(σ′′τ ′′).

Then, define the learner h′ on finite sequences σ as

Wh′(σ) =
⋃

σ′⊆σ

Wg(σ′,σ).

The intuition is the following. With the function g, we search for minimal Bc-
locking sequences [8]. To ensure that g eventually only contains elements from
the target language, we extend the left hand intersection to be based on σ.
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However, as σ contains more and more information, additional sequences are also
considered in the right hand intersection. This may lead to already enumerated
elements being discarded (even if they belong to a target language). To prevent
this, we take the union over all possible Wg(σ′,σ).

We formally show that h′ has the desired properties. First, we show that h′

is Mon. Let L ∈ L and σ1, σ2 ∈ L∗
# with σ1 ⊆ σ2. We show that for all x ∈ N

x ∈Wh′(σ1) ∩ L⇒ x ∈Wh′(σ2) ∩ L.

As x ∈Wh′(σ1), there exists σ′
1 ⊆ σ1 such that x ∈Wg(σ′

1,σ1), that is,

x ∈
⋂

τ∈content(σ1)
≤|σ1|
#

Wh(σ′
1τ)
∩

⋂
σ′′≤σ′

1,

σ′′∈content(σ′
1)

∗
#

⋃
τ ′′∈content(σ′

1)
∗
#

Wh(σ′′τ ′′). (1)

In particular, x ∈ Wh(σ′
1)
. We show that x ∈ Wg(σ′

1,σ2). By monotonicity of h,
we have that

x ∈
⋂

τ∈content(σ2)
≤|σ2|
#

Wh(σ′
1τ)

.

As the right hand intersection in Equation (1) (of which x is an element) does
not depend on σ1, we have that

x ∈
⋂

τ∈content(σ2)
≤|σ2|
#

Wh(σ′
1τ)
∩

⋂
σ′′≤σ′

1,

σ′′∈content(σ′
1)

∗
#

⋃
τ ′′∈content(σ′

1)
∗
#

Wh(σ′′τ ′′) =

= Wg(σ′
1,σ2).

By definition of h′ and since σ′
1 ⊆ σ1 ⊆ σ2, we have

Wg(σ′
1,σ2) ⊆

⋃
σ′⊆σ2

Wg(σ′,σ2) = Wh′(σ2).

Thus, x ∈Wh′(σ2) ∩ L.
We now show that h′ is strongly Bc-locking (and thus also Bc-learns L). Let

L ∈ L and T ∈ Txt(L). Let σ0 ∈ L∗
# be the ≤-minimal Bc-locking sequence for

h on L [3]. For each σ′ < σ0 with content(σ′) ⊆ L, let τσ′ ∈ L∗
# be such that

σ′τσ′ is a Bc-locking sequence for h on L [20]. Let n0 be such that h converges
on T [n0], that is, for all n

′ ≥ n0, Wh(T [n]) = L. Let n1 ≥ n0 be such that

– σ0 ≤ T [n1],
– σ0 ∈ content(T [n1])

∗
#, and

– for all σ′ < σ0 such that content(σ′) ⊆ L, we have that content(σ′τσ′) ⊆
content(T [n1]) and |τσ′ | ≤ n1.

To show that σ1 := T [n1] is a Bc-locking sequence for h′ on L, we show that, for
any ρ ∈ L∗

#, σ1
⌢ρ =: σ1ρ is a correct guess, that is, Wh′(σ1ρ) = L. Let ρ ∈ L∗

#.
We prove each direction of Wh′(σ1ρ) = L separately.
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1.C.: Wh′(σ1ρ) ⊆ L: Let x ∈ Wh′(σ1ρ). Then there exists σ′ ⊆ σ1ρ such that
x ∈Wg(σ′,σ1ρ). In particular,

x ∈
⋂

τ∈content(σ1ρ)
≤|σ1ρ|
#

Wh(σ′τ) ∩
⋂

σ′′≤σ′,
σ′′∈content(σ′)∗#

⋃
τ ′′∈content(σ′)∗#

Wh(σ′′τ ′′).

(2)

We distinguish based on the relation between σ′ and σ1.

1.1.C.: If σ′ ⊆ σ1, then there exists τ ∈ content(σ1ρ)
≤|σ1ρ|
# such that σ′τ = σ1.

