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a b s t r a c t

The all-pairs shortest path problem is the first non-artificial problem for which it was
shown that adding crossover can significantly speed up a mutation-only evolutionary
algorithm. Recently, the analysis of this algorithm was refined and it was shown to have
an expected optimization time (w. r. t. the number of fitness evaluations) of Θ(n3.25

(log n)0.25).
In contrast to this simple algorithm, evolutionary algorithms used in practice usually

employ refined recombination strategies in order to avoid the creation of infeasible
offspring. We study extensions of the basic algorithm by two such concepts which
are central in recombination, namely repair mechanisms and parent selection. We show
that repairing infeasible offspring leads to an improved expected optimization time of
O(n3.2(log n)0.2). As a second part of our study we prove that choosing parents that
guarantee feasible offspring results in an optimization time of O(n3 log n).

Both results show that already simple adjustments of the recombination operator can
asymptotically improve the runtime of evolutionary algorithms.

© 2013 Published by Elsevier B.V.

1. Introduction

Evolutionary algorithms [14] have been shown to be robust problem solvers for a wide range of combinatorial
optimization problems that cannot be handled by traditional algorithmic approaches [34]. They are a premier choice for
complex optimization problems that are highly non-linear, dynamic, and/or stochastic. Problems that can be observed
in the real-world have most of these characteristics. Thus, it is desirable to have efficient algorithms that can deal with
such problems that occur in such highly complex applications. In contrast to many algorithmic approaches studied in
the traditional theoretical computer science literature, evolutionary algorithms have the ability to solve such complex
problems [4,38,17,39,40]. Another main advantage of evolutionary algorithms is that they are easy to parallelize [36] and
viewing them in the light of a tremendous number of increasing processors on multi-core computers, one can expect that
the number of applications to interesting real-world problems will get a further boost during the next decade.

Viewing evolutionary algorithms from the classical theoretical computer science perspective, their main disadvantages
is that their theoretical understanding lags far behind their practical success. However, in recent years, a lot of progress has
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been made in understanding evolutionary algorithms from a rigorous viewpoint (see the books [2,29] for the current state
of the art). With this paper we contribute to this line of research.

One of the important issues when designing successful evolutionary algorithms is to choose a suitable representation
of possible solutions together with good variation operators. For problems from combinatorial optimization, different
representations and variation operators have been discussed for a wide range of combinatorial optimization problems (see
e. g. [30,20,31]). Often, variation operators (such as crossover or mutation) are designed to produce feasible offspring. For
mutation this is easy to achieve, as a mutation operator usually only applies a small number of local changes to a given
feasible solution.

However, the design of crossover operators, producing from two feasible solutions a new feasible one, is usually more
complicated (see e. g. [24] for different crossover operators for the traveling salesman problem). Whenever a crossover
operator produces an infeasible solution, one option is to discard it. However, this typically does not lead to efficient
methods, as time is wasted on producing infeasible solutions and evaluating them. To deal with this situation, one can
use repair mechanisms, which produce from an infeasible solution a feasible one based on properties of both parents [41].
Another way of dealing with the problem of infeasible solutions is to use specific selection methods and/or more problem
specific crossover operators that are likely to produce promising solutions [5,25].

The goal of this paper is to point out the effect of repair mechanisms and parent selection for crossover on the runtime
of evolutionary algorithms in combinatorial optimization. Analyzing the runtime behavior of evolutionary algorithms has
become a major part in their theoretical analysis. Based on results for different kinds of pseudo-Boolean functions [12,18],
results have been obtained for different kinds of combinatorial optimization problems [29]. Starting with some results for
classical combinatorial optimization problems that are solvable in polynomial time such as the computation of minimum
spanning trees [28] or maximum matchings [16], different results have been obtained for NP-hard problems [27,15,22,42].
Analyses discussing the use of crossover operators on problems with a bit string representation include [19,21]. A general
recent study on the structure of crossover-based search is given in [26].

One cannot expect to beat the best known algorithms if the problem under consideration can be solved in polynomial
time. With such studies we want to gain new insights on how evolutionary algorithms behave on natural optimization
problems and identify the important modules that make such algorithms successful.

Here, we carry out theoretical studies on evolutionary algorithms for the computation of shortest paths. Computing
shortest paths is one of the basic problems in computer science and has already been considered in various theoretical
studies of evolutionary algorithms. There are different results for the single-source shortest path (SSSP) problem [3,32,8].

We investigate the all-pairs shortest path (APSP) problem which is a generalization of the SSSP problem. We are given a
strongly connected1 directed graph G = (V , E) with |V | = n and |E| = m and a weight function w : E → R that assigns
weights to the edges. (We distinguish between the weight of a path given by the sum of the weight of all its edges, and its
length, defined as the number of edges in the path.) The task is to compute from each vertex u ∈ V a weight-shortest path to
every other vertex v ∈ V \ {u}. Throughout this paper, we assume that G does not contain cycles of negative weight, that is,
the weight function on the edges is conservative. The APSP problem can be solved by the Floyd–Warshall algorithm; using
appropriate data structures, APSP can be computed in time O(nm + n2 log n) (see, e. g. [23]). Our goal is not to show that
evolutionary algorithms perform better than the best problem specific algorithms for this problem. Our aim is to study how
general purpose algorithms can deal with the APSP problem. In particular, we want to examine the usefulness of crossover
operators in evolutionary computation. By this, we want to further increase the theoretical understanding of crossover and
point out how slightly different crossover operators change the runtime behavior of evolutionary algorithms for the APSP
problem.

We take the APSP problem as a prominent example to show in a rigorousway howdifferent crossover operators influence
the runtime of evolutionary algorithms (measured as the number of fitness evaluations). Recently, it has been shown that
the use of crossover operators provably leads to better evolutionary algorithms than evolutionary algorithms that are just
based on mutation [9,11]: The runtime for the mutation-and-crossover approach is Θ(n3.25(log n)0.25), which is better than
the expected optimization time ofΘ(n4) of the algorithm just usingmutation. In addition, [35] studied the runtime behavior
of ant colony optimization for this problem and proved an upper bound of O(n3 log n).

We will see that the evolutionary approach examined in this paper solves the APSP problem in expected optimization
timeO(n3 log n), which equals the best knownupper bound for general purpose algorithms based on ant colony optimization
mentioned just above.

In Section 2we introduce the algorithm that is subject to our analyses.We obtain a total of three variants of this algorithm
by considering different crossover operators: the crossover from [9,11] is described in Section 2; crossover with repair is
described in Section 3; finally, we describe crossover with parent selection in Section 4.

In the remaining sections we prove runtime bounds for our two new variants of crossover for the APSP problem. In
particular, we show in Section 5.2 that our repair mechanisms speed up the optimization process to O(n3.2(log n)0.2).
Furthermore, we show 5.1 that our parent selection method leads to an optimization time of O(n3 log n). In Section 6 we
discuss the general structure of the search space that is used in deriving our runtime bounds and apply our findings to the
all-pairs bottleneck paths problem. Finally, we conclude in Section 7.

