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Abstract. One of the most important aspects of a randomized algo-
rithm is bounding its expected run time on various problems. Formally
speaking, this means bounding the expected first-hitting time of a ran-
dom process. The two arguably most popular tools to do so are the
fitness level method and drift theory. The fitness level method considers
arbitrary transition probabilities but only allows the process to move
toward the goal. On the other hand, drift theory allows the process to
move into any direction as long as it move closer to the goal in expecta-
tion; however, this tendency has to be monotone and, thus, the transition
probabilities cannot be arbitrary.

We provide a result that combines the benefit of these two approaches:
our result gives a lower and an upper bound for the expected first-hitting
time of a random process over {0, . . . , n} that is allowed to move forward
and backward by 1 and can use arbitrary transition probabilities. In case
that the transition probabilities are known, our bounds coincide and yield
the exact value of the expected first-hitting time. Further, we also state
the stationary distribution as well as the mixing time of a special case
of our scenario.

1 Introduction

A very important part of recent research on the theoretical analysis of evolution-
ary algorithms (EAs) is concerned with run time analysis, and over the years,
different tools have been proposed in order to derive run time results more eas-
ily. The approaches used for run time analysis all follow the same very broad
outline: the algorithm is viewed as a random process whose progress over time
is measured. The aim is to bound the expected first-hitting time of the process
reaching a certain state, usually finding an optimum. Depending on how much
progress can be achieved in different phases of the algorithm, a bound on the
expected first-hitting time – the run time – can then be derived. The approaches
differ in what phases they consider and how restricted the random process needs
to be. We discuss the two arguably most well-known approaches: the fitness level
method and drift theory.

The fitness level method is historically older than drift and was first for-
mally defined by Wegener [13] in the context of EAs; a nice overview of this
tool including tail bounds was provided by Witt [14]. The method considers a
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partition of the optimization domain into levels. The progress of an EA is then
measured by the expected time it takes to get from one level to another. This
means that the expected first-hitting time can be bounded by the sum of the
waiting times per level. The major drawback of this tool is that it assumes that
there are no cycles among the levels, that is, once the EA advances to a next
level, it cannot return to any older level. Hence, this approach basically bounds
the first-hitting time of a random walk on a directed path. However, the limita-
tion of having no cycles among the levels results in a very concise theorem that
is able to yield exact bounds when the actual transition probabilities are known.

Dang and Lehre [1] provide theorems similar to the fitness level method but
allow for cycles among the levels. While this approach can yield good upper
bounds easily, especially for non-elitist EAs, it assumes that the algorithm of
interest makes use of a population. Thus, the theorems cannot be applied to all
random processes. Further, without a lower bound, it is not clear how tight a
result actually is.

Drift theory is an entirely different approach to deriving expected first-
hitting times; see the informative article of Lengler [9] for a general introduction
to this topic. Different from the fitness level method, drift theory does not esti-
mate the progress of a random process via waiting times in different levels but
instead looks at the expected change of the process after a single step – the drift.
In this setting, arbitrary steps closer to the goal or away from it may be permit-
ted. The expected first-hitting time then follows from a bound on the drift of
the process. Similar to the fitness level method, drift theory can provide upper
and lower bounds that are exact if the actual transition probabilities are known.

In its most restrictive setting – the additive drift theorem (see Theorem 1), the
bound on the drift has to be the same for all states of the random process con-
sidered. This means that the bounds on the transition probabilities have to be
the same, which limits applicability. In a case where this is overly confining, more
advanced theorems like the variable drift theorem (see Theorem 2) can be used,
which allows to bound the drift dependent on the current state of the process.
However, all of these theorems have in common that the the drift needs to be
bounded in a monotone way. This means that the drift has to decrease as the goal
is approached – a restriction that the fitness level method does not have.

