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ABSTRACT
We study the behavior of a Max-Min Ant System (MMAS)
on the stochastic single-destination shortest path (SDSP)
problem. Two previous papers already analyzed this setting
for two slightly different MMAS algorithms, where the phe-
romone update fitness-independently rewards edges of the
best-so-far solution.

The first paper showed that, when the best-so-far solu-
tion is not reevaluated and the stochastic nature of the edge
weights is due to noise, the MMAS will find a tree of edges
successfully and efficiently identify a shortest path tree with
minimal noise-free weights. The second paper used reevalu-
ation of the best-so-far solution and showed that the MMAS
finds paths which beat any other path in direct comparisons,
if existent. For both results, for some random variables, this
corresponds to a tree with minimal expected weights.

In this work we analyze a variant of MMAS that works
with fitness-proportional update on stochastic-weight graphs
with arbitrary random edge weights from [0, 1]. For δ such
that any suboptimal path is worse by at least δ than an
optimal path, then, with suitable parameters, the graph will

be optimized after O
(
n3 ln (n/δ)

δ3

)
iterations (in expectation).

In order to prove the above result, the multiplicative and
the variable drift theorem are adapted to continuous search
spaces.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

General Terms
Theory, algorithms

Keywords
Ant colony optimization, stochastic problem, single-
destination shortest path, theory
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1. INTRODUCTION
Ant Colony Optimization (ACO) is a randomized gen-

eral purpose optimization meta heuristic with a very broad
field of application and was first described in Dorigo’s Ph.D.
thesis [6]. ACO is inspired by swarm intelligence exhibited
by ant colonies, where complex behavior emerges from the
simple behavior of individual ants, using pheromones as an
indirect communication mechanism. In particular, the idea
is based on the foraging behavior of ant colonies and de-
velops as well as stores its knowledge in the pheromones.
The paper [22] presents a way of ensuring exploration of the
search space by upper and lower bounds on the pheromones
(resulting in so-called Max-Min Ant Systems, MMAS).

Although the single-destination shortest paths problem is
one of the most natural applications of ACO, it was also
used to solve many other problems, including NP-hard ones
such as the Traveling Salesperson Problem (TSP) [6, 7] and
more [8]. In general, ACO-algorithms are employed when a
solution consists of several components; artificial ants then
construct solutions by choosing components. Pheromone
is added to components which are often contained in good
solutions (as they hopefully carry some responsibility for the
good quality of the solution), while pheromone is evaporated
from others. The magnitude of the pheromone update is
governed by the so-called evaporation factor ρ. Small ρ leads
to a slower but broader search in the search space, usually
resulting in better solutions at the cost of a longer running
time of the algorithm.

On the theoretical side, there is a good number of anal-
yses regarding the behavior of ACO algorithms for about a
decade, starting with early convergence proofs [9,10] to more
recent advances on combinatorial problems like MST [19]
and TSP [16], and pseudo-Boolean functions [17]. Of par-
ticular interest to this paper is the work in [1] on the single-
destination shortest path (SDSP) problem, a problem equiv-
alent to the classical single-source shortest path (SSSP)
problem. The authors of [1] give an elitist MMAS (which we
call MMAS-el, “el” being short for “elitist”) for this problem
and show a good optimization behavior. We are here inter-
ested in a stochastic version of SDSP, and the optimization
behavior of algorithms similar to MMAS-el.

Experiments have shown that in problems involving un-
certainty, ACO algorithms can be particularly successful [2].
The papers [11, 12] give first formal analyses of ACO algo-
rithms in uncertain domains and show convergence to the
desired solutions. The paper [14] picks up on MMAS-el and
gives a rigorous analysis of its performance on the stochastic
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SDSP problem and shows under which conditions optimiza-
tion is successful.

The general setting of [14] was that the stochastic nature
of the path lengths is due to noise. The goal then was to
find the edge with the best noise-less weight. In particular,
from [14] we know that MMAS-el is not necessarily well-
suited for finding solutions that are optimal in expectation,
as the search is guided by the best-so-far solution.

In [4], the MMAS-el algorithm was modified by re-
evaluating the best-so-far solution every iteration to avoid
permanently being mislead by a single exceptionally good
evaluation of a non-optimal solution. The paper shows that,
in this case, the pheromones converge to the solution which
has a better evaluation against any other solution in a direct
comparison more than half of the time; however, such a solu-
tion need not exist, and even if it exists, it is not necessarily
the solution optimal in expectation.