As h(σ1) is a correct guess and Wh(σ1) is considered in the left hand
intersection of Equation (2), we have that x ∈ L.

1.2.C.: If σ′ ⊋ σ1, we have σ0 ≤ σ1 ⊆ σ′ and σ0 ∈ content(σ1)
∗
# ⊆ content(σ′)∗#.

Thus, σ0 is considered in the right hand intersection of Equation (2).
Since, for any τ ∈ L∗

#, we have Wh(σ0τ) = L, we get x ∈Wh(σ0τ) = L.
2.C.: L ⊆Wh′(σ1ρ): Let x ∈ L. We show that x ∈Wg(σ1,σ1ρ). As h is monotone,

σ1 ⊆ σ1ρ and h converges on σ1, we have

x ∈
⋂

τ∈content(σ1)∗#

Wh(σ1
⌢τ).

Moreover, by choice of n1, we have, for all σ′′ ≤ σ1 with σ′′ ∈ content(σ1)
∗
#,

that τ ′′σ′′ ∈ content(σ1)
∗
#. As σ′′τ ′′σ′′ is a Bc-locking sequence for h on L, we

get x ∈Wh(σ′′τ ′′
σ′′ )

. Hence,

x ∈
⋂

σ′′≤σ1,
σ′′∈content(σ1)

∗
#

⋃
τ ′′∈content(σ1)∗#

Wh(σ′′τ ′′).

Altogether, x ∈Wg(σ1,σ1ρ) ⊆Wh′(σ1ρ).

In the end, we have Wh′(σ1ρ) = L, which concludes the proof. ⊓⊔

Theorem 5. We have that [TxtGMonBc] ⊆ [TxtGNUBc].

Proof. Let h be a TxtGMonBc-learner. Without loss of generality, h may be
assumed strongly Bc-locking, see Theorem 4. Let L = TxtGMonBc(h). We
provide a learner h′ which TxtGNUBc-learns L. To do so, we employ both a
forward enumeration strategy (via sets Fσ,s) as well as a backward search strategy
(via sets Bσ,s). For a finite sequence σ and computation step s ∈ N we define
Fσ,s (forward enumeration set) and Bσ,s (backwards search set) as follows. Let
Fσ,0 = Bσ,0 = content(σ). Furthermore, let

Fσ,s+1 = Fσ,s ∪
⋃

τ∈(Fσ,s∪Bσ,s)
≤s
#

W s
h(στ).

Intuitively, Fσ,s+1 contains all elements enumerated by some possible future

guess, that is, for τ ∈ (Fσ,s∪Bσ,s)
≤s
# ,Wh(στ). Note that this is a similar approach
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as in the Psd-case, see the proof of Theorem 3. However, as opposed to partially
set-driven learning, this alone does not suffice. In particular, Fσ,s may consider
σ⌢τ and σ⌢τ ′, where τ ̸= τ ′, in its enumeration, but, for a later hypothesis
σ′, Fσ′,s cannot consider both, as σ′ cannot extend both σ⌢τ and σ⌢τ ′. To
circumvent this, we need the backwards search set Bσ,s.

To define Bσ,s, we introduce the following auxiliary predicate and function.
Given a learner h (we omit using Gödel numbers in favour of readability), finite
sequences σ and ρ, an element x ∈ N and a counter s ∈ N, we define

MonBeh(h, ρ, x, s, σ)⇔ ∀τ ∈ content(σ)≤s+|σ| : x ∈Wh(ρ⌢τ).

Intuitively, MonBeh(h, ρ, x, s, σ) checks whether h, starting on information ρ,
exhibits a monotonic behaviour regarding the element x. We further introduce
a function which gives us the newly enumerated element by some hypothesis.
In particular, let x̃ := nextEl(h′, σ′, σ, s) be the element enumerated next by
Fσ′,s which is not yet in Wh′(σ). Furthermore, let σ̃ := σ′⌢τ be the (minimal)
sequence on which x̃ has been seen for the first time inside Fσ′,s. We define the
backwards search set as, for finite sequences σ, σ′′ and s ∈ N,

Bσ,0,σ′′ = content(σ′′),

Bσ,s+1,σ′′ = Bσ,s,σ′′ ∪


{x̃}, for x̃ = nextEl(h′, σ′′, σ, s) via σ̃ if

MonBeh(h′, σ̃, x̃, s, σ),

∅, else.