In this paper, we combine the benefits of the fitness level method and of drift
theory. Our main result, Theorem3, considers a random process that is allowed to
move toward the goal or away from it in any (not necessarily monotone) fashion.
Our setting assumes, in its simplest form, a random walk on an undirected path
with the nodes 0 through n. For this setting, we get the exact expected first-
hitting time. Our result also provides upper bounds when the process makes
larger steps toward the goal and lower bounds when it makes larger steps away
from it. We show that our result is a generalization of the fitness level method
(Corollary 6) and that it yields bounds that cannot be derived with the variable
drift theorem (see Example 4) – the most general drift theorem available. Hence,
our result sheds new light on the behavior of random processes over finite state
spaces when the progress of the process is not monotone or if the drift is 0.
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Further, we also analyze our setting in the context of Markov chains. We
give the stationary distribution when the process is a random walk on a path
(Theorem 7), again, allowing for arbitrary transition probabilities, and we state
an upper bound on the mixing time of the process (Corollary 9). This allows
to estimate the probability of the process being in a certain state at a specific
point in time – a concept strongly connected to the any-time analysis introduced
by Jansen and Zarges [6] and similar to occupation probabilities as discussed by
Lissovoi and Witt [11] and Kötzing et al. [8].

Our paper is structured as follows: Sect. 2 introduces the setting we consider
as well as the tools we need in order to derive our results. Section 3 contains our
main result, Theorem 3, as well as examples of how the bounds following from
it cannot be achieved via any known drift theorem. Last, in Sect. 4, we consider
the stationary distribution and the mixing time of the processes we consider.

Note that a special case of Theorem 3 has already been proven by
Droste et al. [2] when the Markov chain is a path. Our result extends theirs
by providing an upper and a lower bound for scenarios where more transition
probabilities are allowed. Further, our result is proven using drift theory, a mod-
ern tool that was not available to Droste et al. back then.

2 Setting

We consider random processes (Xt)t∈N over the finite set {0, . . . , n}, for an n ∈ N.
In its simplest form, the process is only allowed to move from state s to s − 1,
s, and s + 1 (if they exist). However, our main result (Theorem 3) generalizes to
settings where the process can additionally either make arbitrary long jumps to
the front (that is, from state s to any state s′ < s) or to the back. Our process
can be thought of as a random walk as seen in Fig. 1. In the most-restricted
scenario, where the process can only move to neighboring states, it performs a
random walk on a path.

. . .0 1 n

Fig. 1. An exemplary setting we consider. Each node represents a state, and each edge
represents a possible transition. Here, the process can move from a state s to any state
s′ < s when moving to the left but can only move to state s + 1 when moving to the
right.

We are interested in the expected first-hitting time of such a process reaching
the state 0. More formally, let T = min{t | Xt = 0}; we want to bound E[T ].
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In our results, we give bounds for E[T | X0 ] instead, which is a random variable,
as X0 is a random variable. Bounds on E[T ] can then be derived by the law of
total expectation, that is, E[T ] = E

[
E[T | X0 ]

]
.

In order to be able to actually reach our goal state 0, we assume that the
probability of the random process Xt to move left is positive for any state s > 0,
that is, Pr[Xt − Xt+1 ≥ 1|Xt = s] > 0.

2.1 Stochastic Tools

Our results make use of drift theory – a tool that allows to estimate the first-
hitting time of a random process when given only estimates of local changes of
that process.

The main theorem we use is the following additive drift theorem by He and
Yao [3,4]. It yields bounds on the first-hitting time of a random process reach-
ing 0 when the expected local change – the drift – can be bounded by a value
independent of the current state. We use this theorem in order to prove our main
result.

Theorem 1 (Additive Drift [3,5]). Let (Xt)t∈N be nonnegative random vari-
ables over a finite space S ⊂ R≥0 containing 0, and let T = min{t | Xt = 0}.

If there is a constant δ > 0 such that, for all s ∈ S and all t < T ,

E[Xt − Xt+1 | Xt = s ] ≥ δ, then E[T | X0 ] ≤ X0

δ
.

And if there is a δ > 0 such that, for all s ∈ S and all t < T ,

E[Xt − Xt+1 | Xt = s ] ≤ δ, then E[T | X0 ] ≥ X0

δ
.

