
How Crossover Helps in Pseudo-Boolean Optimization

Timo Kötzing
Max-Planck-Institut für

Informatik
66123 Saarbrücken, Germany

Dirk Sudholt
CERCIA, University of

Birmingham
Birmingham B15 2TT, UK

Madeleine Theile
Technische Universität Berlin

10623 Berlin, Germany

ABSTRACT

Understanding the impact of crossover on performance is a
major problem in the theory of genetic algorithms (GAs).
We present new insight on working principles of crossover
by analyzing the performance of crossover-based GAs on the
simple functions OneMax and Jump.

First, we assess the potential speedup by crossover when
combined with a fitness-invariant bit shuffling operator that
simulates a lineage of independent evolution on a function
of unitation. Theoretical and empirical results show drastic
speedups for both functions.

Second, we consider a simple GA without shuffling and in-
vestigate the interplay of mutation and crossover on Jump.
If the crossover probability is small, subsequent mutations
create sufficient diversity, even for very small populations.
Contrarily, with high crossover probabilities crossover tends
to lose diversity more quickly than mutation can create it.
This has a drastic impact on the performance on Jump. We
complement our theoretical findings by Monte Carlo simu-
lations on the population diversity.

Categories and Subject Descriptors

F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems

General Terms

Algorithms, Design, Performance, Theory

Keywords

Crossover, recombination, pseudo-Boolean optimization,
runtime analysis

1. INTRODUCTION
Crossover, also called recombination, is regarded an es-

sential operator in genetic algorithms. Countless applica-
tions and empirical studies have shown that genetic algo-
rithms with crossover are more effective than comparable

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

algorithms using mutation only. While mutation typically
makes only small changes to a genotype, crossover can com-
bine genetic material found in different genotypes. One of
the most natural settings for crossover is pseudo-Boolean
optimization. Individuals are represented by an n-bit string
and the fitness function assigns real values to each individ-
ual.

Schema theory was proposed to explain the successful use
of crossover. A schema is a Boolean subspace where certain
bits have fixed values and other bits can be set arbitrarily.
Schema theory then deals with the growth of individuals
belonging to schemas associated with high fitness values,
in one generation of a GA. The building-block hypothesis
states that using crossover GAs are able to combine good
“building blocks”, that is, schemata with few defining bits
that contribute to a high fitness. However, there is neither
a theoretical foundation nor convincing empirical evidence
supporting this claim [24]. Another shortcoming of schema
theory is that it is very hard to make predictions for more
than one generation of a GA.

Runtime analysis has emerged as a different kind of the-
ory. It is much less ambitious in terms of generality as one
considers specific algorithms on specific problems or prob-
lem classes. But it allows to estimate the performance of
genetic and evolutionary algorithms in a very precise way.
Bounds on the running time are obtained until an evolution-
ary algorithm (EA) has found a desirable solution such as
a global optimum. This time is called optimization time.
The resulting bounds apply to problems of growing size and
hence allow to assess the scalability of EAs.

Many such results have been obtained in the past 15 years,
see, e. g., Droste, Jansen, and Wegener [6], Wegener [23],
Oliveto, He, and Yao [18], or the recent book by Neumann
and Witt [17]. The vast majority of these results focuses on
EAs using mutation only, and studies are often limited to
variants of the (1+1) EA using a population size of 1. One
reason is that crossover is notoriously difficult to analyze.
In order to analytically handle the effect of crossover, it is
necessary to have a precise understanding of the dynamics
within the population. The analysis of populations is much
more difficult than the analysis of an (1+1) EA. Even on
very simple problems like OneMax understanding the effect
of crossover is still a tough challenge and an important open
problem.

It is therefore not surprising that theoretical results on
crossover after more than a decade of intensive research are
still scarce. Speedups by crossover could be shown for col-
oring problems inspired by the Ising model [8, 21] and for

989

the all-pairs shortest path problem [3, 5, 4, 16, 11]. In terms
of pseudo-Boolean optimization, most results were actually
limited to artificial functions [13, 22, 19, 20] constructed
such that a theoretical analysis was possible.

One notable exception is the first proof that crossover
leads to a speedup by Jansen and Wegener [12]. They con-
sidered a simple test function Jumpk and showed that uni-
form crossover can reduce a superpolynomial optimization
time to a polynomial one. If ||x||1 denotes the number of
ones in the bit string x, the function is defined as follows.

Jumpk(x) :=

{

k + ||x||1 if ||x||1 ≤ n− k or ||x||1 = n,

n− ||x||1 otherwise.

The function leads the population of a genetic algorithm
to a plateau of search points with equal fitness. All search
points on the plateau have n−k ones. The optimum can be
generated by a uniform crossover in case there is a pair of
sufficiently diverse parents in the population. This operation
is far more efficient than using mutation to jump to the
optimum; such a mutation has probability at most n−k.

