
Theoretical Computer Science 519 (2014) 155–169
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Iterative learning from positive data and counters

Timo Kötzing

Department 1: Algorithms and Complexity, Max-Planck-Institut für Informatik, 66123 Saarbrücken, Germany

a r t i c l e i n f o a b s t r a c t

Keywords:
Inductive inference
Function learning
Iterative learning
Transductive learning

We analyze iterative learning in the limit from positive data with the additional information
provided by a counter. The simplest type of counter provides the current iteration number
(counting up from 0 to infinity), which is known to improve learning power over plain
iterative learning. We introduce five other (weaker) counter types, for example only
providing some unbounded and non-decreasing sequence of numbers. Analyzing these
types allows one to understand which properties of a counter learning can benefit from.
For the iterative setting, we completely characterize the relative power of the learning
criteria corresponding to the counter types. In particular, for our types, the only properties
improving learning power are unboundedness and strict monotonicity. Furthermore, we show
that each of our types of counter improves learning power over weaker ones in some
settings; to this end, we analyze transductive and non-U-shaped learning. Finally we show
that, for iterative learning criteria with one of our types of counter, separations of learning
criteria are necessarily witnessed by classes containing only infinite languages.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

We analyze the problem of algorithmically learning a description for a formal language (a computably enumerable sub-
set of the set of natural numbers) when presented successively all and only the elements of that language. For example,
a learner h might be presented with more and more even numbers. After each new number, h may output a description of
a language as its conjecture. The learner h might decide to output a program for the set of all multiples of 4, as long as all
numbers presented are divisible by 4. Later, when h sees an even number not divisible by 4, it might change this guess to
a program for the set of all multiples of 2.

Many criteria for deciding whether a learner h is successful on a language L have been proposed in the literature. Gold,
in his seminal paper [12], gave a first, simple learning criterion, TxtEx-learning,1 where a learner is successful iff, on every
text for L (listing of all and only the elements of L) it eventually stops changing its conjectures, and its final conjecture is a
correct description for the input sequence. Trivially, each single, describable language L has a suitable constant function as
an Ex-learner (this learner constantly outputs a description for L). Thus, we are interested in characterizing for which classes
of languages L is there a single learner h learning each member of L. This framework is known as language learning in the
limit and has been studied extensively, using a wide range of learning criteria similar to TxtEx-learning (see, for example,
the textbook [13]).

In this paper we are concerned with a memory limited variant of TxtEx-learning, namely iterative learning [22,17] (It).
While in TxtEx-learning a learner may arbitrarily access previously presented data points, in iterative learning the learner
only sees its previous conjecture and the latest data point. It is well known that this setting allows one to learn strictly
fewer classes of languages. Further work from the literature analyzed iterative learners with some additional resources, for

E-mail address: koetzing@mpi-inf.mpg.de.
1 Txt stands for learning from a text of positive examples; Ex stands for explanatory.
0304-3975/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.tcs.2013.09.023

http://dx.doi.org/10.1016/j.tcs.2013.09.023
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:koetzing@mpi-inf.mpg.de
http://dx.doi.org/10.1016/j.tcs.2013.09.023
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2013.09.023&domain=pdf

156 T. Kötzing / Theoretical Computer Science 519 (2014) 155–169
example a bounded example memory [17]; “long term” finite memory states [11]; or feedback learning, i.e. the ability to ask for
the membership of examples in previously seen data [17,5].

A different option for providing additional learning power for iterative learning was suggested in [10], where itera-
tive with counter learning was introduced. In this setting, a learner, in each iteration, has access to its previous conjecture,
the latest datum, and the current iteration number (counting up from 0 to infinity). Case and Moelius [10] show that
this learning criterion is strictly more powerful than plain iterative learning, strictly less powerful than TxtEx-learning,
and incomparable to set-driven learning [21]. In set-driven learning, the learner has access only to the (unordered) set
of data seen so far, with duplicates removed. Consider now a learning criterion, where the learner has access to the
set of data seen so far, just as in set-driven learning, but also to the current iteration number (just as in iterative with
counter learning as introduced in [10]). It is easy to see that this learning criterion is equivalent to partially set-driven
(or rearrangement independent) learning [20]; it is well known that partially set-driven learning is equivalent to TxtEx-
learning.

The main aim of this paper is to discuss how and why such a counter improves learning power. In particular, we want to
understand what properties of a counter can be used in a learning process to increase learning power. Is it the higher and
higher counter values, which we can use to time-bound computations? Is it knowing the number of data items seen so far?
Is it the complete enumeration of all natural numbers which we can use to divide up tasks into infinitely many subtasks to
be executed at the corresponding counter value? We approach these questions by introducing different counter types, each
modeling some of the possibly beneficial properties mentioned above. Formally, a counter type is a set of counters; a counter
is a mapping from the set of natural numbers to itself. Instead of giving the learner the current iteration number, we will
map this number with a counter drawn from the counter type under consideration.

We define the following counter types2:

(i) complete and ordered: Id = {idN}3;
(ii) strictly monotone: �R! = {c | ∀i: c(i + 1) > c(i)};

(iii) monotone & unbounded: �R = {c | ∀i: c(i + 1) � c(i) ∧ lim infi→∞ c(i) = ∞};
(iv) eventually above any number: Rinf=∞ = {c | lim infi→∞ c(i) = ∞};
(v) unbounded: Rsup=∞ = {c | lim supi→∞ c(i) = ∞};

(vi) complete: Ronto = {c | range(c) =N}.

By requiring a learner to succeed regardless of what counter was chosen from the counter type, we can provide certain
beneficial properties of a counter, while not providing others. For example, counters from Ronto provide a complete enumer-
ation of all natural numbers, but do not allow one to infer the number of data items seen so far. We illustrate the inclusion
properties of the different sets of counters with the following diagram (inclusions are top to bottom; thus, inclusions of
learning power when such counters are used are bottom to top).

The symbol ⊥ denotes no use of counter. The weakest type of counter is Rsup=∞ , the unbounded counter. The advantage
over having no counter at all is to be able to make computations with higher and higher time bounds; in fact, it is easy
to see that set-driven learning merely requires a counter from Rsup=∞ to gain the full power of TxtEx-learning. John Case
pointed out that any text for an infinite language implicitly provides a counter from Rsup=∞ .

A somewhat stronger counter type is Rinf=∞; the intuitive advantage of this counter is that a learner will not repeat
mistakes made on small counter values indefinitely, but only the behavior on large counter values affects the learning pro-
cess in the limit. For the monotone counters from �R, the advantage is again that early mistakes are not repeated once
learning has proceeded to a later stage (as in, higher counter value), as well as a monotonicity in advancing through

2 The counter types (i), (iii) and (v) were suggested by John Case in private communication.
3 “Id” stands for identity; N denotes the natural numbers and idN the identity on N.

T. Kötzing / Theoretical Computer Science 519 (2014) 155–169 157
these stages. Counters from �R! have the additional benefit of providing an upper bound on the number of examples
seen so far. Id is the strongest type of counter providing exactly the number of data elements presented so far. Also,
all natural numbers are listed, which allows a learner to divide up tasks into infinitely many subtasks to be executed at
the corresponding counter value; the counter type Ronto models this latter advantage while dropping the order restric-
tion.