A more flexible drift theorem is the following variable drift theorem. It allows
to upper-bound the expected first-hitting time of a random process reaching 0
when the drift can depend in any monotone fashion on the current state. We use
this theorem to compare our main result against.

Theorem 2 (Variable Drift [7,12]). Let (Xt)t∈N be nonnegative random vari-
ables over {0} ∪ S, where S ⊂ R≥1 is a finite state space containing 1, and let
T = min{t | Xt < 1}.

If there exists a monotonically increasing function h : R+ → R≥0 such that
1/h is integrable and, for all s ∈ S and all t < T ,

E[Xt − Xt+1 | Xt = s ] ≥ h(s), then E[T | X0 ] ≤ 1
h(1)

+
∫ X0

1

1
h(x)

dx.

3 General First-Hitting Times

We start by stating and discussing our main result, Theorem3, which provides
an upper and a lower bound of the first-hitting time of a random process in the
setting described in Sect. 2. Those bounds make use of bounds on the transition
probabilities of the process.
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Theorem 3. Let (Xt)t∈N be a random process over {0, . . . , n} and let T denote
the first point in time t such that Xt = 0.

1. Suppose there are two functions p← : {1, . . . , n} → [0, 1] and p→ : {0, . . . , n −
1} → [0, 1] such that, for all t < T and all s ∈ {1, . . . , n},

• p←(s) > 0,
• Pr[Xt − Xt+1 ≥ 1|Xt = s] ≥ p←(s),
• Pr[Xt − Xt+1 = −1|Xt = s] ≤ p→(s) (for s �= n), and
• Pr[Xt − Xt+1 < −1|Xt = s] = 0 (for s �= n).

Then

E[T | X0 ] ≤
X0∑

s=1

n∑

i=s

1
p←(i)

i−1∏

j=s

p→(j)
p←(j)

.

2. Suppose there are two functions p← : {1, . . . , n} → [0, 1] and p→ : {0, . . . , n −
1} → [0, 1] such that, for all t < T and all s ∈ {1, . . . , n},

• p←(s) > 0,
• Pr[Xt − Xt+1 = 1|Xt = s] ≤ p←(s),
• Pr[Xt − Xt+1 > 1|Xt = s] = 0, and
• Pr[Xt − Xt+1 ≤ −1|Xt = s] ≥ p→(s) (for s �= n).

Then

E[T | X0 ] ≥
X0∑

s=1

n∑

i=s

1
p←(i)

i−1∏

j=s

p→(j)
p←(j)

.

The bounds on the expected first-hitting time given in Theorem3 can be
thought of as the sum of waiting times. Each waiting time is weighted with the
ratio of how likely it is to go away from the goal 0 (p→) versus going toward it
(p←). Note that the inner sum adds all waiting times up to n. This is where we
need that the state space is bounded.

For case 1, note that it does not matter how far left the process moves. In
fact, in the proof, we assume the worst case of the process only moving one step
closer to the goal. However, we need to guarantee that we can move at most
one step away from the goal. The converse is true for case 2: here, we need to
guarantee that the process can only move a single step closer to the goal but is
allowed to go arbitrarily far away (given its finite state space). Consequently, if
the exact transition probabilities are known and, when in state s, the process
can only move to the states s − 1, s, and s + 1 (if possible), both cases coincide
and Theorem 3 yields the exact first-hitting time of the process.

The proof of Theorem3 is an application of Theorem1 with a scaled process
(a potential) such that the drift can be bounded by 1. The expected first-hitting
time is then bounded by the potential of the starting state.

Proof (of Theorem 3). For both cases, we define a potential function
φ : {0, . . . , n} → R≥0, for s ∈ {0, . . . , n}, as follows, using the respective defi-
nitions of p← and p→:

φ(s) =
s∑

i=1

g(i), where g(s) =
n∑

i=s

1
p←(i)

i−1∏

j=s

p→(j)
p←(j)

for s �= 0.
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Note that φ is monotonically increasing and that, for all t < T , φ(Xt) = 0 if and
only if Xt = 0. Thus, the first point in time t such that φ(Xt) = 0 is T .

