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ABSTRACT

Understanding how evolutionary algorithms perform on constrained

problems has gained increasing attention in recent years. In this

paper, we study how evolutionary algorithms optimize constrained

versions of the classical LeadingOnes problem. We first provide a

run time analysis for the classical (1+1) EA on the LeadingOnes

problem with a deterministic cardinality constraint, giving Θ(𝑛(𝑛−
𝐵) log(𝐵) + 𝑛2) as the tight bound. Our results show that the be-

haviour of the algorithm is highly dependent on the constraint

bound of the uniform constraint. Afterwards, we consider the prob-

lem in the context of stochastic constraints and provide insights

using experimental studies on how the (𝜇+1) EA is able to deal with

these constraints in a sampling-based setting.
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1 INTRODUCTION

Evolutionary algorithms [6] have been used to tackle a wide range

of combinatorial and complex engineering problems. Understand-

ing evolutionary algorithms from a theoretical perspective is crucial

to explain their success and give guidelines for their application.

The area of run time analysis has been a major contributor to the

theoretical understanding of evolutionary algorithms over the last

25 years [4, 11, 19]. Classical benchmark problems such as One-

Max and LeadingOnes have been analyzed in a very detailed way,

showing deep insights into the working behaviour of evolutionary

algorithms for these problems. In real-world settings, problems that

are optimized usually come with a set of constraints which often

limits the resources available. Studying classical benchmark prob-

lems even with an additional simple constraint such as a uniform

constraint, which limits the number of elements that can be chosen

in a given benchmark function, poses significant new technical chal-

lenges for providing run time bounds of even simple evolutionary

algorithms such as the (1+1) EA.

OneMax and the broader class of linear functions [5] have played

a key role in developing the area of run time analysis during the last

25 years, and run time bounds for linear functions with a uniform

constraint have been obtained [7, 17]. It has been shown in [7] that

the (1+1) EA needs exponential time optimize OneMax under a

specific linear constraint which points to the additional difficulty

which such constraints impose on the search process. Tackling

constraints by taking them as additional objectives has been shown

to be quite successful for a wide range of problems. For example,

the behaviour of evolutionary multi-objective algorithms has been

analyzed for submodular optimization problems with various types

of constraints [20, 21]. Furthermore, the performance of evolution-

ary algorithms for problems with dynamic constraints has been

investigated in [22, 23].

Another important area involving constraints is chance con-

strained optimization, which deals with stochastic components in

the constraints. Here, the presence of stochastic components in

the constraints makes it challenging to guarantee that the con-

straints are not violated at all. Chance-constrained optimization

problems [2, 13] are an important class of the stochastic optimiza-

tion problems [1] that optimize a given problem under the condition

that a constraint is only violated with a small probability. Such prob-

lems occur in a wide range of areas, including finance, logistics

and engineering [9, 12, 14, 29]. Recent studies of evolutionary al-

gorithms for chance-constrained problems focused on a classic

knapsack problem where the uncertainty lies in the probabilistic

constraints [26, 27]. Here, the aim is to maximise the deterministic

profit subject to a constraint which involves stochastic weights and

where the knapsack capacity bound can only be violated with a

small probability of at most 𝛼 . A different stochastic version of the

knapsack problem has been studied in [16]. Here profits involve un-

certainties and weights are deterministic. In that work, Chebyshev

and Hoeffding-based fitness functions have been introduced and

evaluated. These fitness functions discount expected profit values

based on uncertainties of the given solutions.

Theoretical investigations for problems with chance constraints

have gained recent attention in the area of run time analysis. This

includes studies for montone submodular problems [15] and special

instances of makespan scheduling [24]. Furthermore, detailed run

time analyses have been carried out for specific classes of instances

for the chance constrained knapsack problem [18, 28].

1.1 Our contribution

In this paper, we investigate the behaviour of the (1+1) EA for the

classical LeadingOnes problem with additional constraints. We

first study the behaviour for the case of a uniform constraint which
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limits the number of 1-bits that can be contained in any feasible

solution. Let 𝐵 be the upper bound on the number of 1-bits that

any feasible solution can have. Then the optimal solutions consists

of exactly 𝐵 leading 1s and afterwards only 0s. The search for the

(1+1) EA is complicated by the fact that when the current solution

consists of 𝑘 < 𝐵 leading 1s, additional 1-bits not contributing to the

fitness score at positions 𝑘+2, . . . , 𝑛might make solutions infeasible.

We provide a detailed analysis of such scenarios in dependence of

the given bound 𝐵.

Specifically, we show a tight bound ofΘ(𝑛2+𝑛(𝑛−𝐵) log(𝐵)) (see
Corollary 6). Note that [7] shows the weaker bound of𝑂 (𝑛2 log(𝐵)),
which, crucially, does not give insight into the actual optimization

process at the constraint. Our analysis shows in some detail how

the search progresses. In the following discussion, for the current

search point of the algorithm, we call the part of the leading 1s the

head of the bit string, the first 0 the critical bit and the remaining

bits the tail. While the size of the head is less than 𝐵 − (𝑛 − 𝐵),
optimization proceeds much like for unconstrained LeadingOnes;

this is because the bits in the tail of size about 2(𝑛 − 𝐵) are (almost)

uniformly distributed, contributing roughly a number of 𝑛−𝐵 many

1s additionally to the 𝐵 − (𝑛 −𝐵) many 1s in the head. This stays in

sum (mostly) below the cardinality bound 𝐵, occasional violations

changing the uniform distribution of the tail to one where bits in

the tail are 1 with probability a little less than 1/2 (see Lemma 3).

Once the threshold of 𝐵 − (𝑛 − 𝐵) many 1s in the head is passed,

the algorithm frequently runs into the constraint. For a phase of

equal LeadingOnes value, we consider the random walk of the

number of 1s of the bit string of the algorithm. This walk has

a bias towards the bound 𝐵 (its maximal value), where the bias

is light for LeadingOnes-values just a bit above 𝐵 − (𝑛 − 𝐵) and
getting stronger as this value approaches 𝐵. Since progress is easy

when not at the bound of 𝐵 many 1s in the bit string (by flipping

the critical bit and no other) and difficult otherwise (additionally

to flipping the critical bit, a 1 in the tail needs to flip), the exact

proportion of time that the walk spends in states of less than 𝐵

versus exactly 𝐵 many 1s is very important. In the final proofs, we

estimate these factors and have corresponding potential functions

reflecting gains (1) from changing into states of less than 𝐵 many

1s and (2) gaining a leading 1. Bounding these gains appropriately

lets us find asymptotically matching upper and lower bounds using

the additive drift theorem [10].

In passing we note that two different modifications of the setting

yield a better time of𝑂 (𝑛2). First, this time is sufficient to achieve a

LeadingOnes-values of 𝐵 − 𝑐 (𝑛 − 𝐵) for any 𝑐 > 0 (see Corollary 7).

Second, considering the number of 1s as a secondary objective (to

be minimized) gives an optimization time of𝑂 (𝑛2) (see Theorem 8).

Afterwards, we turn to stochastic constraints and investigate an

experimental setting that is motivated by recent studies in the area

of chance constraints. We consider LeadingOnes with a stochastic

knapsack chance constraint, where the weights of a linear con-

straint are chosen from a given distribution. In the first setting, the

weight of each item is chosen independently according to a Normal

distribution 𝑁 (𝜇, 𝜎2). A random sample of weights is feasible if

the sum of the chosen sampled weights does not exceed a given

knapsack bound 𝐵. In any iteration, all weights are resampled inde-

pendently for all evaluated individuals. Our goal is to understand

the maximal stable LeadingOnes value that the algorithm obtains.

In the second setting which we study empirically, the weights are

deterministically set to 1 and the bound is chosen uniformly at

random within an interval [𝐵 − 𝜖, 𝐵 + 𝜖], where 𝜖 > 0 specifies

the uncertainty around the constraint bound. For both settings, we

examine the performance of the (1 + 1) EA and (10 + 1)-EA for

different values of 𝐵 and show that a larger parent population has

a highly positive effect for these stochastic settings.

The paper is structured as follows. In Section 2, we introduce the

problems and algorithms that we study in this paper.We present our

run time analysis for the LeadingOnes problem with a deterministic

uniform constraint in Section 3. In section 4, we discuss a way to

obtain Θ(𝑛2) bound on the run time for the same problem and

report on our empirically investigations for the stochastic settings

in Section 5. Finally, we finish with some concluding remarks. Note

that some proofs are ommitted due to space constraints.

2 PRELIMINARIES

In this section we define the objective function, constraints and the

algorithms used in our analysis. With |𝑥 |1 we denote the number

of 1s in a bit string 𝑥 ∈ {0, 1}𝑛 .

2.1 Cardinality Constraint

Let 𝑓 : {0, 1}𝑛 → R, 𝐵 ≤ 𝑛 and for 𝑥 ∈ {0, 1}𝑛 , let 𝑥𝑖 denote the 𝑖
-th bit of 𝑥 . In this paper, optimizing 𝑓 with cardinality constraint

𝐵 means finding, max𝑥∈{0,1}𝑛 𝑓 (𝑥) s.t
∑𝑛
𝑖=1 𝑥𝑖 ≤ 𝐵.