The main results of this paper consider iterative learning and are as follows. Even adding the weakest type of counter,
Rsup=∞ , to plain iterative learning gives an increase in learning power; however, there is no increase on learning classes
of infinite languages only (see Theorem 4.1). Furthermore, the criteria corresponding to the six counter types are divided
into two groups of criteria of equal learning power as depicted by the following diagram. The gray line divides the two
groups, the dashed gray line indicates separation only on sets of languages containing finite sets; the numbers represent
the numbers of the corresponding theorems.

In particular, only the strict monotonicity of a counter gives additional learning power over Rsup=∞ counters. The proofs for
the claims inherent in the diagram can be found in Section 4.

Theorem 4.6 in Section 4 shows the separation depicted in the above diagram; its proof uses a self-learning class of
languages [7,8] and Case’s Operator Recursion Theorem (ORT) [2,13].

Extending these results to settings where learners have additional resources is ongoing work; preliminary results show
that when adding a finite number of memory states, we get a similar diagram as for iterative learning above.

One may wonder whether some two of the counter types introduced above always yield the same learning power
(as many did in the case of iterative learning), across all possible settings. In Section 1.1 we discuss why this is not the case.
The associated proofs can be found in Section 5.

Section 2 gives some mathematical preliminaries. In Section 3 we establish that any separation of learning criteria power
will necessarily be witnessed by a class containing only infinite languages, if the considered learning criteria have access to
any of the six counter types. As already mentioned, Section 4 gives some details for the diagram above, and Section 5 gives
proofs for claims from Section 1.1.

The present paper is an extension of the conference paper [15].

1.1. Differences in counters

In this section we show that, for any choice of two different counter types, there is a learning criterion which, when
augmented with one of the counter types, yields different classes of languages learnable than when augmented with the
other. We already saw some such separations in the setting for iterative learning. Now we will give some other settings
witnessing other separations.

First, consider iterative learning with one additional feedback query (see [17,5]). In this setting, in each iteration, the
learner may ask about one datum whether it has been presented previously. Frank Stephan and Sanjay Jain (private
communication) have a proof that, in this setting, there are classes of languages learnable with Ronto counters which
are not learnable with �R! counters. Thus, there are settings where Id separates from �R! , and where Ronto separates from
Rsup=∞ .

For more separations, we turn to very simple learning criteria. We consider transductive learning (Td), that is, learning
without memory (which equals a degenerate case of memoryless learning with bounded memory states, where the bound
on the number of states is 1; [4,6]). In this somewhat artificial toy setting a learner is presented with a datum (and possibly
a counter value) in each iteration, and not more. Note that learners are allowed to output the special symbol ? to, in effect,
keep the previous conjecture as the latest guess.

It is not hard to see that, for transductive learning, adding an Rsup=∞ or Ronto counter does not improve learning power.
However, other types of counter do provide increases. The general result is depicted in the following diagram, using the
same format as in the diagram on iterative learning above.

158 T. Kötzing / Theoretical Computer Science 519 (2014) 155–169
The intuitive reasons for the separations are as follows. An infinite limit inferior guarantees that mistakes on early counter
values are not repeated infinitely often. With a strictly monotone counter, any mistake on a counter value z is guaranteed
to be preceded by at most z other data items; thus, if the language contains at least z + 1 data items giving the correct
output, the mistake will be rectified.

The situation changes if we require of the learner additionally to never abandon correct conjectures – either only not
semantically (called non-U-shaped learning, NU, [1]) or not even syntactically (strongly non-U-shaped learning, SNU, [9]).
The resulting groupings and separations are depicted in the following two diagrams.

Intuitively, for learning criteria requiring non-U-shapedness, order plays an important role (wrong conjectures may only
come before correct ones), leading to the separations between Rinf=∞ and �R. For strongly non-U-shaped learning with
Rinf=∞ counter, a learner may not give two different conjectures for any two pairs of datum/counter value.

All the above settings together show that, for each two different types of counter, there are settings of associated learning
criteria where the learning power separates.

2. Mathematical preliminaries

Unintroduced notation follows [19].
N denotes the set of natural numbers, {0,1,2, . . .}. The symbols ⊆, ⊂, ⊇, ⊃ respectively denote the subset, proper

subset, superset and proper superset relation between sets. For any set A, we let Pow(A) denote the set of all subsets of A.
∅ denotes both the empty set and the empty sequence.

With dom and range we denote, respectively, domain and range of a given function. We sometimes denote a partial
function f of n > 0 arguments x1, . . . , xn in lambda notation (as in Lisp) as λx1, . . . , xn f (x1, . . . , xn). For example, with
c ∈N, λx c is the constantly c function of one argument.

We fix any computable 1–1 and onto pairing function 〈·,·〉 : N × N → N.4 Whenever we consider tuples of natural
numbers as input to a function, it is understood that the general coding function 〈·,·〉 is used to code the tuples into a
single natural number. We similarly fix a coding for finite sets and sequences, so that we can use those as input as well.

If a function f is not defined for some argument x, then we denote this fact by f (x)↑, and we say that f on x diverges;
the opposite is denoted by f (x)↓, and we say that f on x converges. If f on x converges to p, then we denote this fact by
f (x)↓ = p.

The special symbol ? is used as a possible hypothesis (meaning “no change of hypothesis”). We write f → p to denote
that f :N →N∪ {?} converges to p, i.e., ∃x0: f (x0) = p ∧ ∀x � x0: f (x)↓ ∈ {?, p}.5

P and R denote, respectively, the set of all partial computable and the set of all computable functions (mapping N→ N).

4 For a linear-time example, see [18, Section 2.3].
5 f (x) converges should not be confused with f converges to.

T. Kötzing / Theoretical Computer Science 519 (2014) 155–169 159
We let ϕ be any fixed acceptable programming system for P . Further, we let ϕp denote the partial computable function
computed by the ϕ-program with code number p.

A set L ⊆ N is computably enumerable (ce) iff it is the domain of a computable function. Let E denote the set of all ce
sets. We let W be the mapping such that ∀e: W (e) = dom(ϕe). For each e, we write We instead of W (e). W is, then,
a mapping from N onto E . We say that e is an index, or program, (in W) for We .

In this paper, an operator is a mapping from any fixed number of arguments from P into P .
The symbol # is pronounced pause and is used to symbolize “no new input data” in a text. For each (possibly infinite)

sequence q with its range contained in N∪ {#}, let content(q) = (range(q) \ {#}).
For any function f and all i, we use f [i] to denote the sequence f (0), . . . , f (i − 1) (undefined, if one of these values is

undefined).
For one of the proofs we will use Case’s Operator Recursion Theorem (ORT), providing infinitary self-and-other program

reference [2,3,13]. ORT itself states that, for all operators Θ there are f with ∀z: Θ(ϕz) = ϕ f (z) and e ∈R,

∀a,b: ϕe(a)(b) = Θ(e)(a,b). (1)

2.1. Learning criteria

In this section we formally introduce our setting of learning in the limit and associated learning criteria. We follow [14]
in its “building-blocks” approach for defining learning criteria. This approach aims at avoiding confusion by clearly stating
all requirements of a learning criterion; furthermore, it enables us to define many learning criteria with a few definitions
of “building-blocks” composed in different ways. As an additional benefit, we will be able to give theorems which apply to
large classes of learning criteria (see Section 3).