1 Strongly connected means that there exists a directed path between any pair of vertices.
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1 P = {Pu,v = (u, v) | (u, v) ∈ E};
2 while true do
3 Choose r ∈ [0, 1] uniformly at random;
4 if r ≤ pc then
5 choose two individuals Px,y and Px′,y′ from P u. a. r. ;
6 perform crossover on Px,y and Px′,y′ to obtain an individual P ′

s,t ;
7 else
8 choose one individual Px,y uniformly at random from P and mutate Px,y to obtain an individual P ′

s,t ;
9 if P ′

s,t is a path from s to t then
10 if there is no individual Ps,t ∈ P then P = P ∪ {P ′

s,t};
11 else if w(P ′

s,t) ≤ w(Ps,t) then P = (P ∪ {P ′
s,t}) \ {Ps,t};

Algorithm 1: Steady State GAAPSP.

This paper is an extension of the conference publication [10]. Here, we present full proofs and additionally discuss our
structural insights in the new discussion section (Section 6).

2. Algorithms

For the APSP problem we examine the population-based approach introduced in [7], where each individual in the
population is a path. Our goal is to evolve an initial population (a set of paths) into a population which contains, for each
pair of vertices (u, v) with u ≠ v, a shortest path from u to v (w. r. t. to the sum of the weights of the edges). Consequently,
we measure the fitness of an individual as the weight of the edges that belong to the path.

Our algorithm, called Steady State GAAPSP (see Algorithm 1), starts with a population P := {Pu,v = (u, v)|(u, v) ∈ E}

of size |E|, containing all paths corresponding to the edges of the given graph G. The variation operators produce, in each
iteration, one single offspring.

The Steady State GAAPSP decides in each iteration whether the offspring is produced by crossover or mutation dependent
on a parameter pc of the algorithm. With probability pc a crossover operator is applied to two randomly chosen individuals
of P or otherwise (with probability 1 − pc) mutation is used to produce the offspring. To make sure that both operators,
mutation and crossover, are used we require pc ∉ {0, 1}. For all investigations in this paper, we assume that pc is chosen as
an arbitrary constant, i. e. pc ∈ ]0, 1[.

The mutation operator takes an individual Px,y from the population and applies sequentially S + 1 local operations.
Here, S is randomly chosen according to the Poisson distribution with parameter λ = 1. In a local operation, the current
path is either lengthened or shortened by a single edge. Assume that the current individual represents a path Px,y = (x =

v0, v1, . . . vℓ−1, y = vℓ) from x to y consisting of ℓ edges, and denote by E−(v) and E+(v) the set of incoming and outgoing
edges of a vertex v in G, respectively. Then an edge e = (u, v) ∈ E−(x) ∪ E+(y) ∪ {(x, v1), (vℓ−1, y)} is chosen uniformly at
random. If e ∈ {(x, v1), (vℓ−1, y)}, the edge is removed. This means that either the first edge or the last edge in the path is
removed leading to an individual P ′

v1,y or P
′
x,vℓ−1

consisting of ℓ − 1 edges. If e ∈ (E−(x) ∪ E+(y)) \ {(x, v1), (vℓ−1, y)}, the
edge is added and the path is lengthened. Here, a new individual P ′

u,y or P
′
x,v is produced that contains ℓ+ 1 edges. Note that

a local operation applied to a valid path always leads to a new valid solution which implies that the mutation operator only
constructs solutions which are paths.

Typically, crossover takes two individuals and combines them into a valid path, i. e. crossover concatenates the two paths,
if the end vertex of Px,y and the start vertex of Px′,y′ match. Choosing both individuals uniformly at random from P , as it was
done in [7,11], often does not lead to a recombined offspring that represents a path in the given graph. In the next section,
we discuss how repair mechanisms can lead to more efficient evolutionary algorithms. Later on, in Section 4, we discuss
how selection methods that select promising pairs of individuals for crossover let us prove even better upper bounds on the
expected optimization time.

The selection operator only accepts individuals that are paths in the graph. In addition, it ensures diversity with respect
to the different pairs of vertices. For this reason, each individual Pu,v is indexed by the start vertex u and the end vertex v.
In the selection step an offspring is only compared to an individual of the current population that has the same start and
end vertex. It is ensured that, for each pair of vertices (u, v) with u ≠ v, at most one individual Pu,v is contained in the
population. This implies that the population size of our algorithms is always at most n(n − 1).

For our theoretical investigations, we measure the optimization time of the algorithm by the number of fitness
evaluations until an optimal population is reached for the first time. A population is optimal if it contains a shortest path
for each pair of vertices. Finally, the term w.h. p. (with high probability) denotes a result that holds with probability at least
1 − O


n−c


for some c > 0 independent of n.

3. Crossover with repair

In this section, we present a simple way to increase the success probability of the crossover operator used in previous
work. This leads, as we shall prove rigorously in Section 5.2, to an optimization time of O


n3.2(log n)0.2


.
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x

(a) Repair crossover for the case x′
= y.

x y

(b) Repair crossover for the case y ≠ x′ .

Fig. 1. Effect of the repair crossover applied to two paths Px,y and Px′,y′ for the two possible cases of Algorithm 2.

The main reason why previous crossover operators for the APSP problem have a relatively small success probability is
the fact that very often the two parent individuals simply do not fit together. That is, the end-point of the first is not equal
to the starting point of the second path. Since this is a rather obvious way of failing, one might think of simple solutions.

One natural way is the following. If the end-point of the first and the starting point of the second path are different, we
try to bridge this gap by the (if existent, unique) path from one point to the other which is contained in our population. If the
population does not contain such a bridging path, then the crossover operator still fails. This is what we shall call crossover
with repair.

Let the crossover operator with repair be defined as follows (see Fig. 1 for a depiction of the application of the crossover
operator).

Input: Px,y = (x, . . . , y) and Px′,y′ = (x′, . . . , y′)
1 if y = x′ then
2 P ′

s,t = (s = x, . . . , y = x′, . . . , t = y′) merging Px,y and Px′,y′ at y ;
3 else
4 if there is a path Py,x′ from y to x′ in P then
5 P ′

s,t = (s = x, . . . , y, . . . , x′, . . . , t = y′) merging Px,y, Py,x′ and Px′,y′ at their common endpoints;
6 else
7 the operator fails and returns a dummy individual with fitness worse than all other possible individuals;

Algorithm 2: Crossover with Repair.

The individual Py,x′ from Line 4 is called repair-path. We refer to this operator as the crossover with repair or repair-
crossover.

Note that this operation replaces Lines 5 in Algorithm 1.
For the variant of the Steady State GAAPSP using the repair-operator, we obtain the following theorem.

Theorem 1 (Crossover with Repair). For every crossover rate pc ∈ (0, 1) there exists a positive absolute constant C := C(pc)
such that the Steady State GAAPSP using crossover with repair (Algorithm 2) has an optimization time of at most Cn3.2(log n)0.2
w. h. p.

A proof of this theorem can be found in Section 5.2. As mentioned in the Introduction, this result shows that the
simple repair mechanism improves on the runtime of the Steady State GAAPSP without repair (which had a runtime of
Θ(n3.25(log n)0.25)).

4. Feasible parent selection

The previous section introduced a simple repair mechanism that leads to an optimization time of O

n3.2(log n)0.2


, which

is already an improvement over the optimization time ofΘ(n3.25(log n)0.25) for the Steady State GAAPSP in [11]. Nevertheless,
the crossover operatormay still produce solutions that donot constitute paths. This is the case if the start vertex of the second
individual does not match the end vertex of the first individual and there is no individual in P for repair.

