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ABSTRACT
Estimation of Distribution Algorithms (EDAs) work by it-
eratively updating a distribution over the search space with
the help of samples from each iteration. Up to now, theo-
retical analyses of EDAs are scarce and present run time
results for specific EDAs. We propose a new framework for
EDAs that captures the idea of several known optimizers,
including PBIL, UMDA, λ-MMASIB, cGA, and (1, λ)-EA.

Our focus is on analyzing two core features of EDAs: a
balanced EDA is sensitive to signals in the fitness; a stable
EDA remains uncommitted under a biasless fitness function.
We prove that no EDA can be both balanced and stable.

The LeadingOnes function is a prime example where,
at the beginning of the optimization, the fitness function
shows no bias for many bits. Since many well-known EDAs
are balanced and thus not stable, they are not well-suited
to optimize LeadingOnes. We give a stable EDA which
optimizes LeadingOnes within a time of O(n logn).

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

Keywords
Estimation of distribution algorithm; LeadingOnes; the-
ory; run time analysis

1. INTRODUCTION
Estimation of Distribution Algorithms (EDAs, [15]) are

search meta-heuristics that maintain a probability distribu-
tion of the solution space and iteratively update it according
to samples from this distribution. This is in contrast to Evo-
lutionary Algorithms (EAs), which employ an explicit set of
potential solutions, called population, and update this set
with variation operators such as mutation, recombination,
and selection.
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Hauschild and Pelikan [11] give a nice survey of EDAs
where they point out many successful applications of these
algorithms to a wide range of problems, frequently yielding
better results than any other competing algorithms. They
also state advantages of EDAs that give an explanation to
why they perform so well; one of these being reduced memory
requirements of, what they call, incremental EDAs. Such
EDAs only sample a small set of solutions each iteration,
which is discarded afterward, whereas classical EAs always
have to store their entire population. This can lead to drastic
differences in the memory needed and has been shown by,
e.g., Sastry, Goldberg, and Llorà [21], where they compare a
simple genetic algorithm to the Compact Genetic Algorithm
(cGA, [10]), which only samples 2 solutions each iteration.

In this paper, we consider the Boolean domain {0, 1}n
as search space. An arbitrary distribution over {0, 1}n re-
quires storing of 2n different values, which is infeasible.
To counteract this combinatorial explosion, many discrete
EDAs – such as the Population-based Incremental Learn-
ing algorithm (PBIL, [2]), the Univariate Marginal Distri-
bution Algorithm (UMDA, [16]), and the cGA – assume in-
dependence of the different bit positions, thus reducing the
memory space needed for one distribution down to n values.
Hauschild and Pelikan [11] call these kind of EDAs univari-
ate. Mathematically speaking, such EDAs maintain a Pois-
son binomial distribution, i.e., a frequency vector p ∈ [0, 1]n,
which holds the probabilities to sample a 1 at each bit posi-
tion (instead of an arbitrary distribution over {0, 1}n).

Because of their nice properties, many of the few results
from run time analysis on EDAs in the Boolean domain
have been made using univariate incremental EDAs as their
model [3, 5, 7, 9, 13, 17]. However, most of these results focus
only on one specific algorithm and not on basic properties of
EDAs that are sufficient or necessary for optimization. Some
results do not even mention that the algorithm analyzed is,
in fact, an EDA. We therefore propose a general framework
for univariate incremental EDAs, called the n-Bernoulli-λ-
EDA, which subsumes many EDAs that have been analyzed.

A similar approach has already been done by Ollivier,
Arnold, Auger, and Hansen by proposing the Information-
Geometric Optimization method (IGO, [18]). IGO is a very
general method defined for arbitrary search spaces, maxi-
mizing invariance properties of said space. Applying the
IGO method to the Boolean domain results in a more gen-
eral PBIL with weights, which is capable of subsuming all of
the aforementioned EDAs. It does however not encapsulate
all univariate incremental EDAs.
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Another framework for evolutionary processes in general
was introduced by Paixão et al. [19]. This very general
framework subsumes all univariate incremental EDAs; how-
ever, due to its generality, it does not specifically focus on
EDAs and is not well-suited for their analysis.

Other approaches have been examined by Shapiro [23],
who analyzed EDAs that use a maximum-likelihood update,
and by Corus, Dang, Eremeev, and Lehre [4], who proposed
a class of EDAs that update their distributions only with
information from the current samples, not with information
from the current distribution. Again, these approaches do
not capture all univariate incremental EDAs.

Our framework – the n-Bernoulli-λ-EDA – has the ben-
efit of being very general with respect to EDAs of inter-
est over the Boolean domain while being easy to analyze
and even showing connections between existing EDAs. We
hope that this framework leads to a more general analysis
of EDAs, focusing on the properties needed to succeed in
optimization instead of analyzing specific algorithms.

In Section 2 we introduce the framework and in Section 3
we show how the well-known EDAs PBIL, UMDA, cGA,
λ-MMASIB [24], and even (1, λ)-EA [22] fit very well into
the framework.