A learner is a partial computable function from N to N ∪ {?}. A language is a ce set L ⊆ N. Any total function T : N →
N∪ {#} is called a text. For any given language L, a text for L is a text T such that content(T) = L. This kind of text is what
learners usually get as information. We will extend the notion of texts to include counters as follows.

A counter is a function c : N → N; a type of counter is a set of counters R . For any type of counter R , we let TxtCtr[R]
be the set of all functions 〈T , c〉 = λi 〈T (i), c(i)〉 with T a text and c ∈ R . We call an element from TxtCtr[R] a text/counter,
and the content of any text/counter is the content of its text component.

A sequence generating operator is an operator β taking as arguments a function h (the learner) and a text/counter 〈T , c〉
and that outputs a function p. We call p the learning sequence of h given 〈T , c〉. Intuitively, β defines how a learner can
interact with a given text/counter to produce a sequence of conjectures.

We define the sequence generating operators It and Td (corresponding to the learning criteria discussed in the introduc-
tion) as follows. For all learners h, text/counters T c and all i,

It
(
h, T c)(i) =

{
h(∅), if i = 0;6

h(It(h, T c)(i − 1), T c(i − 1)), otherwise;

Td
(
h, T c)(i) =

⎧⎨
⎩

h(∅), if i = 0;
Td(h, T c)(i − 1), else, if h(T c(i − 1)) =?;
h(T c(i − 1)), otherwise.

Thus, in iterative learning, the learner has access to the previous conjecture, but not so in transductive learning. However,
in transductive learning, the learner can implicitly take over the previous conjecture by outputting “?”.

Successful learning requires the learner to observe certain restrictions, for example convergence to a correct index. These
restrictions are formalized in our next definition.

A sequence acceptance criterion is a predicate δ on a learning sequence and a text/counter. We give the examples of ex-
planatory (Ex), non-U-shaped (NU) and strongly non-U-shaped (SNU) learning, which were discussed in Section 1. Formally,
we let, for all conjecture sequences p and text/counters T c ,

Ex
(

p, T c) ⇔ [∃n0,q: p converges to q ∧ content
(
T c) = Wq

];
NU

(
p, T c) ⇔ [∀i: W p(i) = content

(
T c) ⇒ (∀ j � i: W p(j) = W p(i))

];
SNU

(
p, T c) ⇔ [∀i: W p(i) = content

(
T c) ⇒ (∀ j � i: p(j) = p(i)

)]
.

We combine any two sequence acceptance criteria δ and δ′ by conjuncting them; we denote this by juxtaposition (for ex-
ample, SNU and NU are meant to be always used together with Ex). With T we denote the always true sequence acceptance
criterion (no restriction on learning).

6 h(∅) denotes the initial conjecture made by h.

160 T. Kötzing / Theoretical Computer Science 519 (2014) 155–169
We call a sequence acceptance criteria δ delay invariant iff,

• for all monotone and unbounded f , and p, T c , δ(p, T c) implies δ(p ◦ f , T c);
• for all p, T c and p′ such that p′(0) =? and λn p′(n + 1) = p, δ(p, T c) implies δ(p′, T c).

Note that any combination of Ex,NU and SNU is delay invariant.7

For any set of text/counters α, any sequence generating operator β and any combination of sequence acceptance restric-
tions δ, αβδ is a learning criterion. A learner h αβδ-learns the set

αβδ(h) = {
L ∈ E

∣∣ ∀T c ∈ α: content
(
T c) = L ⇒ δ

(
β
(
h, T c), T c)}.

Abusing notation, we also use αβδ to denote the set of all αβδ-learnable classes (learnable by some learner).

3. Separations by classes of infinite languages

In this section we show that, for iterative learning, all separations between the learning criteria corresponding to the
different counter types are necessarily witnessed by sets of infinite languages. The reasoning for this can be extended to
include many other learning criteria.

For an operator Θ , a learning criterion I is called Θ-robust iff, for any class of languages L, I-learnability of L is equiv-
alent to I-learnability of Θ(L) (elementwise application of Θ).8 We let Θ0 be the mapping L �→ 2L ∪ (2N + 1). Obviously,
there is a function f0 such that ∀e: Θ0(We) = W f0(e) . Note that Θ0 has an inverse Θ−1

0 for which a function analogous to
f0 exists.

Theorem 3.1. Let R ∈ {Rsup=∞,Rinf=∞, �R, �R!, Id,Ronto}. Then we have that the learning criterion TxtCtr[R]ItEx is Θ0-robust.

Proof. Let L ∈ TxtCtr[R]ItEx. Obviously, Θ0(L) can be learned using the learner for L by ignoring odd data (considering
them as #) and halving all even data, mapping all conjectures with f0.

Conversely, let a learner h0 for Θ0(L) be given. Consider first the case of R = Id. Define the following function h′ .

∀e, x, z : h′(e, x, z) = h0
(
h0(e,2x,2z),2z + 1,2z + 1

)
.

Intuitively, on a text T , h′ simulates h0 on the text where 2T is interleaved with odd data. We use 1-1 s-m-n to get a
function to turn conjectures for a language from Θ0(L) into the corresponding language from L (we use 1-1 so that we
can extract and use the conjectures of h0 from the previous generation as input to h0), resulting in a learner h.

Note that, for R = Ronto, the above construction of h works just as well. All other cases are similar as follows.
For R ∈ {Rsup=∞,Rinf=∞, �R}, when we see counter value of z, we simulate h0 on all odd data � z and on the current

datum times two, using a counter value of z for all of them.
For R = �R! , when we see counter value of z, we simulate h0 on all odd data < z and on the current datum times two,

using a counter value of z2 + i for the ith run of h0. Thus, within these batches of data, the counter values are strictly
increasing. The next batch will start with a counter value of (z + 1)2 = z2 + 2z + 1. This exceeds the last counter used in
the previous batch, as the previous batch had a size � z + 1. �
Theorem 3.2. Let I and I ′ be Θ0-robust learning criteria. Then I and I ′ separate in learning power iff they separate on classes of infinite
languages.

Proof. Suppose a class of languages L separates I and I ′ . Then Θ0(L), a class of infinite languages, also witnesses this
separation, as I and I ′ are Θ0-robust. The converse is trivial. �

From what we saw in this section we get the following corollary.

Corollary 3.3. Let R, R ′ ∈ {Rsup=∞,Rinf=∞, �R, �R!, Id,Ronto}. Then the learning criteria TxtCtr[R]ItEx and TxtCtr[R ′]ItEx separate iff
the separation is witnessed by a class of infinite languages. Furthermore, it is witnessed by a class of languages all containing all odd
numbers.

7 Intuitively, delay invariance means that a sequence of conjectures remains a valid sequence for a given text if it is modified by repeating or omitting
conjectures, or by delaying the next conjecture with ?; however, the order of the conjectures may not be changed.

8 Case and Kötzing [8] explore some notions of robustness for function learning.

T. Kötzing / Theoretical Computer Science 519 (2014) 155–169 161
4. Comparison of counter types

In this section we present the proofs for the results regarding iterative learning with counter. First we compare the
weakest counter with no counter at all (see Theorem 4.1). Theorems 4.2 through 4.5 give equivalences of learning power as
indicated in Section 1. Finally, Theorem 4.6 gives the separation between strictly monotone counters and weaker counters.

