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Introduced is a new inductive inference paradigm, dynamic modeling. Within this learning
paradigm, for example, function h learns function g iff, in the i-th iteration, h and g both
produce output, h gets the sequence of all outputs from g in prior iterations as input,
g gets all the outputs from h in prior iterations as input, and, from some iteration on, the
sequence of h’s outputs will be programs for the output sequence of g.
Dynamic modeling provides an idealization of, for example, a social interaction in which
h seeks to discover program models of g’s behavior it sees in interacting with g, and h
openly discloses to g its sequence of candidate program models to see what g says back.
Sample results: every g can be so learned by some h; there are g that can only be learned
by an h if g can also learn that h back; there are extremely secretive h which cannot be
learned back by any g they learn, but which, nonetheless, succeed in learning infinitely
many g; quadratic time learnability is strictly more powerful than linear time learnability.
This latter result, as well as others, follows immediately from general correspondence
theorems obtained from a unified approach to the paradigms within inductive inference.
Many proofs, some sophisticated, employ machine self-reference, a.k.a., recursion theorems.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction and motivation

In Computational limit learning of computable functions mapping the non-negative integers to the same, an algorithmic
learner is iteratively given more and more finite information generated by a computable target function. From this information,
the learner, in each iteration (may) synthesize a (suitably interpreted) natural number as output. In the literature, many
criteria of successful learning have been proposed. Each such learning criterion defines precisely, possibly among other
things, in what way the information will be generated by the target function and how the sequence of iteratively generated
outputs and the target function have to relate for the learning to be considered successful. Sometimes each output number
will be interpreted as (numerically naming) a program, other times each number will represent a prediction for a yet unseen
data point. It is helpful for the present paper to briefly consider some illustrative examples.

Ex-learning [17] exemplifies the category of identification. h Ex-learns target g iff, in the i-th iteration, h outputs a
conjecture on input g(0) . . . g(i − 1) and there are j, e such that ∀k � j: h(g(0) . . . g(k − 1)) = e and e is a program for g .1

Such a program e could be carried away and used offline.
Learning the next value (Nv-learning) [1,4] exemplifies the category of extrapolation. h Nv-learns target g iff, h is total

and, in the i-th iteration, h outputs a conjecture on input g(0) . . . g(i − 1) and there is a j such that ∀k � j: h(g(0) . . . g(k −
1)) = g(k).2 The successful extrapolants h(g(0) . . . g(k − 1)), k � j, can be used online.

* Corresponding author.
E-mail addresses: case@cis.udel.edu (J. Case), koetzing@mpi-inf.mpg.de (T. Kötzing).

1 The term ‘Ex’ stands for explanatory [11].
2 The term ‘Nv’ stands for next value [1].
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Learning to coordinate (Coord-learning) [22] exemplifies the category of coordination. h Coord-learns a target g iff, in the
i-th iteration, h and g both produce output, h gets the sequence of all outputs from g in prior iterations as input, g gets all
the outputs from h in prior iterations as input, and, from some iteration on, the sequence of h’s outputs will be the same
as the sequence of g ’s outputs. The finally successfully coordinated matching outputs can be used online.

In these examples we see that, while Coord-learning features a reactive learnee g , Ex- and Nv-learning feature a passive
learnee g .

Passive learnee Reactive learnee

Learning programs Identification ??
Predicting next value Extrapolation Coordination

In the just above table, there is a missing, not heretofore studied category entry for offline with reactive learnee. We refer
to this category as dynamic modeling, and it is the subject of the present paper. XBc-learning exemplifies the category of
dynamic modeling. h XBc-learns a target g iff, in the i-th iteration, h and g both produce output, h gets the sequence of
all outputs from g in prior iterations as input, g gets all the outputs from h in prior iterations as input, and, from some
iteration on, the sequence of h’s outputs will be programs for the output sequence of g .3

In cognitive science, theory of mind refers to ones having a model (or models) of another’s thoughts, emotions, and
perspectives — including those different from ones own. Ideally, one might have a program (or programs) generating the
behavior of the other, but — the behavior presented by the other would, in reality, be all and only that resulting from
crossfeeding between oneself and the other. While one is attempting to synthesize program(s) for the other, a technique to
employ is to pass on a sequence of remarks such as, “I think you are like . . . ” (where . . . might be a program), and, then,
attend to the resultantly elicited sequence of reactions of the other — as one formulates further programs/models of the
other. Of course, in reality, one might, in seeking social understanding, carry out variants, including highly filtered variants,
of the just above scenario. The unfiltered and very idealized scenario above is, nonetheless, covered by dynamic modeling.

Next we summarize the contents of the remaining sections.
In Section 2 below we present mathematical preliminaries.
Section 3 presents a unified approach to limiting learning criteria. This pays off in Section 5 where we can then provide

general results applying to many criteria at once and, thereby, quickly obtain some nice corollaries.4

Section 4 involves cooperativeness vs. secretiveness in dynamic modeling. Considered are dynamic modelers which may
or may not, in return, be dynamically modeled themselves. Proposition 4.1 implies that no computable g can keep models of
its behavior totally secret; moreover, for any computable g , there are infinitely many constant functions h that XBc-learn g .5

Surprisingly, Theorem 4.3 implies that there is a computable g so that, no computable h that XBc-learns g can keep
models of its behavior a secret from g , i.e., such h gives itself away: g , in turn, XBc-learns h. Positively, such a g is,
then, extremely cooperative: informally, g can figure out the behavior of any computable h that figures out its behavior.
Furthermore, such a g can be chosen to be linear time computable! The proof of Theorem 4.3 is particularly elegant.

We say that computable h is extremely uncooperative iff there is no computable g such that h XBc-learns g and g XBc-
learns h. Theorem 4.7 implies there are extremely uncooperative computable h which, nonetheless, are infinitely successful,
i.e., such that h XBc-learns infinitely many computable g .

Results in Section 4 feature open disclosure of certain learners’ models of another while not disclosing their own models
to the other. For comparison and contrast, a zero-knowledge proof [5] permits open, convincing disclosure of its existence
without disclosing how it works.

Section 5 features two general and powerful correspondence theorems (Theorems 5.10 and 5.12) regarding many of the
criteria discussed above and in Section 3. A further result is dynamic modeling by enumeration as given in Theorem 5.3. This
theorem states that each set of uniformly computable total functions is learnable in the sense of dynamic modeling; this is
a known and easy result for Ex-learning, but it requires some thought in the setting of dynamic modeling.