2.2 Stochastic Constraint

Let 𝑓 : {0, 1}𝑛 → R, 𝐵 ≤ 𝑛 and for 𝑥 ∈ {0, 1}𝑛 , let 𝑥𝑖 denote the 𝑖 -th
bit of 𝑥 . In this paper we empirically analyse the following normal

stochastic constraint with uncertainty in the weights optimization

problem,

max

𝑥∈{0,1}𝑛
𝑓 (𝑥) s.t

𝑛∑︁
𝑖=1

𝑤𝑖 · 𝑥𝑖 ≤ 𝐵, where𝑤𝑖 ∼ 𝑁 (𝜇, 𝜎2) .

Let 𝑓 : {0, 1}𝑛 → R, 𝐵 ≤ 𝑛 and for 𝑥 ∈ {0, 1}𝑛 , let 𝑥𝑖 denote
the 𝑖 -th bit of 𝑥 . In this paper we also empirically analyse the

following uniform stochastic constraint with uncertainty in the

bound optimization problem,

max

𝑥∈{0,1}𝑛
𝑓 (𝑥) s.t |𝑥 |1 ≤ 𝑦, where 𝑦 ∼ 𝑈 (𝐵 − 𝜖, 𝐵 + 𝜖) .

2.3 Objective Function

We consider the LeadingOnes function as our objective with car-

dinality and stochastic constraints for our analysis.

LeadingOnes : {0, 1}𝑛 → R, is a function which maps a bit

string of length 𝑛 to number of 1s before the first 0 in the bit string.

For every 𝑥 ∈ {0, 1}𝑛 , LeadingOnes(𝑥) = ∑𝑛
𝑖=1

∏𝑖
𝑗=1 𝑥 𝑗 .

2.4 (𝜇+1) EA

The (𝜇+1) EA on a real valued fitness function 𝑓 with constraint 𝐵

is given in Algorithm 1. The (𝜇+1) EA at each iteration maintains

a population of size 𝜇. The initial population 𝑃0 has 𝜇 random bit

strings chosen uniformly. At each iteration 𝑡 > 0, a bit string is cho-

sen uniformly at random from 𝑃𝑡 followed by a mutation operation

which flips each bit of the chosen bit string with probability
1

𝑛 . The

mutated bit string is added to 𝑃𝑡 and the bit string with the least
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fitness among the 𝜇 + 1 individuals is removed. Since we can also

sample a bit string which violates the constraint, we consider the

following function for optimization.

𝑔(𝑥) =
{
𝑓 (𝑥), if |𝑥 |1 < 𝐵;

𝐵 − |𝑥 |, otherwise.

Algorithm 1: (𝜇+1) EA on fitness function 𝑓 with con-

straint B

1 𝑃0 ← 𝜇 individuals from {0, 1}𝑛 chosen u.a.r.;

2 𝑡 = 0;

3 while stopping criterion not met do

4 𝑥 ← uniform random bit string from 𝑃𝑡 ;

5 𝑦← flip each bit of 𝑥 independently with probab. 1/𝑛;
6 𝑃𝑡 = 𝑃𝑡 ∪ {𝑦};
7 𝑃𝑡+1 = 𝑃𝑡 \ {an individual 𝑥 ∈ 𝑃𝑡 with least 𝑔(𝑥) value};
8 𝑡 = 𝑡 + 1;

3 UNMODIFIED SETTING

In this section we give a tight analysis of the (1+1) EA on the

objective LeadingOnes with cardinality constraint 𝐵.

We start with a technical lemma which we need for our proof of

the upper bound.

Lemma 1. For 𝑡 ≥ 0, let 𝑥𝑡 denote the parent bit string at 𝑡-th iter-

ation while (1+1) EA is optimizing LeadingOnes with the cardinality

constraint B. And for 𝑡 > 0, let 𝐴𝑡 denote the event that |𝑥𝑡+1 |1 = 𝐵
and 𝐿𝑂 (𝑥𝑡+1) = 𝐿𝑂 (𝑥𝑡 ). Then 𝑃𝑟 (𝐴𝑡

�� |𝑥𝑡 |1 < 𝐵) ≤ 𝑛−𝐵
𝑛 .

Proof. First note that, if |𝑥𝑡 |1 = 𝑘 < 𝐵 and 𝐶𝑡 denote the event

that 𝑥𝑡+1 is formed by flipping 𝐵 − 𝑘 number of 0 bits to 1 out of

𝑛 − 𝑘 − 1 (except the left most 0) number of 0 bits, then

𝑃𝑟 (𝐴𝑡
�� |𝑥𝑡 |1 < 𝐵) ≤ 𝑃𝑟 (𝐶𝑡

�� |𝑥𝑡 |1 < 𝐵) .

The event 𝐴𝑡 is a sub-event of 𝐶𝑡 , since in the event 𝐶𝑡 we do not

have any restriction on the bits other than 𝐵 − 𝑘 number of 0 bits

out of 𝑛 − 𝑘 − 1 number of them and we have to flip at least 𝐵 − 𝑘
number of 0 bits to 1 to get the desired 𝑥𝑡+1 in the event 𝐴𝑡 . Hence,

𝑃𝑟 (𝐶𝑡 ) =
(
𝑛 − 𝑘 − 1
𝐵 − 𝑘

) (
1

𝑛

)𝐵−𝑘
=
(𝑛 − 𝑘 − 1) · (𝑛 − 𝑘 − 2) · · · (𝑛 − 𝐵)

1 · 2 · · · (𝐵 − 𝑘) ·
(
1

𝑛

)𝐵−𝑘
≤ 𝑛 − 𝐵

𝑛
.

The last inequality holds because, for every 𝑟 > 0,
𝑛−𝑘−𝑟
𝑛 ≤ 1. □

In the Theorem 2 below we give an upper bound on the ex-

pected run time of the (1+1) EA on LeadingOnes with cardinality

constraint 𝐵. Later we show that this bound is tight by proving a

matching lower bound.

Theorem 2. Let 𝑛, 𝐵 ∈ N and 𝐵 < 𝑛. Then the expected optimiza-

tion time of the (1+1) EA on LeadingOnes with cardinality constraint

𝐵 is 𝑂
(
𝑛2 + 𝑛(𝑛 − 𝐵) log𝐵

)
.

Proof. From [8, Lemma 3], we know that the (1+1) EA is ex-

pected to find a feasible solution within 𝑂 (𝑛 log(𝑛/𝐵)) iterations.
Now we calculate how long it takes in expected value to find the

optimum after a feasible solution is sampled.

To do this, we construct a potential function that yields an drift

value greater than 1 at each time 𝑡 until the optimum is found. For

𝑖 ∈ {0, · · · , 𝐵}, let 𝑔𝐵 (𝑖) be the potential of a bit string 𝑥 ∈ {0, 1}𝑛
with exactly 𝐵 number of 1s and 𝐿𝑂 (𝑥) = LeadingOnes(𝑥) = 𝑖 .

For 𝑖 ∈ {0, · · · , 𝐵 − 1}, let 𝑔<𝐵 (𝑖) be the potential of a bit string

𝑥 ∈ {0, 1}𝑛 with less than 𝐵 number of 1s and 𝐿𝑂 (𝑥) = 𝑖 .
Let 𝑔𝐵 (0) = 0 and 𝑔<𝐵 (0) = 𝑒𝑛

𝐵
. And for every 𝑖 ∈ {1, · · · , 𝐵},

let

𝑔𝐵 (𝑖) = 𝑒𝑛
(
1 + 𝑒 · (𝑛 − 𝐵)

𝐵 − 𝑖 + 1

)
+ 𝑔<𝐵 (𝑖 − 1),

and for every 𝑖 ∈ {1, · · · , 𝐵 − 1}, let

𝑔<𝐵 (𝑖) =
𝑒𝑛

𝐵 − 𝑖 + 𝑔𝐵 (𝑖) .

For 𝑡 > 0, let 𝑋𝑡 be the parent bit string of (1+1) EA at iteration

𝑡 . and let 𝑇 be the iteration number at which (1+1) EA finds the

optimum for the first time. Let

𝑓 (𝑋𝑡 ) =
{
𝑔𝐵 (𝐿𝑂 (𝑋𝑡 )) if |𝑋𝑡 |1 = 𝐵,
𝑔<𝐵 (𝐿𝑂 (𝑋𝑡 ) if |𝑋𝑡 |1 < 𝐵.