We prove that the following recursion holds via downward induction over
s ∈ {1, . . . , n}:

g(n) =
1

p←(n)
and g(s) =

1
p←(s)

+
p→(s)
p←(s)

g(s + 1) for s �= n.

For the base case s = n, we get g(n) =
∑n

i=n
1

p←(i)

∏i−1
j=n

p→(j)
p←(j) = 1

p←(n) , which
is true. As for the inductive step, for s �= n, we get

1
p←(s)

+
p→(s)
p←(s)

g(s + 1) =
1

p←(s)
+

p→(s)
p←(s)

n∑

i=s+1

1
p←(i)

i−1∏

j=s+1

p→(j)
p←(j)

=
1

p←(s)
+

n∑

i=s+1

1
p←(i)

i−1∏

j=s

p→(j)
p←(j)

=
n∑

i=s

1
p←(i)

i−1∏

j=s

p→(j)
p←(j)

= g(s).

Consider case 1. We first compute the drift for t < T and for Xt = n:

E[φ(Xt) − φ(Xt+1) | Xt = n ] ≥ Pr Xt − Xt+1 ≥ 1[Xt = n] · (
φ(n) − φ(n − 1)

)

≥ p←(n) · (
φ(n) − φ(n − 1)

)
= p←(n) · g(n) = 1,

where the first inequality follows from the monotonicity of φ.
For s ∈ {1, . . . , n − 1} and t < T , we get

E[φ(Xt) − φ(Xt+1) | Xt = s ] ≥ Pr[Xt − Xt+1 ≥ 1|Xt = s] · (
φ(s) − φ(s − 1)

)

+ Pr[Xt − Xt+1 = −1|Xt = s] · (
φ(s) − φ(s + 1)

)

= Pr[Xt − Xt+1 ≥ 1|Xt = s] · g(s) − Pr[Xt − Xt+1 = −1|Xt = s] · g(s + 1)
≥ p←(s) · g(s) − p→(s) · g(s + 1)

= p←(s) ·
(

1
p←(s)

+
p→(s)
p←(s)

g(s + 1)
)

− p→(s) · g(s + 1) = 1,

using our recursion scheme for g. Again, the first inequality follows from the
monotonicity of φ.

Since we have a drift of at least 1 in all cases and a bounded step size, we
can apply Theorem 1 and get the desired result.

For case 2, we can perform analogous estimations for the drift but into the
other direction, making use that −φ(s + 1) is an upper bound for −φ(s′) for all
s′ ≥ s + 1. This way, we can upper-bound the drift by 1, yielding the respective
lower bound when using Theorem1. 	


Note that the recursion of function g given in the proof is defined as an
upward recursion. This actually follows from reconstructing how g has to look
in order for the drift to be 1. This approach cannot be done in this fashion with
a downward recursion, using state 1 as base case, as it is not clear what the
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potential for that state has to be, since it has two neighboring states. Thus, it
is very important for the search space to be bounded, leading to a well defined
base case of g(n) = 1/p←(n).

We highlight the importance of the upper bound on the state space (that is,
its finiteness) in the following example, where we show that Theorem2 cannot
be easily extended such that it works in a scenario where its drift function h is
not monotone.

Example 4. Consider two functions p← : {1, . . . , n} → [0, 1] and p→ : {0, . . . , n −
1} → [0, 1] such that, for all s ∈ {1, . . . , n},

• p←(s) = 1
2s (for s �= 0) and • p→(s) = 1

2(s+1) (for s �= n).