Theorem 5.10 immediately yields Corollary 5.11 which implies, for example, that quadratic time XBc-learnability is strictly
more powerful than lintime XBc-learnability.6

Theorem 5.12 immediately yields Corollary 5.13 which provides a number of learning criteria hierarchies and separations.
An example: the powers of XBc-learning and of Coord-learning are incomparable.

Many proofs, some sophisticated, employ machine self-reference techniques, including Kleene Recursion Theorem (KRT)
[25, page 214, problem 11-4] and Case’s Operator Recursion Theorem (ORT) [6,7]. The latter achieves infinitary self (and
other) reference.

This paper is an extension of the conference paper [10] and was part of the second author’s PhD thesis [19].

3 We use the cross-shaped X to denote cross-feeding. Of course crossfeeding of data is common to both the categories of coordination and dynamic
modeling. In Section 3 we use the X also in talking about the former category. Bc stands for behaviorally correct [11].

4 In Section 3 Ex-learning will be called GEx-learning, where the G is for Gold [17]. Nv-learning will be called RGM, where the R is for (total)
computable learner and learnee, and the M is for Matching. Coord-learning will be called XM-learning.

5 Actually, Proposition 4.1 is stated for a more restrictive criterion within the dynamic modeling category.
6 Nothing like this happens for, for example, Ex-learning, since by an extension of Pitt’s postponement tricks from [23] (otherwise unrestricted) Ex-

learning with lintime learners is just as powerful as Ex-learning.
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2. Mathematical preliminaries

Any unexplained complexity-theoretic notions are from [26]. All unexplained general computability-theoretic notions are
from [25].

Strings herein are finite and over the alphabet {0,1}. {0,1}∗ denotes the set of all such strings, ε denotes the empty
string.

N denotes the set of natural numbers, {0,1,2, . . .}. ∗ is a symbol such that, for all n ∈ N, n < ∗. For two functions f , g
and n ∈ N, f =n g means that f and g differ on at most n arguments, f =∗ g means that f and g differ only on finitely
many arguments.

We do not distinguish between natural numbers and their dyadic representations as strings.7

For each w ∈ {0,1}∗ and n ∈ N, wn denotes n copies of w concatenated end to end. For each string w , we define size(w)

to be the length of w . As we identify each natural number x with its dyadic representation, for all n ∈ N, size(n) denotes
the length of the dyadic representation of n. For all strings w , we define |w| to be max{1, size(w)}.8

The symbols ⊆,⊂,⊇,⊃ respectively denote the subset, proper subset, superset and proper superset relation between
sets. P and R, respectively, denote the set of all partial ans total functions N→ N, respectively.

For sets A, B , let A \ B = {a ∈ A | a /∈ B}, A =N \ A.
The quantifier ∀∞x means “for all but finitely many x”, the quantifier ∃∞x means “for infinitely many x”.
We sometimes denote a function f of n > 0 arguments x1, . . . , xn in lambda notation (as in Lisp) as λx1, . . . , xn f (x1,

. . . , xn). For example, with c ∈ N, λx c is the constantly c function of one argument.
A function ψ is partial computable iff there is a Turing machine computing ψ . R and P denote the set of all (total)

computable and partial computable functions N→ N, respectively. If ψ is not defined for some argument x, then we denote
this fact by ψ(x)↑, and we say that ψ on x diverges. The opposite is denoted by ψ(x)↓, and we say that ψ on x converges.

We say that a partial function ψ converges to p iff ∀∞x: ψ(x)↓ = p.
Ref. [26, §3] describes an efficiently numerically named or coded9 programming system for multi-tape Turing machines

(TMs) which compute the partial computable functions N → N. Herein we name this system ϕ . ϕp denotes the partial
computable function computed by the TM-program with code number p in the ϕ-system, and Φp denotes the partial
computable runtime function of the TM-program with code number p in the ϕ-system.

A finite sequence is a mapping with a finite initial segment of N as domain (and range N). ∅ denotes the empty sequence
(and, also, the empty set). The set of all finite sequences is denoted by Seq. For each finite sequence σ , we will denote
the first element, if any, of that sequence by σ(0), the second, if any, by σ(1) and so on. len(σ ) denotes the number of
elements in a finite sequence σ , that is, the cardinality of its domain. last(σ ) denotes the last element of σ (if any).

For a partial function g and i ∈ N, if ∀ j < i: g( j)↓, then g[i] is defined to be the finite sequence g(0), . . . , g(i − 1).
We use � (with infix notation) to denote concatenation on sequences. For any natural number x, let x denote the

sequence of length one with only element x, and let xn be the code of the sequence of length n, each element being x.
From now on, by convention, f , g and h with or without decoration range over (partial) functions N → N, x, y with or

without decorations range over N and σ ,τ with or without decorations range over finite sequences of natural numbers.
We take N = {0,1}∗ for ease of measurement of the size of each natural number. Following [20], we fix an easily

computed and inverted coding of all finite sequences of natural numbers into N so that the size of any sequence, defined as
the size of its coding, is sensible for measuring the computational complexity of functions which take sequences as inputs.
In particular the size of any sequence σ should be linear in len(σ ) and the size of each natural number n linear in log(n).

Let LinF, PF and EXPF be the set of all linear time, polynomial time and exponential time computable functions, respec-
tively.

We fix a computable coding for the set of all sequences into the natural numbers. Henceforth, we will many times identify
a finite sequence σ with its code number. However, when we employ expressions such as σ(x), σ = f and σ ⊂ f , we consider
σ as a sequence, not as a number.

For this paper we will need a padding function, an s-m-n function and a version of ORT, introduced below. In particular,
we will need non-standard complexity-restricted variants; details on those can be found in [19].

There are a 1-1 function pad and a function unpad1, both ∈ LinF such that

∀e,n: ϕpad(e,n) = ϕe; (1)

∀e,n: unpad2
(
pad(e,n)

) = n. (2)

The function pad is called a padding function, intuitively padding a ϕ-program e with some auxiliary information coded in n
without changing the semantics of the program.

7 The dyadic representation of a natural number x = the x-th finite string over {0,1} in lexicographical order, where the counting of strings starts with
zero [26]. Hence, unlike to binary representation, lead zeros matter.

8 This convention about |ε| = 1 helps with runtime considerations.
9 This numerical coding guarantees that many simple operations involving the coding run in linear time. This is by contrast with historically more typical

codings featuring prime powers and corresponding at least exponential costs to do simple things.
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There is a function s ∈ LinF (called s-m-n function) such that

∀e, x, y: ϕs(e,x)(y) = ϕe(x, y).

Intuitively, s provides for algorithmic storage of data in programs. We also need 1-1 linear time ORT, which states that, for
all computable operators Θ , there is 1-1 e ∈ LinF such that

∀x,n: ϕe(n)(x) = Θ(e)(x,n).

