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Abstract. Most theoretical work that studies the benefit of recombina-
tion focuses on the ability of crossover to speed up optimization time on
specific search problems. In this paper, we take a slightly different per-
spective and investigate recombination in the context of evolving solu-
tions that exhibit mutational robustness, i.e., they display insensitivity to
small perturbations. Various models in population genetics have demon-
strated that increasing the effective recombination rate promotes the
evolution of robustness. We show this result also holds in the context of
evolutionary computation by rigorously proving crossover promotes the
evolution of robust solutions in the standard (µ+ 1) GA. Surprisingly,
our results show that this effect is still present even when robust solutions
are at a selective disadvantage due to lower fitness values.

1 Introduction

The role of crossover in evolutionary computation is still a major open prob-
lem in the theory of evolutionary algorithms. In some cases, it can be prov-
ably helpful for optimization obtaining quantifiable speed-ups on functions like
Jump and OneMax, and particular combinatorial optimization problems on
graphs [2,5,7,10,11]. In other cases, recombination can actually be seen as a
destructive operator that is detrimental to optimization [13]. The goal of this
work is to contribute to our understanding of environments in which crossover
can be helpful.

In population genetics, an increased recombination rate has been shown to
increase mutational robustness: the resistance of fitness to mutational perturba-
tions [3]. In this paper, we want to examine this effect in the context of runtime
analysis for evolutionary algorithms. In particular, we introduce a model land-
scape for which we prove crossover favors regions of higher neutrality. This effect
can be seen even when robust solutions have a much weaker fitness gradient than
non-robust solutions. On the other hand, as the recombination rate is tuned to
zero, greedy hill-climbing behavior takes over and favors regions with sharper fit-
ness gradients: even when these regions contain solutions that are not as robust
to perturbations.

Our model landscape is motivated by the fact that in some optimization
problems, there could be sensitive decision variables that correspond to non-
robust solutions and non-sensitive decision variables that induce more robust
solutions because they correspond to a large plateau. In practice, we will not
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know where these sensitive and non-sensitive variables are. However, our results
suggest that if they exist, then using crossover tends to favor these more robust
solutions even when they are at a fitness disadvantage.

1.1 Visualizing the Evolution of Robustness

We begin with a simple visualization that gives an intuition for why high
crossover rates favor robust solutions. The purpose of this short section is to
gain some geometric insight into the proofs contained in Sects. 2 and 3. We con-
sider an extension of the cycle Zn to a cylinder (formally Z2

n, but without the
added wrap-around in the second dimension). We consider all individuals at
the “bottom” of the cylinder to have a small fitness of, say, 5. Fitness grows
“upward”, but only on certain paths (i.e., for certain x-values). We consider the
case of one wide path and many narrow paths. Figure 1 depicts this fitness land-
scape (darker colors indicate higher fitness). Maximal fitness can be achieved for
all maximal y values. We assume that fitness grows more quickly along narrow
paths, by a factor of 1.1. Individuals not on any paths with x-value larger than
0 are dead.

To formulate a simple illustrative example of how recombination can favor
robust optimization we present the following short experiment (details omitted
due to space constraints) to motivate the rest of the paper. We construct a
cylinder of size 102 × 104; the wide path has a width of 10 and there are 14
evenly-spaced narrow paths. We consider a (μ +λ) GA with μ = 50 and λ = 250
evolving on this fitness landscape. During a run, populations with high crossover
rates favor the wide path, focusing on the middle of the wide path. On the other
hand, mainly asexually reproducing populations favor narrow paths.

Now consider the case where the fitness landscape changes dynamically,
but rarely. More precisely, we consider a random shift of the complete fitness
landscape in x-direction by ±2 after 6000 iterations, simulating a small but
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Fig. 1. Left: landscape with many paths leading to the global optimum on the cylinder.
Right: prob. GA w/recombination rate pr does not get extinct during optimization.
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significant change in the environment. Populations that exclusively focus on
climbing narrow paths will go extinct when the dynamic change of the fitness
landscape occurs; populations not too close to the edge of the wide path will
survive.

We plot the ratio of populations going extinct before reaching the top y-
value, in dependence on the crossover rate pr (Fig. 1, right). As we can see, with
growing crossover rate, it is more and more likely that a population survives and
reaches the optimum, due to choosing the wide path to walk up instead of the
narrow paths. In particular, an asexually reproducing population will go extinct
with high probability, while a population employing crossover in every iteration
will go extinct with only very low probability.