As crossover heavily relies on diversity in the popula-
tion, we first consider a setting for uniform crossover with
a rather ideal diversity. This diversity is obtained by com-
bining crossover with a specialized but fitness-invariant op-
erator that is not found in typical GAs. The idea is to
randomly shuffle all bits in the bit string before perform-
ing a uniform crossover. This does not affect the fitness
on functions of unitation (i. e. functions depending on the
number of ones only), but it simulates the potential diver-
sity if we had run two independent strands of evolution
on a unitation function. As such, it can create the diver-
sity necessary to effectively perform crossover. Note that
this crossover, called shuffle crossover, is not a geometric
crossover as defined in [15]. The purpose is to assess the
potential speedup of crossover in the presence of ideal diver-
sity. We prove that this can lower the expected running time
drastically—compared to the (1+1) EA without crossover—
on OneMax from Θ(n log n) to Θ(

√
n) function evaluations

and on Jumpk from Θ(nk) to Θ(
√
n+ 4k). This illuminates

the possible advantage crossover can have over mutation,
depending on diversity.

For GAs without shuffling diversity is usually obtained by
having large populations. The GA considered by Jansen and
Wegener [12] needs a quite large population and a very low
crossover probability to be effective on Jumpk. We show that
large populations are not necessary to provide the required
diversity if the crossover probability is small. This holds
even up to population sizes as small as 2. On the other
hand, large crossover probabilities make small populations
collapse quickly, rendering crossover inefficient.

Thereby, we discuss an interesting effect. With standard,
geometric crossovers EAs perform a convex search on the
population, gradually decreasing the convex hull spanned by
all members of the population until it eventually collapses
to a single point [15]. Contrarily, mutation can create new
points outside the present convex hull and thus randomly
extends the convex hull. The interplay of these conflicting
operators leads to an equilibrium state. The diversity in
such an equilibrium state is essential for optimization. We
use Monte Carlo simulations to gain deeper insights into
this equilibrium and the respective diversity for various pa-
rameter settings on the Jump plateau. This leads to novel
insights on when crossover can create a global optimum.

2. ON THE POTENTIAL OF CROSSOVER
In contrast to mutation operators that typically only make

small changes, crossover can yield a larger progress and a
greater increase in fitness. This, however, only holds if the
diversity in the population is large enough: if all individuals
in the population are very similar, crossover will create a
similar offspring. The analysis of diversity is a challenging
problem in its own right [9]. We are interested in the poten-
tial of crossover. How large can the progress by crossover
be if there is sufficient diversity in the population?

To answer this question we consider uniform crossover for
a population where there is an “ideal” diversity. It is ideal
in a sense that it models the situation where two individ-
uals have been evolved independently to the same fitness
value. On functions of unitation the fitness only depends
on the number of bits set to 1. If mutation and/or uniform
crossover is used (as opposed to 1-point or k-point crossover
where linkage of bits comes into play), the position of 1-bits
will be uniform if we look at one specific individual in the
population.

We consider a shuffling operator that randomly permutes
all bits in order to simulate a population that has evolved
independently. For functions of unitation this operator is
reasonable as it does not affect the fitness. It needs to be
remarked, though, that this operator is clearly artificial and
tailored towards functions of unitation. In particular, results
obtained in this setting do not generalize under straightfor-
ward transformations of the search space such as exchang-
ing bits values for selected bits. This in particular eludes
lower bounds on the black-box complexity for such gener-
alizations [7, 14]. Nevertheless, it allows us to observe the
potential progress by crossover in a clear fashion.

The following algorithm called shuffle GA uses a popula-
tion size 1 and the shuffling mechanism to create a second
parent out of the current search point. This idea is similar
to the gene invariant GA (GIGA) [1, 2].

Algorithm 1: Shuffle GA.

1 Initialize an individual x uniformly at random;
2 while true do
3 Let x′ := x. Permute all bits of x′ unif. at random;
4 Let y := uniform crossover(x, x′);
5 if f(y) ≥ f(x) then x := y;

6 end

We abbreviate the two operations shuffling bits and per-
forming a uniform crossover as shuffle crossover. Note that,
for functions of unitation, it does not matter whether we
shuffle one or both parents.

In the remainder of this section we determine tight bounds
on the optimization time for the functions OneMax and
Jumpk. OneMax represents a simple test case where all
bits can be seen as small building blocks that have to be
assembled. In contrast to the standard (1+1) EA [6] that
needs Θ(n log n) steps in expectation, uniform crossover can
lead to a significant progress. If both parents have an equal
number of 1-bits and their Hamming distance is k, then the
gain of the OneMax-value for the offspring is governed by
k independent Bernoulli trials. The following lemma shows
that there is a good chance of having a surplus of Ω(

√
k)

ones.

990

Lemma 1. Let X be the sum of independent random vari-
ables X1, . . . , Xk ∈ {0, 1} where Xi = 1 with probability 1/2.
Define the surplus of ones as Y := max{0, X − k/2}. Then

Prob(Y ≥ π/(4e) ·
√
k) ≥ 1/4 and E(Y) ≤

√
k +O(1).

Proof. W. l. o. g. k is even. For every 0 ≤ i ≤ k

Prob(X = i) ≤ Prob(X = k/2) =

(

k

k/2

)

· 2−k =
k! · 2−k

((k/2)!)2
.

From Stirling’s approximation and a simple case analysis it
follows for k ∈ N that

√
2πk · (k/e)k ≤ k! ≤ e

√
k · (k/e)k.

Hence the above probability is at most

e
√
k · (k/e)k · 2−k

(
√

2π · k/2)2 · (k/(2e))k
=

e

π
√
k
.

As Prob(X < k/2) = Prob(X > k/2) ≤ 1/2, we have that

Prob
(

X ≤ k/2 +
π

4e
·
√
k − 1

)

≤ 1

2
+

π
√
k

4e
· e

π
√
k
=

3

4
.