Looking into the proof of Theorem 4 in [10] (showing that an Id counter allows one to learn languages which cannot be
learned set-drivenly), we see that even the counters from Rsup=∞ allow one to learn more than learning set-drivenly (and,
thus, than what can be learned iteratively without a counter; this was shown in [16], see also [10] for a discussion on the
relation between set-driven, iterative and iterative with Id counter learning). This leads to the first part of the next theorem.
However, this proof makes use of finite languages. John Case, in private communication, remarked that Rsup=∞-counters are
provided by texts for infinite languages for free, leading to the second part of the theorem. We let E∞ denote the set of all
infinite ce sets.

Theorem 4.1. We have

TxtItEx ⊂ TxtCtr[Rsup=∞]ItEx

and

Pow(E∞) ∩ TxtItEx = Pow(E∞) ∩ TxtCtr[Rsup=∞]ItEx.

For the next step up the hierarchy of counter types, we don’t get an increase in learning power.

Theorem 4.2. We have

TxtCtr[Rsup=∞]ItEx = TxtCtr[Rinf=∞]ItEx.

Proof. Clearly we get “⊆”. The intuitive reason for the inclusion “⊇” is as follows. We can use the max of counter value,
hypothesis and datum as a new counter to work with. If the conjecture changes infinitely often, then the new counter is
from Rinf=∞ . Hence, the learning will converge; furthermore, for any fixed number z, only finitely many data points are
evaluated with a counter value below z.

Let L ∈ TxtCtr[Rinf=∞]ItEx as witnessed by h0. By Corollary 3.3, we can assume, without loss of generality, that L con-
tains only infinite languages. Obviously, using standard padding arguments, we can assume the sequence of h0’s conjectures,
on any text, to be non-decreasing in numeric value. Furthermore, we can assume that, whenever h0 would make a mind
change when the present datum was replaced with a #, then it would also change its mind on the actual datum.

Let h be such that

h(∅) = h0(∅);
∀e, x, z : h(e, x, z) = h0

(
e, x,max(e, x, z)

)
.

That is, h has the same initial conjecture as h0 and uses the maximum of current conjecture, current datum (we let # count
as 0) and current counter value as new counter value.

Let L ∈ L, T a text for L and c ∈ Rsup=∞ a counter. Suppose, by way of contradiction, h on T and c does not converge.
Then h simulates h0 on T and a counter from Rinf=∞; this converges, a contradiction.

Suppose, by way of contradiction, h on T and c does converge, but not to an index for L. We focus on the text after h’s
convergence to some (wrong) conjecture e.

Consider first the case where there is a finite s such that, for all s′ � s, h0(e,#, s′) �= e, that is, h0 changes its mind on #
for all but finitely many counter values. Then, by one of our assumptions on h0, at some point after the convergence of h
on T , we get a counter value � s so that h will change its mind, a contradiction.

Consider now the case where, for infinitely many s, h0(e,#, s) = e. Let T ′ be the text derived from T where we do not
change anything before the point of h’s convergence on T , and afterwards replace all repeated data with #es. Let c′ be such
that, for all i, c′(i) = maxt[h0(e, T ′(i), t) = e] (possibly ∞) – that is, c′ denotes the maximum counter value for h0 to not
change its mind. As e is incorrect and needs to be changed by h0 eventually on any counter with infinite limit inferior,
c′ has finite limit inferior. Thus, there is a bound s such that, for infinitely many i, maxt[h0(e, T ′(i), t) = e] � s. Because of
the case we consider now, we know that there are infinitely many i with T ′(i) �= # and maxt[h0(e, T ′(i), t) = e] � s. One of
these pairwise different T ′(i) = T (i) will be larger than s, leading to a mind change with h, a contradiction. �

Note that the just above proof is not entirely a simulation argument: h0 is being simulated, but not on counters for
which we have immediate performance guarantees.

Also the next step in the counter hierarchy does not yield a difference in learning power.

162 T. Kötzing / Theoretical Computer Science 519 (2014) 155–169
Theorem 4.3. We have

TxtCtr[Rinf=∞]ItEx = TxtCtr[�R]ItEx.

Proof. Clearly we get “⊆”. Let L ∈ TxtCtr[�R]ItEx as witnessed by h0. Obviously, using standard padding arguments, we can
assume the sequence of h0’s conjectures, on any text, to be non-decreasing in numeric value. Furthermore, we can assume
each conjecture to exceed the counter value on which it was first output.

For all e, x, z, we let f (e, x, z) be the least t with e � t � max(e, z) and h0(e, x, t) �= e, if existent (undefined otherwise).
Note that the domain of f is decidable.

Let h be such that, for all e, x, z,

h(∅) = h0(∅);
h(e, x, z) =

{
h0(e, x, f (e, x, z)), if f (e, x, z)↓,

e, otherwise.

Let L ∈ L, T a text for L and c ∈ Rinf=∞ a counter. We define a counter c′ on argument i thus. Let e be the conjecture
of h after T [i]; if, in the definition of h(e, T (i), c(i)), the first case holds, then c′(i) = f (e, T (i), c(i)). Otherwise, if there
will be a mind change of h on T with counter c later (i.e., on a counter value of at least e), then c′(i) = e, else c′(i) =
max(e,min{c(j) | j � i}).

It is easy to see that c′ ∈ �R and h on T and c simulates h0 on T and c′ . �
Note that, in the proof just above, the argument is again not entirely a simulation: defining the counter c′ requires

knowledge of future mind changes and of infinitely many future counter values.
Next we show that complete counters do not give an advantage over Rsup=∞ counters.

Theorem 4.4. We have

TxtCtr[Rsup=∞]ItEx = TxtCtr[Ronto]ItEx.

Proof. The inclusion “⊆” is trivial. Suppose, by way of contradiction, a set L separates the two criteria considered by this
theorem. Then, using Corollary 3.3, we get that a class of languages all containing all odd data witness the separation as
well. From a text for such a language we can extract a complete counter (by dividing each datum by 2, rounding down),
a contradiction. �

Last we show that also the topmost step in the counter hierarchy gives no difference in learning power.

Theorem 4.5. We have

TxtCtr[�R!]ItEx = TxtCtr[Id]ItEx.

Proof. Clearly we get “⊆”. The intuitive idea for “⊇” is as follows. The learner can store in the conjecture the last counter
on which it changed the conjecture and fill up all the gaps in between two counter values with #es.

Let L ∈ TxtCtr[Id]ItEx as witnessed by h0. Without loss of generality, we assume that h0 will change its mind on any
datum whenever it would change its mind on a # (this is not as trivial as for other counter types, but straightforward to
show). Using 1-1 s-m-n, we fix any 1-1 function pad such that, for all e, x, Wpad(e,x) = We . We use this function for a
learner to memorize certain information (at the cost of a mind change).

We define a function h∗
0 inductively as follows. For all e, z,

h∗
0(e,∅, z) = e;

∀σ , x: h∗
0(e,σ x, z) = h0

(
h∗

0(e,σ , z), x, z + len(σ)
)
.