(1)

We consider two different cases, |𝑋𝑡 |1 = 𝐵 and |𝑋𝑡 |1 < 𝐵 and

show in both the cases the drift is at least 1. Suppose we are in an

iteration 𝑡 < 𝑇 with 𝐿𝑂 (𝑋𝑡 ) = 𝑖 and |𝑋𝑡 |1 = 𝐵. Then the probability

that the number of 1s in the search point can decrease by 1 in the

next iteration is at least
𝐵−𝑖
𝑒𝑛 . This is because we can get a desired

search point by flipping only one of the 1 bits of 𝐵 − 𝑖 , excluding
the leading 1s, and not flipping any other bit. Therefore,

𝐸 [𝑓 (𝑋𝑡+1) − 𝑓 (𝑋𝑡 )
��𝐿𝑂 (𝑋𝑡 ) = 𝑖, |𝑋𝑡 |1 = 𝐵]
≥ (𝑔<𝐵 (𝑖) − 𝑔𝐵 (𝑖)) · 𝑃𝑟 ( |𝑋𝑡+1 |1 < 𝐵)

≥
( 𝑒𝑛

𝐵 − 𝑖 + 𝑔𝐵 (𝑖) − 𝑔𝐵 (𝑖)
)
·
(
𝐵 − 𝑖
𝑒𝑛

)
= 1.

Suppose we are in an iteration 𝑡 < 𝑇 with 𝐿𝑂 (𝑋𝑡 ) = 𝑖 and |𝑋𝑡 |1 < 𝐵.

Then in the next iteration the value of LeadingOnes can increase

when the leftmost 0 is flipped to 1 as this does not violate the

constraint. This happens with probability at least
1

𝑒𝑛 . Since |𝑋𝑡 |1 <

𝐵, we can also stay in the same level (same number of leading 1s)

and the number of 1s can increase to 𝐵 with probability at most

𝑛−𝐵
𝑛 (see Lemma 1). This implies that the potential can decrease by

𝑒𝑛
𝐵−𝑖 with probability at most

𝑛−𝐵
𝑛 .

𝐸 [𝑓 (𝑋𝑡+1)−𝑓 (𝑋𝑡 )
�� 𝐿𝑂 (𝑋𝑡 ) = 𝑖, |𝑋𝑡 |1 < 𝐵]

≥ (𝑔(𝑖 + 1, 𝐵) − 𝑔<𝐵 (𝑖)) ·
1

𝑒𝑛
−

(
𝑒𝑛

𝐵 − 𝑖 ·
𝑛 − 𝐵
𝑛

)
≥

(
𝑒𝑛

(
1 + 𝑒 · (𝑛 − 𝐵)

𝐵 − 𝑖

)
+ 𝑔<𝐵 (𝑖) − 𝑔<𝐵 (𝑖)

)
·
(
1

𝑒𝑛

)
−

(
𝑒 · (𝑛 − 𝐵)
𝐵 − 𝑖

)
= 1.
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This results in an expected additive drift value greater than 1 in all

the cases, so according to the additive drift theorem [10, Theorem 5],

𝐸 [𝑇 ] ≤ 𝑓 (𝑋𝑇 ) = 𝑔𝐵 (𝐵)

=

𝐵−1∑︁
𝑖=0

(𝑔<𝐵 (𝑖) − 𝑔𝐵 (𝑖)) +

𝐵∑︁
𝑖=1

(𝑔𝐵 (𝑖) − 𝑔<𝐵 (𝑖 − 1))

=

𝐵−1∑︁
𝑖=0

𝑒𝑛

𝐵 − 𝑖 +

𝐵∑︁
𝑖=1

𝑒𝑛

(
1 + 𝑒 · (𝑛 − 𝐵)

𝐵 − 𝑖 + 1

)

= 𝑒𝑛

𝐵∑︁
𝑖=1

(
1

𝑖

)
+ 𝑒𝑛𝐵 + 𝑒2 · 𝑛(𝑛 − 𝐵)

𝐵∑︁
𝑖=1

(
1

𝑖

)
≤ 𝑒𝑛(log𝐵 + 1) + 𝑒𝑛𝐵 + 𝑒2 · 𝑛(𝑛 − 𝐵) (log𝐵 + 1)

= 𝑂 (𝑛2 + 𝑛(𝑛 − 𝐵) log𝐵) .
□

We now turn to the lower bound. When (1+1) EA optimizes

LeadingOnes in unconstrained setting the probability that a bit

which is after the left-most 0 is 1 is exactly
1

2
. But this is not true in

the constrained setting. The following lemma gives an upper bound

on this probability during the cardinality constraint optimization.

Lemma 3. For any 𝑡 ≥ 0, let 𝑥𝑡 denote the search point at iteration

𝑡 when (1+1) EA is optimizing LeadingOnes with the cardinality

constraint 𝐵. Then for any 𝑡 ≥ 0 and 𝑖 > 𝐿𝑂 (𝑥𝑡 ), 𝑃𝑟 (𝑥𝑡
𝑖
= 1) ≤ 1/2.

Proof. We will prove this by induction. The base case is true

because we have an uniform random bit string at 𝑡 = 0. Lets assume

that the statement is true for 𝑡 , i.e. for any 𝑖 > 𝐿𝑂 (𝑥𝑡 ), 𝑃𝑟 (𝑥𝑡𝑖 =

1) ≤ 1/2. Let 𝐴 be the event that the offspring is accepted. Then,

for 𝑖 > 𝐿𝑂 (𝑥𝑡+1),

𝑃𝑟 (𝑥𝑡+1𝑖 = 1) = 𝑃𝑟 ((𝑥𝑡𝑖 = 0) ∩ (𝑖𝑡ℎ bit is flipped) ∩𝐴)

+ 𝑃𝑟 ((𝑥𝑡𝑖 = 1) ∩ (𝑖𝑡ℎ bit is flipped) ∩𝐴𝑐 )

+ 𝑃𝑟 ((𝑥𝑡𝑖 = 1) ∩ (𝑖𝑡ℎ bit is not flipped).

Let 𝑃𝑟 (𝑥𝑡
𝑖
= 1) = 𝑝 , 𝑃𝑟 (𝐴

�� (𝑖𝑡ℎ bit is flipped ∩ 𝑥𝑡
𝑖
= 0)) = 𝑎

and 𝑃𝑟 (𝐴
�� (𝑖𝑡ℎ bit is flipped ∩ 𝑥𝑡

𝑖
= 1)) = 𝑏. Then note that 𝑎 ≤

𝑏 (because we have at least as many events as in probability 𝑎

contributing to the probability 𝑏) and by induction hypothesis,

𝑃𝑟 (𝑥𝑡+1𝑖 = 1) = (1 − 𝑝) · 1/𝑛 · 𝑎 + 𝑝 · 1/𝑛 · (1 − 𝑏) + 𝑝 · (1 − 1/𝑛)
= 𝑎/𝑛 − (𝑝 · 𝑎)/𝑛 + 𝑝/𝑛 − (𝑝 · 𝑏)/𝑛 + 𝑝 − 𝑝/𝑛
= 𝑎/𝑛 − 𝑝 · (1 − 𝑎/𝑛 − 𝑏/𝑛)
≤ 𝑎/𝑛 + 1/2 · (1 − 𝑎/𝑛 − 𝑏/𝑛)
≤ 𝑎/𝑛 + 1/2 · (1 − 𝑎/𝑛 − 𝑎/𝑛) = 1/2.

□

We use the previous lemma to prove the Ω(𝑛2) lower bound on

the expected time in the next theorem.

Theorem 4. Let 𝑛, 𝐵 ∈ N. Then the expected optimization time

of the (1+1) EA on the LeadingOnes with cardinality constraint 𝐵 is

Ω
(
𝑛2

)
.

Proof. We use the fitness level method with visit probabilities

technique defined in [3, Theorem 8] to prove this lower bound.

Similar to [3, Theorem 11], we also partition the search space {0, 1}𝑛
based on the LeadingOnes values. For every 𝑖 ≤ 𝐵, let 𝐴𝑖 contain
all the bit strings with the LeadingOnes value 𝑖 . If our search point

is in𝐴𝑖 , then we say that the search point is in the state 𝑖 . For every

𝑖 ∈ {1, · · · , 𝐵 − 1}, we have to find the visit probabilities 𝑣𝑖 and an

upper bound for 𝑝𝑖 , the probability to leave the state 𝑖 .

The best case scenario for the search point to leave the state 𝑖

is when the number of 1s in the search point is less than 𝐵. In this

case, we have to flip the (𝑖 + 1)𝑡ℎ bit to 1 and should not flip any of

the first 𝑖 bits to 0. This happens with the probability
1

𝑛 ·
(
1 − 1

𝑛

)𝑖
.

Therefore, for every 𝑖 ∈ {1, · · · , 𝐵 − 1}, 𝑝𝑖 ≤ 1

𝑛 ·
(
1 − 1

𝑛

)𝑖
.

Next, we claim that, for each 𝑖 ∈ {1, · · · , 𝐵 − 1}, 𝑣𝑖 – the proba-

bility to visit the state 𝑖 is at least 1

2
. We use [3, Lemma 10] to show

this. Suppose the initial search point is in a state greater than or

equal to 𝑖 , then the probability for it to be in state 𝑖 is equal to the

probability that the (𝑖 + 1)𝑡ℎ bit is 0. Since the initial bit string is

chosen uniformly at random the probability that the (𝑖 +1)𝑡ℎ bit is 0
is

1

2
. This shows the first required bound on the probability for the

lemma in [3, Lemma 10]. Suppose the search point is transitioning

into a level greater than or equal to 𝑖 , then the probability that it

transition into state 𝑖 is equal to the probability that (𝑖 + 1)𝑡ℎ bit is

0. From Lemma 3, we know that this probability is at least 1/2. This
gives the second bound required for the [3, Lemma 10], therefore

𝑣𝑖 is at least
1

2
.