Bσ,s+1 = Bσ,s ∪
⋃

σ′′⊊σ

Bσ,s,σ′′ .

Note that
⋃

s∈N Bσ,s,σ′′ ⊆
⋃

s∈N Fσ′′,s. The idea behind the backwards search is
based on the following observation. Given two sequences σ′ ⊆ σ, let x be the first
element enumerated by Fσ′,s (which is not in content(σ′)). If x is an element of
the target language, it will eventually be enumerated in Fσ,s as well (as it has to
appear in Wh(σ) by monotonicity of h). However, further enumerations may not
be similar, as Fσ′,s may build its further hypotheses on σ′⌢x, which in general is
no subsequence of σ. With the backwards search, we check for such elements and
enumerate them in case the learner h shows a monotonic behaviour regarding
them. In the end, we define the learner h′ as

Wh′(σ) =
⋃
s∈N

Bσ,s ∪ Fσ,s.

We show that h′ TxtGNUBc-learns L. Let L ∈ L and T ∈ Txt(L). First,
we show Bc-convergence and afterwards that h′ is NU. To that end, let n0 be
such that T [n0] is a Bc-locking sequence for h on L (this exists by Theorem 4).
For each n < n0, let x̃n = nextEl(h′, T [n], T [n0], s) (via σ̃n) be the first newly
enumerated element not in L (if such exists). Then, let Let n1 ≥ n0 be such

that, for n < n0, for each σ̃n there exists a τ ∈ content(T [n1])
≤|T [n1]|
# such that
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h(σ̃⌢
n τ) is a correct guess. In particular, MonBeh(h, σ̃, x̃, s, T [n1]) fails and,

therefore, no BT [n1],s,T [n] contains elements which are not in L.
Also, for n ≥ n0, BT [n1],s,T [n] only contains elements in L (as T [n0] is a

Bc-locking sequence). Hence, for n ≥ n1, we have⋃
s∈N

BT [n],s ⊆ L.

In particular, as T [n] is also a Bc-locking sequence, we get⋃
s∈N

FT [n],s = L.

Thus, Wh′(T [n]) = L.
It remains to be shown that h′ isNU. Let n be minimal such thatWh′(T [n]) =

L. We show that, for n′ ≥ n, we have Wh′(T [n′]) = L as well. Note that by
definition of the backwards search sets, for ñ ≤ n, we have⋃

s∈N
BT [n],s,T [ñ] ⊇

⋃
s∈N

BT [n′],s,T [ñ].

Furthermore, ⋃
s∈N

FT [n],s ⊇
⋃
s∈N

FT [n′],s ∪
⋃
ñ∈N,

n≤ñ≤n′

⋃
s∈N

BT [n′],s,T [ñ],

as, firstly, T [n′] is a candidate within, from some s onwards, FT [n],s and, secondly,
the backwards search set

⋃
s∈N BT [n′],s,T [ñ] can only enumerate as much as the

forward enumeration set
⋃

s∈N FT [ñ],s. Thus, Wh′(T [n′]) ⊆ Wh′(T [n]) = L. Next
we show that each element x ∈ Wh′(T [n]) will be enumerated in Wh′(T [n′]). We
show this by case distinction depending how x is enumerated in Wh′(T [n]).

1.C.: For some s′, the element x is enumerated in FT [n],s′ . Then, we get x ∈⋃
s∈N BT [n],s,T [n′] as the MonBeh check passes for elements in L.

2.C.: For some s′ and ñ ≤ n, we have x ∈ BT [ñ],s′,T [n]. Then, x is also enumer-
ated in

⋃
s∈N BT [ñ],s,T [n′] as the MonBeh check passes for elements in L.

Thus, Wh′(T [n′]) ⊇ L and, altogether, Wh′(T [n′]) = L. ⊓⊔
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A Preliminaries

In this section, we introduce the notation used as well as important concepts for
language learning in the limit.