Furthermore, we classify n-Bernoulli-λ-EDAs depending
on whether they are locally updating, meaning that they de-
cide, for each position and depending on the samples and
their fitness, whether to increase or decrease the correspond-
ing frequency (or to stay at the same frequency). The update
is then performed according to a fixed update rule; in fact,
this update rule is at the core of the EDA and is easily de-
picted as a graph. Figure 1 gives an overview of the graphs
for all locally updating n-Bernoulli-λ-EDAs we discuss.

Section 4 introduces the two important terms balanced
and stable. Both terms come into play when looking at an
n-Bernoulli-λ-EDA that does not get any information for
a certain bit position i. In other words, the fitness of a
bit string does not depend on whether it has a 1 or a 0
in position i. Thus, there is no preference for whether to
set bit i to 1 or to 0, so we might want any EDA to stay
undecided (with a frequency of 1/2). We call an n-Bernoulli-
λ-EDA stable if the frequency pi is concentrated around 1/2
(in the limit). Furthermore, in such a scenario we do not
want the frequency pi to change (in expectation); we call
this property of an n-Bernoulli-λ-EDA balanced. With these
definitions, we want an n-Bernoulli-λ-EDA to be balanced
and stable at the same time. However, as the main result of
this paper, we prove that this is impossible for a vast class of
n-Bernoulli-λ-EDAs by showing that frequencies of balanced
n-Bernoulli-λ-EDAs that do not get any information tend to
drift to their borders 0 or 1 (see Theorem 10).

All our example EDAs are balanced and not stable. In
Section 5 we show how to easily adjust the cGA to a
stable variant: the scGA (which is now not balanced).
A test function frequently considered in the literature is
LeadingOnes [5, 8]. It returns the number of leading 1s in
a bit string, starting from the left. This problem is equiva-
lent to finding a hidden permutation, and many traditional
search-heuristics need time in Θ

(
n2
)
, as discussed by Af-

shani et al. [1]. Because of this problem structure, for a
long time there is no relevant information regarding bits
at the very end of the bit string and a stable n-Bernoulli-λ-
EDA would be preferable. We show that the scGA optimizes

LeadingOnes in O(n logn), which is close to the best pos-
sible run time of Θ(n log logn) [1].

2. PRELIMINARIES
We consider the optimization of pseudo-Boolean func-

tions, i.e., functions f : {0, 1}n → R, which we call fitness
functions.

Throughout the whole paper let n denote the dimension
of the solution space {0, 1}n. For any bit string x ∈ {0, 1}n,
we call f(x) the fitness of x, and we denote the i-th bit of
x by xi

(
i ∈ {1, . . . , n}

)
.

2.1 Our EDA Framework
We present the n-Bernoulli-λ-EDA, an EDA inspired by

evolutionary algorithms, that keeps a Poisson binomial dis-
tribution, i.e., the n-fold product of a Bernoulli distribution,
and updates this distribution by sampling λ ∈ N+ offspring.

At any point in time t, the state of the algorithm is com-
pletely determined by its frequency vector p(t) ∈ [0, 1]n,
whose components we call frequencies. That means that
the probability to sample any individual x ∈ {0, 1}n is as
follows (let i range from 1 to n if not stated otherwise):

∀i : Pr(xi = 1) = pi ∧ Pr(xi = 0) = 1− pi .

The initial frequency vector is given by p(0) = (0.5)ni=1. In
each iteration, the algorithm samples λ offspring and up-
dates each frequency according to its update scheme until
an optimal solution is found.

The update scheme of an n-Bernoulli-λ-EDA is a function

ϕ : [0, 1]n ×
(
{0, 1}n ×R

)λ → [0, 1]n that takes the current

frequency vector p(t), an offspring population D of λ indivi-
duals sampled according to p(t), and their respective fitness
and yields the frequencies of p(t+1) for the following itera-
tion. Thus, determining the update scheme ϕ determines
the n-Bernoulli-λ-EDA as seen in Algorithm 1.

We call an update scheme local if there are two functions,

• move:
(
{0, 1} ×R

)λ → {up, stay, down} and

• set : [0, 1]→ [0, 1] ,

such that, for all i and for |D| = λ, abbreviating vi =
move

((
xi, f(x)

)
x∈D

)
,

ϕ
(
p,
(
x, f(x)

)
x∈D

)
i

=


set(pi) , if vi = up ;

pi , if vi = stay ;

1− set(1− pi) , if vi = down .

This means that the update of each frequency pi is inde-
pendent from the others, making only use of the value of
pi alone for an update. Thus, each update can only use
local information. Note that increase and decrease are cen-
trally symmetric around (1/2, 1/2), i.e., an increase of pi
is the same as a decrease of 1 − pi. We also call such an
n-Bernoulli-λ-EDA locally updating.

We say that an n-Bernoulli-λ-EDA is ρ-bounded if, for
all i, |pi − ϕ(p, ·)i| ≤ ρ.

If, for all t ∈ N, p(t) ∈ [b, 1− b]n, with b ∈ [0, 1/2), we say
that the n-Bernoulli-λ-EDA has a margin of b, and we call
b and 1− b the (lower and upper) borders. If b = 0, we say
that the margin is trivial. A nontrivial margin prevents the
algorithm from getting trapped in a bit position.
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The definition of the n-Bernoulli-λ-EDA does not ex-
plicitly make use of mutation since the framework can al-
ready handle mutation implicitly. A simple way to do so is
the following, assuming independent mutation per bit. Let
mutate : [0, 1] → [0, 1] denote a mutation operator, and let
pm denote the probability that a mutation takes place. Then
mutate∗: pi 7→ pm · mutate(pi) + (1 − pm)pi describes the
expectation of pi after one step that may involve mutation.
Composing mutate∗ with an update scheme (component-
wise) results in an n-Bernoulli-λ-EDA that makes use of
mutation.