By using fitness level method with visit probabilities theorem

[3, Theorem 8], if 𝑇 is the time taken by the (1+1) EA to find an

individual with 𝐵 number of LeadingOnes for the first time then,

we have, 𝐸 [𝑇 ] ≥ ∑𝐵−1
𝑖=0

𝑣𝑖
𝑝𝑖

= 𝑛
2
·
𝐵−1∑︁
𝑖=0

(
1 − 1

𝑛

)−𝑖
≥ 𝑛2

2
= Ω(𝑛2) . □

We aim to show the Ω(𝑛2 + 𝑛(𝑛 − 𝐵) log𝐵) lower bound and

Theorem 4 gives the Ω(𝑛2) lower bound. Therefore, next we con-
sider the case where 𝐵 is such that 𝑛(𝑛 − 𝐵) log𝐵 ≠ 𝑂 (𝑛2) to prove
the desired lower bound.

Theorem 5. Let 𝑛, 𝐵 ∈ N and suppose 𝑛(𝑛 − 𝐵) log𝐵 = 𝜔 (𝑛2).
Then the expected optimization time of the (1+1) EA on the objective

LeadingOnes with cardinality constraint 𝐵 is Ω (𝑛(𝑛 − 𝐵) log𝐵) .

Proof. We consider the potential function 𝑔 such that, for all

𝑥 ∈ {0, 1}𝑛 ,

𝑔(𝑥) = 𝑛 · |𝑥 |1
𝐵 − 𝐿𝑂 (𝑥) + 1 +

𝐵−1∑︁
𝑖=𝐿𝑂 (𝑥 )

𝑛(𝑛 − 𝐵)
32𝑒2 (𝐵 − 𝑖)

.

The first term appreciates progress by reducing the number of 1s.

This is scaled to later derive constant drift in expectation from

such a reduction whenever |𝑥 |1 = 𝐵, the case where progress by

increasing the number of leading 1s is not easy. The second term

appreciates progress by increasing the number of leading 1s, scaled

to derive constant drift in case of |𝑥 |1 < 𝐵.

The idea of the proof is as follows. We show that the potential

decreases by at most 10 in expectation. Then the lower bound of

additive drift theorem will give the desired lower bound on the

expected run time (see [10, Theorem 5]).
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We start by calculating the expected potential at 𝑡 = 0. Since the

initial bit string is chosen uniformly at random the probability that

the first bit is 0 is
1

2
. Therefore 𝑃𝑟 (𝐿𝑂 (𝑥0) = 0) = 1

2
, which implies

𝐸 [𝑔(𝑥0)] ≥
1

2

· 𝐸


𝐵−1∑︁
𝑖=𝐿𝑂 (𝑥0 )

𝑛(𝑛 − 𝐵)
32𝑒2 (𝐵 − 𝑖)

�� 𝐿𝑂 (𝑥0) = 0


=
𝑛(𝑛 − 𝐵)
64𝑒2

𝐵−1∑︁
𝑖=0

1

𝐵 − 𝑖

=
𝑛(𝑛 − 𝐵)
64𝑒2

·
𝐵∑︁
𝑖=1

1

𝑖
≥ 𝑛(𝑛 − 𝐵) ln(𝐵)

64𝑒2
.

Therefore, there exits a constant 𝑐 > 0 such that 𝐸 [𝑔(𝑥0)] ≥ 𝑐𝑛(𝑛 −
𝐵) log𝐵. The optimum has a potential value of 𝑛𝐵; thus, we can

find a lower bound on the optimization time by considering the

time to find a potential value of at most 𝑛𝐵. Let 𝑇 = min{𝑡 ≥ 0 |
𝑔(𝑥𝑡 ) ≤ 𝑛𝐵}. Note that 𝑇 may not be the time at which we find

the optimum for the first time. From 𝑛(𝑛 − 𝐵) log𝐵 = 𝜔 (𝑛2) we
get, for 𝑛 large enough, that 𝐸 [𝑔(𝑥0)] > 𝑛𝐵, which implies that the

expected optimization time is at least 𝐸 [𝑇 ].
In order to show the lower bound on the drift, we consider two

different cases, |𝑥𝑡 |1 = 𝐵 and |𝑥𝑡 |1 < 𝐵 and show in both the cases

drift is at most 10. First, we examine the case where the algorithm

has currently 𝐵 number of 1s. For any 𝑡 , let 𝐴𝑡 be the event that

|𝑥𝑡 |1 = 𝐵 and let Δ𝑡 = 𝑔(𝑥𝑡 ) − 𝑔(𝑥𝑡+1) and

Δ𝑠𝑡 =
𝐵−1∑︁

𝑖=𝐿𝑂 (𝑥𝑡 )

𝑛(𝑛 − 𝐵)
32𝑒2 (𝐵 − 𝑖)

−
𝐵−1∑︁

𝑖=𝐿𝑂 (𝑥𝑡+1 )

𝑛(𝑛 − 𝐵)
32𝑒2 (𝐵 − 𝑖)

=

𝐿𝑂 (𝑥𝑡+1 )−1∑︁
𝑖=𝐿𝑂 (𝑥𝑡 )

𝑛(𝑛 − 𝐵)
32𝑒2 (𝐵 − 𝑖)

.

Then, 𝐸 [Δ𝑡
�� 𝐴𝑡 ] = 𝑛 · 𝐸 [

|𝑥𝑡 |1
𝐵 − 𝐿𝑂 (𝑥𝑡 ) + 1

− |𝑥𝑡+1 |1
𝐵 − 𝐿𝑂 (𝑥𝑡+1) + 1

�� 𝐴𝑡 ]
+ 𝐸 [Δ𝑠𝑡

�� 𝐴𝑡 ]
≤ 𝑛 · 𝐸

[
|𝑥𝑡 |1 − |𝑥𝑡+1 |1

𝐵 − 𝐿𝑂 (𝑥𝑡+1) + 1
�� 𝐴𝑡 ] + 𝐸 [Δ𝑠𝑡 �� 𝐴𝑡 ] .

Now we calculate the bounds for all the required expectations in

the above equation.

First we calculate a bound for 𝑛 · 𝐸
[
|𝑥𝑡 |1−|𝑥𝑡+1 |1
𝐵−𝐿𝑂 (𝑥𝑡+1 )+1

�� 𝐴𝑡 ] by using
the definition of the expectation. Let 𝐼 = {0, · · · , 𝐵 − 𝐿𝑂 (𝑥𝑡 )} and
𝐽 = {−1, 0, · · · , 𝐵 − 𝐿𝑂 (𝑥𝑡+1) − 1}. Then the possible values the

random variable |𝑥𝑡 |1− |𝑥𝑡+1 |1 can have are the values in 𝐼 . And the

possible values 𝐵−𝐿𝑂 (𝑥𝑡+1)+1 can have are {𝐵−𝐿𝑂 (𝑥𝑡 )− 𝑗 | 𝑗 ∈ 𝐽 }.
For 𝑖 ∈ {1, · · · , 𝐵−𝐿𝑂 (𝑥𝑡 )}, the probability 𝑃𝑟 (( |𝑥𝑡 |1−|𝑥𝑡+1 |1 = 𝑖)∩
(𝐵−𝐿𝑂 (𝑥𝑡+1)+1 = 𝐵−𝐿𝑂 (𝑥𝑡 )+1)) ≤

(𝐵−𝐿𝑂 (𝑥𝑡 )
𝑖

) (
1

𝑛

)𝑖
≤ 𝐵−𝐿𝑂 (𝑥𝑡 )

𝑖!𝑛

and for 𝑖 ∈ {1, · · · , 𝐵−𝐿𝑂 (𝑥𝑡 )} and 𝑗 ∈ {0, · · · , 𝐵−𝐿𝑂 (𝑥𝑡+1) −1}},
the probability 𝑃𝑟 (( |𝑥𝑡 |1 − |𝑥𝑡+1 |1 = 𝑖) ∩ (𝐵 − 𝐿𝑂 (𝑥𝑡+1) + 1 = 𝐵 −
𝐿𝑂 (𝑥𝑡 ) − 𝑗)) ≤

(𝐵−𝐿𝑂 (𝑥𝑡 )
𝑖

) (
1

𝑛

)𝑖+1
1

2
𝑗 ≤ 𝐵−𝐿𝑂 (𝑥𝑡 )