This proves the claimed probability bound for Y .
For the upper bound on E(Y) we have

E(Y) =

k/2
∑

i=0

Prob(Y ≥ i) =

k/2
∑

i=0

Prob(X ≥ k/2 + i).

Clearly, Prob(X ≥ k) = 2−k and E(X) = k/2. For i < k/2
we apply well known Chernoff bounds to get

E(Y) = 2−k +

k/2−1
∑

i=0

Prob

(

X ≥
(

1 +
2i

k

)

· k
2

)

≤ 2−k +

k/2−1
∑

i=0

e−k/6·(2i/k)2 = 2−k +

k/2−1
∑

i=0

e−2/3·i2/k.

Estimating the first
√
k summands of the

∑

-term (w. l. o. g.

assuming
√
k ∈ N) by the trivial bound 1 and using i2 =

(
√
k + (i−

√
k))2 ≥ k + (i−

√
k) for i ≥

√
k, we arrive at

√
k + 2−k +

k/2−1
∑

i=
√

k

e−2/3·(i−
√

k)

≤
√
k +

∞
∑

i=0

e−2/3·i =
√
k +

1

1− e−2/3
.

The following theorem gives an upper bound on the opti-
mization time of the shuffle GA on OneMax. As the shuffle
GA cannot generate 1-bits when starting with 0n, we have
to exclude this case.

Theorem 2. Unless initialized with 0n, the expected op-
timization time of the shuffle GA on OneMax is O(

√
n).

Proof. We estimate the increase of the offspring’s One-
Max-value using the surplus argument of Lemma 1. As the
crossover operator can only yield a surplus on bits where
both parents differ we first derive a lower bound on the num-
ber of these bits.

Let k < n be the number of zeros in the current bit
string x. First consider the case k ≤ n/2. Consider the bit
string x′ obtained by shuffling x. Whenever there is a bit
where both x and x′ are 0, we speak of a collision. For a fixed
0-bit in x we have that the expected number of collisions

0 0.2 0.4 0.6 0.8 1

0

10

20

n (·104)

o
p
t.

ti
m
e
(·1

0
4
)

0 0.2 0.4 0.6 0.8 1

102

103

104

105

n (·104)

o
p
t.

ti
m
e

Figure 1: Average optimization times and standard
deviation () for the (1+1) EA () and the shuffle
GA () on OneMax on linear (left) and logarith-
mic (right) scales

of the bit is k/n. By linearity of expectation, the total ex-
pected number of collisions is therefore k·k/n = k2/n. Using
Markov’s inequality, with probability at least 1/3 we have at
most 3/2 · k2/n collisions. This implies that the number of
0-bits in x where x′ has value 1 is at least k − 2k2/n ≥ k/4
with probability at least 1/3. The case k ≥ n/2 follows
by symmetric arguments, exchanging the roles of zeros and
ones.

Along with Lemma 1, the shuffle GA gains at least π/(8e)·√
k ones with probability at least 1/12. Other steps cannot

decrease the number of ones. If, for the current number of
zeros k, it holds that n/(2i+1) < k ≤ n/2i for some i ∈ N,
the expected time until this number has decreased to or
below n/2i+1 is at most

12 ·
⌈

n

2i
· 8e

π
√

n/2i+1

⌉

≤ 12 +
96e√
2π

·
√
n

2i/2
.

As we start with at most n/20 zeros and finish when there

are at most n/2(log n)+1 < 1 zeros left, summing up all ex-
pected time bounds, the total expected optimization time
is

(log n)+1
∑

i=0

(

12 +
96e√
2π

·
√
n

2i/2

)

≤ O(log n) +
96e√
2π

·
√
n ·

∞
∑

i=0

2−i/2 = O(
√
n).

The speedup compared to the time Θ(n log n) of the
(1+1) EA is dramatic. To see that this is not just a the-
oretical artifact, we consider experiments for realistic prob-
lem dimensions. Figure 1 shows average optimization times
for n ∈ {100, 200, 300, . . . , 10.000} with a hundred runs for
each n. The plot on the left shows the huge difference of the
runtime between a standard (1+1) EA on OneMax and our
shuffle GA. The plot on the right uses a logarithmic scale.
Note that the variance for the shuffle GA is smaller than for
the (1+1) EA, i. e. the runtime of the shuffle GA is much
more concentrated.

The reason for the overwhelming success of the shuffle GA
is that shuffling bits of an individual with i zeros creates
another individual uniformly distributed on the Hamming
ball around the optimum 1n. Recombining two parents that

991

are “on opposite sides” of the global optimum can yield a
significant progress towards the optimum.

In order to avoid misinterpretations, we stress that Theo-
rem 2 does not contradict higher lower bounds on the black-
box complexity of a class of generalized OneMax func-
tions [7, 14]. We are only considering one specific function
and the black-box complexity of a single function is triv-
ially 1 [7].

The upper bound for OneMax is asymptotically tight. In
fact, the following result holds for arbitrary functions that
only have one global optimum. This presents a limit to the
potential speedup by crossover.

Theorem 3. The expected optimization time of the shuf-
fle GA on any function with a unique optimum is Ω(

√
n).