In general, by making use of random variables in the n-
Bernoulli-λ-EDA’s update scheme, even more sophisticated
mutation operators are possible.

Algorithm 1: n-Bernoulli-λ-EDA with a given update
scheme ϕ

1 t← 0;

2 foreach i ∈ {1, . . . , n} do p
(t)
i ← 1

2
;

3 repeat
4 D ← ∅;
5 for j ∈ {1, . . . , λ} do

6 x← offspring sampled with respect to p(t);
7 D ← D ∪ {x};
8 p(t+1) ← ϕ

(
p(t),

(
x, f(x)

)
x∈D

)
;

9 t← t+ 1;

10 until optimum in D;

2.2 LeadingOnes and Tools
Our fitness function of interest is the well-known

LeadingOnes function, which counts the number of con-
secutive 1s in a bit string, starting from the left. More
formally, LeadingOnes : {0, 1}n → {0, . . . , n} and, for all

x ∈ {0, 1}n, LeadingOnes(x) =
∑n
i=1

∏i
j=1 xj . We want

to maximize LeadingOnes, hence the unique global opti-
mum is the all-ones string 1n.

We are also making use of drift theory, i.e., we can give
expected hitting times and concentration bounds on Marko-
vian processes if there is a bias, called the drift, toward a
certain direction.

Theorem 1 (Multiplicative Drift [6]). Let (Xt)t∈N be ran-
dom variables over R+

0 , each with finite expectation, and let
T = min{t : Xt < 1}. Suppose there exists an ε > 0 such
that, for all t, E(Xt −Xt+1 |Xt, t < T ) ≥ εXt.

Then E(T |X0 ) ≤ 1+lnX0
ε

.

Theorem 2 (Negative Drift [14]). Let (Xt)t∈N be random
variables over R, each with finite expectation, let b > 0,
and let T = min{t : Xt ≥ b |X0 ≤ 0}. Suppose there
are ρ, 0 < ρ < b and ε < 0 such that, for all t, (1.)
E(Xt+1 −Xt |Xt, t < T ) ≤ ε, and (2.) |Xt+1 −Xt| < ρ.

Then, for all t ∈ N, Pr(T ≤ t) ≤ t exp
(
− b|ε|

16ρ2

)
.

We say that an event E occurs with high probability if, for
a constant c > 0, Pr

(
E
)

= O
(
n−c

)
.

3. CLASSIFYING EXISTING EDAs
In this section we show how existing EDAs are subsumed

by the n-Bernoulli-λ-EDA. To simplify the notation of all

update schemes we present, we suppose that D is always
ordered by fitness such that x(k) is the k-th best individual
(ties are broken such that each index is unique). This implies

that x(1) is a best individual.
Every n-Bernoulli-λ-EDA can be defined to have a non-

trivial margin b by setting the respective frequency to the
border value (whenever the border is crossed), just as in-
troduced by Stützle and Hoos [24]. Since the choice of b
is arbitrary, we only mention the margin for the following
algorithms if they trivially follow from the update scheme.
If the scheme allows for frequencies up to 0 or 1, we do not
enforce a margin. We further assume that, if an update cre-
ates frequencies outside of the interval [0, 1], said frequency
is set to either 0 or 1, whichever is closer.

PBIL. The Population-based Incremental Learning algo-
rithm (PBIL) was introduced by Baluja [2] and has been,
for example, theoretically analyzed by Hohfeld and Rudolph
[12].

It is a ρ-bounded n-Bernoulli-λ-EDA with parameters ρ,
the so-called learning rate, and µ, the so-called population
size, with µ ≤ λ. The update scheme is, for all i,

ϕ
(
p,
(
x, f(x)

)
x∈D

)
i

= (1− ρ)pi + ρ

∑µ
k=1 x

(k)
i

µ
.

This algorithm yields other well-known algorithms for some
extreme cases of µ or ρ, as we will show next.

UMDA. The Univariate Marginal Distribution Algorithm
(UMDA) was introduced by Mühlenbein and Paass [16].
Some theoretical analyses have been conducted by Chen
et al. [3] and Dang and Lehre [5].

The UMDA is an n-Bernoulli-λ-EDA with parameter µ,
the so-called population size, with µ ≤ λ. The update
scheme is, for all i,

ϕ
(
p,
(
x, f(x)

)
x∈D

)
i

=

∑µ
k=1 x

(k)
i

µ
.

This is a special case of PBIL for ρ = 1. The update does
not make any use of the frequencies anymore and sets them
to the relative frequency of the µ best individuals.

λ-MMASIB/λ-ASIB. The MAX-MIN Ant System algo-
rithm (MMAS) was introduced by Stützle and Hoos [24]. We
consider a version using λ ants with iteration-best update
(IB), as introduced and analyzed by Neumann et al. [17].
It is a locally updating, ρ-bounded n-Bernoulli-λ-EDA with
a nontrivial margin, where the parameter ρ is the so-called
evaporation factor.