𝑖!𝑛2
1

2
𝑗 (see Lemma

3). For 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐽 , let 𝑝𝑖 𝑗𝑡 = 𝑃𝑟 (( |𝑥𝑡 |1 − |𝑥𝑡+1 |1 = 𝑖) ∩ (𝐵 −
𝐿𝑂 (𝑥𝑡+1) + 1 = 𝐵 − 𝐿𝑂 (𝑥𝑡 ) − 𝑗)) and 𝐾 = 𝐽 \ {𝐵 − 𝐿𝑂 (𝑥𝑡 ) + 1} and
𝐾𝑐 = {𝐵 − 𝐿𝑂 (𝑥𝑡 ) + 1}. Then, 𝑛 · 𝐸

[
|𝑥𝑡 |1−|𝑥𝑡+1 |1
𝐵−𝐿𝑂 (𝑥𝑡+1 )+1

�� 𝐴𝑡 ]

= 𝑛 ·
∑︁
𝑖∈𝐼

∑︁
𝑗∈ 𝐽

𝑖 · 𝑝𝑖 𝑗𝑡
𝐵 − 𝐿𝑂 (𝑥𝑡 ) − 𝑗

= 𝑛 ·
∑︁
𝑖∈𝐼

∑︁
𝑗∈𝐾𝑐

𝑖 · 𝑝𝑖 𝑗𝑡
𝐵 − 𝐿𝑂 (𝑥𝑡 ) − 𝑗

+ 𝑛 ·
∑︁
𝑖∈𝐼

∑︁
𝑗∈𝐾

𝑖 · 𝑝𝑖 𝑗𝑡
𝐵 − 𝐿𝑂 (𝑥𝑡 ) − 𝑗

=
∑︁
𝑖∈𝐼

𝑖 (𝐵 − 𝐿𝑂 (𝑥𝑡 ))
𝑖!(𝐵 − 𝐿𝑂 (𝑥𝑡 ) + 1)

+
∑︁
𝑖∈𝐼

𝑖 (𝐵 − 𝐿𝑂 (𝑥𝑡 ))
𝑖!𝑛

∑︁
𝑗∈𝐾

1

2
𝑗

𝐵 − 𝐿𝑂 (𝑥𝑡 ) − 𝑗

≤
∑︁

𝑖∈𝐼\{0}

1

(𝑖 − 1)! +
∑︁
𝑖∈𝐼

1

(𝑖 − 1)!
∑︁
𝑗∈𝐾

1

2
𝑗

≤ 𝑒 + 2𝑒 = 3𝑒 ≤ 9. (2)

We used the infinite sum values

∑∞
𝑖=1

1

(𝑖−1)! = 𝑒 ,
∑∞
𝑖=0

1

2
𝑖 = 2, to

bound our required finite sums in the above calculation.

Now, we calculate 𝐸 [Δ𝑠𝑡
�� 𝐴𝑡 ], to get an upper bound for 𝐸 [Δ𝑡

��
𝐴𝑡 ]. When |𝑥𝑡 |1 = 𝐵, the probability to gain in the LeadingOnes-

values is at most
𝐵−𝐿𝑂 (𝑥𝑡 )

𝑛 · 1𝑛 . Therefore we have

𝐸 [Δ𝑠𝑡
�� 𝐴𝑡 ] = 𝑛(𝑛 − 𝐵)

32𝑒2
· 𝐸


𝐿𝑂 (𝑥𝑡+1 )−1∑︁
𝑖=𝐿𝑂 (𝑥𝑡 )

1

𝐵 − 𝑖
�� 𝐴𝑡 

≤ 𝑛(𝑛 − 𝐵)
32𝑒2

· 𝐸
[
𝐿𝑂 (𝑥𝑡+1) − 𝐿𝑂 (𝑥𝑡 )
𝐵 − 𝐿𝑂 (𝑥𝑡+1) + 1

�� 𝐴𝑡 ] .
(3)

We calculate an upper bound for 𝐸

[
𝐿𝑂 (𝑥𝑡+1 )−𝐿𝑂 (𝑥𝑡 )
𝐵−𝐿𝑂 (𝑥𝑡+1 )+1

�� 𝐴𝑡 ] . The
probability that 𝐿𝑂 (𝑥𝑡+1) − 𝐿𝑂 (𝑥𝑡 ) = 𝑖 given that we gain at least

a leading one is the probability that next 𝑖 − 1 bits after left-most 0

bit) is 1 followed by a 0 bit. This implies that the probability that

𝐿𝑂 (𝑥𝑡+1) − 𝐿𝑂 (𝑥𝑡 ) = 𝑖 given that we gain at least a leading one is

at most
1

2
𝑖−1 . Therefore, we have 𝐸

[
𝐿𝑂 (𝑥𝑡+1 )−𝐿𝑂 (𝑥𝑡 )
𝐵−𝐿𝑂 (𝑥𝑡+1 )+1

�� 𝐴𝑡 ]
≤ 𝐵 − 𝐿𝑂 (𝑥𝑡 )

𝑛
· 1
𝑛
·
𝐵−𝐿𝑂 (𝑥𝑡 )−1∑︁

𝑖=1

𝑖 · 21−𝑖
𝐵 − 𝐿𝑂 (𝑥𝑡 ) − 𝑖

. (4)

Equations 3 and 4 imply that, 𝐸 [Δ𝑠𝑡
�� 𝐴𝑡 ]

≤ 𝑛(𝑛 − 𝐵)
32𝑒2

· 𝐵 − 𝐿𝑂 (𝑥𝑡 )
𝑛

· 1
𝑛
·
𝐵−𝐿𝑂 (𝑥𝑡 )−1∑︁

𝑖=1

𝑖 · 21−𝑖
𝐵 − 𝐿𝑂 (𝑥𝑡 ) − 𝑖

≤ 1

16𝑒2
·
𝐵−𝐿𝑂 (𝑥𝑡 )−1∑︁

𝑖=1

(𝐵 − 𝐿𝑂 (𝑥𝑡 )) · 𝑖
(𝐵 − 𝐿𝑂 (𝑥𝑡 ) − 𝑖) · 2𝑖

=
1

16𝑒2
·
𝐵−𝐿𝑂 (𝑥𝑡 )−1∑︁

𝑖=1

(𝐵 − 𝐿𝑂 (𝑥𝑡 ) − 𝑖 + 𝑖) · 𝑖
(𝐵 − 𝐿𝑂 (𝑥𝑡 ) − 𝑖) · 2𝑖

≤ 1

16𝑒2
©­«
𝐵−𝐿𝑂 (𝑥𝑡 )−1∑︁

𝑖=1

𝑖

2
𝑖
+
𝐵−𝐿𝑂 (𝑥𝑡 )−1∑︁

𝑖=1

𝑖2

2
𝑖

ª®¬
≤ 1

16𝑒2
(2 + 6) = 1

2𝑒2
≤ 1. (5)

We used the infinite sum values

∑∞
𝑖=1

𝑖
2
𝑖 = 2,

∑∞
𝑖=0

𝑖2

2
𝑖 = 6, to

bound our required finite sums in the above calculation.
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From Equations 2 and 5, we have 𝐸 [Δ𝑡
�� 𝐴𝑡 ] ≤ 10 which con-

cludes the first case (when |𝑥𝑡 |1 = 𝐵). Next we calculate the bound
for the drift conditioned on the event 𝐴𝑐𝑡 (when |𝑥𝑡 |1 < 𝐵).

𝐸 [Δ𝑡
�� 𝐴𝑐𝑡 ] = 𝑛 · 𝐸 [

|𝑥𝑡 |1
𝐵 − 𝐿𝑂 (𝑥𝑡 ) + 1

− |𝑥𝑡+1 |1
𝐵 − 𝐿𝑂 (𝑥𝑡+1) + 1

�� 𝐴𝑐𝑡 ]
+ 𝐸 [Δ𝑠𝑡

�� 𝐴𝑐𝑡 ]
≤ 𝑛 · 𝐸

[
|𝑥𝑡 |1 − |𝑥𝑡+1 |1

𝐵 − 𝐿𝑂 (𝑥𝑡+1) + 1
�� 𝐴𝑐𝑡 ] + 𝐸 [Δ𝑠𝑡 �� 𝐴𝑐𝑡 ] .

Similar to the previous case, for this case also we start by finding a

bound for 𝑛 · 𝐸
[
|𝑥𝑡 |1−|𝑥𝑡+1 |1
𝐵−𝐿𝑂 (𝑥𝑡+1 )+1

�� 𝐴𝑐𝑡 ] . Let Δ1

𝑡 = |𝑥𝑡 |1 − |𝑥𝑡+1 |1. Then

𝑛 · 𝐸
[

Δ1

𝑡

𝐵−𝐿𝑂 (𝑥𝑡+1 )+1
�� 𝐴𝑐𝑡 ]

= 𝑛 · 𝐸
[

Δ1

𝑡

𝐵 − 𝐿𝑂 (𝑥𝑡+1) + 1
�� 𝐴𝑐𝑡 ,Δ1

𝑡 > 0

]
· 𝑃𝑟 (Δ1

𝑡 > 0)

+ 𝑛 · 𝐸
[

Δ1

𝑡

𝐵 − 𝐿𝑂 (𝑥𝑡+1) + 1
�� 𝐴𝑐𝑡 ,Δ1

𝑡 < 0

]
· 𝑃𝑟 (Δ1

𝑡 < 0) .