Let h be such that, for all e, x, z, z′ with z > z′ ,

h(∅) = pad
(
h0(∅),0

);
h
(
pad

(
e, z′), x, z

) =
{

pad(h∗
0(e,#z−z′−1x, z′), z), if h∗

0(e,#z−z′−1x, z′) �= e;
pad(e, z′), otherwise.

Let L ∈L, T a text for L and c ∈ �R! a counter. We define a text T ′ thus.

∀i: T ′(i) =
{

T (k), if i = c(k);
#, otherwise.

T. Kötzing / Theoretical Computer Science 519 (2014) 155–169 163
Clearly, T ′ is a text for L and T ′ ◦ c = T . Let p be the sequence of outputs of h on T and p′ the sequence of outputs of h0
on T ′ . Now we have p′ ◦ c = p, as h makes mind changes on data whenever it would make a mind change on a pause with
the same counter value. �

The next theorem shows that the remaining two classes of learning power do separate. The proof is highly technical and
makes use of a self-learning class of languages – the two learning criteria are very similar and apparently hard to separate.

Theorem 4.6. We have

TxtCtr[�R]ItEx ⊂ TxtCtr[�R!]ItEx.

Proof. The inclusion is trivial. The intuitive idea of the separation is as follows. We use a self-learning class of languages
(see the definition of L below for an example of a self-learning class; these classes are discussed in more detail in [7,8]).
The main idea is to code into the data what the learner should say; if given appropriate counter, this will be successful.

For our proof, we will try to generate data b(0), . . . ,b(c0 − 1) and data a(0), . . . and having the learner learn both the
set of all a-data and a mix of finitely many a- and b-data. Also, we require that, on b-data with a small counter, the learner
makes no mind change. With a strictly increasing counter, some b-data will be presented with a large enough counter, while
the same is not true for arbitrary monotone counters. The following diagram depicts the two different cases for different
counter types. In the first row different counter values are given, the second and third rows show texts for the language
of mixed a- and b-data. Strict counters are allowed only one datum per counter value, monotone are allowed any (finite)
number of data per counter value (this is meant in the column for counter value 0 with b[c0]: all data b(i) for i < c0 are
presented in order with counter value 0).

The proof of Claim 7 will make use basically of the second text/counter to derive a contradiction, along with a text/counter
for only a-data where the counter value 0 has no data; these two text/counters will be indistinguishable for h.

However, since learner h may change its mind on early b-data, we will start the text with as much b-data (and higher
and higher counter values) until we do not see a mind change any more on b-data (we will make sure that this has to
happen).

We now turn to formalizing the many ingredients for the proof, including the computability of the many steps outlined
above. We start the formal argument with many definitions; the reader is advised to only skim these definitions and verify
the claims of computability. The argument is easier to understand when reading the sequence of claims following the
definitions.

Let h0 ∈P be such that h0’s initial conjecture is ? and, for all e, x, c,

h0(e, x, c) =
{

e, if x = #;
ϕx(e, c), otherwise.

Let L = TxtCtr[�R!]ItEx(h0). Suppose, by way of contradiction, L ∈ TxtCtr[�R]ItEx, as witnessed by h ∈ P . Without loss of
generality, we can assume that h changes its mind on any datum/counter if it would change its mind on a pause with the
same counter value.

We define h∗ as a function on sequences inductively as follows.

h∗(∅) = h(∅);
∀σ , x: h∗(σ x) = h

(
h∗(σ), x, len(σ)

)
.

We make a number of definitions depending on some a,b ∈ R and d ∈ N. We will not display this dependence in
notation and later define what a, b and d are. We abbreviate, for all k, ak = λi a(k, i) and bk = λi b(k, i). We fix a program
for h∗ and let, for all σ and c, h∗(σ)↓c denote that this program on σ converges in c steps. We define the following
computable predicate P .

∀σ ,k, c: P (σ ,k, c) ⇔ ∃i � c: h∗(σak[i]
)↓c = h∗(σak[i + 1])↓c .

Let σ0 be the sequence only listing d; for all k, let σk+1 = σkbk(c) with c minimal such that h∗ makes a mind change on
σkbk(c) and ¬P (σk,k, c) (undefined, if no such c exists, or if the computation of h∗ goes undefined while trying to find
one). We let B = ⋃

k∈N content(σk).

164 T. Kötzing / Theoretical Computer Science 519 (2014) 155–169
Furthermore, we abbreviate, for all k, i and c,

Q k(i) ⇔ h∗(σkak[i]
)↓ = h∗(σkak[i + 1])↓;

Q k(i) ⇔ h∗(σkak[i]
)↓ �= h∗(σkak[i + 1])↓;

Pk(c) ⇔ P (σk,k, c).

Note that Q and Q are partial recursive. If there are k and c such that

Pk(c) ∧ ∀i < c: h∗(σk)↓ = h∗(σkbk(i)
)↓, (2)

then we let k0 and c0 be the example which minimizes c (note that there can be only one k such that Eq. (2) holds: if Eq. (2)
holds for some k and c, then σk+1 is not defined because of the condition ¬Pk(c)). We let Ak = {ak(i) | ∀ j � i: Q k(j)}, and
A+

k = {ak(i) | ∀ j < i: Q k(j)}. If c0 and k0 are defined, we let B+ = B ∪ {bk0 (i) | i < c0}; otherwise B+ = ∅. Note that, given a,
b, d and k, Ak , A+

k , B and B+ are ce.
We are now ready to specify a, b and d. By the Operator Recursion Theorem (see Eq. (1)), there are 1-1 a,b,q ∈ R and

p, r,d ∈ N such that, for all c, e, i,k

W p = {x ∈ Ak | k0 is defined and equal k} ∪ B;
Wq(k) = Ak ∪ B;
Wr = {

x ∈ A+
k

∣∣ k0 is defined and equal k
} ∪ B+;

ϕak(i)(e, c) =

⎧⎪⎨
⎪⎩

↑, if σk is not defined;
q(k), if e ∈ {p,?} and ¬Pk(c);
r, if e ∈ {p,?}, Pk(c) and i = μ j Q (j);9

e, otherwise;

ϕbk(i)(e, c) =
{

r, if e = q(k);
e, otherwise;

ϕd(e, c) =
{

p, if e =?;
e, otherwise.

Claim 1. Let k be such that σk is defined. Then, for all sequences ρ with elements from range(ak) ∪ range(b), h∗(ρ)↓.

Proof. Let d′ and s be such that, for all e, c, ϕd′ (e, c) = s and W s = range(ak)∪ range(b)∪ {d′}. Then we have that h0 on any
text for W s converges to s and, thus, learns W s . Now we have W s ∈ L and therefore, for all sequences ρ with elements
from W s , h∗(ρ)↓. �
Claim 2. B is finite.

Proof. Suppose, by way of contradiction, B is infinite. Then, for all k, σk is defined and h∗ and the text
⋃

k σk for B makes
infinitely many mind changes. Furthermore, from Eq. (2) we see that k0 and c0 are not defined and, thus, Ak0 = ∅. As h0 on
any text for B converges to p (thanks to d ∈ B), and, thus, correctly identifies B , we have B ∈ L. However, as stated before,
h on text

⋃
k σk for B makes infinitely many mind changes and fails to learn B , a contradiction. �

From the previous claim there is k1 such that σk1 is defined and σk1+1 is not. Furthermore,

B ⊆ {d} ∪
⋃
j<k1

range(b j). (3)

This shows that elements from B do not make h0 make a mind change when q(k1) is the latest conjecture.