Note that, for all s ∈ {1, . . . , n − 1}, p←(s) + p→(s) ≤ 1.
Let (Xt)t∈N be a random process over {0, . . . , n} and let T denote the first

point in time t such that Xt = 0. Suppose that, for all s ∈ {1, . . . , n},

• Pr[Xt − Xt+1 = 1|Xt = s] = p←(s) (for s �= 0),
• Pr[Xt − Xt+1 = −1|Xt = s] = p→(s) (for s �= n), and
• Pr[Xt − Xt+1 = 0|Xt = s] = 1 − p←(s) − p→(s).

First, we consider the drift of this process. For all s ∈ {1, . . . , n − 1}, we get

E[Xt − Xt+1 | Xt = s ] =
1
2s

− 1
2(s + 1)

=
s + 1

2s(s + 1)
− s

2s(s + 1)
=

1
2s(s + 1)

,

and for s = n, we get E[Xt − Xt+1 | Xt = n ] = 1
2n ≥ 1

2n(n+1) . Thus, the drift is
dependent on the current state of the process. Note that this dependency is not
monotonically increasing. However, we ignore this and apply Theorem2 anyway.
Hence, defining h(s) = 1/

(
2s(s + 1)

)
, we get

E[T | X0 ] ≤ 1
h(1)

+
∫ X0

1

1
h(x)

dx = 2 · 2 +
∫ X0

1

2x(x + 1)dx

= 4 +
2
3
x3

∣
∣
∣
∣

X0

1

+ x2|X0
1 = 4 +

2
3
X3

0 − 2
3

+ X2
0 − 1 = O

(
X3

0

)
.

We now contrast this result with the result following from Theorem3. Note
that our functions p← and p→ are equal to the transition probabilities of our
random process. Thus, Theorem 3 yields an exact result, as the upper and lower
bound coincide:

E[T | X0 ] =
X0∑

s=1

n∑

i=s

1
p←(i)

i−1∏

j=s

p→(j)
p←(j)

.

First, we calculate the product in the expected first-hitting time:

i−1∏

j=s

p→(j)
p←(j)

=
i−1∏

j=s

1
2(j+1)

1
2j

=
i−1∏

j=s

j

j + 1
=

s

i
,
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as this is a telescope product and the numerator and denominator of neighboring
factors cancel out.

As for the inner sum, we now get
∑n

i=s
1

p←(i)

∏i−1
j=s

p→(j)
p←(j) =

∑n
i=s 2i s

i =
∑n

i=s 2s = 2s(n − s + 1), since the sum is independent of its summation index i.
Last, for the outer sum, we get

X0∑

s=1

n∑

i=s

1
p←(i)

i−1∏

j=s

p→(j)
p←(j)

=
X0∑

s=1

2s(n − s + 1) = 2

(

(n + 1)
X0∑

s=1

s −
X0∑

s=1

s2

)

= 2
(

(n + 1)
X0(X0 + 1)

2
− X0(X0 + 1)(2X0 + 1)

6

)
= Θ

(
nX2

0

)
,

because 0 ≤ X0 ≤ n, which means that the minuend dominates the difference in
the second-to-last line. Overall, Theorem3 yields E[T | X0 ] = Θ

(
nX2

0

)
.

If we compare this result against the expected first-hitting time due to The-
orem 2 of E[T | X0 ] = O

(
X3

0

)
, we see that these results contradict one another

if X0 = o(n). In fact, if we choose X0 = 1, that is, we are almost at our goal
of 0 and have a constant probability of reaching it, the (erroneous) result of The-
orem 2 yields a constant first-hitting time, whereas the truth is a first-hitting
time linear in n.

Intuitively, this drastic difference comes from the high probability of the
process going away from the goal instead of toward it. Thus, if our process
does not go toward 0, it may take some time until it returns to 1. Even more
important: this waiting time until returning to 1 is dependent on the size of the
search space, namely n, as evident by the factor of n in the first-hitting time.
Thus, if our search space were unbounded, the expected first-hitting time would
be unbounded too, as the probability of returning to 1 would be too small.

This has an even bigger impact on Theorem 2: its result does not include the
size of the search space.1 This means that the theorem is inherently not capable
of yielding the correct expected first-hitting time in the form given.