2 Preliminaries

We now turn to a more formal analysis in order to prove rigorous statements
about how robustness can evolve using recombination. Our aim is to construct
a pseudo-Boolean function f : {0, 1}n → R that is structurally similar to the
landscape in Fig. 1, but is somewhat easier to work with mathematically. In
particular, we want to define a function that has a set of solutions corresponding
to a “wide path”, on which each level has an exponential number of solutions,
and a collection of sets corresponding to “narrow paths” where there is only a
small plateau (each fitness level has only a polynomial number of solutions). We
also require the fitness values of the wide path to have a gradual slope, whereas
the fitness values of narrow paths have a sharper slope.

Let n = 2k for some k ∈ N. We partition a bitstring x ∈ {0, 1}n into three
consecutive segments of length k, length n/2, and length (n/2 − k).

x1 . . . xk
︸ ︷︷ ︸

first segment

xk+1 . . . xk+n/2
︸ ︷︷ ︸

second segment

xk+n/2+1 . . . xn
︸ ︷︷ ︸

third segment

.

Denote [x]1 = (x1x2 · · · xk) as the length-k string corresponding to the first
segment substring of x. Similarly, [x]2 and [x]3 are the length-n/2 and length-
(n/2 − k) strings formed from the second and third segments of x.

We say that a bit string is on the wide path iff the first segment is all 0s. We
fix a set H = {h1, h2, . . . , hn/2} of n/2 unique bit strings of length n/2. We say a
bitstring is on a narrow path if (1) it contains at least log k 1s in the first segment,
and (2) the substring in its second segment belongs to H. The first condition
ensures adequate separation from the wide path; the second condition defines a
collection of subspaces of {0, 1}n that contain each narrow path. Formally, we
define the set W of wide-path solutions as W = {x ∈ {0, 1}n : x1 = · · · = xk = 0}
and the set N of narrow-path solutions as N = {x ∈ {0, 1}n : x1 + · · · + xk ≥
log k ∧ [x]2 ∈ H}. Each narrow path is associated with a unique hi ∈ H.

To provide a concrete definition of the set H of narrow path keys, we employ
the concept of Hadamard codes [1]. Our motivation is that Hadamard codes
provide a clean way of ensuring the narrow paths are sufficiently distant from
one another, while simplifying many of the proofs.
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A Hadamard code is an error-correcting linear code over binary strings.
For our setting, we consider the set of dimension k − 1 Hadamard codes
of length 2k−1 = n/2. To construct this code, we define the inner product
between two length k − 1 bitstrings x and y as 〈x, y〉 =

∑k−1
i=1 xiyi (mod 2). Let

σ : {1, . . . , 2k−1} → {0, 1}k−1 be a bijection. Then, for each i ∈ {1, . . . , 2k−1},
the i-th codeword is the string hi ∈ {0, 1}2k−1

such that hij = 〈σ(i), σ(j)〉 for
all j ∈ {1, . . . , 2k−1}. There are hence 2k−1 = n/2 unique codewords of length
n/2 and we set H = {hi | i ∈ {1, . . . , 2k−1}}. We explicitly rely on the minimum
distance property of a dimension k − 1 Hadamard code: each pair of distinct
codewords is separated by Hamming distance at least 2k−1/2.

We define a pseudo-Boolean fitness function f in such a way so that there is
a steeper fitness gradient on the narrow paths. Let c > 1 be a constant.

f(x) =

⎧

⎪
⎨

⎪
⎩

LeadingOnes([x]3), x ∈ W;
cLeadingOnes([x]3), x ∈ N ;
−∞, otherwise.

(1)

Here LeadingOnes(x) :=
∑n

i=1

∏i
j=1 xj counts the number of leading ones of

its argument. We say an individual is non-viable if its fitness is negative infinity.
Such an individual corresponds to an infeasible solution.

The uniform crossover of two individuals on the wide path always results
in an individual on the wide path (with fitness at least the minimal of the two
parent fitnesses). On the other hand, uniform crossover of two individuals on
separate narrow paths will very likely be non-viable, as we now see.