Claim 3. There is a c such that Pk1 (c).

Proof. Suppose, by way of contradiction, for all c, ¬Pk1 (c). Thus, Ak1 is infinite, and Wq(k1) ∈ L, but h, on the text σk1ak1

with Id-counter does not converge to an index for Wq(k1) , a contradiction. �
9 Note that (P (c) ∧ i = μ j Q (j)) is decidable, as, in case of P (c), μ j Q (j) is the first witness of P (c).

T. Kötzing / Theoretical Computer Science 519 (2014) 155–169 165
Claim 4. k0 and c0 are defined.

Proof. Let c1 be minimal such that ¬Pk1 (c1) (we know about the existence from Claim 3). We have that k1 and c1 fulfill
Eq. (2) as otherwise σk1+1 would be defined. �

We now get k1 = k0. From Claim 1 we have that, for all i, either Q k0(i) or Q k0 (i). Let i0 = μ j Q k0 (j). Clearly, Ak0 =
{ak0(i) | i < i0} and A+

k0
= {ak0 (i) | i � i0}.

Claim 5. We have W p = Ak0 ∪ B ∈L.

Proof. Data from B \ {d} do not do anything (as they are all from b j for j < k0 = k1, see Eq. (3)); d will merely change
from ? to p; and data from Ak0 will evaluate to qk0 , an index for W p , or repeat the previous conjecture, as ak0(i0) /∈ W p .
We use d to ensure that W p �= ∅, so that h0 will have at least one datum to use. �

The proof of the next claim exploits the fact that h has to learn from arbitrary monotone counters, but h0 only has to be
successful on strictly monotone counters.

Claim 6. We have Wr = A+
k0

∪ B+ ∈L.

Proof. Let a text T for Wr be given, as well as a strictly monotone increasing counter r. We show that h0 on 〈T , c〉 converges
to an index for Wr .

Consider first the case where all elements of range(bk0) ∩ B+ , of which there are c0, are presented before any ele-
ment from A+

k0
. Then, at some later point with counter value at least c0 (as there were already c0 elements presented),10

ak0(i0) will be presented (recall that i0 = μ j Q (j)), and h0 will have converged to r.
Consider second the case where some element ak0 (j) ∈ A+

k0
is presented before some element of range(bk0) ∩ B+ . Then,

if j = i0, h has converged to r; otherwise the output of h will be q(k), and the later element from range(bk0) ∩ B+ will then
make h0 output r. �

We are now ready to show that h fails to learn L.

Claim 7. We have that h does not learn Wr = A+
k0

∪ B+ ∈L or W p = Ak0 ∪ B ∈L with counters from �R.

Proof. Consider the text/counter T as follows. Start with σk0 and an Id-counter. Then append bk0 [c0] with counter constantly
k0. Continue with an Id-counter (ignoring the elements from range(bk0)) and append a[i0 + 1]#∞ . This is a text for Wr with
a counter from �R.

Consider also the text/counter T ′ = σk0 a[i0]#∞ and an Id-counter. This is a text for Wq(k0) with a counter from �R.
Bringing everything together, in particular Eq. (2) and the definition of i0, we get that h converges to the same number

(if any) on T and T ′ . As T and T ′ are for different languages in L, h cannot learn both. � �
5. Transduction and counters

In this section we formally prove the results regarding transductive learning with counter; the results are summarized
in the diagrams in Section 1.1.

Theorem 5.1. We have

TxtCtr[Ronto]TdEx = TxtTdEx = TxtCtr[Rinf=∞]SNUTdEx.

Proof. We start with the first equality, where the inclusion “⊇” is trivial. Let L be TxtCtr[Ronto]TdEx-learnable, as witnessed
by h. Without loss of generality, we can assume h to output ? on # with any counter value. Otherwise, the number output
on pause may be output infinitely often on learning any language, in which case L can have at most one element, which is
clearly TxtTdEx-learnable.

10 This is exactly where we use the counter being strictly monotone increasing.

166 T. Kötzing / Theoretical Computer Science 519 (2014) 155–169
We claim that, for all L ∈L, there is a p such that

• L = Wh(∅) or ∃x ∈ L∀z: h(x, z) = p;
• ∀x ∈ L, z ∈N: h(x, z) ∈ {?, p}.

Let L be given. Suppose, by way of contradiction, that we can get two different outputs p and p′ on two datum/counter
pairs, where the data is from L. Then there is a text/counter (with complete counter) for L, where h outputs both p and p′
infinitely often, a contradiction. Thus, there is at most one p ever output on a datum from L. Suppose that, for each x ∈ L,
there is a z such that h(x, z) =?. Then we can list all x ∈ L with counters such that h always outputs ? and fill up all counter
values without associated x ∈ L with #. As L is learned by h, L = Wh(∅) . This shows the claim formalized in the list above.

Clearly, any h as in the claim might as well learn without the additional help of a counter.
Regarding TxtCtr[Rinf=∞]SNUTdEx, it is easy to see that it includes all TxtTdEx-learnable classes (using the characteri-

zation of learnability as given by the above list).
Regarding the converse, suppose L ∈ TxtCtr[Rinf=∞]SNUTdEx as witnessed by h′ . Without loss of generality suppose

L has at least two elements. Now we have that h′ on # with any counter outputs ?, as otherwise h′ can return to this
hypothesis on any text after a correct conjecture; this is a contradiction since h′ is strongly non-U-shaped and L has at
least two elements. Furthermore, note that any two syntactically different outputs of h′ on two elements of a language from
L lead to a syntactic U-shape on some text/counter, with the counter from Rinf=∞ .

Let h be a TxtTdEx-learner such that, for all x, h(x) = h′(x, x) (using the datum as counter for simulating h′). Let L ∈ L.
Let T be the text/counter such that, for all x, T (x) = x/x if x ∈ L and T (x) = #/x otherwise. Then h′ is successful on T ; since
h′ does not make two syntactically different outputs, h learns L. �
Theorem 5.2. We have

TxtCtr[Rinf=∞]TdEx = TxtCtr[�R]TdEx.

Proof. The inclusion “⊆” is trivial. Let L be TxtCtr[�R]TdEx-learnable, as witnessed by h.
We show that h witnesses L ∈ TxtCtr[Rinf=∞]TdEx. Let L ∈ L, T a text for L and c ∈ Rinf=∞ . Permute 〈T , c〉 into a

text/counter 〈T ′, c′〉 such that c′ is non-decreasing. Note that h on 〈T ′, c′〉 converges to an index for L.
We distinguish two cases. Either h on 〈T ′, c′〉 makes infinitely many non-? outputs. Then h on 〈T , c〉, from some counter

value on, makes outputs only one non-? output q; furthermore, q is correct and repeated infinitely often. Thus, h on 〈T , c〉
converges to q as well.