When choosing X0 = Θ(n), the results of both theorems coincide. In this
case, the process starts so far away from the goal 0 that the return time to
X0 is negligible. However, note that this is again due to the search space being
bounded. As we start close to the upper bound n, it either takes a short time to
return to X0 (if going away from 0) or we approach the goal. �

Since Example 4 does not give different results when X0 = Θ(n), we provide
another example, where the difference in the bounds from Theorems 2 and 3 is
tremendous.

Example 5. Consider two functions p← : {1, . . . , n} → [0, 1] and p→ : {0, . . . , n −
1} → [0, 1] such that, for all s ∈ {1, . . . , n},

• p←(s) = 1
2

(
1 + 1

es

)
(for s �= 0) and • p→(s) = 1

2

(
1 − 1

es

)
(for s �= n).

1 The theorem itself assumes the search space to be bounded. However, the actual size
of the search space does not matter for the expected first-hitting time.
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Note that, for all s ∈ {1, . . . , n − 1}, p←(s) + p→(s) = 1.
Let (Xt)t∈N be a random process over {0, . . . , n} and let T denote the first

point in time t such that Xt = 0. Suppose that, for all s ∈ {1, . . . , n},

• Pr[Xt − Xt+1 = 1|Xt = s] = p←(s) (for s �= 0),
• Pr[Xt − Xt+1 = −1|Xt = s] = p→(s) (for s �= n), and
• Pr[Xt − Xt+1 = 0|Xt = n] = 1 − p←(n).

Thus, Xt is almost an unbiased random walk on a path. Further, we assume that
X0 = n.

First, we consider the drift of this process. For all s ∈ {1, . . . , n − 1}, we
get E[Xt − Xt+1 | Xt = s ] = 1

2

(
1 + 1

es

) − 1
2

(
1 − 1

es

)
= 1

es , and for s = n, we get
E[Xt − Xt+1 | Xt = n ] = 1

2

(
1 + 1

en

) ≥ 1
en .

By wrongly applying Theorem2 with h(s) = 1/es, we get E[T |X0 ] ≤ 1
h(1) +

∫ X0

1
1

h(x)dx = e + en − e = en.
We now consider the application of Theorem 3. First, we estimate the product∏i−1

j=s
p→(j)
p←(j) ≤ 1. Hence, for the inner sum, we get

∑n
i=s

1
p←(i)

∏i−1
j=s

p→(j)
p←(j) ≤

∑n
i=s

2ei

ei+1 ≤ ∑n
i=s 2 = 2(n − s + 1).

Last, for the outer sum, we get

X0∑

s=1

n∑

i=s

1
p←(i)

i−1∏

j=s

p→(j)
p←(j)

≤
X0∑

s=1

2(n − s + 1) = 2

(

(n + 1)
n∑

s=1

1 −
n∑

s=1

s

)

= O
(
n2

)
.

Overall, Theorem 3 yields E[T | X0 ] = O
(
n2

)
.

Comparing this with the bound of O(en) when (wrongly) applying Theorem2,
we see that there is an exponential gap between both results. The result from
Theorem 2 is not wrong but nonetheless very much off from the truth. Due to
the exponentially declining drift, the bound is exponential. However, the actual
first-hitting time of Xt is dominated by the first-hitting time of an unbiased
random walk, which hits 0, starting from n, within Θ

(
n2

)
steps in expectation.

The result from Theorem 3 conforms to this argument. �

Theorem 3 allows for arbitrary transition probabilities, as long as the state 0
can be reached. If we now restrict the transition probabilities such that the pro-
cess cannot move to the right, we end up in a scenario where the process can
either move closer to the target or stay at its current position. Thus, the expected
first-hitting time is the sum of geometrically distributed random variables denot-
ing the number of steps until each state is left. This way, we reconstruct the
fitness level method.

Corollary 6 (Fitness Level Method [13]). Let (Xt)t∈N be a random process
over {0, . . . , n} and let T denote the first point in time t such that Xt = 0.
Suppose, for all t < T , Xt − Xt+1 ≥ 0.