In the following, we want to make sure that the crossover operator constructs feasible solutions, i. e. individuals that
represent paths. This is done by restricting the parent selection for crossover to individuals that match with respect to their
endpoints.We choose the two individuals for crossover in Line 5 of Algorithm1 using the feasible parent selection procedure
given in Algorithm 3.

1 Choose Px,y ∈ P uniformly at random.
2 Choose Px′,y′ ∈ {Pu,v | Pu,v ∈ P ∧ u = y ∧ v ≠ x} uniformly at random.

Algorithm 3: Feasible Parent Selection.

It chooses the first individual Px,y uniformly at random from the population P and the second individual Px′,y′ uniformly
at random among all individuals inP whose start vertex equals the end vertex y of Px,y but whose end vertex does not equal
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the start vertex of Px,y. Afterwards, in Line 6 of Algorithm 1, crossover is performed by concatenation (compare the result of
this operation in Fig. 1(a)). Note that, due to the selection of the two individuals, a path from x to y′ is constructed, which
implies that the crossover operator only constructs feasible solutions.

This selection operator for the two parents lets us prove an even better upper bound on the optimization time than for
crossover with repair as follows.
Theorem 2 (Feasible Parent Selection). For every crossover rate pc ∈ (0, 1) there exists a positive absolute constant C := C(pc)
such that the Steady State GAAPSP using feasible parent selection (Algorithm 3) has an optimization time of at most Cn3 log nw. h. p.

Wewill prove this theorem in Section 5.2. Recall that the upper bound given asymptotically equals the best known bound
for a randomized search heuristic on the APSP problem.

5. Runtime analysis

In this section we introduce notations and mathematical methods which we will use for the proofs of Theorems 1 and 2
in the following two sections. It turns out, that in both proofs the analysis follows a common scheme. At the center of the
analysis is a stage-wise analysis of the optimization process of the Steady State GAAPSP. That is, we show that the Steady State
GAAPSP passes through certain stages during its execution until it eventually reaches a stage where the population contains
only shortest paths. Note that these stages are merely a concept to facilitate the runtime analysis of the Steady State GAAPSP
and do not explicitly occur in the definition (Algorithm 1) of the Steady State GAAPSP.

As in the previous sections, we again assume that we are given a strongly connected directed graph G = (V , E) on n
vertices and a conservative weight function w : E → R, i. e. G does not contain cycles of negative weight. Recall that the
weight of a path is the sumof theweights of all its edgeswhile its length is simply the number of its edges. To avoid confusion,
we refer to (weight-) shortest paths in G asweight-minimal, that is, a u-v-path P is weight-minimal in G if all u-v-paths in G
have at least the same weight as P .

It turns out that throughout the proofs in this and the following sections we will never regard the actual weight of a
path in G (although, of course, we will be constantly concerned with the presence of certain weight-minimal paths in the
population). Instead, we repeatedly make use of the following observation, which remarks that our crossover operator can
exploit the optimal substructure properties of paths.
Lemma 3. Let G = (V , E) be a finite, strongly connected directed graph with a conservative, linear weight function w : E → R.
Assume that Pu,x and Px,v as well as P ′

u,x and P ′
x,v are paths in G, and ◦ denotes the concatenation of two paths. Ifw(P ′

u,x) ≤ w(Pu,x)
and w(P ′

x,v) ≤ w(Px,v) holds, then we can deduce w(P ′
u,x ◦ P ′

x,v) ≤ w(Pu,x ◦ Px,v).
Proof. For our linear weight function w given by the definition of the APSP we automatically get

w(P ′

u,x ◦ P ′

x,v) = w(P ′

u,x) + w(P ′

x,v) ≤ w(Pu,x) + w(Px,v) = w(Pu,x ◦ Px,v). �

Corollary 4. If the concatenation of two paths Pu,x ◦ Px,v creates a weight-optimal path Pu,v , and if the two paths P ′
u,x and P ′

x,v are
weight-optimal, too, then P ′

u,x ◦ P ′
x,v creates a weight-optimal path P ′

u,v .

Proof. We have w(P ′
u,x ◦ P ′

x,v) ≤ w(Pu,x ◦ Px,v) due to Lemma 3 and also w(Pu,x ◦ Px,v) ≤ w(P ′
u,x ◦ P ′

x,v) due to the optimality
of Pu,x ◦ Px,v . �

Note, that by design our crossover operators concatenate several paths to derive Pu,v . Consequently, there is an order in
which Lemma 3 and Corollary 4 can be applied such that the property of weight-minimality holds if our crossover operators
are applied to weight-minimal paths. Regarding mutation we ignore the ability to shrink paths by deleting edges at the
beginning or end in our analyses. Thus, the application of mutation can also be regarded as a concatenation of two suitable
paths.

In order to define the different stages properly (which we do separately in the following two sections for each of the two
versions of the Steady State GAAPSP), we distinguish all pairs of vertices in G for which there exists a weight-minimal path of
given length.
Definition 5 (Vertex Pairs V 2

a ). For a ∈ R+, let V 2
a be the set of all pairs (u, v) ∈ V 2 with u ≠ v such that among all weight-

minimal u-v-paths in G there exists a path of length at most a.
Note that in the previous definition the number a can take any (positive) real value although the lengths of paths in G is
are always integral. We chose this definition for the sole reason of producing formally correct proofs which avoid tedious
rounding operators. For the understanding of these proofs, however, we may think of a as being integral. In particular, we
have that V 2

a = V 2
⌊a⌋ for all a ∈ R+. Moreover, since G is strongly connected and a path in G is at most of length n − 1, it

holds that
V 2
a = {(u, v) ∈ V 2

: u ≠ v} (1)
for all a ∈ R+ with a ≥ n − 1.

At this point, let us also introduce a probabilistic tool we will repeatedly use in the proof of Theorems 1 and 2. The
following lemma is an adaptation of the Coupon Collector argument. It allows us to give a lower bound on the probability of
hitting each element of a set I using r samples, provided the probability to sample an element that has not yet been sampled
is bounded below by a positive constant.
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Lemma 6 (Coupon Collector with Dependencies).
Let I be a finite set, p ∈ (0, 1), and {At

i }t∈N be sequences of events indexed by I such that

Pr


At
i

 
0≤s<t

As
i


≥ p

holds for all t ∈ N and all i ∈ I .
If T is the random variable that denotes the first point in time t ∈ N such that for all i ∈ I one of the events A0

i , . . . , A
t
i has

occurred, then it holds for all r ∈ R+ that
Pr[T ≥ r] ≤ |I| · e−pr .

Proof. First, we show the lemma for r ∈ N. For each i ∈ I , let Bi be the event that none of the events A0
i , . . . , A

r−1
i occurs.

Then

Pr[Bi] = Pr

 
0≤t<r

At
i


=


0≤t<r

Pr


At
i

 
0≤s<t

As
i


holds for all i ∈ I and thus

Pr[Bi] ≤ (1 − p)r ≤ e−pr .