Otherwise h on 〈T ′, c′〉 makes only finitely many non-? outputs. Then all those finitely many outputs are correct, as we
could permute all later elements before any given output (and decrease the counter value as required to retain monotonicity
of the counter). Thus, h on 〈T , c〉 converges to an index for L. �
Theorem 5.3. Let δ be a delay invariant sequence acceptance criterion.11 We have

TxtCtr[�R!]TdδEx = TxtCtr[Id]TdδEx.

Proof. Let L be TxtCtr[Id]TdδEx-learnable, as witnessed by h.
We first show that, without loss of generality, h never outputs non-? on # with any counter value. Obviously, h does not

output a number on infinitely many counter values: otherwise, these numbers output on pause may be infinitely output on
learning any language, in which case L can have at most one element.

Suppose now h outputs some non-? conjecture on a positive finite number of counter values, the maximum being at z0.
We define h′ as follows.

h′(∅) = h(#, z0);
∀x, z : h′(x, z) =

{
?, if z � z0 or x = #;
h(x, z + 1), otherwise.

Clearly, on any text T , h′ on T (with Id-counter) has the same convergence behavior as h on the text T ′ derived from T by
inserting a # at position z0.

This shows that, without loss of generality, h outputs ? on # and any counter value.
Now it is clear that such an h learns just as well from �R! counters, as the gaps can be imagined to be filled with #es. �

Theorem 5.4. We have

TxtCtr[�R!]TdSNUEx \ TxtCtr[�R]TdEx �= ∅.

11 See Section 2.1 for the definition of delay invariant sequence acceptance criteria.

T. Kötzing / Theoretical Computer Science 519 (2014) 155–169 167
Proof. Let h0 be such that h0(∅) is an index for ∅ and, for all x, z,

h0(x, z) =
{

?, if x = #;
ϕx(z), otherwise.

Let L = TxtCtr[�R!]TdSNUEx(h0). Now we suppose, by way of contradiction, that L ∈ TxtCtr[�R]TdEx as witnessed by h.
Without loss of generality, on # and any counter value, h outputs ? (this follows like in the proof of Theorem 5.3). As ∅ ∈L,
we have that h(∅) is an index for ∅.

We fix a program for h and denote, for all x, y, z, with h(x, y)↓z that this program on input x, y terminates in z steps.
By ORT, there are a, p,q0,q1 ∈N and 1-1 range-disjoint b0,b1 ∈R such that, for all j ∈ {0,1} and all i, z,

P (z) ⇔ ¬(
h(a,0)↓z �=?

);
W p = {a};
Wq j = {a} ∪ {

b j(i) | ∀k < i: P (k)
};

ϕa(z) =
{

p, if P (z);
?, otherwise.

ϕb j(i)(z) =
{

q j, if ¬P (z);
?, otherwise.

Clearly, if not h(a,0)↓ �=?, then {a} ∈ L, but h is not successful on the text a#∞ . Thus, h(a,0)↓ �=?. Clearly, we have now
Wq0 , Wq1 ∈ L, but h has the same limit behavior on both the text/counters such that first all members of Wq j of the form
b j(z) with counter 0 are listed, then a/0 and then infinitely many # with strictly increasing counter. �
Theorem 5.5. We have

TxtCtr[Rinf=∞]TdNUEx \ TxtCtr[Rsup=∞]TdEx �= ∅.

Proof. Let h0 be such that h0(∅) =? and, for all x, z,

h0(x, z) =
{

?, if x = #;
ϕx(z), otherwise.

Let L= TxtCtr[Rinf=∞]TdNUEx(h0). Suppose, by way of contradiction, L ∈ TxtCtr[Rsup=∞]TdEx as witnessed by h.
As in Theorem 5.4, we fix a program for h and denote, for all x, y, z, with h(x, y)↓z that this program on input x, y

terminates in z steps.
By ORT, there are a0,a1,b, p0, p1,q ∈N and a computable predicate P such that, for all j ∈ {0,1} and all z,

P (z) ⇔ h(a0,0)↓z �= h(a1,0)↓z;
W p j = {a j} ∪

{
Wq, if ∃z: P (z);
∅, otherwise;

Wq = {a0,a1,b};
ϕa j (z) =

{
p j, if not P (z);
?, otherwise;

ϕb(z) = q.

Clearly, if not h(a0,0)↓ �= h(a1,0)↓, then {a0}, {a1} ∈ L, but h is not successful on both texts a0#∞ and a1#∞ . Thus,
h(a0,0)↓ �= h(a1,0)↓. Clearly, we have now Wq ∈ L, but h does not converge on any text/counters such that both a0/0
and a1/0 are listed infinitely often, a contradiction. �
Theorem 5.6. We have

TxtCtr[�R]TdSNUEx \ TxtCtr[Rinf=∞]TdNUEx �= ∅.

Proof. Let h0 be such that h0(∅) =? and, for all x, z,

h0(x, z) =
{

?, if x = #;
ϕx(z), otherwise.

Let L= TxtCtr[�R]TdSNUEx(h0). Suppose, by way of contradiction, L ∈ TxtCtr[Rinf=∞]TdNUEx as witnessed by h.

168 T. Kötzing / Theoretical Computer Science 519 (2014) 155–169
As in Theorem 5.4, we fix a program for h and denote, for all x, y, z, with h(x, y)↓z that this program on input x, y
terminates in z steps.

By ORT, there are a0,a1,a2, p0, p1,q0,q1 ∈ N and a 1-1 b0,b1 ∈ R and a computable predicate P such that, for all
j ∈ {0,1}, and all i, z,

P j(z) ⇔ h(a j,0)↓z �=?;
W p j = {a j};
Wq j = {a0,a1,a2} ∪ range(b j);
ϕa j (z) =

{
p j, if ¬P0(z) ∧ ¬P1(z);
?, otherwise;

ϕb j(i)(z) =
{

q j, if P0(z) ∨ P1(z);
?, otherwise.

We derive a contradiction in either of two cases. First, suppose ∀z: ¬P0(z) ∧ ¬P1(z). Then {a0}, {a1} ∈ L, but h cannot be
successful on both texts a0#∞ and a1#∞ , a contradiction.

Now suppose ∃z: P0(z) ∨ P1(z). Without loss of generality, suppose ∃z: P0(z), i.e., h(a0,0)↓ �=?. We have now
Wq0 , Wq1 ∈L, but h returns to the conjecture h(a0,0)↓ �=? on texts for both Wq0 and Wq1 after the output of a correct
conjecture when seeing a0/0; thus, non-U-shapedness is violated in at least one of the cases. �
6. Conclusion

In this paper we have seen an analysis of why an id iteration counter, as used in [10], increases the learning power of
iterative learning: first, because the counter grows unboundedly, intuitively providing a growing time bound for computa-
tions; second, because the counter grows strictly monotonically, intuitively allowing for knowing an upper bound on how
many data items have been presented previously.

We also saw the complete picture of the effect of counters in several settings concerning transductive learning, illustrat-
ing the usefulness of all different types of counter.

Furthermore, we saw in Section 3 a simple example for how the notion of robustness can help derive theorems with
which many criteria (or pairs of criteria, like in Theorem 3.2) are covered at once. The author believes that future research
would benefit from using similar approaches to derive general theorems.