Nowwe find upper bounds for both the quantities in the above equa-

tion. By doing calculations similar to the calculations which lead to

the Equation (2), we get𝑛 ·𝐸
[

Δ1

𝑡

𝐵−𝐿𝑂 (𝑥𝑡+1 )+1
�� 𝐴𝑐𝑡 ,Δ1

𝑡 > 0

]
≤ 9. Since

there are at least 𝑛 − 𝐵 number of 0 bits, the probability to gain a 1

bit is at least
𝑛−𝐵
𝑒𝑛 . And the probability that 𝐿𝑂 (𝑥𝑡 ) = 𝐿𝑂 (𝑥𝑡+1) is at

least
1

2𝑒 , for𝑛 large enough. Therefore,𝑛·𝐸
[

Δ1

𝑡

𝐵−𝐿𝑂 (𝑥𝑡+1 )+1
�� Δ1

𝑡 < 0

]
·

𝑃𝑟 (Δ1

𝑡 < 0) ≤ − (𝑛−𝐵)
2𝑒2 (𝐵−𝐿𝑂 (𝑥𝑡 )+1) . By combining these two bounds

we have

𝑛 · 𝐸
[

Δ1

𝑡

𝐵 − 𝐿𝑂 (𝑥𝑡+1) + 1
�� 𝐴𝑐𝑡 ] ≤ 9 − (𝑛 − 𝐵)

2𝑒2 (𝐵 − 𝐿𝑂 (𝑥𝑡 ) + 1)
. (6)

Next we calculate 𝐸 [Δ𝑠𝑡
�� 𝐴𝑐𝑡 ], to get an upper bound for 𝐸 [Δ𝑡

��
𝐴𝑐𝑡 ]. When |𝑥𝑡 |1 < 𝐵, the probability to gain in LeadingOnes-value

is at most
1

𝑛 . Therefore,

𝐸 [Δ𝑠𝑡
�� 𝐴𝑐𝑡 ] ≤ 𝑛(𝑛 − 𝐵)

32𝑒2
· 𝐸


𝐿𝑂 (𝑥𝑡+1 )−1∑︁
𝑖=𝐿𝑂 (𝑥𝑡 )

1

𝐵 − 𝑖
�� 𝐴𝑐𝑡 

≤ 𝑛(𝑛 − 𝐵)
32𝑒2

· 𝐸
[
𝐿𝑂 (𝑥𝑡+1) − 𝐿𝑂 (𝑥𝑡 )
𝐵 − 𝐿𝑂 (𝑥𝑡+1) + 1

�� 𝐴𝑐𝑡 ]
≤ 𝑛(𝑛 − 𝐵)

32𝑒2
· 1
𝑛
·
𝐵−𝐿𝑂 (𝑥𝑡 )−1∑︁

𝑖=1

𝑖

(𝐵 − 𝐿𝑂 (𝑥𝑡 ) − 𝑖) · 2𝑖−1

=
𝑛 − 𝐵

32𝑒2 (𝐵 − 𝐿𝑂 (𝑥𝑡 ))
·
𝐵−𝐿𝑂 (𝑥𝑡 )−1∑︁

𝑖=1

(𝐵 − 𝐿𝑂 (𝑥𝑡 )) · 𝑖
(𝐵 − 𝐿𝑂 (𝑥𝑡 ) − 𝑖) · 2𝑖−1

=
𝑛 − 𝐵

16𝑒2 (𝐵 − 𝐿𝑂 (𝑥𝑡 ))
·
𝐵−𝐿𝑂 (𝑥𝑡 )−1∑︁

𝑖=1

(𝐵 − 𝐿𝑂 (𝑥𝑡 ) − 𝑖 + 𝑖) · 𝑖
(𝐵 − 𝐿𝑂 (𝑥𝑡 ) − 𝑖) · 2𝑖

≤ 𝑛 − 𝐵
16𝑒2 (𝐵 − 𝐿𝑂 (𝑥𝑡 ))

©­«
𝐵−𝐿𝑂 (𝑥𝑡 )−1∑︁

𝑖=1

𝑖

2
𝑖
+
𝐵−𝐿𝑂 (𝑥𝑡 )−1∑︁

𝑖=1

𝑖2

2
𝑖

ª®¬

≤ 𝑛 − 𝐵
16𝑒2 (𝐵 − 𝐿𝑂 (𝑥𝑡 ))

(2 + 6) = 𝑛 − 𝐵
2𝑒2 (𝐵 − 𝐿𝑂 (𝑥𝑡 ))

. (7)

Since 𝐵 − 𝐿𝑂 (𝑥𝑡 ) ≥ 1, we have
𝑛−𝐵

2𝑒2 (𝐵−𝐿𝑂 (𝑥𝑡 ) ) ≤
𝑛−𝐵

𝑒2 (𝐵−𝐿𝑂 (𝑥𝑡 )+1) .
From Equations 6 and 7,we have

𝐸 [Δ𝑡
�� 𝐴𝑡 ] ≤ 9 − (𝑛 − 𝐵)

2𝑒2 (𝐵 − 𝐿𝑂 (𝑥𝑡 ) + 1)
+ 𝑛 − 𝐵
2𝑒2 (𝐵 − 𝐿𝑂 (𝑥𝑡 ))

≤ 10.

Which concludes the second case (when |𝑥𝑡 |1 < 𝐵). Nowwe have

𝐸 [Δ𝑡 | 𝑔(𝑥𝑡 )] ≤ 10. Therefore, by the lower bounding additive drift

theorem [10, Theorem 5],

𝐸 [𝑇 ] ≥ 𝐸 [𝑔(𝑥0)] − 𝑛𝐵
10

= Ω(𝑛(𝑛 − 𝐵) log𝐵) .

□

Corollary 6. Let 𝑛, 𝐵 ∈ N. Then the expected optimization time

of the (1+1) EA on the LeadingOnes with cardinality constraint 𝐵 is

Θ
(
𝑛2 + 𝑛(𝑛 − 𝐵) log𝐵

)
.

Proof. From Theorem 4 and Theorem 5 we have the required

lower bound and we have the upper bound from Theorem 2. There-

fore the expected optimization time is Θ
(
𝑛2 + 𝑛(𝑛 − 𝐵) log𝐵

)
. □

4 BETTER RUN TIMES

In this section we discuss two ways to obtain the (optimal) run time

of 𝑂 (𝑛2). First, we state a corollary to the proof of Theorem 2, that

we can almost reach the bound within 𝑂 (𝑛2) iterations.

Corollary 7. Let 𝑛, 𝐵 ∈ N and 𝑐 > 0. Then the (1+1) EA on

LeadingOnes with the cardinality constraint 𝐵 finds a search point

with 𝐵 − 𝑐 (𝑛 − 𝐵) leading 1s within 𝑂 (𝑛2) in expectation.

With the next theorem we show that incorporating the number

of 0s of a bit string as a secondary objective gives an expected run

time of the (1+1) EA of Θ(𝑛2) to optimize cardinality constrained

LeadingOnes.

Theorem 8. Let 𝐵 ≤ 𝑛 − 1 and for any 𝑥 ∈ {0, 1}𝑛 , let

𝑓 (𝑥) =
{
(𝐿𝑂 (𝑥), |𝑥 |0) |𝑥 |1 ≤ 𝐵,
−|𝑥 |1 otherwise.

Then (1+1) EA takes Θ(𝑛2) in expectation to optimize 𝑓 in the lexico-

graphic order with the cardinality constraint 𝐵.

Proof. For any 𝑥 ∈ {0, 1}𝑛 , let𝑔(𝑥) = 3𝑒𝐿𝑂 (𝑥)+|𝑥 |0,where |𝑥 |0
represents the number of 0s in 𝑥 . Intuitively, we value both progress

in decreasing the number of (unused) 1s, as well as an increase in

leading 1s, but we value an increase in leading 1s higher (since this

is the ultimate goal, and typically comes at the cost of increasing the

number of 1 by a constant). Nowwewill show that𝑔(𝑦) = 3𝑒𝐵+𝑛−𝐵
if and only if 𝑦 is the optimum of 𝑓 . Suppose for some 𝑦 ∈ {0, 1}𝑛 ,
𝑔(𝑦) = 3𝑒𝐵 + 𝑛 − 𝐵. Then 3𝑒𝐿𝑂 (𝑦) + |𝑦 |0 = 3𝑒𝐵 + 𝑛 − 𝐵, which
implies that 3𝑒𝐿𝑂 (𝑦) = 3𝑒𝐵 + 𝑛 − 𝐵 − |𝑦 |0. Since 𝐿𝑂 (𝑦) ≤ 𝐵 and

|𝑦 |0 ≤ 𝑛−𝐿𝑂 (𝑦), 3𝑒𝐿𝑂 (𝑦) = 3𝑒𝐵+𝑛−𝐵−|𝑦 |0 implies that 𝐿𝑂 (𝑦) = 𝐵.
Therefore, 𝑦 is optimal.