A.1 Mathematical Notation

We mainly follow the textbook by Rogers Jr. [23]. With N = {0, 1, 2, . . . } we
denote the set of all natural numbers and with ∅ the empty set. We use ⊆
(⊊) to denote the (proper) inclusion relation between two sets as well as the
(proper) extension relation between two finite sequences. Furthermore, to de-
note the concatenation of two sequences σ and τ , we write σ⌢τ or simply στ .
Given a non-empty, finite sequence σ, we use σ− to denote σ without its last
element. We let P (R) be the set of all (total) computable functions p : N→ N.
We furthermore fix an effective numbering {φe}e∈N of all partial computable
functions and denote the e-th computable set as We = dom(φe), where dom
denotes the domain of a function. We call e the program, index or hypothesis
of We. For any time-step t ∈ N, we let W t

e be the set of all elements which the
program e enumerates in at most t steps.

We learn languages (recursively enumerable sets) L ⊆ N using learners (par-
tial computable functions). With # we denote the pause symbol and, for any set
S ⊆ N, we denote S# := S ∪ {#}. Then, a text is a total function T : N → N#

and Txt is the set of all texts. For any text (or sequence) T we define the con-
tent of T as content(T ) := range(T ) \ {#}. Here, range denotes the image of a
function. Now, a text of a language L is such that content(T ) = L and the set
of all texts of L is denoted as Txt(L). Furthermore, for n ∈ N we let T [n] be
the initial sequence of T of length n, that is, T [0] := ϵ (the empty string) and,
if n > 0, T [n] := (T (0), T (1), . . . , T (n − 1)). Lastly, for t, t′ ∈ N and finite sets
D,D′ ⊆ N, we define (D, t) ⪯ (D′, t′) if t ≤ t′ and there exists a text T such
that D = content(T [t]) and D′ = content(T [t′]).

A.2 Language Learning in the Limit

We discuss the formalization of learning criteria [18]. An interaction operator β
provides the learner with the information to make its guess from. Formally, β
takes as input a learner h ∈ P and a text T ∈ Txt and outputs a possibly partial
function p. In this work, we consider the interaction operators G for Gold-style
learning [10], which provides the learner with the full information on the input,
Psd for partially set-driven learning [3,24], where the learner receives the set
of input elements and a counter, and Sd for set-driven learning [25], where the
learner only receives the set of elements. Formally, we have

G(h, T )(i) = h(T [i]);

Psd(h, T )(i) = h(content(T [i]), i);

Sd(h, T )(i) = h(content(T [i])).
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Learning criteria are formalized as follows. Initially, for explanatory learning
(Ex, [10]) the learner is expected to converge to a single, correct hypothesis when
presented a target language. In our work, we focus on a relaxation thereof: We
expect the learner to converge to a semantically correct hypothesis, while it may
change its mind syntactically. This is known as behaviourally correct learning
(Bc, [5,22]). Formally, a learning restriction δ is a predicate on a total function
p (the sequence of hypotheses) and a text T ∈ Txt. For the mentioned criteria
we have

Ex(p, T )⇔ ∃n0 ∀n ≥ n0 : p(n) = p(n0) ∧Wp(n0) = content(T ),

Bc(p, T )⇔ ∃n0 ∀n ≥ n0 : Wp(n) = content(T ).

We consider further restrictions. In non-U-shaped learning (NU, [2]) the
learner may never discard a correct guess. For consistent learning (Cons, [1])
each hypothesis must include the information it is based on. We also consider var-
ious monotonic restrictions [13,19,26]. For strongly monotone learning (SMon)
the learner may not discard elements present in any previous guess, while for
monotone learning (Mon) this applies only to correctly guesses elements. On
the other hand, for weakly monotone learning (WMon) the learner must not
discard any elements while its hypothesis is consistent with the information seen.
Similarly, in cautious learning (Caut, [21]) the hypotheses may never fall back to
the proper subset of a previous hypothesis, and, as a relaxation thereof, in target-
cautious learning (CautTar, [15]) the hypotheses may not be a proper superset
of the target language. For semantically conservative learning (SemConv, [17])
the learner may not change a hypothesis while it is consistent with the data
given. Lastly, in semantically witness-based learning (SemWb, [17]) the learner
must justify each mind change. Formally, we have for a total function p and a
text T ∈ Txt