Proof. Without loss of generality, we suppose the opti-
mum to be the all-1 string. We use drift on the number of
0-bits in the individual. For all t, we let Xt be the random
variable of this number after t iterations. It is easy to see
that we can bound the drift of (Xt)t∈N from above by sup-
posing there is no negative drift, and that each search point
with less 0-bits is accepted.

The number of bits differing in both parents when per-
forming a uniform crossover is trivially bounded by n. By
Lemma 1 this implies that the expected decrease of the
number of zeros is always bounded by E(Xt −Xt+1 | Xt) =
O(

√
n).

The lower bound now follows from well known addi-
tive drift results (Lemma 2 in [10]), saying that if always
E(Xt −Xt+1 | Xt) ≤ δ holds for some δ > 0 then the
expected time until Xt = 0 is at most E(X0)/δ. Here
the expected number of zeros in the initial search point
is E(X0) = n/2. Setting δ := O(

√
n), we get a lower bound

of n/(2δ) = Ω(
√
n).

For Jumpk shuffling a search point on the plateau creates
another search point on the plateau. The resulting diversity
is sufficient to show the following result.

Theorem 4. Unless initialized with 0n, the expected op-
timization time of the shuffle GA on Jumpk with k ≤

√

n/2

is Θ(
√
n+ 4k).

This is a significant speedup, compared to the standard
(1+1) EA that needs expected time Θ(n log n + nk) [12].
For k := log n, say, this is a difference between polynomial
and superpolynomial running times.

Proof of Theorem 4. Following the analysis of the
proof of Theorem 2, the individual will have reached the
plateau of fitness k after O(

√
n) generations. The proba-

bility that a single application of the shuffle crossover now
produces the optimum is the probability of choosing disjoint
sets of bit positions in the two random permutations of the
individual for the 0s, and then choosing a 1 at all these po-
sitions in the uniform crossover. As there are 2k positions
where the selected parents differ, the probability for uniform
crossover setting all bits to 1 is 2−2k = 4−k. The probabil-
ity of obtaining the right parents can be bounded as follows.
Fixing the k positions for 0-bits in the first individual, con-
sider all k positions for the second individual to be assigned
sequentially. All zeros of the second individual must not be
in at most 2k positions that are either fixed or already used.
Thus, we get a lower bound on the probability of

(

1− 2k

n

)k

· 4−k ≥
(

1− k2

n

)

· 4−k.

The upper bound follows from k2 ≤ n
2
.

It is easy to see that with overwhelming probability no
search point with more than n − k ones and less than n
ones is accepted after initialization. The lower bound then
follows from the general lower bound Ω(

√
n) and the fact

that uniform crossover of two individuals with at least k
zeros each is successful with probability at most 4−k.

We get the following corollary to the theorems above.

Corollary 5. Unless initialized with 0n, the expected
optimization time of the shuffle GA on OneMax and Jumpk

(k ≤ log n
4

) is Θ(
√
n).

3. POPULATION SIZE VS. CROSSOVER

PROBABILITY
The consideration of the shuffle GA has shown that diver-

sity is essential for achieving speedups with crossover. We
now turn from an “ideal” setting to a more realistic GA.
Without the shuffling operator one might think that a large
population is necessary to provide diversity. However, if the
crossover probability is small, mutation can create diversity
in subsequent steps. We make this precise for the function
Jumpk by showing that small populations, even of size as
small as µ = 2, suffice to optimize Jumpk efficiently.

Jansen and Wegener [12] considered a steady-state genetic
algorithm as given in Algorithm 2. In their analysis on the
function Jumpk they disallowed mutation to create repli-
cates of the parent. The reason is that otherwise replicates
would quickly take over the population and so diversity is
lost. So, when mutation does not flip any bit, the offspring
is disregarded. Note that this does not apply to mutation
following crossover.

Algorithm 2: (µ+1) GA with avoidance of replications by
mutation and with/without mutation after crossover.

1 Initialize population P of size µ ∈ N uniformly at
random, choose pc ∈ (0, 1);

2 while true do
3 Choose q ∈ [0, 1] uniformly at random;
4 if q ≤ pc then
5 Choose y1, y2 uniformly at random from P ;
6 Obtain y′ by a uniform crossover of y1 and y2;
7 if use mutation after crossover then
8 Flip each bit in y′ independently with

probability 1/n;

9 end

10 end
11 else
12 Choose y uniformly at random from P ;
13 Create y′ by flipping each bit in y independently

with probability 1/n;
14 if y = y′ then
15 Continue at line 3 to avoid replicates;
16 end

17 end
18 Choose z ∈ P with minimal fitness in P u. a. r.;
19 if f(y′) ≥ f(z) then
20 Let P := P \ {z} ∪ {y′};
21 end

22 end

992

Their result for Jumpk reads as follows (they also prove
a tail bound, but we only review the result on the expected
optimization time).

Theorem 6 (Jansen and Wegener [12]). Let k =
O(log n). Consider the (µ+1) GA with crossover proba-
bility pc ≤ 1/(ckn) (where c is a large enough constant),

and population size µ where µ ≥ k log2 n and µ = nO(1)

on Jumpk. The expected optimization time is O(µn(k2 +
log(µn)) + 4k/pc).

The behavior of the (µ+1) GA on the function Jumpk is
of particular interest for us, as Jumpk cannot be optimized
efficiently by mutation only, while a crossover has to rely on
a sufficient diversity in the population: the population easily
reaches the locally optimal plateau of fitness n, but will then
need to create what we call complementary pairs—pairs of
individuals which do not have a 0 at a common bit position,
and which can thus be recombined to reach the optimum.