Acknowledgements

The author was supported by the Deutsche Forschungsgemeinschaft (DFG) under Grant No. NE 1182/5-1. Furthermore,
the author would like to thank John Case, Sanjay Jain, Frank Stephan and Sandra Zilles for valuable and fruitful discussions,
as well as the reviewers of both the conference version and this journal version of the paper, who provided excellent
feedback. Finally, the author would like to thank Samuel E. Moelius III for inspiring discussions on the use of counters in
limit learning. All this helped to greatly improve the paper.

References

[1] G. Baliga, J. Case, W. Merkle, F. Stephan, W. Wiehagen, When unlearning helps, Inf. Comput. 206 (2008) 694–709.
[2] J. Case, Periodicity in generations of automata, Math. Syst. Theory 8 (1974) 15–32.
[3] J. Case, Infinitary self-reference in learning theory, J. Exp. Theor. Artif. Intell. 6 (1994) 3–16.
[4] L. Carlucci, J. Case, S. Jain, F. Stephan, Results on memory-limited U-shaped learning, Inf. Comput. 205 (2007) 1551–1573.
[5] J. Case, S. Jain, S. Lange, T. Zeugmann, Incremental concept learning for bounded data mining, Inf. Comput. 152 (1999) 74–110.
[6] J. Case, T. Kötzing, Dynamic modeling in inductive inference, in: Proc. of ALT (Algorithmic Learning Theory), 2008, pp. 404–418.
[7] J. Case, T. Kötzing, Strongly non-U-shaped learning results by general techniques, in: Proc. of COLT (Conference on Learning Theory), 2010, pp. 181–193.
[8] J. Case, T. Kötzing, Measuring learning complexity with criteria epitomizers, in: Proc. of STACS (Symposium on Theoretical Aspects of Computer Science),

2011, pp. 320–331.
[9] J. Case, S. Moelius, Optimal language learning, in: Proc. of ALT (Algorithmic Learning Theory), 2008, pp. 419–433.

[10] J. Case, S. Moelius, U-shaped, iterative, and iterative-with-counter learning, Mach. Learn. 72 (2008) 63–88.
[11] R. Freivalds, E. Kinber, C. Smith, On the impact of forgetting on learning machines, J. ACM 42 (1995) 1146–1168.
[12] E. Gold, Language identification in the limit, Inf. Control 10 (1967) 447–474.
[13] S. Jain, D. Osherson, J. Royer, A. Sharma, Systems that Learn: An Introduction to Learning Theory, second edition, MIT Press, Cambridge, MA, 1999.
[14] T. Kötzing, Abstraction and complexity in computational learning in the limit, PhD thesis, University of Delaware, 2009, available online at:

http://pqdtopen.proquest.com/#viewpdf?dispub=3373055.
[15] T. Kötzing, Iterative learning from positive data and counters, in: Proc. of ALT (Algorithmic Learning Theory), 2011, pp. 40–54.
[16] E. Kinber, F. Stephan, Language learning from texts: Mind changes, limited memory and monotonicity, Inf. Comput. 123 (1995) 224–241.
[17] S. Lange, T. Zeugmann, Incremental learning from positive data, J. Comput. Syst. Sci. 53 (1996) 88–103.
[18] J. Royer, J. Case, Subrecursive Programming Systems: Complexity and Succinctness, Research Monograph, in: Progress in Theoretical Computer Science,

Birkhäuser, Boston, 1994.
[19] H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw–Hill, New York, 1967, Reprinted by MIT Press, Cambridge, MA, 1987.

http://refhub.elsevier.com/S0304-3975(13)00714-7/bib42616C2D4361732D4D65722D5374652D5769653A6A3A3038s1
http://refhub.elsevier.com/S0304-3975(13)00714-7/bib4361733A6A3A3734s1
http://refhub.elsevier.com/S0304-3975(13)00714-7/bib4361733A6A3A39343A73656C66s1
http://refhub.elsevier.com/S0304-3975(13)00714-7/bib4361722D4361732D4A61692D5374653A6A3A3037s1
http://refhub.elsevier.com/S0304-3975(13)00714-7/bib4361732D4A61692D4C616E2D5A65753A6A3A39393A666565646261636Bs1
http://refhub.elsevier.com/S0304-3975(13)00714-7/bib4361732D4B6F653A633A30383A44796E4D6F64s1
http://refhub.elsevier.com/S0304-3975(13)00714-7/bib4361732D4B6F653A633A31303A636F6C74s1
http://refhub.elsevier.com/S0304-3975(13)00714-7/bib4361732D4B6F653A633A31313A7374616373s1
http://refhub.elsevier.com/S0304-3975(13)00714-7/bib4361732D4B6F653A633A31313A7374616373s1
http://refhub.elsevier.com/S0304-3975(13)00714-7/bib4361732D4D6F653A633A30383A6F70744C616Es1
http://refhub.elsevier.com/S0304-3975(13)00714-7/bib4361732D4D6F653A6A3A30383A4E554974s1
http://refhub.elsevier.com/S0304-3975(13)00714-7/bib4672652D4B696E2D536D693A6A3A39353A666F72676574s1
http://refhub.elsevier.com/S0304-3975(13)00714-7/bib476F6C3A6A3A3637s1
http://refhub.elsevier.com/S0304-3975(13)00714-7/bib4A61692D4F73682D526F792D5368613A623A39393A73746C32s1
http://pqdtopen.proquest.com/#viewpdf?dispub=3373055
http://refhub.elsevier.com/S0304-3975(13)00714-7/bib4B6F653A633A31313A616C743131s1
http://refhub.elsevier.com/S0304-3975(13)00714-7/bib4B696E2D5374653A6A3A39353A6D6F6Es1
http://refhub.elsevier.com/S0304-3975(13)00714-7/bib4C616E2D5A65753A6A3A3936s1
http://refhub.elsevier.com/S0304-3975(13)00714-7/bib526F792D4361733A623A3934s1
http://refhub.elsevier.com/S0304-3975(13)00714-7/bib526F792D4361733A623A3934s1
http://refhub.elsevier.com/S0304-3975(13)00714-7/bib526F673A623A3837s1

T. Kötzing / Theoretical Computer Science 519 (2014) 155–169 169
[20] G. Schäfer-Richter, Über Eingabeabhängigkeit und Komplexität von Inferenzstrategien, PhD thesis, RWTH Aachen, 1984.
[21] K. Wexler, P. Culicover, Formal Principles of Language Acquisition, MIT Press, Cambridge, MA, 1980.
[22] R. Wiehagen, Limes-Erkennung rekursiver Funktionen durch spezielle Strategien, Elektronische Informationverarbeitung und Kybernetik 12 (1976)

93–99.

http://refhub.elsevier.com/S0304-3975(13)00714-7/bib5363683A74683A3834s1
http://refhub.elsevier.com/S0304-3975(13)00714-7/bib5765782D43756C3A623A3830s1
http://refhub.elsevier.com/S0304-3975(13)00714-7/bib5769653A6A3A3736s1
http://refhub.elsevier.com/S0304-3975(13)00714-7/bib5769653A6A3A3736s1

	Iterative learning from positive data and counters
	1 Introduction
	1.1 Differences in counters

	2 Mathematical preliminaries
	2.1 Learning criteria

	3 Separations by classes of inﬁnite languages
	4 Comparison of counter types
	5 Transduction and counters
	6 Conclusion
	Acknowledgements
	References