Since the two events ‘‘ T ≥ r ’’ and ‘‘


i∈I Bi ’’ coincide, we obtain by the Union Bound (see [1]) that

Pr[T ≥ r] ≤


i∈I

Pr[Bi] ≤ |I| · e−pr .

Now, the lemma also follows for arbitrary positive real values of r ,
Pr[T ≥ r] = Pr[T ≥ ⌈r⌉] ≤ |I| · e−p⌈r⌉

≤ |I| · e−pr

holds for all r ∈ R+. �

In the following two sections, we present the proofs of Theorems 1 and 2, that is, we give upper bounds on the
optimization times of the Steady State GAAPSP using the operator ‘‘Crossover with Repair’’ and the operator ‘‘Feasible Parent
Selection’’, respectively. Since the proof of Theorem 1 is more involved, we start with the proof of Theorem 2 in the next
section.

5.1. The proof of the runtime bound for feasible parent selection

This section is devoted to the proof Theorem 2. For simplicity, whenever we refer to the Steady State GAAPSP in this
section, we assumewithout further mentioning that the operator ‘‘Feasible Parent Selection’’ is applied. As discussed above,
we want to analyze the behavior of this algorithm in stages. To this end, we say the Steady State GAAPSP has completed the
k-th stage if the population contains a weight-minimal u-v-path for every pair of vertices (u, v) for which there exists such
a weight-minimal path of length at most a(k) in the graph G, where the sequence {a(k)}k∈N is given by

a(k) := (3/2)k (2)
for all k ∈ N. Clearly, the first point in time when this event happens defines a random variable. We call this random
variable Tk and say it marks the end of the k-th stage. The following definition makes this notion precise.
Definition 7 (Time Tk). For k ∈ N, let a(k) be as defined in (2) and let Tk be the random variable that denotes the first point
in time such that, for all pairs (u, v) ∈ V 2

a(k), the population of the Steady State GAAPSP contains a weight-minimal u-v-path.

Observe crucially that, although (u, v) ∈ V 2
a(k) implies there exists a weight-minimal path of length at most a(k) in G,

we only require the existence of any weight-minimal u-v-path in the population of the Steady State GAAPSP at time Tk. In
particular, this u-v-path may be arbitrarily long.

It is clear by the definition of the sets V 2
a(k) (Definition 5) that

T0 ≤ T1 ≤ T2 ≤ · · ·

holds. Also note that, depending on G, the sets V 2
a(k) and V 2

a(k+1) may be equal for some values of k. In this case, also the
random variables Tk and Tk+1 coincide, that is, we have Tk = Tk+1.

We have already seen in (1) that if a(k) ≥ n − 1, then the population of the Steady State GAAPSP contains only weight-
minimal paths. Since a(n) ≥ n − 1 for all values of n, this implies that at time Tn latest, the Steady State GAAPSP has found a
population of weight-minimal paths. In other words, the random variable Tn dominates the optimization time of the Steady
State GAAPSP. Thus, in order to show Theorem 2, it is sufficient to show that, for every pc ∈ (0, 1), there exists a positive
absolute constant C := C(pc) such that

Pr

Tn ≥ Cn3 log n


≤

1
n
. (3)

In fact, we show an even stronger statement, given in the following proposition.
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Proposition 8. For every pc ∈ (0, 1), there exists a positive absolute constant C1 := C1(pc) such that,

Pr

Tk ≥ Tk−1 + C1(2/3)kn3 log n + 1


≤

1
n2

(4)

holds for all k ∈ {1, . . . , n}.

Beforewe prove Proposition 8, let us first argue how it implies (3) and thus Theorem2. To this end, consider the telescopic
sum

Tn = T0 +

n
k=1


Tk − Tk−1


.

The random variable T0 denotes the first point in time such that the population contains a weight-minimal path for all
pairs (u, v) which have a weight-minimal path of length a(0) = 1. But such a path of length 1 consists only of a single
(directed) edge, and for all vertex pairs that form such an edge this edge is present in the initial population (Step 1 in
Algorithm 1). Therefore, we always have T0 = 0. Next, suppose that

Tk − Tk−1 ≤ C1(2/3)kn3 log n + 1

holds for all k ∈ {1, . . . , n}. In this case, we have

Tn ≤ C1


n

k=1

(2/3)k

n3 log n + n ≤ 2C1n3 log n + n,

where we bounded
n

k=1(2/3)
k by the geometric sum

∞
k=1

(2/3)k ≤ 2.

Thus, if we set C := 2C1 + 1, then the event

‘‘∀k ∈ {1, . . . , n} : Tk − Tk−1 ≤ C1(2/3)kn3 log n + 1 ’’

implies the event ‘‘ Tn ≤ Cn3 log n ’’. Conversely, this means that the event ‘‘ Tn ≥ Cn3 log n ’’ implies the event

‘‘∃k ∈ {1, . . . , n} : Tk − Tk−1 ≥ C1(2/3)kn3 log n + 1 ’’.

Therefore, we have

Pr

Tn ≥ Cn3 log n


≤ Pr


∃k ∈ {1, . . . , n} : Tk − Tk−1 ≥ 1 + C1(2/3)kn3 log n


and (3) follows from Proposition 8 by the Union Bound (see [1]).

In order to conclude the proof of Theorem 2, we still need to show Proposition 8.We devote the remainder of this section
to this proof.

Proposition 8 basically states that with sufficiently high probability, the time needed by the Steady State GAAPSP between
the (k − 1)-th stage and the k-th stage is not too long. Interestingly, for the version of the Steady State GAAPSP we are
considering in this section (the one with feasible parent selection), it is sufficient to regard only the effect of crossover and
to neglect the effect of mutation (which can only be beneficial to the analysis) on the optimization process.

In our analysis, we strongly rely on the following considerations. If we perform (feasible) parent selection and subsequent
crossover on a population which contains all weight-minimal paths of length at most a(k − 1), then it is sufficiently likely
to generate each weight-minimal path of length at most a(k) = (3/2)a(k − 1). Now, the crucial observation is that this
argument remains valid if the population contains weight-minimal paths of any length for every pair of vertices that has a
weight-minimal paths of length at most a(k−1) in the graph G. Of course, in this case we cannot guarantee the Steady State
GAAPSP produces every weight-minimal path of length at most a(k). However it will instead produce some weight-minimal
path for every pair of vertices that has a weight-minimal paths of length at most a(k) in the graph G. This observation is
formalized in the following lemma.

Lemma 9. For every a ∈ R+ with a ≥ 1 and every pair (u, v) ∈ V 2
(3/2)a \V 2

a , there exist at least a/4 different vertices x ∈ V such
that (u, x) and (x, v) are in V 2

a and such that the concatenation of every weight-minimal u-x-path with every weight-minimal
x-v-path at the vertex x results in a weight-minimal u-v-path.

Proof. Let the vertex pair (u, v) be in the set V 2
(3/2)a but not in the set V 2

a . By the definitions of V 2
a and V 2

(3/2)a, there exists a
weight-minimal u-v-path Pu,v = (u = u0, u1, . . . , uℓ = v) of length ℓ with

a < ℓ ≤ (3/2)a.
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Consider the index set
J :=


⌈a/2⌉, . . . , ⌊a⌋


.