In this section we give conditions on the parameters of the
(µ+1) GA which lead to efficient optimization of Jumpk, as
well as conditions which lead to expected superpolynomial
optimization times.

First, we prove that the (µ+1) GA also works with very
small populations and not too big crossover probability. In
particular, the GA is effective using the smallest possible
population size: µ = 2. In addition, larger crossover proba-
bilities can be used, compared to the result by Jansen and
Wegener [12]. Instead of requiring pc ≤ 1/(ckn), the follow-
ing proof works for pc ≤ k/n.

Theorem 7. The expected optimization time of the
(µ+1) GA with or without mutation after crossover, µ ≥ 2,

µ ≤ nO(1), and pc ≤ k
n

on Jumpk with k = o(
√
n) is

O
(

µn log n+ e6k · µk+2 · n
)

.

Theorem 7 gives the smallest upper bound for µ = 2.
In this case for every ε > 0, if k = c log n for a sufficiently
small constant c depending on ε, this gives an expectation of
O(n1+ε), while mutation-based EAs without crossover still
need superpolynomial time Ω(nc log n).

If µ = 2 and k = c log log n for a sufficiently small c, we
get O(n log n), while mutation-based EAs without crossover
need time Ω(nc log log n), which is still superpolynomial.

Proof of Theorem 7. It is easy to show that when
µ = nO(1) then in expected time O(µn log n) the whole pop-
ulation contains only the optimum 1n or search points on
the plateau (cf. the proof of Theorem 5 in [12]). Note that
this property will be preserved forever as all other search
points have worse fitness (apart from the optimum).

A population is called perfect if each member has n − k
ones and there is a complementary pair in the population.
Note that uniform crossover can only create the global op-
timum 1n in a perfect population.

We describe a sequence of lucky events that results in a
perfect population. We call this sequence a trial. The length
of such a sequence is bounded. A trial is called successful if
it leads to a crossover operation on a perfect population. In
a perfect population there are two parents having k zeros at
different positions. This means that their Hamming distance
is 2k and all these bits have to be set to 1 in a uniform
crossover. The probability that a successful trial creates a
global optimum is then at least 1/

(

µ
2

)

· 2−2k if no mutation

is used after crossover and 1/
(

µ
2

)

· 2−2k
(

1− 1
n

)n
otherwise,

as the latter factor describes the probability that mutation
does not flip any bit.

The expected optimization time then follows from the
probability of a trial being successful, the length of a trial,
and the above probability of creating an optimum at the end
of a successful trial.

Consider a population where all members have n−k ones.
For the next at most n+n/k generations we define the follow-
ing events. The first events concern the first n generations,
or a shorter time span if a perfect population or a global
optimum is found earlier. The last event is based on the
following n/k generations. This means that a trial contains
at most n+ n/k generations. We pessimistically ignore the
possibility that a perfect population or a global optimum
might be reached prematurely.
E1: Within n generations no crossover is performed. This
event has probability at least (1 − pc)

n ≥ (1 − k/n)n ≥
e−k(1− o(1)).
E2: Conditional on E1, within n generations at least k mu-
tations are performed such that exactly two bits are flipped
and the offspring has n − k 1-bits. Such a mutation has
probability p := k/n · (n−k)/n · (1−1/n)n−2 as exactly one
1-bit and one 0-bit have to be flipped. Assuming n is large
enough such that (n − k)/n · (1 − 1/n)n−2 ≥ 1/3, we have
k/(3n) ≤ p ≤ k/n. The probability of the described event
is at least
(

n

k

)

· pk · (1− p)n−k ≥ nk

kk
· k

k

nk
· 3−k · (1− p)n−k

≥ 3−k ·
(

1− k

n

)(n

k
−1)·k

≥ (3e)−k.

E3: Conditional on E1, within n generations it never hap-
pens that mutation creates an offspring with Hamming dis-
tance larger than 2 to its parent such that the offspring has
n− k ones. The probability for a single such mutation is at
most

(

k
2

)

· 1/n2 ≤ k2/n2 as two 0-bits need to be flipped.
The event E3 thus has probability at least

(

1− k2

n2

)n

≥ 1−O

(

k2

n

)

≥ 1− o(1)

as k = o(
√
n). Note that E2 and E3 are not independent,

but Prob(E2 ∧ E3) ≥ Prob(E2) · Prob(E3).
E4: Assume E1, E2, and E3 happen, which implies that we
have at most k generations where the population changes,
due to the avoidance of replications. E4 is the event that
selection in such a generation always chooses appropriate in-
dividuals in the following sense. A parent x is selected which
is part of a pair x, y of individuals that have a maximal Ham-
ming distance in the population: x, y = argmax{H(x′, y′) |
x′, y′ ∈ P}. Also the individual to be removed is selected
in such a way that the above maximum pairwise Hamming
distance in the population is not decreased.

The probability of always choosing a parent as described
is at least (2/µ)k as there is at least one pair of individuals
defining the maximal Hamming distance. For the same rea-
son the probability of always choosing the individual to be
removed as described is at least ((µ−1)/(µ+1))k ≥ (1/3)k.
Together, the probability for E4 is at least (2/3)kµ−k.
E5: Conditional on E1–E4, the maximum Hamming dis-
tance of pairs in the current population never decreases.