3. Unified approach to limit learning criteria

In this section, in the interest of generality, we give many definitions for limit learning also involving non-algorithmic
learning. Nonetheless, all the results given in the present paper concern only algorithmic (including complexity bounded)
learning.

3.1. Definitions

Any set C ⊆ P is a learner admissibility restriction; intuitively, a learner admissibility restriction defines which functions
are admissible as potential learners, e.g., P,R,LinF, . . . .

Every computable operator P × R → P2 is called a sequence generating operator; intuitively, a sequence generating op-
erator defines how learner and learnee interact to generate two infinite sequences, one for learner-outputs (we call this
sequence the learner-sequence) and one for learnee-outputs.10 For example, for Ex-learning (to be renamed in Section 3.2),
for a (then, passive) learnee g , its learnee outputs would be g(0), g(1), . . . . Below, in general, even for reactive learnees, we
refer to the sequence of learnee-outputs as a data-sequence.

For h ∈ P , g ∈ R and β a sequence generating operator, the first component of β(h, g) (the learner-sequence of h
given g) is denoted by β1(h, g); the second component (the data-sequence of g given h) is denoted by β2(h, g).

Every subset of P2 is called a sequence acceptance criterion. Intuitively, a sequence acceptance criterion defines which
learner-sequences are considered a successful learning of a data-sequence. Any two such sequence acceptance criteria δ and
δ′ can be combined by intersecting them. For ease of notation we write δδ′ instead of δ ∩ δ′ .

A learning criterion (or short criterion) is a 3-tuple consisting of a learner admissibility restriction, a sequence generating
operator and a sequence acceptance criterion. Let C , β , δ, respectively, be a learner admissibility restriction, a sequence
generating operator and a sequence acceptance criterion, respectively. For h ∈ P, g ∈ R we say that h (C, β, δ)-learns g iff
h ∈ C and β(h, g) ∈ δ. For h ∈ P and S ⊆ R we say that h (C, β, δ)-learns S iff, for all g ∈ S , h (C, β, δ)-learns g; the set of
all computable learnees (C, β, δ)-learned by h is denoted by

Cβδ(h) = {
g ∈ R

∣∣ h (C, β, δ)-learns g
}
.

The set of (C, β, δ)-learnable sets of computable functions is defined as

Cβδ = {
Cβδ(h)

∣∣ h ∈ C
}
. (3)

We refer to the sets Cβδ as in (3) as learnability classes. To refer to a learning criterion, instead of writing the tuple (C, β, δ),
we will ambiguously write Cβδ.

For any sequence generating operator β , we can turn a given sequence acceptance criterion δ into a learner admissibility
restriction Tβδ by admitting only those learners that obey δ on all possible input:

Tβδ = {
h ∈P

∣∣ ∀g ∈R: β(h, g) ∈ δ
}
.

3.2. Examples

In this section we give many examples illustrating our definitions and give an overview as to how our notation covers
criteria from the literature. Past this section, we will not be concerned with every example given in this section, but some
of them will be employed.

Example 3.1. Two typical learner admissibility restrictions are P and R. Furthermore, any set of functions computable with
a resource restriction (such as the set of all lintime computable functions) may be used as a learner admissibility restriction.
For each sequence generating operator β and each F ⊆ R, the set Relβ,F of all functions reliable on F [21,4] (defined below)
is also a learner admissibility restriction.

Relβ,F := {
h ∈ P

∣∣ ∀g ∈ F ∀p,q ∈ P:
(
β(h, g) = (p,q) ∧ p converges to somep′) ⇒ ϕp′ = q

}
.

10 Essentially, these computable operators are the recursive operators of [25] but with two arguments and two outputs and restricted to the indicated
domain.
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When denoting criteria with P as the learner admissibility restriction, we will omit P .

Example 3.2. We define the following example sequence generating operators. All learners give an initial conjecture, say,
of 0, based on no data.

• Goldstyle [17]: G : P×R→P×R, (h, g) �→ (λi h(g[i]), g).
• Iterative [27]: It :P×R→P×R, (h, g) �→ (p, g) such that p(0) = 0, ∀n: p(n + 1) = h(q(n), p(n)).
• Transductive: Td :P×R→ P×R, (h, g) �→ (p, g) such that p(0) = 0, ∀n: p(n + 1) = h(q(n)).
• Crossfeeding [22] X : P×R→ P×P, (h, g) �→ (p,q) such that ∀n p(n) = h(q[n]) ∧ q(n) = g(p[n]).
• Learnee iterative: Li : P×R →P×P, (h, g) �→ (p,q) such that ∀np(n) = h(q[n])∧q(0) = 0∧∀n: q(n+1) = g(p(n),q(n)).

“G” is a reference to Gold [17]. Intuitively, G takes a learner h and a learnee g , and feeds longer and longer initial
segments of g into h, considering the successive outputs as coding an infinite sequence of hypotheses. The second output is
just g , meaning that the target concept to be learned is all of g . In this setting, the learner gets a lot of information about
the learnee, while the learnee does not react at all to the learning process. For It and Td defined above, a learner for the
latter has less information at its disposal than for the former.

Regarding X, learner and learnee have symmetrical information in each iteration. Li lessens the information that the
learnee has in a similar way that iterative learning lessens the information of the learner.

The first three bullets given in Example 3.2 involve passive learnees, while the last two examples involve reactive
learnees.

We note the following three important properties relating G and X, which are of relevance to this paper. Let
f , g,h, p,q ∈P .

X(h, g) = (p,q) ⇒ G(h,q) = (p,q); (4)

X(h, g) = (p,q) ⇒ G(g, p) = (q, p); (5)

X
(
h, λσ f

(
len(σ )

)) = G(h, f ). (6)

The last item says, intuitively, that G-learning a function f is the same as crossfeeding with a function that ignores all the
conjectures made and only considers the current iteration number n (which equals the number of conjectures made) and
returns f (n); we will use this for an observation at the end of this section.

Example 3.3. We define the following sequence acceptance criteria.

• Explanatory: Ex = {(p,q) ∈P2 | p converges to some p′ and ϕp′ = q}.
• Explanatory with up to a ∈ N∪ {∗} errors [11,4]:

Exa = {
(p,q) ∈P2

∣∣ p converges to some p′ and ϕp′ =a q
}
.

• Behaviorally correct [11,3]: Bc = {(p,q) ∈P2 | ∀∞n ϕp(n) = q}.
• Behaviorally correct with up to a ∈N∪ {∗} errors [11]:

Bca = {
(p,q) ∈P2

∣∣ ∀∞n ϕp(n) =a q
}
.