Let j ∈ J and x := uj. Note that ⌊a⌋ ≤ a < ℓ and therefore uj is a well-defined vertex of Pu,v . By Corollary 4, the two paths
Pu,x = (u = u0, . . . , uj = x) and Px,v(x = uj, . . . , uℓ = v) are weight-minimal, too. Moreover, both paths are of length at
most a since j ≤ a and also ℓ − j ≤ (3/2)a − a/2 = a. Hence, (u, x) and (x, v) are in V 2

a . Furthermore, again by Lemma 3,
the concatenation of any twoweight-minimal paths P ′

u,x and P ′
x,v (of arbitrary length) at the vertex x is weight-minimal, too.

Now, all that is left to do is to bound the number of possible choices for x. Since

|J| = ⌊a⌋ − ⌈a/2⌉ + 1 ≥


1 − 1 + 1 ≥ a/4 if 1 ≤ a < 2,
2 − 2 + 1 ≥ a/4 if 2 ≤ a < 4,
a − 1 − (a/2) − 1 + 1 ≥ a/4 if a ≥ 4,

there are at least a/4 ways to choose x, which concludes the proof of this lemma. �

Finally, with Lemma 9 at hand, we are ready to prove Proposition 8 which will also conclude the proof of Theorem 2.
Proof of Proposition 8. Let k ∈ {1, . . . , n}. We show that (4) holds, that is, we show that there exists a positive absolute
constant C1 := C1(pc) (to be chosen later) such that the event

‘‘ Tk ≥ Tk−1 + 1 + C1(2/3)kn3 log n ’’ (5)
occurs with probability at most 1/n2.

At time Tk−1, which marks the beginning of the k-th stage, we have for every pair of vertices in V 2
a(k−1) a weight-minimal

path in the population of the Steady State GAAPSP. Now, we want to bound the duration of the k-th stage, that is, the number
of iterations needed until the population also contains a weight-minimal path for every pair of vertices in V 2

a(k).
As a consequence of Lemma 9, we will see below that in each iteration of the k-th stage the probability that the Steady

State GAAPSP produces a weight-minimal path for a pair in V 2
a(k) \ V 2

a(k−1) is at least (1/6)(3/2)kpcn−3. Thus, informally
speaking, we would expect a kind of Coupon Collector process to happen, which produces all such weight-minimal paths
(there are at most n2) in an expected number of 6p−1

c (2/3)kn3 log n2 iterations.
However, since we only have lower bounds on the probabilities to find a pair in V 2

a(k) \ V 2
a(k−1) and since the events we

regard are not independent of each other, we have to bemore careful in bounding the probability of the event that (5) holds.
For this reason, we apply Lemma 6.

In the notation of Lemma 6, let I = V 2
a(k−1) \ V 2

a(k) and let At
(u,v) with t ∈ N and (u, v) ∈ I denote the event that at

time Tk−1 + 1 + t there exists a weight-minimal u-v-path in the population of the Steady State GAAPSP. Then, we show that
there exists a p ∈ (0, 1) such that

Pr


At

(u,v)

 
0≤s<t

As
(u,v)


≥ p (6)

holds for all t ∈ N and (u, v) ∈ I .
For this, first note that since (u, v) is not in V 2

a(k), with positive probability there is no weight-minimal u-v-path in the
population of the Steady State GAAPSP at time Tk−1 + t . Therefore, the conditional probability above is well-defined.

Next, since there exists a weight minimal-path for every vertex pair in V 2
a(k−1), Lemma 9 gives us that there are at least

a(k − 1)/4 distinct vertices x ∈ V such that (u, x) and (x, v) are in V 2
a(k−1) and the concatenation of a weight-minimal

u-x-path with a weight-minimal x-v-path yields a weight-minimal u-v-path. For each of these vertices x, the probability
that the Steady State GAAPSP performs this particular concatenation at time Tk−1 + 1 + t is the probability to (i) perform a
crossover step, (ii) choose theweight-minimal u-x-path as first parent, and (iii) then theweight-minimal x-v-path as second
parent from the population at time Tk−1 + t . The event (i) has probability pc . By the definition of the operator ‘‘Feasible
Parent Selection’’ (Algorithm 3) event (ii) happens with probability at least 1/n2 and event (iii) with probability at least 1/n.
Moreover, these bounds are independent of the event whether or not there already exists a weight-minimal u-v-path in the
population at time Tk−1 + t . Thus, Eq. (6) indeed holds for all (u, v) ∈ I and t ∈ N with

p :=
a(k − 1)pc

4n3
=

(3/2)kpc
6n3

.

Finally, since the event that at time Tk−1 + 1+ t one of the events A0
(u,v), . . . , A

t
(u,v) has occurred for all (u, v) ∈ I implies

the event that Tk ≤ Tk−1 + 1 + t , we have by Lemma 6 with r := C1(2/3)kn3 log n and C1 :=
24
pc

that

pr =
(3/2)kpc

6n3
·
24
pc

· (2/3)kn3 log n = 4 log n ≥ 4 ln n

and therefore, since I ≤ n2 that

Pr

Tk ≥ Tk−1 + 1 + C1(2/3)kn3 log n


≤ |I|e−4 ln n

≤
1
n2

.

This concludes the proof of Proposition 8 and therefore also the proof of Theorem 2. �
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i

Pui,uj
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Fig. 2. Pui,uj is an approximating path for the vertex pair (u, v) with a gap of g := max{i, ℓ − j}.

5.2. The proof of the runtime bound for crossover with repair

We now prove Theorem 1. Again for the sake of brevity, whenever we refer to the Steady State GAAPSP in this section,
we now assume without further mentioning that the operator ‘‘Crossover with Repair’’ is applied. The proof will follow the
same line of argument like that in the previous section. That is, we again want to analyze the behavior of this algorithm in
stages. However, this time we say the Steady State GAAPSP has completed the k-th stage if the population contains a weight-
minimal u-v-path for every pair of vertices (u, v) for which there exists such a weight-minimal path of length at most b(k)
in the graph G, where the sequence {b(k)}k∈N is now given by

b(k) := 24(3/2)k(n log n)1/5 (7)

for all k ∈ N. Notice the extra 24(n log n)1/5-factor in the definition above compared to the definition of a(k) in (2).
Analogously to the previous section, we let the random variable T ′

k mark the end of the k-th stage. Consequently, the
following definition differs from Definition 7 only in the choice of the sequence {b(k)}k∈N instead of the sequence {a(k)}k∈N.

Definition 10 (Time T ′

k). For k ∈ N, let b(k) be as defined in (7) and let T ′

k be the random variable that denotes the first point
in time such that, for all pairs (u, v) ∈ V 2

b(k), the population of the Steady State GAAPSP contains a weight-minimal u-v-path.

In the previous section, we saw that the Steady State GAAPSP applying the Feasible Parent Selection operator can find
all minimum-weight shortest paths necessary to complete the current stage by crossover only. For the Steady State GAAPSP
which we consider in this section (the one applying the operator ‘‘Crossover with Repair’’), our analysis is slightly more
involved since it includes both crossover and mutation.