Due to E4 in every accepted mutation a parent x is se-
lected such that it forms a pair of maximal Hamming dis-

993

tance with some other member y of the population. Let
these individuals have Hamming distance 2i. We estimate
the probability that the result of mutating x increases the
Hamming distance to y in an accepted 2-bit mutation. This
distance increases from its current value 2i if mutation flips
a 0-bit where x and y agree as well as a 1-bit where x and y
agree. There are i bits where x is 0 and y is 1 and i bits where
this is the other way round. Conditional on an accepted 2-
bit mutation, as all 0-bits and 1-bits are chosen with the
same probability, respectively, the probability of choosing
bits where x and y agree is (k − i)/k · (n − k − i)/(n − k).
The probability of making a sequence of these mutations is
thus at least

k−1
∏

i=1

(

k − i

k
· n− 2k

n− k

)

=
(k − 1)!

kk−1
·
(

1− k

n− k

)k−1

≥ (k/e)k

kk
·
(

1− k2

n− k

)

≥ e−k · (1− o(1)).

E6: Conditional on E1–E5, consider the situation after a
perfect population has been reached. Note that from now
on we work without conditioning on the events E1–E5. So,
we take a fresh look and define E6 as the event that in the
following n/k generations at least one crossover happens and
no mutation leads to an accepted offspring. Note that a
necessary event for an accepted mutation is that at least
one of k 0-bits flips. The probability for the event E6 is at
least

1− (1− pc)
n/k ·

(

1− k

n

)k/n

= Ω(1).

If E1–E6 happen, the trial is successful. The probability
of E1–E6 happening is

e−k · (3e)−k · (2/3)kµ−k · e−k · (1− o(1))3 · Ω(1)

= Ω
(

2k · 3−2k · e−3k · µ−k
)

.

The length of a trial is at most n+n/k = O(n) by definition.
Hence, starting from a population with n− k ones in every
individual, the expected time until the global optimum is
created is

O

(

2−k · 32k · e3k · µk · n ·
(

µ

2

)

· 22k
)

= O
(

e6k · µk+2 · n
)

.

The (µ+1) GA is effective for small populations if the
crossover probability is fairly small. In this case the ex-
plorative effects of mutation are larger than the effect of
crossover subsequently compressing the convex hull of the
population.

We complement this finding by an opposite result for large
crossover probabilities. If the crossover probability is an
arbitrary constant, the population is compressed to a single
point more quickly than mutation can create diversity. This
holds for up to logarithmic population sizes.

Theorem 8. Consider the (µ+1) GA without mutation
after crossover on Jumpk with k = log n. For every pc =
Ω(1) there is a constant c > 0, depending on pc, such that
if µ ≤ c log n then the expected optimization time of the
(µ+1) GA is superpolynomial.

Proof. It is easy to see that after the first O(µn log n) =
o(n2) generations of the GA, with high probability, the op-
timum is not created (since neither mutation nor crossover
can bridge the gap of the Jumpk function in this time with
sufficient probability), and the whole population is on the
plateau.

Suppose now we have the whole population on the plateau.
We show that, with high probability, an arbitrary popula-
tion collapses to copies of a single individual within a short
number of steps. More precisely, for every population on
the plateau with probability at least 1/

√
n the whole pop-

ulation will consist of copies of a single individual after µ
generations. A sufficient condition for this to happen is that
in each generation two equal parents are selected, crossover
is performed, and a proper individual is chosen for removal.
If there are i equal individuals in the population, increasing
this number to i+ 1 has probability at least

i2

µ2
· pc ·

µ− i

µ+ 1
.

The probability of this always happening is thus at least

µ−1
∏

i=1

(

i2

µ2
· pc ·

µ− i

µ+ 1

)

= pµ−1
c ·

(

1

µ2(µ+ 1)

)µ−1

· ((µ− 1)!)3

≥ pµ−1
c · e−3(µ−1)

(

(µ− 1)3

µ2(µ+ 1)

)µ−1

and as the bracketed term is Ω(1) this probability is at least
1/

√
n if the constant c from the preconditions is sufficiently

small. The probability that this collapse never happens in

t :=
√
nµk lnn generations is at most (1 − 1/

√
n)

√
nk lnn ≤

n−k.
Assuming the population has collapsed, we show that in

t steps with high probability no complementary pair is cre-
ated. Without mutation after crossover, crossover then can-
not create the global optimum. Complementary pairs can
only be created if, starting with a collapsed population, over
time in total k 0-bits have been flipped. The expected num-
ber of flipping 0-bits in t mutations is tk/n. By Chernoff
bounds, the probability that at least k bits are flipped in
total in this time span is

(

en/t−1

(n/t)n/t

)kt/n

≤
(

en/t

(n/t)n/t

)kt/n

=

(

et

n

)k

.

By definition of t and recalling k = log n, this probability is
superpolynomially small. Hence, with a superpolynomially
small error probability the population collapses again before
a complementary pair is created.

The probability of creating the global optimum by muta-
tion is at most n−k and hence superpolynomially small as
well. As one of the mentioned unlikely events must occur
in order to create the global optimum, this proves a super-
polynomial lower bound.