Let 𝑇 = min{𝑡 ≥ 0

�� 𝑔(𝑥𝑡 ) ≥ 3𝑒𝐵 + 𝑛 − 𝐵}. We will examine the

drift at two different scenarios, |𝑥𝑡 |1 < 𝐵 and |𝑥𝑡 |1 = 𝐵 and show

that in both the cases the drift is at least 1/𝑛. LetΔ𝑡 = 𝑔(𝑥𝑡+1)−𝑔(𝑥𝑡 )
and 𝐴𝑡 be the event that the left-most 0 in 𝑥𝑡 is flipped. Then
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𝐸 [Δ𝑡
�� 𝐴𝑐𝑡 ] ≥ 0, because, if the number of LeadingOnes does not

increase then |𝑥𝑡+1 |0 − |𝑥𝑡 |0 ≥ 0 which in turn implies Δ𝑡 ≥ 0.

Therefore, for any 0 ≤ 𝑡 < 𝑇 ,
𝐸 [Δ𝑡

�� |𝑥𝑡 |1 < 𝐵] = 𝐸 [Δ𝑡
�� 𝐴𝑡 , |𝑥𝑡 |1 < 𝐵] · 𝑃𝑟 [𝐴𝑡 ]

+ 𝐸 [Δ𝑡
�� 𝐴𝑐𝑡 , |𝑥𝑡 |1 < 𝐵] · 𝑃𝑟 [𝐴𝑐𝑡 ]

≥ 1

𝑛
· 𝐸 [𝑔(𝑥𝑡+1) − 𝑔(𝑥𝑡 )

�� 𝐴𝑡 , |𝑥𝑡 |1 < 𝐵] + 0

=
1

𝑛
· 3𝑒𝐸 [𝐿𝑂 (𝑥𝑡+1) − 𝐿𝑂 (𝑥𝑡 )

�� 𝐴𝑡 , |𝑥𝑡 |1 < 𝐵]

+ 1

𝑛
· 𝐸 [|𝑥𝑡+1 |0 − |𝑥𝑡 |0

�� 𝐴𝑡 , |𝑥𝑡 |1 < 𝐵] .

Note that 𝐸 [𝐿𝑂 (𝑥𝑡+1) − 𝐿𝑂 (𝑥𝑡 )
�� 𝐴𝑡 , |𝑥𝑡 |1 < 𝐵] is greater than

or equal to the probability of not flipping any other bits, since

it increases the number of LeadingOnes by at least one. And

𝐸 [|𝑥𝑡 |0 − |𝑥𝑡+1 |0
�� 𝐴𝑡 , |𝑥𝑡 |1 < 𝐵]) is upper bounded by the sum

1 +
|𝑥𝑡 |0−1∑
𝑖=1

𝑃𝑟 (flipping the 𝑖𝑡ℎ 0 bit). This is because we lose one

0 bit by flipping the left-most 0 bit and we flip each other 0-bit

independently with probability
1

𝑛 . And
|𝑥𝑡 |0−1
𝑛 ≤ 1, therefore,

𝐸 [Δ𝑡
�� |𝑥𝑡 |1 < 𝐵] ≥ 1

𝑛

(
3𝑒

(
1 − 1

𝑛

)𝑛−1
−

(
1 + |𝑥𝑡 |0 − 1

𝑛

))
≥ 1

𝑛
.

This concludes the first case. Now, lets consider the case |𝑥𝑡 |1 = 𝐵.
Let 𝐷 be the event that the mutation operator flips exactly one

1 bit which lies after the left-most 0 bit and flips no other bits.

Since |𝑥𝑡 |1 = 𝐵 and 𝐿𝑂 (𝑥𝑡 ) < 𝐵, there is at least one such 1 bit,

which implies 𝐸 [|𝑥𝑡+1 |0 − |𝑥𝑡 |0
�� |𝑥𝑡 |1 = 𝐵, 𝐷] ≥ 1. Also note that

𝑃𝑟 (𝐷) ≥ 1

𝑒𝑛 . If a search point is accepted, then the number of 1

bits is at most 𝐵 and the LeadingOnes value cannot decrease; thus,

𝐿𝑂 (𝑥𝑡+1) ≥ 𝐿𝑂 (𝑥𝑡 ) and |𝑥𝑡+1 |0 ≥ 𝑛−𝐵. Overall we have 𝑔(𝑥𝑡+1) =
3𝑒𝐿𝑂 (𝑥𝑡+1) + |𝑥𝑡+1 |0 ≥ 3𝑒𝐿𝑂 (𝑥𝑡 ) +𝑛−𝐵 = 𝑔(𝑥𝑡 ). Therefore, 𝐸 [Δ𝑡

��
|𝑥𝑡 |1 = 𝐵, 𝐷𝑐 ] ≥ 0 and

𝐸 [Δ𝑡
�� |𝑥𝑡 |1 = 𝐵] = 𝐸 [|𝑥𝑡+1 |0 − |𝑥𝑡 |0 �� |𝑥𝑡 |1 = 𝐵, 𝐷] · 𝑃𝑟 (𝐷)

+ 𝐸 [Δ𝑡
�� |𝑥𝑡 |1 = 𝐵, 𝐷𝑐 ] · 𝑃𝑟 (𝐷𝑐 )

≥ 1

𝑒𝑛
.

The expected number of 0s in the initially selected uniform

random bit string is
𝑛
2
and the expected number of LeadingOnes

is at least zero, therefore 𝐸 [𝑔(𝑥0)] ≥ 𝑛
2
. We have an drift of at least

1

𝑒𝑛 in both the cases, therefore we get the required upper bound by

the additive drift theorem [10, Theorem 5],

𝐸 [𝑇 ] ≤ 𝑒𝑛 · (3𝑒𝐵 +𝑛−𝐵−𝐸 [𝑔(𝑥0)]) ≤ 3𝑒2𝑛𝐵 + 𝑒𝑛
2

2

−𝑒𝑛𝐵 = 𝑂 (𝑛2) .

This proves the upper bound. And the lower bound follows from

Theorem 4. □

5 EMPIRICAL ANALYSIS

We want to extend our theoretical work on deterministic constraint

the case of stochastic constraint models (as defined in Section 2.2).

For the first model we use parameters 𝜇 = 1 and 𝜎 = 0.1 and for

the second model we use 𝜖 =
√
3. Note that in the second model

𝑈 (𝐵−
√
3, 𝐵+

√
3) has variance 1. For both the models we considered

two different 𝐵 values 75 and 95 (also 𝐵 = 85 in the Appendix). As

we will see, the (1+1) EA struggles in these settings; in order to

show that already a small parent population can remedy this, we

also consider the (10 + 1) EA in our experiments.

We use the following lemma for discussing certain probabilities

in this section.

Lemma 9. Let 𝑘 ∈ {1, · · · , 𝐵 − 1}, 𝑥 ∈ {0, 1}𝑛, 𝐵 ∈ [𝑛],𝑊𝑥 =∑𝑛
𝑖=1 𝑥𝑖 · 𝑌𝑖 where 𝑌𝑖 ∼ 𝑁 (1, 𝜎2) and 𝑥𝑖 be the 𝑖−th bit of 𝑥 and

|𝑥 |1 ≤ 𝐵 − 𝑘 . Then 𝑃𝑟 (𝑊𝑥 > 𝐵) ≤ 1√
𝜋
𝑒
−𝑘2

2𝑛2𝜎2
and 𝑃𝑟 (𝑊𝑥 > 𝐵 |

|𝑥 |1 = 𝐵) = 1

2
.

In Figure 1 we have a single sample run of (1+1) EA on the first

model. We observe that if the (1+1) EA finds a bit string with 𝐵 num-

ber of 1s it violates the constraint with probability
1

2
(see Lemma 9)

and accepts a bit string with a lower number of LeadingOnes.

This process keeps repeating whenever the (1+1) EA encounters an

individual with a number of 1s closer to 𝐵.

Figure 1: (1+1) EA sample run with 𝑛 = 100, 𝐵 = 85

and 𝑁 (1, 0.1) chance constraint for 10000 iteration.

Figure 2: (10+1) EA and (1+1) EA on LeadingOnes

with 𝑛 = 100, 𝐵 = 75 and 𝑁 (1, 0.1) chance constraint
for 40000 iterations.

Figures 2 and 3 are about the first model in which we have

the LeadingOnes-values of the best individual (bit string with the

maximum fitness value) in each iteration of the (10+1) EA, the

LeadingOnes values of the second-worst individuals (bit string

with the second-smallest fitness value) in each iteration of the (10+1)

EA and the LeadingOnes values at each iteration of the (1+1) EA.

Each curve is the median of thirty independent runs and the shaded
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area is the area between the 25−th and the 75−th quantile values.

For all three 𝐵-values, after initial iterations, all the individuals

except the worst individual in the (10+1) EA population have 𝐵 − 2
number of leading 1s. This is because, for this model, the probability

that an individual with 𝐵 − 2 number of 1s violates the constraint

is at most
𝑒−2√
𝜋
(from Lemma 9).