NU(p, T )⇔ ∀i, j, k : i ≤ j ≤ k ∧Wp(i) = Wp(k) = content(T )⇒
⇒Wp(i) = Wp(j),

Cons(p, T )⇔ ∀i : content(T [i]) ⊆Wp(i),

SMon(p, T )⇔ ∀i, j : i < j ⇒Wp(i) ⊆Wp(j),

Mon(p, T )⇔ ∀i, j : i < j ⇒ content(T ) ∩Wp(i) ⊆ content(T ) ∩Wp(j),

WMon(p, T )⇔ ∀i, j : i < j ∧ content(T [j]) ⊆Wp(i) ⇒Wp(i) ⊆Wp(j),

Caut(p, T )⇔ ∀i, j : Wp(i) ⊊ Wp(j) ⇒ i ≤ j,

CautTar(p, T )⇔ ∀i : ¬(content(T ) ⊊ Wp(i)),

SemConv(p, T )⇔ ∀i, j : (i ≤ j ∧ content(T [j]) ⊆Wp(i))⇒Wp(i) = Wp(j),

SemWb(p, T )⇔ ∀i, j :
(
∃k : i < k ≤ j ∧Wp(i) ̸= Wp(k)

)
⇒

⇒
(
content(T [j]) ∩Wp(j)

)
\Wp(i) ̸= ∅.

We combine any two restrictions δ and δ′ by intersecting them and denote this
as δδ′. With T we denote the predicate which is always true and interpret it as
absence of a learning restriction.
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Finally, a learning criterion (α, C, β, δ) consists of learning restrictions α and
δ, a set of admissible learners C, usually P or R, and an interaction operator
β. We denote the learning criterion as τ(α)CTxtβδ and omit C if it equals P
and the learning restrictions in case they equal T. We say that an admissible
learner h ∈ C τ(α)CTxtβδ-learns a language L if on any text T the restriction α
is met, that is, we have α(β(h, T ), T ), and for all T ∈ Txt(L) the restriction δ is
fulfilled, that is, we have δ(β(h, T ), T ). We write τ(α)CTxtβδ(h) for the set of
all languages h τ(α)CTxtβδ-learns and [τ(α)CTxtβδ] for the set containing, for
all h′ ∈ C, τ(α)CTxtβδ(h′). The latter set is referred to as the learning power
of τ(α)CTxtβδ-learners.

A.3 Locking Sequences

Certain sequences may contain especially valuable information for learners. Lock-
ing sequences contain sufficient information on the target language so that the
learner makes a correct guess and does not change its mind any more, regardless
what information from the target language it witnesses. Formally, a sequence
σ is a locking sequence for a learner h on a language L if, for all τ ∈ L′

#, we
have Wh(σ) = L and h(σ) = h(στ) [3]. Analogously, for behaviourally correct
learning, a sequence σ is a Bc-locking sequence for a learner h on a language L if,
for all τ ∈ L′

#, we have Wh(στ) = L [12]. It is known that every Bc-learner has
a Bc-locking sequence [3], however, there are learners and texts where no initial
sequence of the text is a Bc-locking sequence [3]. We call a learner h strongly
Bc-locking on some language L if for each text T ∈ Txt(L) there exists an n
such that T [n] is a Bc-locking sequence for h on L. If h is strongly Bc-locking on
each language it learns, we call h strongly Bc-locking [15,16,17]. The transition
to Bc-locking information for partially set-driven learner and Bc-locking sets
for set-driven learner is immediate and, thus, omitted.

B Proofs omitted in Section 3

Lemma 1. Every TxtSdBc-learner h may be assumed to be target-cautious
(CautTar), non-U-shaped (NU) and consistent (Cons) simultaneously.

Proof. Let h be a learner and let L = TxtSdBc(h). Applying a weak forward
search algorithm [8] we may assume h to be target-cautious and consistent. We
show that, by applying the same algorithm again, we get a learner which also
NU-learns L.

Let h′ be given as in Algorithm 1 with parameter h. Then h′ TxtSdBc-learns
L [8]. We further remark that h′ remains target-cautious and consistent [8] as
h is, in particular, a Sd-learner. It remains to be shown that h′ is also non-
U-shaped. To that end, let L ∈ L and assume there exists a finite D ⊆ L
with Wh′(D) = L. We show that for all finite D′′, with D ⊆ D′′ ⊆ L, we have
Wh′(D′′) = L.
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Algorithm 1: Weak Forward Verification [8]

Parameter: Sd-learner h, function enum(., .) such that
∀e : We = range(enum(e, .)).

Input: Finite set D ⊆ N.
Semantic Output: Wh′(D) =

⋃
i∈N Ei.