Lemma 1. Let x, y ∈ H ⊆ {0, 1}n/2 such that x 
= y. Define 0 < ε < 1 to be an
arbitrary constant. Then with probability 1 − 2−Ω(n), the offspring produced by
uniform crossover of x and y is at distance at least nε from any string in H.

Proof. Let z ∈ H ⊆ {0, 1}n/2 be an arbitrary length n/2 Hadamard code. Let
Br(z) ⊆ {0, 1}n/2 denote the ball of radius r < n/4 around z. By the properties
of the dimension k − 1 Hadamard code, each codeword has minimum distance
2k−1/2 to any other codeword and thus d(x, y) ≥ 2k−1/2 = n/4. Therefore, every
element of Br(z) must lie at distance at least max{d(x, z), d(y, z)}− r ≥ n/4− r
from at least one of x or y. Therefore, the probability that crossover produces
an offspring w ∈ Br(z) is at most (1/2)max{d(x,w),d(y,w)} ≤ 2−n/4+r.

We now bound the probability of the offspring of x and y belonging to a set
of solutions that lies within some radius-r ball of any narrow-path solution in
N . Let w ∈ {0, 1}n/2 be the offspring produced by uniform crossover of x and
y. There are |H| = n/2 distinct Hadamard codes, and |Br(z)| ≤ (n/2 + 1)r.
Applying a union bound, the probability that w lies within a ball of radius r
around any Hadamard code z ∈ H is at most

Pr

(

w ∈
⋃

z∈H

Br(z)

)

≤ |H|(n/2 + 1)r2−n/4+r = 2−n/4+O(r log n).

Setting r := nε completes the proof. �
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Lemma 1 implies that crossing over two solutions on distinct narrow paths
is usually fatal: with overwhelming probability, the offspring is non-viable (or it
lies on the wide path) because its narrow-path segment lies sufficiently far from
any Hadamard code. Moreover, it is exponentially unlikely that a subsequent
mutation operation applied to the offspring could repair the damage, since it
would need to flip at least nε bits to get to the nearest narrow path solution.

3 Formal Analysis

We now prove that a high recombination rate favors wide-path solutions dur-
ing evolution, whereas a low recombination rate favors narrow-path solutions.
Individuals that lie on the wide path are robust in the following sense. Let x
be on the wide path and let y be on a narrow path. Consider any perturbation
process that that changes some bits in a string, subject to the constraint that a
constant number of bits change in expectation, and that number is concentrated
around its expectation (e.g., uniform mutation with a Θ(1/n) mutation rate, or
changing Θ(1) bits uniformly at random). If x undergoes this perturbation, it
is non-viable only with probability Θ(k/n) = o(1). On the other hand, such a
mutation on y results in a non-viable solution already with constant probability.
It is therefore easy to see that in a dynamic environment where perturbations
occur during evolution (as with our example in Sect. 1.1), a process following
the wide path will in general be more successful. The result is also interesting in
a static context where the algorithm produces a string robust to changes after
evolution, or in homologous landscapes in which the optimal solution lies only
at the end of the wide path.

3.1 Algorithm

We study a simple population-based evolutionary algorithm equipped with a
recombination rate parameter pr ∈ [0, 1] that dictates the frequency with which
recombination is employed to generate offspring. The (μ + 1) GA (see Algorithm 1)
is a steady-state genetic algorithm that maintains a population of μ elements of
{0, 1}n and uses uniform parent selection and truncation survival selection. In each
iteration, with probability pr two parents are chosen uniformly at random with-
out replacement (this condition is not necessary for the result, but necessary for
a simpler proof). An offspring is then produced by uniform crossover followed by
mutation. Otherwise, with probability 1−pr a single individual is chosen uniformly
at random and an offspring is produced by mutation only. We examine its behavior
at extremal recombination rates pr ∈ {0, 1}.

We construct the initial population P0 by selecting exactly one element uni-
formly at random from each path, hence μ = n/2+1. For each length-n/2 string
z′ ∈ H, we construct a x ∈ {0, 1}n where the [x]1 is drawn uniformly at random
from the set of length-k binary strings with at least log k ones, [x]2 := z′, and
the remaining positions are initialized uniformly at random. For the wide path,
we choose a solution uniformly at random from W by creating a string with the
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Algorithm 1. The (μ + 1) GA with recombination rate pr

for t ← 0 to ∞ do
Select r uniformly at random from [0, 1];
Select {x, y} ⊆ Pt uniformly at random;
if r < pr then x ← UniformCrossover(x,y);
Create z by flipping each bit of x independently with probability 1/n;
Let u ∈ Pt ∪ {z} chosen s.t. ∀v ∈ Pt ∪ {z} : f(u) ≤ f(v);
Pt+1 ← (Pt ∪ {z}) \ {u};

first k bits set to zero, and the remaining string initialized uniformly at random.
Our use of dimension-Ω(log n) Hadamard codes requires a linear population size.
In this paper we leave the effect of different orders of μ as an open question.