The MAX-MIN part of the name indicates a nontrivial
margin but the update scheme does not; we refer to the
algorithm with trivial margin as λ-ASIB. Its update scheme
is the same as that of PBIL for µ = 1; in this case, the update
scheme makes use of only one bit (one of a best individual)
instead of arbitrarily many, which gives that λ-ASIB is a
locally updating n-Bernoulli-λ-EDA whereas PBIL is not.

The update schemes of λ-MMASIB and λ-ASIB and the
two following algorithms can be seen in Table 1.

(1, λ)-EA. The (1, λ)-EA was introduced by Schwefel [22]
and has been analyzed by Rowe and Sudholt [20].

It is a locally updating n-Bernoulli-λ-EDA with margin
1/n, where λ is the offspring population size, just as in the
definition of the n-Bernoulli-λ-EDA. However, the update
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Algorithm move set

λ-ASIB

move
((
xi, f(x)

)
x∈D

)
=

{
up if x

(1)
i = 1 ,

down if x
(1)
i = 0 .

set(pi) = (1−ρ)pi+ρ

(1, λ)-EA set(pi) = 1− 1
n

cGA move
((
xi, f(x)

)
x∈D

)
=


up if x

(1)
i > x

(2)
i ,

down if x
(1)
i < x

(2)
i ,

stay if x
(1)
i = x

(2)
i .

set(pi) = pi + ρ

Table 1: The three local update schemes in comparison. λ-ASIB and (1, λ)-EA only differ in the definition of
their set function.

0 0.5 1

0.5

1

b

1− b

λ-MMASIB

0 0.5 1

0.5

1

ρ

λ-ASIB

0 0.5 1

0.5

1
1− 1

n

(1, λ)-EA
0 0.5 1

0.5

1

ρ

1− ρ

cGA

Figure 1: The set functions for all of the mentioned locally updating EDAs in comparison. The dashed line
always represents the identity, and horizontal lines intersecting with the plot’s borders represent margins.

does not make use of the frequencies at all. That is why the
(1, λ)-EA always has a nontrivial margin.

Note that the update schemes of the (1, λ)-EA and
λ-ASIB, seen in Table 1, only differ in how their set func-
tion is defined. This similarity has also been noted and even
analyzed by Neumann et al. [17]. In the n-Bernoulli-λ-EDA
framework, this close connection can easily be seen.

cGA. The Compact Genetic Algorithm (cGA) was intro-
duced by Harik et al. [10] and has been analyzed, e.g.,
in [7, 9].

It is a locally updating, ρ-bounded n-Bernoulli-2-EDA
with parameter ρ, where 1/ρ is the so-called population size,
normally denoted as K = 1/ρ. We, however, denote its pa-
rameter with ρ to make this notation more consistent with
the other algorithms’ notations.

The cGA’s update scheme can be seen in Table 1. It is
important that the cGA is able to make no update at all if,
for an index i, the two sampled bits are the same. In the
other two cases it shifts pi toward the direction of the fitter
individual’s bit value.

The set functions. An overview of the different set func-
tions can be seen in Figure 1. It shows, for example, how
a margin changes the update by cutting off values that are
too low or too high, as seen in the plots for λ-MMASIB and
λ-ASIB. Moreover, one easily sees how the update behaves
by looking at the distance to the identity function. This
distance depicts the change made by a single update. Once
the identity is intersected or a border is hit, the respective
frequency is stuck.

A set function on its own does not fully determine an n-
Bernoulli-λ-EDA because a move function is missing. How-

ever, the set function denotes the behavior of an update,
whereas the move function denotes the probability of an up-
date.

Extensions. Note that our definition of an n-Bernoulli-λ-
EDA does not cover storing the best-so-far solution but can
easily be modified to do so. For such an n-Bernoulli-(1+λ)-
EDA, one only has to adjust the update scheme to take λ+1
pairs of bit strings and fitnesses instead of λ.

4. BALANCED VS. STABLE
EDAs succeed in optimizing a fitness function f by notic-

ing a bias in their samples, introduced by f , and then updat-
ing their distribution accordingly. However, it is interesting
to see what happens if there is no bias at a certain position.

Definition 3. Given an n-Bernoulli-λ-EDA A and a fitness
function f , we say that a position i of A is f -independent
if, for all x,y ∈ {0, 1}n such that x and y only differ in
position i, f(x) = f(y).

Having an f -independent position i, we define the follow-
ing two types of behavior that pi might express.

Definition 4. An n-Bernoulli-λ-EDA A is balanced if, for
all f-independent positions i of A and for all t ∈ N, the

frequency p
(t)
i does not change, in expectation, after one up-

date, i.e., E
(
p
(t+1)
i |p(t)

i

)
= p

(t)
i .

Definition 5. An n-Bernoulli-λ-EDA A is stable if, for all
f-independent positions i of A, the limit distribution of fre-

quency p
(t)
i , as t→∞, exists and is symmetric around 1/2,

taking its maximum at 1/2, and is strictly monotonically
decreasing from 1/2 toward the borders.
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An f -independent position is completely meaningless
when optimizing f and could be ignored. This definition
is rather strict and can be relaxed such that the term may
also be applied when a position is f -independent with re-
spect to all individuals x of a current offspring population D
and not all x ∈ {0, 1}n. This happens, for example, in the
case of the LeadingOnes function: early in the optimiza-
tion process, bits towards the end of the bit string will be
LeadingOnes-independent for all practical purposes, but
will become meaningful later in the optimization.