1. Suppose there exists a function p← : {1, . . . , n} → [0, 1] such that, for all t < T
and all s ∈ {1, . . . , n},
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• p←(s) > 0 and • Pr[Xt − Xt+1 ≥ 1|Xt = s] ≥ p←(s).
Then E[T | X0 ] ≤ ∑X0

s=1
1

p←(s) .
2. Suppose there exists a function p← : {1, . . . , n} → [0, 1] such that, for all t < T

and all s ∈ {1, . . . , n},
• p←(s) > 0, • Pr[Xt − Xt+1 = 1|Xt = s] ≤ p←(s), and
• Pr[Xt − Xt+1 > 1|Xt = s] = 0.

Then E[T | X0 ] ≥ ∑X0
s=1

1
p←(s) .

Proof. Both inequalities directly follow from Theorem3 by noting that the prod-
uct

∏i−1
j=s

p→(j)
p←(j) is 0 for each i ≥ s + 1, and 1 for i = s. 	


Note how case 2 assumes that the process can only move one step closer to
the goal. If this were not the case, the process could reach the goal 0 earlier (for
example, directly from X0) and we had not to sum over all states between 0
and X0.

4 Limit Distributions and Mixing Times

Our setting described in Sect. 2 can be interpreted as a Markov chain as depicted
in Fig. 1. In this section, we are going to analyze our random process with respect
to tools from the theory of Markov chains. We assume that the reader is familiar
with the standard terminology in this topic and point to Markov Chains and
Mixing Times [10] for a nice reference.

In Sect. 3, we determined the expected first-hitting time of a random process
on a finite state space. Now we focus on the probability of being in a certain
state after a certain time. More specifically, we are interested in a stationary
distribution of our process as well as its mixing time. We start with determining
a stationary distribution.

In this section, we assume that the process can only move to neighboring
states. That is, when in state s, the process can only move to s − 1, s, and s + 1
(if possible).

According to Corollary 1.17 from [10], a stationary distribution of a Markov
chain is unique if the chain is irreducible, that is, every state can be reached from
any other state with positive probability. As we are interested in unique station-
ary distributions, our following theorem assumes that all transition probabilities
to neighboring states are positive.

Theorem 7. Let (Xt)t∈N be a random process over {0, . . . , n}. Suppose, for
all t ∈ N, (Xt − Xt+1) ∈ {−1, 0, 1}. Suppose there are two functions
p← : {1, . . . , n} → [0, 1] and p→ : {0, . . . , n − 1} → [0, 1] such that, for all
s ∈ {0, . . . , n},
• Pr[Xt − Xt+1 = 1|Xt = s] = p←(s) > 0 (for s �= 0) and
• Pr[Xt − Xt+1 = −1|Xt = s] = p→(s) > 0 (for s �= n).
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Further, let π denote the stationary distribution of Xt. Then, for all s ∈
{0, . . . , n},

π(s) =

∏s−1
i=0

p→(i)
p←(i+1)

∑n
i=0

∏i−1
j=0

p→(j)
p←(j+1)

.

Similar to Theorem 3, the ratio of the transition probabilities are very impor-
tant for our result. However, different from Theorem3, we now need the values
p→(s)/p←(s + 1) instead of p→(s)/p←(s). This difference makes sense: in Sect. 3,
we were interested in reaching the state 0. Thus, it was important how likely the
process moves toward or from the goal. Now, there is no special state that we
want to reach. We are interested in the probability of being in a certain state.
Hence, it is important with which probability to get to a state and with which
probability to leave it again.

If the ratio p→(s)/p←(s + 1) is the same for all states s, we can simplify the
stationary distribution as follows.