Initialization: E0 ← D.
1 for i = 0 to ∞ do
2 xi ← enum(h(D), i)
3 if xi /∈ Ei then
4 for D′, D ⊆ D′ ⊆ Ei ∪ {xi} do
5 search for t such that Ei ∪ {xi} ⊆W t

h(D′)

6 Ei+1 ← Ei ∪ {xi}

We first show that D is a Bc-locking set for h on L. For finite D′ with
D ⊆ D′ ⊆ L and x ∈ L, let i be the step2 in Algorithm 1 such that x is
enumerated into Wh′(D), that is, D

′ ∪ {x} ̸⊆ Ei and D′ ∪ {x} ⊆ Ei+1. Then, as
D ⊆ D′ ⊆ Ei+1 we have by lines 4 and 5

x ∈ Ei+1 ⊆Wh(D′).

Thus, for each finite D′ with D ⊆ D′ ⊆ L we get for all x ∈ L that x ∈Wh(D′).
So we have L ⊆ Wh(D′) and, since h is target cautious, even L = Wh(D′).
Altogether, D is a Bc-locking set for h on L.

Now we show that for finite D′′, with D ⊆ D′′ ⊆ L, the algorithm runs
through every step i successfully. This way, we obtain Wh′(D′′) = Wh(D′′) = L.
Let E0 = D′′ and let i be the next step in Algorithm 1. If xi ∈ Ei, step i is
completed successfully. Otherwise, the algorithm checks whether for each finite
D′, with D′′ ⊆ D′ ⊆ L, we have some t such that Ei ∪ {xi} ⊆ W t

h(D′). As

Wh(D′) = L and as Ei ∪ {xi} is a finite subset of L, such a t will eventually be
found. Thus, xi will be enumerated into Ei+1 and, hence, into Wh′(D′′). This
concludes the proof. ⊓⊔

Theorem 2. We have that

[TxtSdBc] = [TxtSdCautBc] = [TxtGCautBc] =

= [TxtSdSemWbBc] = [TxtGSemWbBc].

Proof. We show that [TxtGSemConvBc] = [TxtSdBc]. This suffices, since
we have that [TxtSdBc] = [TxtSdCautBc] = [TxtGCautBc] [8] as well
as [TxtGSemConvBc] = [TxtGSemWbBc] = [TxtSdSemWbBc] [7]. By
the latter equality, we immediately get the inclusion [TxtGSemConvBc] ⊆
[TxtSdBc]. For the other direction, let h TxtSdBc-learn L. By Lemma 1,
we may assume h to be target-cautious, non-U-shaped and consistent. We now

2 Note that x and xi may differ.
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provide a learner h′ such that L ⊆ TxtGSemConvBc(h′). To that end, we use
the learner h′ as described in Algorithm 2.

Algorithm 2: The TxtGSemConvBc-learner h′.

Parameter: A Sd-learner h.
Input: A finite sequence σ.
Semantic Output: Wh′(σ) =

⋃
t∈N Et.

Initialization: t′ ← 0, E0 ← content(σ) and, for all t > 0, Et ← ∅.
1 if σ = ε or content(σ−) ⊊ content(σ) then
2 for t = 0 to ∞ do
3 if ∃σ′ ⊊ σ : content(σ) ⊆W t

h′(σ′) then

4 Σ′
t ← {σ′ ⊊ σ | content(σ) ⊆W t

h′(σ′)}
5 Et+1 ← Et ∪

⋃
σ′∈Σ′

t
W t

h′(σ′)

6 else
7 Cσ ← content(σ)

8 Fσ,t′ ←W t′

h(content(σ))

9 if ∀D ⊆ Fσ,t′ :
⋃

D′⊆Fσ,t′
W t′

h(Cσ∪D′) ⊆W t
h(Cσ∪D) then

10 Et+1 ← Et ∪ Fσ,t′

11 t′ ← t′ + 1

12 else
13 Wh′(σ) ←Wh′(σ−)

We discuss the learner h′ obtained from Algorithm 2 with parameter h and
a finite sequence σ as input. First note that the outer if-clause checks whether
the current information σ contains a new datum or is empty. If not, then the
learner outputs just the same as when given σ−. This way, the learner only may
change its mind when a new datum occurs. Otherwise, h′ checks whether, on
any previous sequence σ′ ⊆ σ, it is consistent with the currently given informa-
tion content(σ). If so, the learner only enumerates the same as such hypotheses
(lines 3 to 5). While no such hypothesis is found, h′ does a forward search with
regard to h (lines 6 to 11). Then, h′ only enumerates elements which are wit-
nessed by all visible future hypotheses. This is possible to check, as the learner
h is set-driven.