4. EXPERIMENTAL RESULTS FOR POP-

ULATION DIVERSITY
Finally, we add experimental results about the behavior

of the (µ+1) GA on the plateau of Jumpk. We are par-
ticularly interested in the population diversity given by the
distribution of Hamming distances between individuals. The
most important case is the number of complementary pairs;

994

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8
µ = 210

µ = 29

µ = 28

µ = 27

µ = 29

µ = 28

µ = 27

µ = 26

µ = 25

µ = 24

µ = 23

µ/n

fr
a
ct
io
n
o
f
co
m
p
le
m
en

ta
ry

p
a
ir
s

Dependance on µ for fixed k

Figure 2: Fraction of complementary pairs vs. nor-
malized population sizes µ/n, for the (µ + 1) GA on
Jumpk with k = 3 (), k = 4 (), k = 5 (),
k = 6 (), k = 7 (), k = 8 (), k = 9 (),
and k = 10 ().

the existence of many such pairs guarantees that uniform
crossover is effective as 1n can only be created if comple-
mentary parents are selected.

We set the crossover probability to pc = 0.5 and allowed
mutations after a crossover step. We conducted experiments
for various parameters n and with k = log n, as well as
different population sizes µ. All results are averaged over
100 runs for each experiment.

We measured the number of complementary pairs in each
generation of the population on the plateau. In order to es-
timate the diversity at an equilibrium state, we removed the
optimum of the function Jumpk and stopped each run after
1 million generations. Even for µ = 1024 and n = 1024,
the population was gathered on the plateau mostly before
generation ≈ 150 000 such that the remaining ≈ 850 000
generations the population could average out to the equilib-
rium.

The analysis of the (µ+1) GA by Jansen and Wegener [12]
only works under limited conditions of a large population
size and very small crossover probability in order to main-
tain diversity. One might get the impression that a large
crossover probability is harmful for the population diversity
regardless of their size.

Figure 2 shows for k ∈ {5, 6, . . . , 10} how the ratio µ/n of
populations size and n := 2k influences the number of com-
plementary pairs in the population. Figure 3 shows the de-
pendency of the percentage of complementary pairs, for dif-
ferent population size functions µ(n) ∈ {2, 4, log(n),√n, n}.
For both plots the different values of µ on the x axis are
linearly interpolated.

Our experiments do not confirm the mentioned impres-
sion. Having used a rather large crossover probability, we
find that the larger the population, the more complementary
pairs are available. Figure 2 shows that, for a reasonably
large population size, a sufficiently large fraction of pairs
are complementary pairs. However, Figure 3 shows that in
order to have a constant fraction or a fraction converging to

0 200 400 600 800 1,000

0

0.2

0.4

0.6

0.8

n

fr
a
ct
io
n
o
f
co
m
p
le
m
en

ta
ry

p
a
ir
s

Dependance on n for fixed µ(n)

Figure 3: Fraction of complementary pairs vs. prob-
lem dimensions, for the (µ + 1) GA on Jumpk with
population size functions µ(n) = 2 (), µ(n) = 4
(), µ(n) = log(n) (), µ =

√
n (), and µ = n

().

0 2 4 6 8 10

0

0.2

0.4

0.6

Hamming distance d

Hamming distance histogram for k = 5

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

Hamming distance d

Hamming distance histogram for k = 10

Figure 4: Histograms of pairwise Hamming dis-
tances in the population, averaged over time, for
the (µ+1) GA on Jumpk with k ∈ {5, 10}, n = 2k, and
µ = 2 (), µ = 4 (), µ = 8 (), µ = 16 (),
µ = 32 (), µ = 64 (), µ = 128 (), µ = 256
(), µ = 512 (), µ = 1024 ().

1 the population size should depend on n = 2k in a linear
fashion, i. e. µ = Θ(n). For the tested population sizes o(n)
we do not see a constant fraction of the population being
complementary pairs. On the other hand a population size
growing linearly with n contains an overwhelming number
of complementary pairs.

In order to gain further insights into the existence of com-
plementary pairs, for k ∈ {3, . . . , 10} we computed a his-
togram of pairwise Hamming distances in the population,
averaged over time (again with n = 2k and for various
µ). For each generation on the plateau the pairwise Ham-
ming distances d ∈ {0, . . . , 2k} (only even d can occur) were
counted and the results were averaged over all generations
on the plateau. Figure 4 shows two selected histograms for
k = 5 and k = 10; the other histograms looked similar.
One can see that the curves gradually shift from leaning
towards small distances to Bell curves and leaning towards
large distances as the population size increases. Note that

995

the highest value gives the average number of complemen-
tary pairs.

This also supports the claim that a large population size
is needed in the presence of a large crossover probability. As
can be seen here, the diversity for large population sizes is
indeed significant, that is for k = 10 and µ ≥ 256 we hardly
observe any pairs of individuals having a Hamming distance
less than 2k. But we also observe the effect of a collapsing
population if the population size is not large enough. This
supports the claim of Theorem 8 even in the presence of
mutation after crossover, compare the lines for k = 10 and
µ ≤ 64. Here, mutation is not able to create or maintain the
needed diversity opposing the effect of crossover to reduce
diversity when the population size is not large enough.

5. CONCLUSIONS
Crossover is a very useful operator if the population is suf-

ficiently diverse. Our considerations of the shuffle GA have
revealed the potential of uniform crossover in populations
with good diversity. The bit shuffling operator simulates
individuals that have evolved independently on a function
of unitation. In this setting crossover leads to surprising
and drastic speedups from Θ(n log n) function evaluations
to only Θ(

√
n) for OneMax. For Jumpk the difference is

between Θ(nk) and Θ(
√
n+ 4k).