• Matching [1,4,22]: M = {(p,q) ∈P×R | p =∗ q}.

All the above criteria include global restrictions on the path to successful learning. The following defines several criteria
only involving local restrictions.

• Postdictively complete [2,4,27]: Pcp = {(p,q) ∈ R2 | ∀n∀i < n: ϕp(n)(i) = q(i)}.
• Hypotheses are programs for total functions [11]: T = {(p,q) ∈R2 | ∀n: ϕp(n) ∈R}.
• Always giving hypotheses: R2.

Note that, for any sequence acceptance criterion δ, we use δ−1 to denote the inverse relation, i.e., (p,q) ∈ δ iff
(q, p) ∈ δ−1.

The idea of dividing a learning criterion into different components is not entirely new. For example, Freivalds et al. [16]
defined admissible sequences for a given function, which basically defines a binary predicate on a pair of infinite sequences, in
effect similar to sequence acceptance criteria.

We can now express several learning criteria as defined in the prior literature (left-hand-side below) with our notation
system (right-hand-side below). Recall that the default learner admissibility restriction is P ; hence, all learning criteria
displayed just below are for algorithmic learners.
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Ex ↔ GEx
Bc ↔ GBc
Nv ↔ RGM

Nv′ ↔ GR2M
Nv′′ [24] ↔ GM

Cons ↔ GPcpEx
R-Cons ↔ RGPcpEx
T-Cons ↔ TGPcpGEx

reliable onR ↔ RelRGEx
It ↔ ItEx

learnable by a player [22] ↔ XM
learnable by a total player [22] ↔ RXM

A sequence acceptance criterion δ is said to be degenerate iff ∃(p,q) ∈ δ: p =∗ λx ↑. All sequence acceptance criteria
given above are non-degenerate, and the authors don’t know of any degenerate sequence acceptance criteria implicit in
the prior literature. We conjecture that any degenerate sequence acceptance criterion would be useless to model learning.
Hence, the present paper will solely focus on non-degenerate such criteria.

The following remark is easy to see.

Remark 3.4. Let δ be non-degenerate and C ⊆P . Then the learnability classes CXδ and CXR2δ are equal.

Similarities between extrapolation (like GM) and coordination (like XM) have been pointed out in [9]. In particular, blind
learnees are defined as functions where each output only depends on the length of it’s input, and with each function g ∈R,
a blind learnee g′ = λσ g(len(σ )) is associated. The mapping Θ = λg g′ is then a natural embedding of learnees in the
G-sense to learnees in the X-sense; more formally, for all sequence acceptance criteria δ and S ⊆R,

S ∈ Gδ ⇔ Θ(S) ∈ Xδ. (7)

The special case of (7) with δ = M is used in [9].

4. Cooperation and secretiveness

The main emphasis of the present paper, as seen in Section 1, features XBc-learning, but, based on the thinking of
Section 3, one might wonder why we didn’t talk about XEx-learning. We’ll talk about it now. Suppose h XEx-learns g .
The learner-sequence of h interacting with g , is, then, a total, almost everywhere constant function. Suitable g , then, easily
XEx-learn h.11

The proposition just below implies that any computable g gets XBc-learned by some computable h. Hence, any g can
have its secrets learned by some learner. The interesting thing, then, is whether, when h XBc-learns g , h can keep models
of itself secret from g . This is considered in Theorem 4.3 further below.

Proposition 4.1. Let g ∈R. Then there are infinitely many (total) constant functions h XBc- (in fact, XEx-) learning g.

Proof. Let n ∈ N. There is, by KRT, en such that, with

p = λx pad(en,n), (8)

∀x: ϕen (x) = g
(

p[x]). (9)

Let hn ∈R be such that

∀σ : hn(σ ) = pad(en,n). (10)

There is q ∈R such that X(hn, g) = (p,q). Then we have, for all t and x,

ϕp(t)(x) =
(8)

ϕpad(en,n)(x) =
(1)

ϕen(x) =
(9)

g
(

p[x]) =
choice of q

q(x). (11)

Hence, hn XBc-learns g . Trivially, using (1), we have for all l �= m, hl �= hm . This shows that there are infinitely many different
(constant) functions XEx-learning g . �
11 We have, more generally, that

∃g ∈R ∀h ∈R: h XEx-learns g ⇒ g XEx-learns h.
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The Stanford psychologist Herb Clark specializes in treating human language communication as serving a/the primary
purpose of coordinating activities [14,12,13]. He also knows about the influential inductive inference work first introduced
by Gold in [17]. When the first author told him about his plan just above to extend coordination as in [22], etc., he
responded:

I worry a lot about the Gold type models because they make such simplistic, by which I mean empirically unrealistic,
assumptions about feedback, interaction, evidence of understanding, etc. So if you can move the model into one that
takes account of coordination with others in the proper way, terrific!

In this section, we try to get a little bit closer to what Herb Clark suggested analyzing.

Definition 4.2. We define the following sequence acceptance criteria.

• Cooperative Bc: Bcc = {(p,q) ∈R2 | ∀∞n ϕp(n) = q ∧ ∀∞n ϕq(n) = p} (= BcBc−1).

• Secretive Bc: Bcs = {(p,q) ∈R2 | ∀∞n ϕp(n) = q ∧ ¬∀∞n ϕq(n) = p} (= BcBc−1).

Clearly, for all h, g ∈R, h XBcc-learns g iff, h XBc-learns g and g XBc-learns h; similarly, h XBcs-learns g iff, h XBc-learns
g and g does not XBc-learn h.

It is easy to see that there are computable functions which are not XBcc-learnable, for example λσ len(σ ).12 At first
glance, it seems likely that all computable functions can be XBcs-learned, as, by Proposition 4.1 above, for any given func-
tion g , there are infinitely many functions h XBc-learning g . We were, then, surprised that not all computable functions
can be XBcs-learned, as seen below in Theorem 4.3. Intuitively, this theorem means that there is a g ∈ R such that, for all
h ∈ P , if h XBc-learns g , then h has to give away enough information about itself so that g will be able to XBc-learn h.
Even more surprisingly, such a g can be chosen to be linear time computable! On the other hand, Theorem 4.3 also has a
positive interpretation: it is possible to find a function g that will XBc-learn every function h that XBc-learns g – in other
words, there are extremely cooperative functions that will cooperate with any function XBc-learning them. We denote the set
of extremely cooperative functions with EC := {h ∈R | ∀g ∈R: g XBc-learns h ⇒ h XBc-learns g}.13

Theorem 4.3 (Secretiveness Fails).

∃g ∈ LinF: {g} /∈ XBcs.