Note that this is a similar approach as when making TxtGSemConvBc-
learner everywhere semantically conservative [7]. We maintain the monitoring of
the time of enumeration for each element (lines 6 to 11) and checking for previous
consistent hypotheses (lines 3 to 5) to prevent non-conservative behaviour. A
main observation is that for the learner h′ to converge correctly, the initial learner
h need not be semantically conservative. It suffices that h is target-cautious (so
that wrong hypotheses lack elements from the target language which then can be
used for mind-changes) and non-U-shaped (so that we do not “unintentionally”
output a correct guess prematurely).
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We first show that h′ is SemConv on arbitrary text T ∈ Txt. The prob-
lem is that when a previous hypothesis becomes consistent with information
currently given, the learner may have already enumerated incomparable data in
its current hypothesis. This is prevented by closely monitoring the time of enu-
meration, namely by waiting until the enumerated data will certainly not cause
such problems. We prove that h′ is τ(SemConv) formally. Let n < n′ be (the
lexicographically first pair) such that content(T [n′]) ⊆ Wh′(T [n]). We show that
Wh′(T [n]) = Wh′(T [n′]) by separately looking at each inclusion.

⊆: The inclusionWh′(T [n]) ⊆Wh′(T [n′]) follows immediately since by assumption
content(T [n′]) ⊆Wh′(T [n]), meaning that at some point during the enumera-
tion ofWh′(T [n′]) the first if-clause (lines 3 and 5) will find T [n] as a candidate
and then Wh′(T [n′]) will enumerate Wh′(T [n]).

⊇: Assume there exists x ∈ Wh′(T [n′]) \ Wh′(T [n]). Let x be the first such el-
ement enumerated and let tx be the step of enumeration with respect to
h(content(T [n′])), that is, x ∈ W tx

h(content(T [n′])) but x /∈ W tx−1
h(content(T [n′])).

Similarly, let tcontent be the step where content(T [n′]) ⊆ Wh′(T [n]) is wit-
nessed for the first time. Now, by the definition of h′, we have

Wh′(T [n′]) ⊆W tcontent−1
h(content(T [n′])) ∪Wh′(T [n]),

as Wh′(T [n′]) enumerates at most W tcontent−1
h(content(T [n′])) until it sees the consistent

prior hypothesis, namely h′(T [n]). As this happens exactly at step tcontent,
Wh′(T [n′]) enumerates (at most) elements from W tcontent−1

h(content(T [n′])) before it

continues to follow Wh′(T [n]). Now, we have x ∈Wh′(T [n′]) but x /∈Wh′(T [n])

and, therefore, x ∈ W tcontent−1
h(content(T [n′])). Thus, tx < tcontent. In particular, x

is enumerated via the second if-clause (lines 6 to 11). Furthermore, since
Wh′(T [n]) also enumerates content(T [n′]) via the second if-clause (lines 6
to 11), we have that⋃

D′⊆W
tcontent
h(content(T [n]))

W tcontent
h(content(T [n])∪D′) ⊆Wh′(T [n]).

As D′ = content(T [n′]) is a candidate in the big union, we get that

x ∈W tcontent−1
h(content(T [n′])) ⊆

⋃
D′⊆W

tcontent
h(content(T [n]))

W tcontent
h(content(T [n])∪D′) ⊆Wh′(T [n]),

contradicting x /∈Wh′(T [n]). This concludes this part of the proof.

Now that h′ is shown to be semantically conservative, we show that for any
L ∈ L and any T ∈ Txt(L) we have, for n ∈ N,

Wh′(T [n]) ⊆Wh(content(T [n])). (3)
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We show Equation (3) by induction on n. The case n = 0 follows immediately.
Assume Equation (3) holds up to n. Note that, by definition of h′, we have

Wh′(T [n+1]) ⊆
⋃

n′≤n,
content(T [n+1])⊆Wh′(T [n′])

Wh′(T [n′]) ∪Wh(content(T [n+1])). (4)

Let nm be the minimal n′ such that content(T [n + 1]) ⊆ Wh′(T [n′]) (if such nm

exists). By SemConv of h′, for all n′′ with nm ≤ n′′ ≤ n, we have

Wh′(T [nm]) = Wh′(T [n′′]).