In a more realistic setting of the (µ+1) GA we have shown
that also small populations can develop a sufficient diversity
for Jumpk if the crossover probability is small enough. If it
is set too large, crossover makes the population collapse to a
single individual, leading to superpolynomial running times
on Jumpk. Together with our Monte Carlo simulations we
have provided a deepened insight into the opposing effects
that mutation and crossover have on the convex hull and
thus the diversity of the population.

Acknowledgments

Timo Kötzing was supported by the Deutsche Forschungs-
gemeinschaft (DFG) under grant NE 1182/5-1. Dirk Sud-
holt was supported by EPSRC grant EP/D052785/1. The
authors thank Thomas Sauerwald and Tobias Friedrich for
their valuable comments and the organizers of the Theory
of Evolutionary Algorithms seminar at Schloss Dagstuhl,
where this research was initiated.

6. REFERENCES

[1] J. Culberson. Genetic invariance: A new paradigm for
genetic algorithm design. Technical report, 1992.

[2] M. Dietzfelbinger, B. Naudts, C. Van Hoyweghen, and
I. Wegener. The analysis of a recombinative
hill-climber on H-IFF. IEEE Transactions on
Evolutionary Computation, 7(5):417–423, 2003.

[3] B. Doerr, E. Happ, and C. Klein. Crossover can
provably be useful in evolutionary computation. In
Proc. of GECCO ’08, pages 539–546. ACM, 2008.

[4] B. Doerr, D. Johannsen, T. Kötzing, F. Neumann,
and M. Theile. More effective crossover operators for
the all-pairs shortest path problem. In Proc. of
PPSN ’10, pages 184–193. Springer, 2010.

[5] B. Doerr and M. Theile. Improved analysis methods
for crossover-based algorithms. In Proc. of
GECCO ’09, pages 247–254. ACM, 2009.

[6] S. Droste, T. Jansen, and I. Wegener. On the analysis
of the (1+1) evolutionary algorithm. Theoretical
Computer Science, 276:51–81, 2002.

[7] S. Droste, T. Jansen, and I. Wegener. Upper and
lower bounds for randomized search heuristics in
black-box optimization. Theory of Computing
Systems, 39(4):525–544, 2006.

[8] S. Fischer and I. Wegener. The one-dimensional Ising
model: Mutation versus recombination. Theoretical
Computer Science, 344(2–3):208–225, 2005.

[9] T. Friedrich, P. S. Oliveto, D. Sudholt, and C. Witt.
Analysis of diversity-preserving mechanisms for global
exploration. Evolutionary Computation,
17(4):455–476, 2009.

[10] J. He and X. Yao. A study of drift analysis for
estimating computation time of evolutionary
algorithms. Natural Computing, 3(1):21–35, 2004.

[11] C. Horoba and D. Sudholt. Running time analysis of
ACO systems for shortest path problems. In Proc. of
SLS ’09, pages 76–91. Springer, 2009.

[12] T. Jansen and I. Wegener. The analysis of
evolutionary algorithms - a proof that crossover really
can help. Algorithmica, 34(1):47–66, 2002.

[13] T. Jansen and I. Wegener. Real royal road
functions—where crossover provably is essential.
Discrete Applied Mathematics, 149:111–125, 2005.

[14] P. K. Lehre and C. Witt. Black box search by
unbiased variation. In Proc. of GECCO ’10, pages
1441–1448, 2010.

[15] A. Moraglio. Convex evolutionary search. In Proc. of
FOGA ’11, pages 151–162. ACM, 2011.

[16] F. Neumann and M. Theile. How crossover speeds up
evolutionary algorithms for the multi-criteria
all-pairs-shortest-path problem. In Proc. of PPSN ’10,
pages 667–676. Springer, 2010.

[17] F. Neumann and C. Witt. Bioinspired Computation in
Combinatorial Optimization – Algorithms and Their
Computational Complexity. Springer, 2010.

[18] P. S. Oliveto, J. He, and X. Yao. Time complexity of
evolutionary algorithms for combinatorial
optimization: A decade of results. Int’l Journal of
Automation and Computing, 4(3):281–293, 2007.

[19] J. N. Richter, A. Wright, and J. Paxton. Ignoble trails
- where crossover is provably harmful. In Proc. of
PPSN ’08, pages 92–101. Springer, 2008.

[20] T. Storch and I. Wegener. Real royal road functions
for constant population size. Theoretical Computer
Science, 320:123–134, 2004.

[21] D. Sudholt. Crossover is provably essential for the
Ising model on trees. In Proc. of GECCO ’05, pages
1161–1167. ACM, 2005.

[22] R. A. Watson and T. Jansen. A building-block royal
road where crossover is provably essential. In Proc. of
GECCO ’07, pages 1452–1459. ACM, 2007.

[23] I. Wegener. Methods for the analysis of evolutionary
algorithms on pseudo-Boolean functions. In R. Sarker,
X. Yao, and M. Mohammadian, editors, Evolutionary
Optimization, pages 349–369. Kluwer, 2002.

[24] A. H. Wright, M. D. Vose, and J. E. Rowe. Implicit
parallelism. In Proc. of GECCO ’03, pages 1505–1517.
Springer, 2003.

996