Intuitively, it would be sensible if the frequency of an f -
independent position would not stray too far from its last
meaningful value. We will, however, show that this is not
the case for a large class of n-Bernoulli-λ-EDAs.

We start off by giving examples of some n-Bernoulli-λ-
EDAs that are balanced and some that are not.

Theorem 6. PBIL, UMDA, λ-ASIB, and the cGA are bal-
anced, the (1, λ)-EA is not.

Proof. Let position i be f -independent, and let p′i be the

value of pi after an update. Let x(k) denote the k-th best
individual in the offspring population D of any of the n-
Bernoulli-λ-EDAs listed below, as defined in the beginning
of Section 3.

Since position i is f -independent, x
(k)
i is 1 with probabil-

ity pi and 0 with probability 1− pi.
PBIL:

E
(
p′i |pi

)
= (1− ρ)pi + ρ

∑µ
k=1 E

(
x

(k)
i

)
µ

= (1− ρ)pi + ρ

∑µ
k=1 pi
µ

= (1− ρ)pi + ρpi = pi .

UMDA/λ-ASIB: Both algorithms are balanced since
they are special cases of PBIL.

cGA:

E
(
p′i |pi

)
= (pi − ρ)pi(1− pi) + pi

(
1− 2pi(1− pi)

)
+

(pi + ρ)pi(1− pi)
= 2p2

i (1− pi) + pi − 2p2
i (1− pi) = pi .

(1, λ)-EA:

E
(
p′i |pi

)
=

1

n
(1− pi) +

(
1− 1

n

)
pi

=
1

n
+

(
1− 2

n

)
pi

if pi 6= 1
2

6= pi .

Margins. The property of an n-Bernoulli-λ-EDA being bal-
anced highly depends on the algorithm’s margin. If its set
function does not asymptotically go toward the identity as
the frequency goes toward the upper border, there exist fre-
quencies such that the expected value of said frequencies
after an update is closer to 1/2 than to the upper border
because the increase gets cut off by the margin. If such fre-
quencies can be reached, the respective n-Bernoulli-λ-EDA
is not balanced.

Recall Figure 1. The set function of λ-ASIB goes toward
the identity as the frequency goes toward 1 (the upper bor-
der). Even if the set function were scaled such that its do-
main were [b, 1 − b] for a margin b ∈ (0, 1/2), in the limit,
a frequency going toward 1 − b would reach the identity.

Thus, even scaled variants of λ-ASIB’s set function result
in balanced n-Bernoulli-λ-EDAs. This does not hold for the
λ-MMASIB, where an update close to the upper border 1−b
results in the expected new frequency being closer to 1/2 be-
cause the increase gets cut off. This happens for the cGA
as well when looking at frequencies in (1 − ρ, 1). However,
since no frequency can ever take these values, they are not
considered.

All in all, if one conditions on the frequencies being far
(depending on the specific set function) away from the bor-
ders, the corresponding n-Bernoulli-λ-EDAs can be viewed
as balanced. For example, if we condition for the (1, λ)-EA
on not having reached the borders yet, i.e., pi = 1/2, it turns
out to be balanced as well, since 1/n+ (1− 2/n)/2 = 1/2.

We now show that λ-ASIB, (1, λ)-EA, and cGA are not
stable. Both λ-ASIB and cGA are even horribly unstable in
the sense that their variance goes exponentially fast to the
maximum value of 1/4 (Corollaries 8 and 9)! That is, the
standard deviation approaches 1/2, which is maximal, since
all frequencies start at 1/2.

Showing that the (1, λ)-EA is unstable is trivial as, in the
limit, the frequency of an f -independent position can only
take the values 1/n and 1 − 1/n. The proofs for λ-ASIB

and cGA follow the same pattern, which we formulate as
the following lemma.

Lemma 7. Given an f-independent position i of a bal-
anced n-Bernoulli-λ-EDA A, assume that, for all t ∈ N,

Var
(
p
(t+1)
i | p(t)

i

)
= −a

(
p
(t)
i

)2
+ bp

(t)
i + c with 0 < a < 1,

and let q = − 1
4
a+ 1

2
b+ c.

Then, for all t ∈ N, Var
(
p
(t)
i

)
= q

a
− q

a
(1− a)t.

Proof. We prove Lemma 7 by induction. For the base case

t = 0, Var
(
p
(0)
i

)
= q/a− q/a = 0 follows from the initializa-

tion p
(0)
i = 1/2.

For the induction step, we make use of the law of total
variance, i.e.,

Var
(
p
(t+1)
i

)
= E

(
Var
(
p
(t+1)
i

∣∣∣p(t)
i

))
+

Var
(

E
(
p
(t+1)
i

∣∣∣p(t)
i

))
.

Since A is balanced, we have E
(
p
(t+1)
i |p(t)

i

)
= p

(t)
i and thus

Var
(

E
(
p
(t+1)
i

∣∣∣p(t)
i

))
= Var

(
p
(t)
i

)
.