Furthermore, for n′′ < nm, no previous guessWh′(T [n′′]) contains content(T [nm]),
as otherwise, by SemConv of h′, if content(T [nm]) ⊆ Wh′(T [n′′]) we obtain
Wh′(T [n′′]) = Wh′(T [nm]) ⊇ content(T [n + 1]), a contradiction to the minimality
of nm. Hence, ⋃

n′≤n,
content(T [n+1])⊆Wh′(T [n′])

Wh′(T [n′]) = Wh′(T [nm]). (5)

In particular, h′ does only a forward search on input T [nm] (lines 6 to 11). As,
by doing so, it eventually witnesses content(T [n+ 1]), we get by definition of h′

that

Wh′(T [nm]) ⊆Wh(content(T [n+1])). (6)

Combining Equations (5) and (6) with Equation (4), we have that Equation (3)
holds for the induction step and, therefore, for all n ∈ N.

We close the proof by showing that h′ TxtGBc-learns L. To that end, let
L ∈ L and T ∈ Txt(L). As h′ is semantically conservative, it suffices to show that
there exists a n such that Wh′(T [n]) = L. We provide such n by case distinction.

1.C.: L is finite. Then there exists n0 with content(T [n0]) = L. As h is consistent
and target-cautious, we have L = Wh(content(T [n0])). By Equation (3), we have
L = Wh(content(T [n0])) ⊇ Wh′(T [n0]) and, by consistency of h′, Wh′(T [n0]) ⊇
content(T [n]) = L. Altogether we have Wh′(T [n0]) = L as required.

2.C.: L is infinite. Let n0 be minimal such that Wh(content(T [n0])) = L. Then,
as h is non-U-shaped, content(T [n0]) is a Bc-locking set for h on L. Let
n1 ≥ n0 be minimal such that

∀i < n0 : content(T [n1]) ̸⊆Wh′(T [i]). (7)

Such n1 exists due to Equation (3) and h being target-cautious, that is,
wrong hypotheses prior to h(content(T [n0])) are either proper subsets of the
target language or incomparable to it. In either case, some elements of the
target language are not contained in these guesses.
Now, we show that Condition (7) actually holds for all i < n1. If n0 = n1,
this is immediately given. Otherwise, note that there exists some i0 < n0
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such that content(T [n1 − 1]) ⊆ Wh′(T [i0]) (by the minimal choice of n1 for
Condition (7)) and thus, for all n with i0 ≤ n ≤ n1−1, Wh′(T [i0]) = Wh′(T [n])

(as h′ is SemConv). In particular, we have

∃i0 < n0 ∀n, n0 ≤ n < n1 : Wh′(T [i0]) = Wh′(T [n]).

As content(T [n1]) ̸⊆Wh′(T [i0]), we have

∀i < n1 : content(T [n1]) ̸⊆Wh′(T [i]). (7′)

Hence, elements enumerated by Wh′(T [n1]) cannot be enumerated by the first
if-clause (lines 3 to 5) but only by the second one (lines 6 to 11). Next, we
show Wh′(T [n1]) = L. As Wh′(T [n1]) ⊆ Wh(content(T [n1])) (see Equation (3))
and content(T [n1]) is a Bc-locking set for h on L, we get Wh′(T [n1]) ⊆ L.
For the other direction, let t′ be the current step of enumeration. Observe
that Condition (7′) implies that Wh′(T [n1]) enumerates elements only via the
second if-clause (see lines 6 to 11). As content(T [n1]) is a Bc-locking set for
h on L, we have, for all D ⊆W t′

h(content(T [n1]))
,⋃

D′⊆W t′
h(content(T [n1]))

W t′

h(content(T [n1])∪D′) ⊆Wh(content(T [n1])∪D) = L.

Thus, at some step t, Et+1 ← W t′

h(content(T [n1]))
and then the enumeration

continues with t′ ← t′+1. In the end we have L ⊆Wh′(T [n1]) and, altogether,
L = Wh′(T [n1]). This concludes the proof. ⊓⊔