To capture the interplay between crossover andmutation,wedivide all stages into twophases,whichwe call the crossover
phase and themutation phase. Like before with the stages, the distinctions of phases are merely a method of analysis and do
not change the definition of Algorithm 1. This means that in our analysis of the optimization behavior of the Steady State
GAAPSP we will only consider the effect of crossover during the crossover phases and only the effect of mutation during
the mutation phases. In the actual run of the algorithm, however, both crossover and mutation are likely to happen in all
phases. Still, since both operators never remove a weight-minimal path from the population, we are safe to ignore them in
our analysis.

In order to define the two phases, we now define the notions of gaps and approximating paths,2 two concepts which were
introduced in [11]. The key observation behind these notions is that it suffices that crossover finds a path that sufficiently
well approximates a sought-after path, because mutation is fast enough to fill the gaps.

Definition 11 (Approximating Path with Gap g). Let Pu,v = (u = u0, u1, . . . , uℓ = v) be a weight-minimal path in G of
length ℓ. Suppose that Px,y is a path in G with x = ui and y = uj for some indices 0 ≤ i < j ≤ ℓ. Then we call Px,y an
approximating path for the pair (u, v) with (integral) gap g := max{i, ℓ − j}; compare Fig. 2.

Notice crucially that it is not necessary that an approximating path for the pair (u, v) approximates the weight of a
weight-minimal u-v-path. In particular, every u-v-path is an approximating path with gap 0 for the vertex pair (u, v).

With the notion of approximating paths at hand, we define the two phases of the k-th stage. The first phase, which we
call the crossover phase, starts with the beginning of the k-th stage (at time T ′

k−1) and ends when for all pairs (u, v) ∈ V 2
b(k),

there exists a weight-minimal approximating path for (u, v) with gap at most

g(k) := (5/6)k(n log n)1/5 (8)

for all k ∈ N.
The secondphase, themutationphase, lasts from the endof the crossover phase to the endof the k-th stage. Corresponding

to T ′

k, we define the randomvariable T ′′

k whichmarks the end of the crossover phase and the beginning of themutation phase.

Definition 12 (Time T ′′

k ). For k ∈ N with k ≥ 1, let g(k) be as defined in (8) and let T ′′

k be the random variable that denotes
the first point in time after T ′

k−1 such that, for all pairs (u, v) ∈ V 2
b(k), the population of the Steady State GAAPSP contains a

weight-minimal approximating path for the vertex pair (u, v) with gap at most g(k).

2 This term is not to be confused with the notion of approximation guarantee in algorithm theory where it refers to the quality of algorithms.
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It is clear by Definitions 10 and 12 that

T ′

0 ≤ T ′′

1 ≤ T ′

1 ≤ T ′′

2 ≤ T ′

2 ≤ · · ·

holds and that some of these inequalitiesmay happen to be tight. Like in the previous section, it still holds that at time T ′
n, the

Steady State GAAPSP has found a population of weight-minimal paths. This time, however, we bound the number of phases
more carefully. Let k∗

:= k∗(n) be the minimum integer k such that b(k) ≥ n − 1. Then already at time T ′

k∗ the Steady State
GAAPSP has found a population of weight-minimal paths. It is easy to see that

k∗
≤ 2 log n.

In order to show Theorem 1, it is again sufficient to show that, for every pc ∈ (0, 1), there exists a positive absolute
constant C := C(pc) such that

Pr

T ′

k∗ ≥ Cn3(n log n)1/5


≤
1
n
. (9)

Again, we show a stronger statement. The following proposition is the direct counterpart to Proposition 8 in the previous
section. However, this time we regard both, crossover and mutation. Both operators have constant probability to be applied
in an iteration, and neither can decrease the fitness of an individual. Hence we may occasionally only regard the effect of
one of the two.

We start with the consideration of the effects of mutation only. We apply a result in [9] to arrive at a population that
contains with high probability a weight-minimal path for every vertex pair for which there exists a weight-minimal path
in G of length at most 24(n log n)1/5. This marks the end of the 0th-stage.

The duration of this initial stage is comparable to the duration of all next stages, during which the interplay between
crossover and mutation plays a role. From this point on we consider the effects of the repair-crossover which allows for the
creation of approximating weight-minimal path in the crossover phase of a stage. In the subsequent mutation phase, the
mutation operator will close the gap between the approximating weight-minimal paths and the weight-minimal paths we
are actually aiming for (again, we do not give a full proof for this but refer to [9] instead). The following proposition gives a
precise statement of these observations for the initial mutation stage (Eq. (10)), the k-th crossover phase (Eq. (11)) and the
k-th mutation phase (Eq. (12)).

Proposition 13. For every pc ∈ (0, 1), there exists three positive absolute constants C1 := C1(pc), C2 := C2(pc), and C3 :=

C3(pc) such that the three inequalities

Pr

T ′

0 ≥ C1n3(n log n)1/5 + C1n3 log n


≤
1
n2

, (10)

Pr

T ′′

k − T ′

k−1 ≥ C2(4/5)2kn3(n log n)1/5 + 1


≤
1

n2302
, (11)

Pr

T ′

k − T ′′

k ≥ C3(5/6)kn3(n log n)1/5 + C3n3 log n


≤
1
n2

(12)

hold for all k ∈ {1, . . . , k∗
}.

As before, we defer the proof of Proposition 13 until we have shown how Proposition 13 implies (9) and thus Theorem 1.
This follows exactly the same line of proof as in the previous section. We consider the telescopic sum

T ′

k∗ = T ′

0 +

k∗
k=1


T ′

k − T ′′

k


+

k∗
k=1


T ′′

k − T ′

k−1


and note that this time we do not necessarily have T ′

0 = 0 due to the initial stage. Consider the event that the three
inequalities

T ′

0 ≤ C1n3(n log n)1/5 + C1n3 log n,

T ′′

k − T ′

k−1 ≤ C2(4/5)2kn3(n log n)1/5 + 1,

T ′

k − T ′′

k ≤ C3(5/6)kn3(n log n)1/5 + C3n3 log n

hold for all k ∈ {1, . . . , k∗
}. If this event occurs, then we have

k∗
k=1

(T ′′

k − T ′

k−1) ≤


k∗
k=1

(4/5)2k

C2n3(n log n)1/5 + k∗,

k∗
k=1

(T ′

k − T ′′

k ) ≤


k∗
k=1

(5/6)k

C3n3(n log n)1/5 + C3k∗n3 log n.
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approximating path

gap-path repair-path gap-path

yxu

Fig. 3. Thepath depicts the situation of Lemma15with twopossible gappaths and a repair path from x to y. The x-y-repair-path stems from thepaths fromu′

to x and from y to v′ which are input of the repair-crossover. Each of these three paths has length at most b and their concatenation is an approximating
path with gap g for the vertex pair (u, v).

Substituting k∗
≤ 2 log n and bounding the geometric series yields

T ′

k∗ ≤ (C1 + (16/9)C2 + 5C3)n3(n log n)1/5 + C1n3 log n + 2C3n3(log n)2 + 2 log n.

There exists a positive absolute constant D such that

C1n3 log n + 2C3n3(log n)2 + 2 log n ≤ Dn3(n log n)1/5

holds for all n ∈ N. Then, for C := 2 + C1 + (16/9)C2 + 5C3 + D, we apply the same union bound argument as in the
previous section. Note that we consider the union of 2k∗

+ 1, that is, of at most n events. Thus (9) follows from the three
inequalities (10), (11), and (12) in Proposition 13. Since inequality (9) implies Theorem 1, we may conclude the proof of
Theorem 1 by showing Proposition 13.