For the following transformations please note that because

of
(
p
(t)
i − 1/2

)2
=
(
p
(t)
i

)2 − p(t)
i + 1/4 we have p

(t)
i

(
1 −

p
(t)
i

)
= −

(
p
(t)
i − 1/2

)2
+ 1/4. Further note that E

(
p
(t)
i

)
=

1/2 because A is balanced and p
(0)
i = 1/2.

Making use of our assumption regarding Var
(
p
(t+1)
i |p(t)

i

)
and the induction hypothesis, we get

Var
(
p
(t+1)
i

)
= E

(
−a
(
p
(t)
i

)2
+ bp(t) + c

)
+ Var

(
p
(t)
i

)
= aE

(
p
(t)
i

(
1− p(t)

i

))
+ (b− a)E

(
p
(t)
i

)
+ c+ Var

(
p
(t)
i

)
= aE

(
−
(
p
(t)
i −

1

2

)2
+

1

4

)
+ Var

(
p
(t)
i

)
− a

2
+
b

2
+ c

= (1− a)Var
(
p
(t)
i

)
− a

4
+
b

2
+ c

= (1− a)
( q
a
− q

a
(1− a)t

)
+ q
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=
q

a
− q

a
(1− a)t − q + q(1− a)t + q

=
q

a
− q

a

(
(1− a)t − a(1− a)t

)
=
q

a
− q

a
(1− a)t+1 .

Lemma 7 is interesting because it says that the variance
of an f -independent position’s frequency adhering to the re-
strictions of the theorem is q/a in the limit. Thus, if it turns
out to be 1/4, such a frequency is expected to have reached
one of the borders 0 or 1 in the limit, i.e., it would drift away
from 1/2 toward the borders, although the frequency does
not move in expectation. That is the same behavior as with
the gambler’s ruin.

We now show that this is exactly what happens for λ-ASIB

and the cGA.

Corollary 8. Let i be an f-independent position of λ-ASIB.

Then, for all t ∈ N, Var
(
p
(t)
i

)
= 1

4
− (1−ρ2)t

4
.

Proof. We know from Theorem 6 that λ-ASIB is balanced.
Since we want to use Lemma 7, we have to calculate the

variance of p
(t+1)
i conditioned on p

(t)
i .

Var
(
p
(t+1)
i

∣∣∣p(t)
i

)
= E

((
p
(t+1)
i − E

(
p
(t+1)
i

∣∣∣p(t)
i

))2 ∣∣∣p(t)
i

)
= E

((
p
(t+1)
i − p(t)

i

)2 ∣∣∣p(t)
i

)
,

since λ-ASIB is balanced. To enhance the readability, let

p = p
(t)
i .

Var
(
p
(t+1)
i

∣∣∣p(t)
i

)
= E

((
p
(t+1)
i − p(t)

i

)2 ∣∣∣p(t)
i

)
=
(
(1− ρ)p+ ρ− p

)2· p+
(
(1− ρ)p− p

)2· (1− p)
= ρ2(1− p)2p+ ρ2p2(1− p) = ρ2p(1− p)(1− p+ p)

= −ρ2p2 + ρ2p ,

which is in the form as we need it for Lemma 7. Applying
the lemma with a = ρ2, b = ρ2, and c = 0 finishes the
proof.

For the cGA the result looks nearly identically, the differ-
ence being a factor of 2 in a term in the numerator.

Corollary 9. Let i be an f-independent position of the cGA.

Then, for all t ∈ N, Var
(
p
(t)
i

)
= 1

4
− (1−2ρ2)t

4
.

Proof. This proof works the same way as the one before. We
also use the same notation.

Var
(
p
(t+1)
i

∣∣∣p(t)
i

)
= E

((
p
(t+1)
i − p(t)

i

)2 ∣∣∣p(t)
i

)
= (p+ ρ− p)2· p(1− p) + (p− p)2·

(
1− 2p(1− p)

)
+

(p− ρ− p)2· p(1− p)
= 2ρ2p(1− p) = −2ρ2p2 + 2ρ2p .

Applying Lemma 7 with a = 2ρ2, b = 2ρ2, and c = 0 yields,
again, the result.

Seeing the results for λ-ASIB and the cGA, it would be
interesting to know whether all f -independent positions of
balanced n-Bernoulli-λ-EDAs with a trivial margin behave
in the same way, that is, their respective frequency has a
variance of 1/4 in the limit.

We can answer this question for a big class of balanced
n-Bernoulli-λ-EDAs with a trivial margin.

Theorem 10. Let i be an f-independent position of a bal-
anced n-Bernoulli-λ-EDA A with a trivial margin and 0 and
1 being the only fixed points of its update scheme. Assume

that, for all t ∈ N, Var
(
p
(t+1)
i | p(t)

i

)
= −a

(
p
(t)
i

)2
+bp

(t)
i +c,

with 0 < a < 1. Then Var
(
p
(t+1)
i | p(t)

i

)
= ap

(t)
i

(
1 − p(t)

i

)
,

and hence limt→∞Var
(
p
(t)
i

)
= 1

4
.