Proof. By 1-1, linear time ORT there is 1-1 g ∈ LinF such that

∀τ , x: ϕg(τ )(x) = last
(

g−1(ϕlast(τ )(x + 1)
))

.14 (12)

Let h ∈P be such that g ∈ XBc(h). Let p,q ∈R be such that X(h, g) = (p,q). Since (p,q) ∈ Bc, there is n0 such that

∀n � n0: ϕp(n) = q. (13)

Claim 1. ∀∞n: ϕq(n) = p.

Proof. We have

∀n � n0 + 1, x: ϕp(n−1)(x + 1) =
(13)

q(x + 1) =
choice of q

g
(

p[x + 1]). (14)

Hence, for all n � n0 + 1 and all x,

ϕq(n)(x) =
choice of q

ϕg(p[n])(x) =
(12)

last
(

g−1
(
ϕp(n−1)(x + 1)

))
=

(14)
last

(
g−1

(
g
(

p[x + 1]))) = last
(

p[x + 1]) = p(x). � (15)

Hence, by the claim, g ∈ XBcc(h); therefore, {g} /∈ XBcs. �
12 For all g ∈ R, and p,q ∈ R such that X(λσ len(σ ), g) = (p,q), we have that p is the identity on N; hence, λσ len(σ ) does not XBc-learn g .
13 It is easy to see that EC = {h ∈ R | XBcs−1(h) = ∅}.
14 Note that ϕg(τ )(x) might be undefined for various reasons, for example last is not total. Furthermore, note that accessing g−1 is a valid use of ORT, in

the sense that g−1(y) is the first x found such that g(x) = y; x will be unique, as g is 1-1.
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Ref. [22] examined uncooperativeness of coordinators. In particular, two sets of total computable functions are con-
structed such that any learner learning all of the functions from one of the sets cannot coordinate with any function from
the other set. Furthermore, Ref. [9] extended this result showing that for all k � 2, one can find k such sets of uncooperative
learners. Below, we give an analog of this result for cooperation in the XBcc-sense, where we give an infinite family of
uncooperative sets, so that any learner that can XBc-learn any of the functions in one of the sets cannot XBc-learn any of
the functions of any other set.

Theorem 4.4 (Incompatible Mutual Cooperation Camps). There is a 1-1 e ∈ R such that for all m,n, ϕe(m,n) total and, defining
Sn = {ϕe(m,n) ∈ R | m ∈ N}, for each n all members of Sn XBcc-learn each other, while each function h ∈ P XBcc-learns functions
from at most one of the sets in {Sn | n ∈ N}.

Proof. Let f ∈P be such that ∀e, e′, x: f (e, e′, x) = X2(ϕe,ϕe′)(x). Obviously, for all e, e′ such that ϕe,ϕe′ ∈R and for all x,
f (e, e′, x)↓. By the Generalized Delayed Recursion Theorem [6, Theorem 23] we find a 1-1 e ∈ R such that, for all m,n,
ϕe(m,n) total and

∀τ , x: ϕϕe(m,n)(τ )(x) =

⎧⎪⎨⎪⎩
n, if τ = ∅;
ϕe(m,n)(x), else if len(τ ) = 1 and ϕτ(0)(0)↓ = n;
f (e(m,n), τ (1), x), else if ϕτ(0)(0)↓ = n;
↑, otherwise.

(16)

Intuitively, each ϕe(m,n) declares it’s “group” on input ∅ to be n. If the input suggests that ϕe(m,n) is being fed another
function from its “group” then it delivers helpful output (a program number for itself) as the next output, followed by
trying to model it’s co-learner, which will be successful, if the co-learner has also output a program number for itself as
second output. If the input does not suggest that the co-learner is from the same team, ϕe(m,n) will act uncooperatively.

For each n ∈N, let Sn = {ϕe(m,n) ∈R | m ∈N}.
Let h ∈ P . Our first claim implies that h can dynamically model functions from at most one of the above ce sets of

functions.

Claim 1. Let m,n be such that n �= ϕh(∅)(0). Then h does not XBcc-learn g := ϕe(m,n) .

Proof. Suppose h does XBc-learn g . Then there are p,q ∈R such that X(h, g) = (p,q); hence X(g,h) = (q, p). We show that
g does not XBc-learn h. For all τ ⊂ p with len(τ ) � 1 we have ϕτ(0)(0) = ϕp(0) =

def X
ϕh(∅)(0) �= n; thus, by (16) ∀x: ϕg(τ )(x) =

ϕϕe(m,n)(τ )(x)↑. Hence, ∀∞t: ϕq(t) =
def X

ϕg(p[t]) �= p. �
Claim 2 just below implies that, for each n, all functions in Sn XBcc-learn each other.

Claim 2. Let n ∈N and h, g ∈ Sn. Then g ∈ XBc(h).

Proof. Let p,q be such that X(h, g) = (p,q). We have that

ϕp(0)(0) =
def X

ϕh(∅)(0) =
(16)

n; (17)

ϕq(0)(0) =
def X

ϕg(∅)(0) =
(16)

n. (18)

Hence,

ϕq(1) =
def X

ϕg(p[1]) =
(16) & (17)

g. (19)

Let m be such that h = ϕe(m,n) . Now we have, for all t > 1 and all x,

ϕp(t)(x) =
def X

ϕg(q[t])(x) =
(16) & (18)

f
(
e(m,n),q(1), x

)
=

def f
X2(ϕe(m,n),ϕq(1))(x) =

(19)
X2(h, g)(x) =

def X2

q(x). � (20)

As a contrast to the extremely cooperative functions as defined above, we say that h ∈ R is extremely uncooperative iff
XBcc(h) = ∅ (i.e., h cooperates with no function). The set of all extremely uncooperative functions is denoted by EU. Trivially,
EU �= ∅, as EU contains each function h that doesn’t XBc-learn any function. Interestingly, EU is rather big in the sense that
the closure under LinF composition of EU is equal to R.15 However, many of the functions h ∈ EU will not XBc-model

15 Let f ∈ R, let p be such that ϕp = λx ↑. Then f ′ = λx pad(p, f (x)) ∈ EU. Define a = λx unpad2(x) ∈ LinF. Then a ◦ f ′ = f .
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anything. We define a (computable) operator below, turning a given learner h into an extremely uncooperative learner h′ ,
which intuitively doesn’t lose too much of the learning power of h.

Furthermore, Theorem 4.7 below states the existence of h ∈ EU with XBc(h) infinite.

Definition 4.5. For all h ∈R there is, by linear time ORT, h′ ∈ LinF such that

∀σ , x: ϕh′(σ )(x) =
{

ϕh(σ )(x), if σ = ∅ ∨ ∃s � len(σ ), t: ϕϕh(σ )(s)(t)↓ �= h′(ϕh(σ )[t])↓;
↑, otherwise.