Lemma 2. Let P0 be the initial population described above. With probability
1 − e−Ω(n), at least (1 − ε)n/4 narrow-path solutions have zero fitness.

Proof. The third segment of each string in P0 is drawn uniformly at random
and so the number of leading ones is geometrically distributed. The event that
a string has zero fitness occurs independently with probability 1/2. The count
of zero-fitness narrow-path strings in P0 is binomially distributed and a simple
application of Chernoff bounds completes the proof. �

Lemma 3. Let P0 be the initial population described above. Let c > 1 be the
multiplicative constant defined in Eq. (1) and let a > 1 be an arbitrary constant.
With probability 1 − O(n−(a−1)), max{f(x) : x ∈ P0} ≤ ac log n.

Proof. Since the initial fitnesses are geometrically distributed, the probability
that a given leading-ones segment has � leading ones is (1/2)�+1. Taking a union
bound over all μ = n/2 + 1 solutions, the probability that no string has more
than � leading ones is at least 1 − (n/2 + 1)(1/2)�+1.

The claim is proved by setting � = a log n, since the fitness can be no higher
than c multiplied by the number of leading ones in the third segment. �

3.2 No Recombination

We show that mutation-only strategies favor the non-robust narrow-path solu-
tions. We begin by proving it is unlikely that the initial fitness of any wide-path
solution is improved within O(n log1/c n) generations.

Lemma 4. Let P0 be the initial population described above and c > 1 be the
multiplicative constant defined in Eq. (1). Let f0 be the initial fitness of the wide-
path solution in P0. Then with probability 1 − o(1), after an log1/c n steps of the
(μ+1) GA with pr = 0, for any constant a > 1, every wide path solution has
fitness at most f0.



On the Robustness of Evolving Populations 777

Proof. Let E be the event that the number of wide-path solutions after an log1/c n
iterations is strictly less than n/log2n. We first bound the probability of E .

Denote as Ti the waiting time until the number of wide-path solutions
increases, measured from the first generation in which there are i wide-path solu-
tions. To jump to the wide-path from a narrow-path, mutation must flip log log n
bits. This occurs in any generation with probability that vanishes superpolyno-
mially fast, so we assume it does not happen during an log1/c n steps.

Each Ti is geometrically distributed with success probability at most i/μ
since at the very least we must select a wide-path solution for mutation. Let
T be first time there are n/log2n wide-path solutions in the population. Thus,
E(T ) =

∑n/log2n
i=1 E(Ti) ≥ μ

∑n/log2n
i=1 1/i = Θ(n log n). The probability that the

number of wide-path solutions exceeds n/log2n after an log1/c n generations is

Pr(E) = 1 − Pr(T ≤ an log1/c n) ≥ 1 − Pr
(

T ≤ a

log1−1/c n
E(T )

)

= 1 − o(1).

Here we have applied tail bounds on the sum of independent geometric random
variables [4]. Assume there are i wide-path solutions in iteration t < an log1/c n.
Then, under condition E , the probability that the fitness of any wide-path solu-
tion is increased is at most i/(μn) ≤ 2/(n log2 n).

Let F be the event that no wide-path fitness ever increases during an log1/c n
generations. By the law of total probability, Pr(F) ≥ Pr(E) Pr(F | E), so

Pr(F) ≥ Pr(E)
(

1 − 2
n log2 n

)an log1/c n

≥ Pr(E)
(

1 − 2a

log2−1/c n

)

= 1 − o(1),

where we have applied Bernoulli’s inequality. �

Theorem 5. Consider a run of the (μ+1) GA with pr = 0 initialized with P0.
With probability 1 − o(1), there exists a polynomial poly(n) such that for all
t > poly(n) all elements of Pt are on some narrow path.