Figure 3: (10+1) EA and (1+1) EA on LeadingOnes

with 𝑛 = 100, 𝐵 = 95 and 𝑁 (1, 0.1) chance constraint
for 40000 iterations.

Figures 4 and 5 are about the second model and the curves repre-

sent the same things as in the previous figures but with respect to

the second model. In these figures we can see that the best and the

second worst individuals of the (10+1) EA are not the same because

of the changing constraint values.

Figure 4: (10+1) EA and (1+1) EA on LeadingOnes

with 𝑛 = 100, 𝐵 = 75 and𝑈 (𝐵 −
√
3, 𝐵 +

√
3) stochastic

constraint for 40000 iterations.

Figure 5: (10+1) EA and (1+1) EA on LeadingOnes

with 𝑛 = 100, 𝐵 = 95 and𝑈 (𝐵 −
√
3, 𝐵 +

√
3) stochastic

constraint for 40000 iterations.

6 CONCLUSIONS

Understanding how evolutionary algorithms deal with constrained

problems is an important topic of research. We investigated the

classical LeadingOnes problem with additional constraints. For the

case of a deterministic uniform constraint we have carried out

a rigorous run time analysis of the (1+1) EA which gives results

on the expected optimization time in dependence of the chosen

constraint bound. Afterwards, we examined stochastic constraints

and the use of larger populations for dealing with uncertainties.

Our results show a clear benefit of using the (10 + 1) EA instead of

the (1+ 1) EA. We regard the run time analysis of population-based

algorithms for our examined settings of stochastic constraints as

an important topic for future work.
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A APPENDIX

Corollary 10. Let 𝑛, 𝐵 ∈ N and 𝑐 > 0. Then the (1+1) EA on

LeadingOnes with the cardinality constraint 𝐵 finds a search point

with 𝐵 − 𝑐 (𝑛 − 𝐵) leading 1s within 𝑂 (𝑛2) in expectation.

Proof. Let 𝑥𝑡 be the search point at the 𝑡𝑡ℎ iteration of the (1+1)

EA optimizing LeadingOnes with the cardinality constraint 𝐵 and

𝑇1 = min{𝑡 ≥ 0

�� 𝐿𝑂 (𝑥𝑡 ) ≥ 𝐵 − 𝑐 (𝑛 − 𝐵)}. And let 𝑘 = 𝐵 − 𝑐 (𝑛 − 𝐵).
Then, from the proof of Theorem 2 we know that

𝐸 [𝑇1] ≤ 𝑔<𝐵 (𝑘) ≤
𝑒𝑛𝐵

2

+ (𝑒𝑛 + 𝑒2𝑛(𝑛 − 𝐵))
(
1 + ln

(
𝐵

𝑐 (𝑛 − 𝐵)

))
.

Since ln𝑦 ≤ 𝑦 for any 𝑦 > 0, we have (𝑛 − 𝐵)
(
ln

(
𝐵

𝑐 (𝑛−𝐵)

))
≤ 𝐵

𝑐 =

𝑂 (𝑛). Therefore, 𝐸 [𝑇1] = 𝑂 (𝑛2) . □

Corollary 11. Let 𝑛, 𝐵 ∈ N and 𝑐 > 0. Then the (1+1) EA on

LeadingOnes with the cardinality constraint 𝐵 finds a search point

with 𝐵 − 𝑐 (𝑛 − 𝐵) number of LeadingOnes within𝑂 (𝑛2) in expecta-

tion.

Proof. Let 𝑥𝑡 be the search point at the 𝑡𝑡ℎ iteration of the (1+1)

EA optimizing LeadingOnes with the cardinality constraint 𝐵 and

𝑇1 = min{𝑡 ≥ 0

�� 𝐿𝑂 (𝑥𝑡 ) = 𝐵 − 𝑐 (𝑛 − 𝐵)}. And let 𝑘 = 𝐵 − 𝑐 (𝑛 − 𝐵).

Then from Theorem 2 we know that,

𝐸 [𝑇1] ≤ 𝑔<𝐵 (𝑘)

=

𝑘∑︁
𝑖=0

(𝑔<𝐵 (𝑖) − 𝑔𝐵 (𝑖)) +

𝑘∑︁
𝑖=1

(𝑔𝐵 (𝑖) − 𝑔<𝐵 (𝑖 − 1))

=

𝐵−𝑐 (𝑛−𝐵)∑︁
𝑖=0

𝑒𝑛

𝐵 − 𝑖 +

𝐵−𝑐 (𝑛−𝐵)∑︁
𝑖=1

𝑒𝑛

(
1 + 𝑒 · (𝑛 − 𝐵)

𝐵 − 𝑖 + 1

)

≤ 𝑒𝑛

𝐵∑︁
𝑖=𝑐 (𝑛−𝐵)

(
1

𝑖

)
+ 𝑒𝑛𝐵

2

+ 𝑒2 · 𝑛(𝑛 − 𝐵)

𝐵∑︁
𝑖=𝑐 (𝑛−𝐵)

(
1

𝑖

)
≤ 𝑒𝑛𝐵

2

+ (𝑒𝑛 + 𝑒2𝑛(𝑛 − 𝐵))
(
1 + ln

(
𝐵

𝑐 (𝑛 − 𝐵)

))
.

Since ln𝑦 ≤ 𝑦 for any𝑦 > 0, we have (𝑛−𝐵)
(
ln

(
𝐵

𝑐 (𝑛−𝐵)

))
≤ 𝐵

𝑐 ≤ 𝑛.
Therefore, 𝐸 [𝑇1] = 𝑂 (𝑛2). □

Lemma 12. Let 𝑘 ∈ {1, · · · , 𝐵 − 1}, 𝑥 ∈ {0, 1}𝑛, 𝐵 ∈ [𝑛],𝑊𝑥 =∑𝑛
𝑖=1 𝑥𝑖 · 𝑌𝑖 where 𝑌𝑖 ∼ 𝑁 (1, 𝜎2) and 𝑥𝑖 be the 𝑖−th bit of 𝑥 and

|𝑥 |1 ≤ 𝐵 − 𝑘 . Then 𝑃𝑟 (𝑊𝑥 > 𝐵) ≤ 1√
𝜋
𝑒
−𝑘2

2𝑛2𝜎2
.

Proof. First note that𝑊𝑥 is nothing but sum of |𝑥 |1 normal ran-

dom variables with mean 1 and variance 𝜎2, i.e.𝑊𝑥 ∼ 𝑁 ( |𝑥 |1, |𝑥 |1 ·
𝜎2) and 𝑃𝑟 (𝑊𝑥 > 𝐵 | |𝑥 |1 = 𝐵) = 1

2
.

𝑃𝑟 (𝑊𝑥 > 𝐵) = 1 − 𝑃𝑟 (𝑊𝑥 ≤ 𝐵)

= 1 − 1

2

(
1 + erf

(
𝐵 − |𝑥 |1
|𝑥 |1 · 𝜎

√
2

))
=

1

2

(
1 − erf

(
𝐵 − |𝑥 |1
|𝑥 |1 · 𝜎

√
2

))
=

1

2

erfc

(
𝐵 − |𝑥 |1
|𝑥 |1 · 𝜎

√
2

)
.

Since complementary error function erfc is a decreasing function

and |𝑥 |1 ≤ 𝐵 − 𝑘 , we have

𝑃𝑟 (𝑊𝑥 > 𝐵) = 1

2

erfc

(
𝐵 − |𝑥 |1
|𝑥 |1 · 𝜎

√
2

)
(8)

≤ 1

2

erfc

(
𝑘

|𝑥 |1 · 𝜎
√
2

)
≤ 1

2

erfc

(
𝑘

𝑛𝜎
√
2

)
Since 𝑟𝑘 = 𝑘

𝑛𝜎
√
2

> 0, we can use the upper bound for the erfc from

[25],

𝑃𝑟 (𝑊𝑥 > 𝐵) ≤ 1

2

erfc

(
𝑘

𝑛𝜎
√
2

)
≤ 1

√
𝜋

𝑒−𝑟
2

𝑘

𝑟𝑘 +
√︃
𝑟2
𝑘
+ 4

𝜋
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≤ 1

√
𝜋
𝑒
−𝑘2

2𝑛2𝜎2 .

FromEquation 8, we have 𝑃𝑟 (𝑊𝑥 > 𝐵 | |𝑥 |1 = 𝐵) = 1

2
erfc

(
𝐵−|𝑥 |1
|𝑥 |1 ·𝜎

√
2

)
which is

1

2
. □

The following two figures are the experimental results for the

constraint value 𝐵 = 85.

Figure 6: (10+1) EA and (1+1) EA on LeadingOnes

with 𝑛 = 100, 𝐵 = 85 and 𝑁 (1, 0.1) chance constraint
for 40000 iterations.

Figure 7: (10+1) EA and (1+1) EA on LeadingOnes

with 𝑛 = 100, 𝐵 = 85 and𝑈 (𝐵 −
√
3, 𝐵 +

√
3) stochastic

constraint for 40000 iterations.
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