To derive the two inequalities (10) and (12) in Proposition 13, we apply a result from [9], which we do not prove here but
simply state as Lemma 14. We adapt the notation to our needs, a closer look into the proofs in [9] shows that this is easily
possible.

Lemma 14 (Analysis of Mutation). For all pc ∈ (0, 1) there exists a positive absolute constant C := C(pc) such that the following
statement holds.

Let g ∈ R+ and let W ⊆ V 2
n . Suppose that at time t0 ∈ N the population of the Steady State GAAPSP contains a weight-

minimal approximating path with gap at most g for every vertex pair (u, v) ∈ W. Let T be the random variable that denotes the
first point in time such that the population of the Steady State GAAPSP contains a (proper) weight-minimal path for every vertex
pair (u, v) ∈ W. Then

Prob

T ≥ t0 + Cn3(g + log n)


≤

1
n2

.

The two inequalities (10) and (12) in Proposition 13 directly follow from the previous lemma.

Proof of inequality (10) in Proposition 13. Let C1 := 24C where C := C(pc) is the positive absolute constant provided by
Lemma 14. Then inequality (10) follows from Lemma 14 if we set g := b(0), W := V 2

b(0), and t0 = 0. �

Proof of inequality (12) in Proposition 13. Let k ∈ {1, . . . , k∗
} and let C3 := C where C := C(pc) is the positive absolute

constant provided by Lemma 14. Then inequality (12) again follows from Lemma 14 if we set g := g(k), W := V 2
b(k), and

replace t0 by the random variable T ′′

k (we may do this by the law of total probability, since Lemma 14 holds for every choice
of t0). �

At this point, we are only left to prove inequality (11) in Proposition 13. This is done similarly to the proof of Proposition 8
and will be the remainder of this section. In particular, we next show a lemma which is the direct counterpart to Lemma 9
in the previous section.

The following lemma gives a lower bound on the number of different combinations how the Steady State GAAPSP can
produce a weight-minimal approximating path with gap g(k) for any weight-minimal path of length at most b(k) =

(3/2)b(k − 1). Again, we will assume that for every weight-minimal path of length at most b(k − 1) there exists a weight
minimal path (of arbitrary length) in the population of the Steady State GAAPSP at that time.

Lemma 15. For every b ∈ R+ with b ≥ 24, every g ∈ R+ with g ≤ b/12, and every pair (u, v) ∈ V 2
(3/2)b \ V 2

b , there exists at
least (bg)2/36 different tuples (u′, x, y, v′) of four distinct vertices u′, x, y, v′

∈ V such that the pairs (u′, x), (x, y), and (y, v′)
are in V 2

b and such that the concatenations of every weight-minimal u′-x-path and every weight-minimal y-v′-path with every
weight-minimal x-y-path at the vertices x and y results in a weight-minimal u′-v′-path which is an approximating path with gap
at most g for the pair (u, v); compare Fig. 3.
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Proof. Let the vertex pair (u, v) be in the set V 2
(3/2)b but not in the set V 2

b . By the definitions of V 2
b and V 2

(3/2)b, there exists a
weight-minimal u-v-path Pu,v = (u = u0, u1, . . . , uℓ = v) of length ℓ with

b < ℓ ≤ (3/2)b.

Consider the four index sets

I :=

0, . . . , ⌊g⌋


,

F :=

⌈b/2⌉, . . . , ⌈b/2⌉ + ⌈b/6⌉ − 1


,

H :=

⌈b/2⌉ + ⌈b/6⌉, . . . , ⌈b/2⌉ + 2⌈b/6⌉ − 1


,

J :=

ℓ − ⌊g⌋, . . . , ℓ


.

Since g ≤ b/12 and b ≥ 24, we have that

g ≤ b/12 ≤ ⌈b/2⌉,

and, since ℓ > b, we have that

⌈b/2⌉ + 2⌈b/6⌉ − 1 ≤ 5b/6 + 2 ≤ b − (b/12) < ℓ − ⌊g⌋, (13)

the index sets I , F , H , and J are disjoint and subsets of {0, . . . , ℓ}. Let i ∈ I , f ∈ F , h ∈ H , and j ∈ J . Furthermore,
let u′

:= ui, x := uf , y := uh, and v′
:= uj. Then, by repeated application of Lemma 3 and Corollary 4, the three paths

Pu′,x = (u′
= ui, . . . , uf = x), Px,y = (x = uf , . . . , uh = y) and Py,v′ = (y = uh, . . . , uj = v′) are weight-minimal, too.

Moreover, all three paths are of length at most b since, by (13), we have both f ≤ h ≤ b and h − f ≤ h ≤ b. Furthermore,
as in the proof of Lemma 9, we have also also ℓ − h ≤ b. Hence, (u′, x), (x, y), and (y, v′) are in V 2

b . Furthermore, again
by repeated application of Lemma 3, the concatenation of any three weight-minimal paths P ′

u′,x, P
′
x,y and P ′

y,v′ (of arbitrary
length) at the vertices x and y is weight-minimal, too. Finally, there are

|I| · |F | · |H| · |J| = (⌊g⌋ + 1)2⌈b/6⌉2 ≥ g2b2/36

ways to choose the tuple (u′, x, y, v′), which concludes the proof of this lemma. �

Finally, all we are left to do is prove inequality (11) in Proposition 13. As announced above, this proof will again follow
the lines of the proof of Proposition 8 in the previous section.

Proof of inequality (11) in Proposition 13. Let k ∈ {1, . . . , k∗
}. We show that (11) holds, that is, we show that there exists

a positive absolute constant C2 := C2(pc) (to be chosen later) such that the event

‘‘ T ′′

k ≥ T ′

k−1 + 1 + C2(4/5)2kn3(n log n)0.2 ’’ (14)

occurs with probability at most 1/n2.
At time T ′

k−1, which marks the beginning of the k-th stage, we have for every pair of vertices in V 2
b(k−1) a weight-minimal

path in the population of the Steady State GAAPSP. Now, we want to bound the duration of the crossover phase of the k-th
stage, that is, the number of iterations needed until the population also contains aweight-minimal approximating pathwith
gap at most g(k) for every pair of vertices in V 2

b(k).
We again apply Lemma 6, let I = V 2

b(k−1) \ V 2
b(k) and let At

(u,v) with t ∈ N and (u, v) ∈ I denote the event that at
time T ′

k−1+1+t there exists aweight-minimal approximating pathwith gap atmost g(k) for the pair (u, v) in the population
of the Steady State GAAPSP. We show that there exists a p ∈ (0, 1) such that

Pr


At

(u,v)

 
0≤s<t

As
(u,v)


≥ p (15)

holds for all t ∈ N and (u, v) ∈ I .
For this, first note that since (u, v) is not in V 2

b(k), with positive probability there is no weight-minimal u-v-path in the
population of the Steady State GAAPSP at time T ′

k−1 + t . Therefore, the conditional probability above is again well-defined.
Next, since there exists a weight minimal-path for every vertex pair in V 2

b(k−1), Lemma 15 gives us that there are at least
(b(k−1)g(k))2/36 distinct tuples (u′, x, y, v′) of vertices u′, x, y, v′