Corollary 8. Let (Xt)t∈N be a random process over {0, . . . , n}. Suppose, for
all t ∈ N, (Xt − Xt+1) ∈ {−1, 0, 1}. Further, suppose there are two functions
p← : {1, . . . , n} → [0, 1] and p→ : {0, . . . , n − 1} → [0, 1] and a value c > 0 such
that, for all s ∈ {0, . . . , n},
• Pr[Xt − Xt+1 = 1|Xt = s] = p←(s) > 0 (for s �= 0),
• Pr[Xt − Xt+1 = −1|Xt = s] = p→(s) > 0 (for s �= n), and
• p→(s)/p←(s + 1) = c.

Further, let π denote the stationary distribution of Xt. If c �= 1, then, for all
s ∈ {0, . . . , n}, it holds that π(s) = (c − 1) cs

cn+1−c .
And if c = 1, for all s ∈ {0, . . . , n}, it holds that π(s) = 1

n+1 .

Proof. We use the definition of π from Theorem 7 and use that
∏i−1

j=0
p→(j)

p←(j+1) =
∏i−1

j=0 c = ci. Hence, we get π(s) =
∏s−1

i=0
p→(i)

p←(i+1)
∑n

i=0
∏i−1

j=0
p→(j)

p←(j+1)

= cs∑n
i=0 ci , where the result

follows by noting that the denominator is a geometric sum (when c �= 1). For
c = 1, the result is trivial. 	


When we have c < 1, that is, the probability to move to the right is less than
the probability to move to the left, Corollary 8 yields that the probability to be
in state s declines exponentially in s. Conversely, if c > 1, the probability grows
exponentially in s. Last, if c = 1, we end up with the uniform distribution.

Given the stationary distribution, it is a natural question to ask whether
this distribution will be reached in the limit of the number of steps going to
infinity. This is the case if the Markov chain is also aperiodic (besides irreducible;
Theorem 4.9 from [10]), which is the case if there is at least one state that has
a self loop (that is, it has a positive probability of reaching itself in one step).
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Assuming that our Markov chain is also aperiodic, we now determine its
mixing time, that is, the time until the probability to be in state s is only at
most ε different from the probability stated by the stationary distribution.

The following corollary is a direct consequence of Corollary 14.7 from [10].
The idea behind the corollary is to consider a coupling of two independent copies
of the process that start maximally far apart. The goal is that both processes
meet. If they arrive in neighboring states and at least one of those states has a
self loop, this is possible by one process staying where it is and the other process
moving to said state. In order for this argument to translate into a mixing time,
it is necessary that the expected distance of two such neighboring processes is
less than 1 after one step. That is, in expectation, they move close to one another
once they are next to each other. This is formalized in the following corollary.

Corollary 9. Let (Xt)t∈N be a random process over {0, . . . , n}. Suppose, for
all t ∈ N, (Xt − Xt+1) ∈ {−1, 0, 1}. Further, suppose there are two functions
p← : {1, . . . , n} → [0, 1] and p→ : {0, . . . , n − 1} → [0, 1] such that, for all s ∈
{0, . . . , n},
• Pr[Xt − Xt+1 = 1|Xt = s] = p←(s) > 0 (for s �= 0) and
• Pr[Xt − Xt+1 = −1|Xt = s] = p→(s) > 0 (for s �= n).

Let (Yt)t∈N be an independent copy of Xt. Assume that there is an α > 0 such
that, for all s ∈ {0, . . . , n − 1},

E
[|Xt+1 − Yt+1|

∣
∣ Xt = s, Yt = s + 1

] ≤ e−α. (1)

Let tmix denote the mixing time of Xt. Then, for each ε ∈ (0, 1/2),

tmix(ε) ≤
⌈

ln n
ε

α

⌉
.

Proof. The statement is an application of Corollary 14.7 from [10]. Inequality (1)
is a special case of the situation considered in Theorem 14.6 in [10]. 	


Note that if we consider a state s such that both s and s + 1 have no self
loop, E

[|Xt+1 − Yt+1|
∣
∣ X = s, Yt = s + 1

]
is at least 1, as Xt+1 and Yt+1 cannot

be in the same state. Thus, Corollary 9 is not applicable in this scenario.
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