(21)

Intuitively, h′ makes conjectures mostly behaviorally equivalent to those of h, but modified so that the conjectures are
definitely wrong as soon as the input seems to learn the outputs of h′ .

Define Ψ = λh ∈R h′ . N.B. For each h ∈R, Ψ (h) ∈ LinF.

Lemma 4.6. Let h ∈R. Then XBcc(Ψ (h)) = ∅.

Proof. Let h′ = Ψ (h). Suppose, by way of contradiction, there is g ∈ XBcc(h′). Let p,q ∈ R be such that X(h′, g) = (p,q).
Now we have

∀∞n: ϕp(n) = q; (22)

∀∞n: ϕq(n) = p. (23)

Thus,

∀∞n: ϕh′(q[n]) =
def X

ϕp(n) =
(22)

q ∈ R. (24)

For each n ∈N, ϕh′(q[n]) ∈R implies that in (21) for σ = q[n] we have that the first case holds; that is,

∀∞n ∃s > n, t: ϕϕh(q[n])(s)(t)↓ �= h′(ϕh(q[n])[t]
)↓. (25)

Thus,

∀∞n: ϕh(q[n]) =
(21) & (25)

ϕh′(q[n]) =
(24)

q. (26)

We have ∀∞n ∀s > n, t:

ϕϕh(q[n])(s)(t) =
(26)

ϕq(s)(t) =
(23)

p(t) =
def X

h′(q[t]) =
(24) & (26)

h′(ϕh(q[n])[t]
)
, (27)

a contradiction to (25). �
Theorem 4.7 (Extremely Uncooperative Infinitely Successful Learners). There are functions h ∈R such that XBcs(Ψ (h)) is infinite, but
XBcc(Ψ (h)) = ∅ (i.e., no function XBc-learned by Ψ (h) can XBc-learn Ψ (h)).

Proof. By s-m-n there is h ∈R such that

∀σ , x: ϕh(σ )(x) =
{

0, if σ = ∅;
σ(0), otherwise.

(28)

We fix an infinite set S such that for all e ∈ S , ϕe(0) = Ψ (h)(∅) + 1. We show that Ψ (h) XBcs-learns {λx e | e ∈ S}; to this
end, let e ∈ S and let g = λx e. Let (p,q) = X(h, g). We have that g does not XBc-learn Ψ (h), as, for all n, q(n) = e and

ϕe(0) �= Ψ (h)(∅) = p(0).

We have, for all n > 0, ϕh(q[n]) = λx e; thus, we get that h XBc-learns g; it remains to show that Ψ (h) XBc-learns g . This
follows from the following inequality, which holds for all n > 0.

ϕϕh(q[n])(0)(0) = ϕe(0) �= Ψ (h)(∅) = Ψ (h)
(
ϕh(q[n])[0]). �

The next theorem intuitively implies that requiring a learner to be extremely uncooperative will decrease its learning
power with respect to plain uncooperative learning.

Corollary 4.8. EUXBcs ⊂RXBcs.16

16 Less surprisingly, one can also show ECXBcc ⊂ RXBcc.
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Proof. 17 N.B. This proof uses notions and concepts defined and explained in Section 5. Bcs is non-trivial (see Definition 5.4
in Section 5). By Proposition 5.8, it suffices to show that there is a XBcs-maximal learner in R \ EU. Let h ∈R be such that
for all σ with len(σ ) > 0 we have h(σ ) = unpad2(last(σ )). Let r ∈R be such that ∀e, p: ϕr(e,p) = X1(ϕe,ϕp).

Claim 1. h /∈ EU.

Proof. Let p ∈ N be such that ϕp = h. By KRT there is e ∈ N such that

∀x: ϕe(x) = pad
(
r(p, e), r(e, p)

)
. (29)

We now have, for all n > 0, X1(h,ϕe)(n) = r(e, p), which is a program for X1(ϕe,ϕp) = X2(h,ϕe) as desired; furthermore,
for all n, X2(h,ϕe)(n) = pad(r(p, e), r(e, p)), which is a program for X1(ϕp,ϕe) = X1(h,ϕe). �

By Theorem 5.9, it suffices to show [XBcs(h)]h = Seq to apply Proposition 5.8.

Claim 2. [XBcs(h)]h = Seq.

Proof. Let σ ∈ Seq, let p be such that ϕp = λx ↑. We now construct a function which will first give outputs according to σ
and then make sure that it does not XBc-learn h while being XBc-learned by h. By KRT there is e ∈ N such that

∀τ : ϕe(τ ) =
{

σ(len(τ )), if len(τ ) < len(σ );
pad(p, r(e, p)), otherwise.

(30)

We have that ϕe does not XBc-learn h, as all outputs after len(σ ) are for the everywhere undefined function. On the other
hand, h does XBc-learn ϕe as follows. Let (p,q) = X(h,ϕe). We have, for all n > len(σ ),

h
(
q[n]) = unpad2

(
last

(
q[n])) = unpad2

(
pad

(
p, r(e, p)

)) = r(e, p).

By the definition of r, we have that r(e, p) is a program for q, as desired. �
5. General crossfeeding

Most lemmas, propositions and theorems of this section carry over with slightly modified hypotheses to the case of Li
(from Section 3.1) in the place of X.

Just below is a proposition with corollary regarding which sequence acceptance criteria allow dynamical modeling all
of R.

Proposition 5.1. Let δ be a sequence acceptance criterion, let C ⊆P . Then we have

R ∈ CXδ ⇔ R ∈ CGδ.

Proof. “⇒”: Let h witness R ∈ CXδ. Let g ∈ R. Let p ∈ P be such that G(h, g) = (p, g). Now we have G(h, g) =
(6)

X(h, λσ g(len(σ ))) ∈ δ.
“⇐”: Let h witness R ∈ CGδ. Let g ∈R. Let p,q ∈P be such that X(h, g) = (p,q). Now we have X(h, g) =

(4)
G(h,q) ∈ δ. �

We get the following corollary by a theorem of Harrington, cited in [11].

Corollary 5.2.

R ∈ XBc∗.

Gold [17] introduced learning by enumeration. Analogous to, but harder to prove than the case for G-style learning, we
have, by the next theorem that any computably enumerable set of (total) computable functions is XEx-modelable.