Proof. We first argue that the fitness of the initial wide-path solution is f0 ≤
log log n with probability 1−o(1). The fitness of this individual depends only on
what position in the leading-ones segment the first zero appears. This value is
distributed geometrically with success probability 1/2. So the probability that
the first zero appears beyond the (log log n)-th position is 1−2− log log n = 1−o(1).

We say a solution x ∈ {0, 1}n is high-fitness if f(x) > f0. We now argue
that there are many high-fitness narrow-path solutions in P0. Each narrow-path
solution is high-fitness if it has more than (1/c) log log n leading ones, because
its fitness is then strictly greater than log log n = f0. Hence, the probability that
an individual narrow-path solution is high-fitness is 2−(1/c) log log n. The initial
n/2 fitness-values are independent, so by Chernoff bounds, for some positive
constant γ > 0, there are at least n/(γ log1/c n) high-fitness solutions with high
probability. For the remainder of the proof, we assume this property holds.

Since an individual in the population can only be replaced by an offspring
with a larger or equal fitness value, the count of high-fitness solutions never
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decreases. Let Xt denote the 0–1 random variable such that Xt = 1 if and only
if a high-fitness solution is cloned in generation t. We have

Pr(Xt = 1) ≥ 1
μ

n

γ log1/c n

(

1 − 1
n

)n

≥ 1

a log1/c n
,

for a > 0 a positive constant. Let S =
∑an log1/c n

t=0 Xt. Obviously, S is a lower
bound on the number of high-fitness solutions in the population after an log1/c n
generations. Thus we have E(S) ≥ n = 2(μ − 1) and by Chernoff bounds,
Pr(S < μ) ≤ e−Ω(n). Hence, with high probability, there are only high-fitness
solutions in the population by generation an log1/c n.

Finally, we can apply Lemma 4 to conclude that with probability 1−o(1), no
wide-path solution was ever improved during the take-over period of high-fitness
solutions. Under these events, no wide-path solution remains in the population.

After this point, a new wide-path solution appears only if a narrow-path solu-
tion is mutated onto the wide path. This requires changing at least log log n bits
in the first segment for which we derive a superpolynomial waiting time w.h.p.
When pr = 0, the algorithm is identical to the (μ+1) EA, which solves leading
ones in polynomial time [12]. Iterations with no viable offspring only slow the
process by a constant factor. After poly(n) steps, all individuals have fitness at
least (n/2 − k) + 1 and so no wide-path solution will ever be accepted. �

3.3 Full Recombination

We now prove that if the recombination rate is one, the (μ + 1) GA favors robust
wide-path solutions. The following lemma states narrow-path solutions are dif-
ficult to create by the crossover operation.

Lemma 6. Consider a run of the (μ+1) GA with pr = 1 initialized as above.
With probability 1 − o(1), no new narrow-path offspring are accepted within n3

generations.

Proof. Let Et denote the event that the first narrow-path offspring is generated
in generation t. We argue that Pr(Et) is sufficiently close to zero for all t ≤ n3.
Consider a generation in which no new narrow-path offspring have been created
yet. There are three possibilities for parent selection: (1) two wide-path solutions
are selected as parents, (2) two narrow-path solutions are selected as parents,
and (3) wide-path solution and a narrow path solution are selected as parents.

In the first case, the result of uniform crossover must lie on the wide-path
since the offspring inherits the entire first segment from both parents. In this
case it is up to mutation alone to move the offspring to a narrow path. However,
since each narrow-path solution must have log log n ones in the first segment,
mutation must flip log log n bits, which only happens with probability o(1).

In the second case, since we assume no new narrow-path solutions have been
produced by generation t, each pair of narrow-path solutions lie on distinct
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paths. By Lemma 1, crossover between any two narrow-path solutions results in
an offspring whose second segment is at least nε-far from any Hadamard code.

For the third case, we can focus on a single Hadamard code, namely h0 = 0n/2,
and then take a union bound over all n/2 codes. We define the Hamming weight
of a binary string to be the number of ones it contains. Let Xt be the minimum
Hamming weight in the second segment over all wide-path solutions at time t. If
a wide-path solution is recombined with the unique narrow-path solution y ∈ N
with [y]2 = h0, then the expected Hamming weight of the offspring is Xt/2. Oth-
erwise, if we cross a wide-path solution with some string z having m > 0 ones in
[z]2, the expected Hamming weight of the offspring is Xt/2+m/2. The probability
of selecting y is 1/μ. It is straight-forward to apply a negative drift argument [8,9]
on the potential log(Xt) to show Xt does not hit zero within n3 generations with
probability at most 1/n4+δ for a constant δ > 0. In total, the probability for the
third case is at most 2/n3+δ.