∈ V such that (u′, x), (x, y), and (y, v′) are in V 2
b(k−1) and

the concatenation of a weight-minimal u′-x-path, a weight-minimal x-y-path, and a weight-minimal y, v′-path at x and y
yields a weight-minimal u′-v′-path which approximates the pair (u, v) with gap at most g(k). Note that, in order to apply
Lemma 15, we need here that b(k − 1) ≥ 24, which holds since

b(k − 1) ≥ b(0) = 24(n log n)0.2

and that g(k) ≤ b(k− 1)/12, which holds since g(k) is monotonically decreasing and b(k) is monotonically increasing with
kwith g(0) ≤ b(0).
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For each of these vertex tuples (u′, x, y, v′), the probability that the Steady State GAAPSP performs this particular
concatenation at time T ′

k−1 + 1 + t is the probability to (i) perform a crossover step, (ii) choose the weight-minimal u′-x-
path as first parent, and (iii) then the weight-minimal y-v′-path as second parent from the population at time T ′

k−1 + t . The
event (i) has probability pc . By the definition of the operator ‘‘Crossover with Repair’’ (Algorithm 2) event (ii) happens with
probability at least 1/n2 and event (iii) happens againwith probability at least 1/n2.Moreover, these bounds are independent
of the event whether or not there already exists a weight-minimal approximating path of gap at most g for the pair (u, v)
in the population at time T ′

k−1 + t . Thus, Eq. (15) indeed holds for all (u, v) ∈ I and t ∈ N with

p :=
(b(k − 1)g(k))2pc

36n4
=

64(5/4)2kpc(n log n)4/5

9n4
.

Finally, since the event that at time T ′

k−1 + 1+ t one of the events A0
(u,v), . . . , A

t
(u,v) has occurred for all (u, v) ∈ I implies

the event ‘‘ T ′′

k ≤ T ′

k−1 + 1 + t ’’, we have by Lemma 6 with r := C2(4/5)2kn3(n log n)0.2 and C2 :=
324
pc

that

pr =
64(5/4)2kpc(n log n)4/5

9n4
·
324
pc

· (4/5)2kn3(n log n)0.2 = 2304 log n ≥ 2304 ln n

and therefore, since I ≤ n2 that

Pr

T ′′

k ≥ T ′

k−1 + 1 + C2(4/5)2kn3(n log n)1/5


≤ |I|e−2304 ln n
≤

1
n2302

.

This concludes the proof of Proposition 13 and therefore also the proof of Theorem 1. �

6. Discussion

Apart from the results rigorously proven we conjecture that the bounds are actually tight and cannot be improved by a
better analysis of the process.

In the following, we want to discuss how our runtime bounds can be extended to other but linear weight functions. For
this, notice that the only place in the proofs of our runtime bounds where we refer to the actual properties of the weight-
function is Lemma 3. In otherwords, if a fitness function f on all paths of a graphG satisfies Lemma 3, then our upper runtime
bounds also hold for f . This motivates the following definition.

Definition 16. Let G be a finite, strongly connected directed graph and let f be a non-negative fitness function on the set of
all paths in G. Then f is called subpath optimal if the following holds.

If Pu,v = (u = u0, . . . , uℓ = v) is an f -optimal u-v-path of length ℓ and x = ui and y = uj are vertices of Pu,v
with 0 ≤ i ≤ j ≤ ℓ, then substituting the f -optimal subpath Px,y with another f -optimal path P ′

x,y yields an f -optimal
path P ′

u,v .

Substituting a subpath Px,y of Pu,v amounts to the concatenation of the three paths Pu,x with P ′
x,y and Py,v at the vertices

x and y (where one path can possibly be empty). Recall, that by design our crossover operators used in the Steady State
GAAPSP concatenate two or three paths to derive Pu,v . As in our analyses we ignored the ability of mutation to shrink paths
by deleting edges, we regard the application of mutation as a concatenation of two paths.

We can now apply Lemma 3 to any weight-function with non-negative weights that is subpath optimal. This worked
for the subpath optimal fitness function associated with APSP that maps paths to their lengths. Another subpath optimal
example is mapping paths to the weight of their lightest edge (andmaximize); this is known as the all-pairs bottleneck paths
problem (see [13,37]) and has applications for example in voting theory [33]. Lemma 3 is also applicable because if the
minimum increases on a subpath then the overall minimum of the path is never decreased.

Thus, as a direct corollary to Theorem 1, the Steady State GAAPSP with repair on the all-pairs bottleneck paths problem
has an optimization time of O


n3.2(log n)0.2


iterations with high probability; and as a corollary to Theorem 2, we have that

the Steady State GAAPSP with feasible parent selection on the all-pairs bottleneck paths problem has an optimization time of
O

n3 log n


iterations with high probability.

As a final remark we would like to relate the success of our GA to dynamic programming. Our analysis is oriented at the
Bellman–Ford Algorithm, and in particular the stages we consider are basically the same stages that occur there. From this
perspective, one may say that the Steady State GAAPSP mimics the optimization behavior of the Bellman–Ford Algorithm.

Still, the representation of individuals and the particular diversity mechanism used is natural since we would like to
compute shortest paths for each pair of vertices. We see that the randomness introduced by the selection and crossover
operators in the Steady State GAAPSP raises subtle points in the analysis of our runtime bounds which are not present in that
of the Bellman–Ford Algorithm. Two examples are the necessary overlap of the optimal subpaths in crossover and, in the
case of Crossover with Repair, the interplay between mutation and crossover.

In a more general setting, one may ask whether our findings relate to other problems that have dynamic programming
algorithms. The answer to this again relates to Lemma 3 and Definition 16. If the problem structure and representation
within a GA is such that with sufficiently large probability the crossover operator can combine two optimal solutions like in
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Definition 16, we may hope that a GA using crossover and mutation outperforms a GA using mutation only. However, we
are not aware of any concrete examples of such optimization problems, except for the APSP problems with subpath optimal
fitness functions. We refer the reader to [6] for a discussion of how optimization problems which are accessible to dynamic
programming can be solved by evolutionary algorithms with mutation only.

7. Conclusions

We have shown how the use of repair mechanisms or appropriate selection strategies can speed up crossover-based
evolutionary algorithms for the all-pairs shortest path problem (and some other problems with a similar structure).
However, it remains a challenge to understand the usefulness of crossover in evolutionary computation in a rigorous way
for other combinatorial optimization problems.

The evolutionary algorithm examined for the APSP problemmakes use of a strong diversity mechanism (each individual
represents a path between a different pair of vertices) that allows to show the usefulness of crossover. Often evolutionary
algorithms use much weaker diversity mechanism such as niching, deterministic crowding and fitness sharing and the goal
is to compute just a single solution instead of a set of solutions.We state it as an open problem to show that crossover speeds
up evolutionary algorithms for single-objective combinatorial optimization using one of the stated diversity mechanisms.

On the other hand,multi-objective problems use in a naturalway a diversitymechanisms according to Pareto dominance.
Often the population of an evolutionary algorithm for multi-objective optimization contains a population which represents
the different tradeoffs with respect to the given objective function at a certain time step. It would be interesting to have
rigorous results that show the usefulness of crossover in evolutionary multi-objective optimization.
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