Theorem 5.3 (Dynamic Modeling by Enumeration). Let r ∈R be an enumeration of program numbers of (total) computable functions.
We have

{ϕr(n) | n ∈N} ∈ XEx.18

17 One could try to use the Learner Correspondence Theorem (Theorem 5.10) to prove the above Corollary 4.8. However, EU is not closed under LinF
composition, and the closure of EU under LinF composition is equal to R; see the paragraph just before Definition 4.5.
18 In fact, Ex could be replaced by any δ from a wide set of sequence acceptance criteria.
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Proof. For a number-theoretic (partial) predicate P and n ∈N, let

μx � n P (x) =
{ x, if ∀y < x: P (y)↓ �= true and P (x)↓ = true;

n + 1, if ∀y < n + 1: P (y)↓ �= true;
↑, otherwise.

(31)

By ORT, there are function h, u ∈P and s ∈R such that

∀σ : u(σ ) = μk � len(σ ) σ ⊆ X2(h,ϕr(k)); (32)

∀m: ϕs(m) = X2(h,ϕr(m)); (33)

∀σ : h(σ ) = s
(
u(σ )

)
. (34)

Intuitively, u finds the least index k such that the observed data is consistent with the “possible world” r(k); and s computes
a corresponding conjecture.

It is easy to see by induction that h, u ∈ R. Let n ∈ N and g = ϕr(n) . We show that h XEx-learns g . Let p,q ∈ R be such
that X(h, g) = (p,q). Obviously, for all j, u(q[ j])↓� n. Also, u is monotone in the sense that ∀i, j: i � j ⇒ u(q[i])� u(q[ j]).
Thus, there is m such that

∀∞ j: u
(
q[ j]) = m. (35)

Hence, p converges. By (32) and (35),

∀∞ j: q[ j] ⊆ X2(h,ϕr(m)); thus, (36)

q = X2(h,ϕr(m)). (37)

The following completes the proof.

∀∞ j: ϕp( j) =
def p

ϕh(q[ j]) =
(34) & (35)

ϕs(m) =
(33)

X2(h,ϕr(m)) =
(37)

q. � (38)

The enumeration technique used in our proof of the theorem just above can be modified with techniques from [26] so
as to obtain a linear time computable learner for any given computably enumerable set of functions. However, in general
it is not the case that any XEx-learnable set is also XEx-learnable by a linear time learner. This will be stated formally in
Corollary 5.11 below, for which we now give definitions to set it up.

Definition 5.4. Let δ be a sequence acceptance criterion.

• δ is called non-trivial iff ∀σ : σ �R /∈ Gδ.
• Let D ⊆R. δ allows for linear time path finding for D iff there is r ∈ LinF such that, for all σ ,τ of equal length and q ∈D

and e with σ ⊆ q = ϕe , we have (τ � λx r(x, e, σ ),q) ∈ δ.19

• Let h ∈R,S ⊆R. Define [S]h := {σ | ∃g ∈ S: σ ⊆ X2(h, g)}.

We illustrate the first two definitions by giving the following examples. The first deals with trivial acceptance criteria,
the second with path finding.

Example 5.5. We have the following.

• Bc∗ is a trivial sequence acceptance criterion, while Ex,Bc,Bcs,Bcc and M are non-trivial.
• Ex,Bc and Bc∗ allow for linear time path finding for R as witnessed by r = λx, e, σ e. M allows for linear time path

finding for total finite variants of constant functions.20

Note that non-triviality is inherited by subsets, and allowing for linear time path finding by supersets.

Lemma 5.6. Let δ, δ′ be such that δ′ is non-trivial. Let h,h′ ∈ P and S = Xδ(h). Suppose there is σ such that h(σ ) �= h′(σ ). Then, if
S ⊆ Xδ′(h′), σ /∈ [S]h.

19 Intuitively, linear time path finding means the following. Suppose τ is a sequence of conjectures and σ a corresponding sequence of replies by the
target. If the learner knows a program for the target, then it can identify it in the sense of δ (by outputting hypotheses according to λx r(x, e, τ )).
20 M allows for not necessarily linear time path finding for R.
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Proof. Suppose S ⊆ Xδ′(h′). By way of contradiction, suppose there is σ ⊆-minimal such that

h(σ ) �= h′(σ ) (39)

and

∃g ∈ S: σ ⊆ X2(h, g). (40)

Fix one such g . Let c = len(σ ).
We show that h′ witnesses σ �R ∈ Gδ′ . For all f ∈R, let f ′ ∈R be such that

∀τ : f ′(τ ) =
{ g(τ ), if τ ⊆ X1(h, g);

0, else, if len(τ ) � c;
f (len(τ ) − (c + 1)), otherwise.

(41)

For all f ∈R we have f ′ ∈ S , as f ′ mimics g on inputs consistent with h; thus, h cannot distinguish between g and f ′ and
will learn both equally. Therefore,

∀ f ∈ R: X
(
h′, f ′) ∈ δ′. (42)

We have, for some r ∈R,

∀ f ∈ R: X
(
h′, f ′) =

(39)
(r,σ � f ) =

(4)
G
(
h′,σ � f

)
. (43)

From (42) and (43), we get

∀ f ∈ R: h Gδ′-learns σ � f . (44)

Therefore, h′ witnesses σ �R ∈ Gδ′ , a contradiction. �
Below we develop the concept of maximal learners.

Definition 5.7. Let δ be a sequence acceptance criterion and h ∈ P . h is called Xδ-maximal iff ∀h′ ∈ P: Xδ(h) ⊆ Xδ(h′) ⇒
h = h′ . Let MXδ be the set of all Xδ-maximal learners.

It is a consequence of the results in [8], that there are no maximal learners in the sense Gδ, for δ ∈ {Exa,Bcn | a ∈
N∪ {∗},n ∈ N} (the results given are even stronger, stating that every learner can be improved by an infinite set of targets).
On the other hand, there are maximal GBc∗ and XM learners ([8] and [22], respectively). The proof of Corollary 5.10 below
employs the existence of Xδ-maximal learner, for various δ including M. The following proposition implicitly shows how to
use maximal learners for separations.

Proposition 5.8. Let δ be non-trivial. Let C,C′ ⊆P .

CXδ ⊆ C′Xδ ⇒ MXδ ∩ C ⊆ C′.

The following theorem characterizes maximal learners. In particular, the equivalence of (i) and (ii) just below is useful to
show a given learner to be maximal.

Theorem 5.9. Let δ be non-trivial such that ∀τ ,σ ∃(p,q) ∈ δ: τ ⊆ p ∧ σ ⊆ q. Let h ∈P . The following are equivalent.

(i) h is Xδ-maximal.
(ii) [Xδ(h)]h = Seq.

(iii) ∀δ′ non-trivial, ∀h′ ∈P: Xδ(h) � Xδ′(h′) ⇒ h = h′ .