Therefore, letting p = max0≤t≤n3{Pr(Et)}, the probability that the count
of narrow-path solutions does not increase in the first n3 steps is bounded by
∏n3

t=1 (1 − Pr(Et)) ≥ (1 − p)n3 ≥ 1 − pn3 = 1 − o(1). �

Theorem 7. Starting from the initial population described above, with high
probability, after T = O(n2 log n) iterations of the (μ+1) GA, all elements of
PT are on the wide path and remain there for any polynomial number of steps.

Proof. We show that with probability 1 − o(1) the entire population converges
to the wide path in O(n2 log n) steps. Subsequently, only wide-path solutions
reproduce so we get superpolynomial waiting time for new narrow-path solutions.

Define Wt and Zt to be the count of wide-path solutions and zero-fitness
narrow path solutions in Pt, respectively. We condition on the following set of
events, each holding with high probability: (1) a narrow-path offspring does not
appear within n3 steps (Lemma 6), (2) Z0 ≥ (1 − ε)n/4 (Lemma 2), and (3) the
fitness of any solution in P0 is at most ac log n for constants a, c > 1 (Lemma 3).

We divide a run of the (μ + 1) GA into two phases. The first phase begins at
t = 0 and lasts until there are Ω(n) wide-path solutions in the population. Let
T1 = inf{t ∈ N : Wt > μ/8}. The first phase begins at t = 0 and ends at t = T1.
During this phase, since we assume no narrow-path solutions are spontaneously
created, Wt ≤ μ/8 and Zt ≥ Z0 − μ/8. Moreover, Wt+1 − Wt ≥ 0 for all t ≤ T1.

During this phase, a wide-path solution is chosen as a parent with probability
Wt/μ and the resulting offspring is on the wide path with probability at least
1/(2en). Under this event, Wt+1 = Wt + 1 only if a narrow-path solution is
replaced in the selection phase. Since the fitness of the offspring is at least zero,
the probability that a narrow path solution is selected for deletion is at least
Zt/μ ≥ (3 − 4ε)/8. Thus at each iteration t ≤ T1 in the first phase, we have
E(Wt+1 − Wt | Wt) ≥ Wt(3 − 4ε)/(16μen) = Ω

(

Wt/n2
)

. We can bound the
hitting time of Wt to μ/8 = n/16 using the General Drift Theorem of Lehre and
Witt [6] to get T1 = O(n2 log n) with probability 1 − o(1).

The second phase begins at time T1 + 1. In this phase, Wt ≥ μ/8 so two
wide-path solutions are selected as parents for crossover with probability Ω(1).
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If two wide-path solutions are selected as parents, the result of crossover (before
mutation) must be on the wide path, and must have a fitness at least as high as
the lowest fitness of the parents. With probability at least 1/(en), mutation can
then flip the first zero in the leading-ones segment to improve the fitness of the
offspring by at least 1. This offspring is accepted since it is strictly more fit than
at least one element of Pt (its least fit parent). We call such a result a success.

The probability of a success in each iteration is Ω(1/n) and independent.
After c′μn iterations for an appropriate constant c′ > 0, we have had at least
μ successes in expectation. We call a sequence of μ successes a round. Let m =
min{f(x) : x ∈ PT1+1} ≥ 0 be the minimum fitness in the population at the start
of phase two. After one round, μ offspring have been accepted with fitness at least
m+1 so the minimum fitness in the population after the first round is at least 1.
After 1 + ac log n rounds, the minimum fitness is at least (m + 1) + ac log n >
ac log n. Since no new narrow-path solutions spontaneously appear during this
time, it follows by Lemma 3 that all narrow-path solutions present in the initial
population must have been replaced by wide-path solutions during this phase.

Applying Chernoff bounds to the success count, with probability 1 − e−Ω(n),
each round takes at most (1 + ε)c′μn = O(n2) steps and we conclude all narrow-
path solutions are replaced after O(n2 log n) rounds during the second phase. �
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