Proof. Let B denote the event p
(t+1)
i < p

(t)
i , let C denote

the event p
(t+1)
i > p

(t)
i , and let ε = p

(t+1)
i − p(t)

i . Since A is
balanced, we have∣∣∣E(ε ∣∣∣p(t)

i , B
)∣∣∣Pr(B) =

∣∣∣E(ε ∣∣∣p(t)
i , C

)∣∣∣Pr(C) .

Looking at a decreasing sequence of frequencies going toward

the lower border 0, i.e., for all t ∈ N, p
(t+1)
i < p

(t)
i , we see

that the left side of the equation goes toward 0. Hence, the
right must too. That means that the conditional variance for
such a sequence must be 0 in the limit. Using our assumption
of this variance as a quadratic function, we see that c = 0.

We now argue the same way as above, but we use an in-
creasing sequence of frequencies. Thus, for these frequencies
approaching 1, the conditioned variance is again 0. Solving
the quadratic equation, with c = 0, for a, we get a = b,

which results in Var
(
p
(t+1)
i | p(t)

i

)
= ap

(t)
i

(
1− p(t)

i

)
.

Applying now Lemma 7 with a = b and c = 0 yields the
limit variance of 1/4.

Of course Theorem 10 only tells us the variance of an f -
independent frequency in the limit, whereas Corollaries 8
and 9 additionally give a rate of convergence for λ-ASIB and
cGA, respectively.

Looking at the (1 − cρ2)t term for both algorithms, we

can bound (1− cρ2)t ≤ e−2cρ2t and, thus, the variance. As-
suming t = ω

(
1/ρ2

)
, lets the exponential term go toward 0,

hence, after that many steps, an f -independent pi is arbi-
trarily close to the borders 0 or 1.

Since λ-ASIB cannot reach the borders within finite time,
being close to the borders just means that it takes a long
time to get away from them. For the cGA, however, it means
that an f -independent position’s frequency (in the relaxed
sense) could be stuck on either 0 or 1, making it impossible
to change this bit position, and thus optimization is likely
to fail.

5. SOLVING LeadingOnes EFFICIENTLY
Considering f -independent positions is of particular in-

terest when analyzing an n-Bernoulli-λ-EDA optimizing
LeadingOnes. If the maximum number of leading 1s
over all individuals in D is j, all positions i > j + 1 are
LeadingOnes-independent (in a relaxed sense) in that it-
eration because the respective bits xi of each individual in
D do not contribute to the fitness.

We now look at the cGA optimizing LeadingOnes. We
call positions j with pj = 1 solved and all other positions
unsolved. The cGA can easily solve the leftmost (first) un-
solved position j because an individual sampled with a 1
at position j always has a higher fitness than an individual
having a 0. So pj cannot decrease, whereas the frequencies
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of all the other unsolved positions can. We say that an al-
gorithm efficiently optimizes LeadingOnes if the expected
run time of an algorithm is in o

(
n2
)
.

We first look at the expected time needed for the first
unsolved position to be solved, assuming its frequency is
not too low.

Lemma 11. Consider the cGA optimizing LeadingOnes
and that i is the first unsolved position with pi being c =
Ω(1). pi then reaches 1 within an expected number of
O
(
ρ−1 log ρ−1

)
steps.

Proof. Since i is the first unsolved position, pi cannot de-
crease and the probability of making an increase is 2pi(1−
pi); else it does not move.

We look at the drift of the potential Xt = 1−pi, i.e., how
far pi is away from the goal 1. The drift is thus

E(Xt −Xt+1 |Xt ) = 2pi(1− pi)ρ = 2(1−Xt)Xtρ ≥ Xtρ .

Because we look at the first hitting time T of pi going below
ρ, we have to scale the space by 1/ρ. Note that this does
not change the relative drift. The initial potential X0 is thus
(1− c)/ρ = O

(
ρ−1

)
, and by Theorem 1 we get

E(T |X0 ) ≤ 1

ρ

(
1 + ln

1− c
ρ

)
= O

(
1

ρ
log

1

ρ

)
.

Now that we took a closer look at the cGA, we want to
give a general result for optimizing LeadingOnes with an
n-Bernoulli-λ-EDA.

Theorem 12. Consider an n-Bernoulli-λ-EDA with a tri-
vial margin optimizing LeadingOnes. Let q be a polynomial
and let 0 < ` < 1/2 be a real possibly dependent on n.

If, for each unsolved position i, the frequency pi drops be-
low ` within O

(
nq(n)

)
rounds only with probability at most

n−(ε+1) for any constant ε > 0, and if, for each first un-
solved position j, pj ≥ ` reaches 1 within O

(
q(n)

)
rounds

in expectation, then, with probability at least 1 − n−ε, the
algorithm succeeds after an expected time of O

(
nq(n)

)
.

Proof. First, since each frequency only drops below ` within
O
(
nq(n)

)
rounds with probability at most n−(ε+1), at least

one of the n frequencies does so during the same number of
rounds with probability at most n−ε, by union bound. Thus,
with probability at least 1 − n−ε, all frequencies will be at
least at ` for O

(
nq(n)

)
rounds.

By induction and linearity of expectation, all frequencies
reach 1 within an expected time of O

(
nq(n)

)
.