Proof. “(i) ⇒ (ii)”: Straightforward by showing the contrapositive.
“(ii) ⇒ (iii)”: Use Lemma 5.6.
“(iii) ⇒ (i)”: Trivial. �
Note that Theorem 5.9 applies to δ = M.
The two main results in this section are the Learner Correspondence Theorem (Theorem 5.10 below) and the Sequence

Acceptance Correspondence Theorem (Theorem 5.12 below). Together, they characterize the relative learning power of many
dynamic modeling criteria such as LinFXEx and XBc, and they even apply to coordination (XM). As a result, a comparison
of the learning power of two learning criteria will usually be an immediate consequence.

Note that Theorems 5.10 and 5.12 do not inform about trade-offs between more restricted learner admissibilities and
less restricted sequence acceptance criteria, or vice versa.
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Theorem 5.10 (Learner Correspondence). Let δ be non-trivial such that δ allows for linear time path finding for total finite variants of
constant functions. Let C,C′ ⊆R be closed under generalized composition with LinF and LinF ⊆ C,C′ . Then

CXδ ⊆ C′Xδ ⇔ C ⊆ C′.

Proof. “⇐”: Immediate.
“⇒”: Suppose, by way of contradiction, otherwise, as witnessed by f ∈ C \ C′ . We set up to use Theorem 5.9. By linear

time s-m-n, there is e ∈ LinF such that, for all σ , ϕe(σ ) = σ � λx 0. Define, for all σ , σ̂ as the largest initial segment of σ
that does not end in 0. Let u ∈ LinF such that ∀σ : u(σ ) = max(2, len(σ̂ )). Let r ∈ LinF witness that δ allows for linear time
path finding for total finite variants of constant functions. Define h ∈R by

∀σ : h(σ ) =
{0, if σ = ∅;

f (σ (0)), else if len(σ ) = 1;
r(len(σ ) − u(σ ), e(σ̂ ),σ [u(σ )]), otherwise.

(45)

It is straightforward that h ∈ C , as f ∈ C and C is closed under generalized composition with LinF and LinF ⊆ C . Also, h /∈ C′ ,
as otherwise f = h ◦ λn n ∈ C′ . Using Proposition 5.8 and Theorem 5.9, it suffices to show [Xδ(h)]h = Seq in order to derive
a contradiction. Let σ be any sequence. Define g = λρ (σ � λx 0)(len(ρ)). We have X2(h, g) =

(6)
σ � λx 0. From (45) and the

choice of r it is now straightforward to verify that h Xδ-learns g: Let p,q ∈R be such that X(h, g) = (p,q). Then

q = σ � λx 0. (46)

For all n � u(σ ),

q̂[n] = σ̂ ; (47)

hence, as

∀τ , τ ′: τ̂ = τ̂ ′ ⇒ u(τ ) = u
(
τ ′), (48)

we have

p(n) = h
(
q[n]) = r

(
n − u(σ ), e(σ̂ ),σ

[
u(σ )

])
. (49)

Obviously, ϕe(σ̂ ) = q. Thus, σ ∈ [Xδ(h)]h . �
Suppose for discussion Q is a polynomial time bound. Pitt [23] notes that polynomial time (update) Ex-learning allows

unfair postponement tricks, i.e., a learner h can put off outputting significant conjectures based on data σ until it has seen
a much larger sequence of data τ so that Q (|τ |) is enough time for h to think about σ as long as it needs. In fact, by an
extension of Pitt’s postponement tricks, LinFGEx = GEx. A direct application of Theorem 5.10, e.g., Corollary 5.11, implies
that dynamic modeling does not allow for those kinds of postponement tricks in general.21 Let α, as from [15, §21.4], be a
very slow growing, unbounded, linear time computable function � an inverse of Ackermann’s function; let LinF+ε := {ϕe ∈
R | ∃k∀n: Φe(n) � k · |n| · log(|n|) · α(|n|) + k}.22 The classes LinF and LinF+ε have long been known to separate [18].

The following corollary gives a sample of the universal power of Theorem 5.10.

Corollary 5.11 (Learner Complexity Matters). Let δ ∈ {Ex,Bc,M}.

1. LinFXδ ⊂ LinF+εXδ.
2. PFXδ ⊂ EXPFXδ.

Theorem 5.10 can be generalized so as to show RXδ ⊆PXδ for δ as in Corollary 5.11.

Theorem 5.12 (Sequence Acceptance Correspondence). Let δ, δ′ be non-trivial such that δ, δ′ ⊆R2 . We have

Xδ ⊆ Xδ′ ⇔ δ ⊆ δ′.

Proof. “⇐”: Immediate.
“⇒”: Suppose, by way of contradiction, otherwise, as witnessed by (p,q) ∈ δ \ δ′ .

21 However, as we saw from Theorem 5.3 above, such extended postponement tricks do, nonetheless, apply to the special case of the XEx-learning of any
computably enumerable set of computable functions.

However, we believe we can show that Theorem 5.3 doesn’t hold for LinFXPcpEx in place of LinFXEx; hence, postdictive completeness prevents some
postponement tricks.
22 Trivially, LinF+ε is contained in the set of quadratic time computable functions.
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Let h ∈ R be such that ∀σ : h(σ ) = p(len(σ )). Let S = Xδ(h). Obviously, S ∈ Xδ. Let g ∈ R be such that ∀σ : g(σ ) =
q(len(σ )). Then X(h, g) = (p,q), and, therefore, g ∈ S .

We have S ∈ Xδ′ , as witnessed by, say, h′ . As h′ witnesses S ∈ Xδ′ and δ′ ⊆R2, we have, for all c, h′(q[c])↓.
Case 1: ∀n: h′(q[n])↓ = p(n).
As (p,q) /∈ δ′ , h′ does not Xδ′-learn g ∈ S , a contradiction.
Case 2: There is c such that h′(q[c])↓ �= p(c).
Let σ = q[c]. We have h(σ ) �= h′(σ ) and σ ∈ [S]h as witnessed by g ∈ S . We use the contrapositive of the conclusion of

Lemma 5.6 to infer that S � Xδ′(h′), a contradiction. �
The following corollary gives a sample of the universal power of Theorem 5.12.

Corollary 5.13 (Hierarchies and Separations).

1. For all a,b ∈N∪ {∗}: XBca � XExb.
2. For all a,b ∈N∪ {∗}: XExa ⊆ XBcb ⇔ a � b.
3. For all n ∈N: XM � XEx∗,XBcn.
4. For all n ∈N: XEx∗,XBcn � XM.

Proof. By Remark 3.4 and Theorem 5.12. �
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