Theorem 12 shows us that an n-Bernoulli-λ-EDA can op-
timize LeadingOnes in O(n logn) if the time needed for
each frequency to reach 1 is in O(logn), and if the frequen-
cies of yet unsolved positions do not drop too low with high
probability.

Because the cGA is not stable, it is unlikely to solve
LeadingOnes efficiently. We hence propose to change the
set function of the cGA such that the algorithm becomes
stable and such that each first unsolved position’s frequency
reaches 1 within O(log n) rounds. We call this variant scGA
for stable cGA with parameters a and d.

set(pi) =


pi + ρ+ a , if pi < 1/2 ;

pi + ρ , if 1/2 ≤ pi < d ;

1 , else.

a is a bias that makes an f -independent pi concentrate
around 1/2. It does so because the update toward 1/2 will
always be larger by a than the update to a border.

The parameter d helps in reaching 1 or 0 faster since it
sets a pi directly to that value once d or 1 − d is reached.
We do so, because the scGA is stable, hence, it is unlikely
that 1 − d is reached accidentally, which would imply that
pi wrongly fixated to 0.

If d = Θ(1) ∈ (1/2, 1), we can re-use the proof of
Lemma 11 and see that, for the scGA, for each first unsolved
position i, pi = Ω(1) reaches 1 in O

(
ρ−1

)
steps because we

have to scale the search space only by the constant 1/(1−d).
Note that a does not influence the proof.

We now show that frequencies of f -independent positions
of the scGA, with certain parameters a and d, concentrate
around 1/2.

Lemma 13. Consider an f-independent position i of the
scGA with d2(1 − d)a/(ρ + a)2 ≥ lnn16c, for c = Θ(1),

ρ + a = o(1), and d = Θ(1) ∈ (1/2, 1). After nc
′
, c′ < c,

rounds of the algorithm, pi will reach either d or 1− d only

with probability at most 2nc
′−c.

Proof. We focus on pi ∈ [1/2, 1] and show that it reaches d
within any polynomial number of rounds only with polyno-
mially low probability. Because the scGA is locally updat-
ing, the argumentation for pi ∈ [0, 1/2] follows analogously.

This proof uses Theorem 2. Hence, we are interested in the
drift of pi. Therefore, let p′i denote pi after an update. Since
we want to show that d is only reached with low probability,
we condition on the event that pi < d− ρ without denoting
this explicitly.

E
(
p′i − pi |pi

)
= (pi + ρ− pi)pi(1− pi) +

(pi − pi)
(
1− 2pi(1− pi)

)
+

(pi − ρ− a− pi)pi(1− pi)
= ρpi(1− pi)− (ρ+ a)pi(1− pi)
= −api(1− pi) ≤ −d(1− d)a .

Since we have |p′i − pi| ≤ ρ + a = o(1) < Θ(1) = d, we
can now use Theorem 2 to bound the hitting time T of pi
reaching d within t steps.

Pr(T ≤ t) ≤ te−
d|−d(1−d)a|

16(ρ+a)2 ≤ te−
d2(1−d)a
16(ρ+a)2 ≤ te−c lnn =

t

nc
.

Hence, if t ≤ nc
′
, the probability of pi reaching d for any

d = Θ(1) ∈ (1/2, 1) within t steps is at most nc
′−c.

We can now conclude that the scGA is able to optimize
LeadingOnes in O(n logn) as we show in the following
corollary.

Corollary 14. With probability polynomially close to 1,
the scGA with ρ = Θ(1/ logn), a = O(ρ) > 0, and
d = Θ(1) ∈ (1/2, 1) optimizes LeadingOnes in O(n logn)
in expectation.

Proof. We want to use Theorem 12, so we make sure to fulfill
the requirements.

As discussed beforehand, since d is a constant, the ex-
pected time needed for each first unsolved position’s fre-
quency, starting from a constant value, to reach 1 is
in O

(
ρ−1

)
, which is in Θ(logn) since we assume ρ =

Θ(1/ logn).
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We then use Lemma 13. The scGA has no LeadingOnes-
independent positions, but we pessimistically assume each
unsolved position except the first to be LeadingOnes-
independent. We can do so because the frequency of an un-
solved position contributing to the fitness cannot decrease.
So the probability from Lemma 13 of such a frequency not
reaching 1− d is an upper bound for the actual probability.
We now apply the lemma.
ρ+ a = o(1) holds by assumption and so does d = Θ(1) ∈

(1/2, 1). Because a = O(ρ), we get d2(1 − d)a/(ρ + a)2 =

Ω
(
ρ−1

)
≥ lnn16·(2+2ε), ε = Θ(1), for sufficiently large val-

ues of ρ and a. Therefore the probability of each unsolved
position’s frequency to reach 1−d within n1+ε = ω(n logn)

steps is at most n−(ε+1).
We can now use Theorem 12, which completes the proof.

Interestingly, the bias a plays a far less significant role
than ρ. Basically any small bias toward 1/2 suffices, whereas
ρ has to be in Θ(1/ logn). If ρ were any larger, there were
a decent chance of an f -independent position’s frequency
reaching 1− d, which would mean that such a frequency ac-
tually reached 0. On the other hand, if ρ were any smaller,
it would take too long for each first unsolved position’s fre-
quency to reach 1 within O(log n) steps.
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