In this work we analyze a different variant of the MMAS-
el, based on fitness proportional pheromone update (we call
this algorithm MMAS-fp), on the stochastic SDSP prob-
lem; this scheme is also used in practice [22]. In difference
to MMAS-el, in each iteration, the newly constructed solu-
tion always gets rewarded, but the amount of pheromone
added depends on the quality of the solution; no best-so-far
solution needs to be stored. This mechanism leads to an
implicit averaging and we prove that (a normalizing variant
of) MMAS-fp finds all shortest paths that are better than
non-optimal paths by at least δ in

O

(
n3 ln (n/δ)

δ3

)
iterations.

This gives a qualitative difference to [14] and [4], where the
algorithms did not favor paths that are good in expectation,
but instead paths either have low weights with reasonable
probability (in [14]) or paths which come out better than
others in direct comparison with probability higher than 0.5
(in [4]). As an illustration, consider the following (multi-)
graph with random variables A, B and C as edge weights.

A

B

C

Consider A to be 0 with probability 0.01 and 200 otherwise;
B to be 1 with probability 0.6 and 100 otherwise; and C
to be always 10. In this setting, MMAS-el as in [14] will
eventually find and converge to the edge with random weight
A, as here a very low weight of 0 is possible. MMAS-el
with re-evaluation as in [4] will converge to the edge with
weight B, as it comes out better than any other edge with
probability at least 0.6. Finally, MMAS-fp will converge to
edge C, the edge best in expectation.

For the mathematical analysis we use the multiplicative
and the variable drift theorem (see [5] and [15, 18], respec-
tively), as well as well as recent improvements [4,21]. But as
these drift theorems require discrete search spaces, we adapt
both formally to continuous domains. This is necessary, as
the pheromones are updated with the random outcome of fit-
ness evaluations, so that uncountably many different phero-
mone values are possible after a single iteration. Our proofs

for these adaptations make use of suitable discretizations of
the search space. Note that the initial drift theorem [13]
did not require finiteness of the search space; similarly, one
version of the multiplicative drift theorem does not require
this [3].

In Section 2 we give our continuous drift theorems; we
define the problem and our algorithms formally in Section 3.
Section 4 gives our results on the performance of MMAS-fp
and Section 5 concludes.

2. DRIFT THEOREM ADAPTATIONS
In this chapter we first adapt the multiplicative drift the-

orem to continuous search spaces, which we will apply in a
first runtime analysis in Section 4. Afterwards we combine
the progress made in [4] and [21] on variable drift theorems
to new such drift theorem, before we show in a second step
that here the restriction to finite state sets is (with a minor
restriction) not necessary either.

2.1 Continuous Multiplicative Drift
If we add the restriction of a finite search space in the

theorem just below (i.e., S finite instead of a bounded inter-
val), we get the known multiplicative drift theorem [5]. In
a somewhat different setting, this theorem has been proven
without use of other drift theorems in [3]; we give another
proof here to exemplify the discretization in this simple case
of the multiplicative drift theorem, so that our later appli-
cation in the proof of Theorem 3 is easier to follow.

Theorem 1. Let S = [smin, smax] ⊆ R+ be a set of posi-
tive numbers with minimum smin and maximum smax. Let
(Xt)t∈N be a sequence of random variables over S∪{0}. Let
T be the random variable denoting the first point in time
t ∈ N for which Xt = 0. Suppose that there exists a con-
stant δ > 0 such that, for all t and closed intervals I ⊆ S
with P (Xt ∈ I) > 0,

E(Xt −Xt+1 | Xt ∈ I) ≥ δmin(I).

Then, for all closed intervals I0 ⊆ S with P (X0 ∈ I0) > 0,
we have

E(T | X0 ∈ I0) ≤ 1 + ln (max(I0)/smin)

δ
.

Proof. Let ε ∈ R such that 0 < ε ≤ min(δ/4, δs/8). We
define a function f discretizing our search space as follows.
For all x, we let

f(x) = min
(⌈x

ε

⌉
ε, smax

)
.

We let S′ = {f(x) | x ∈ S} be our discretized search space.
As |S′| ≤ smax/ε, S

′ ⊆ S is a finite set of positive numbers.
Note that, for all x with smin ≤ x ≤ smax, we have |f(x)−
x| ≤ ε; furthermore, since only 0 is mapped to 0, and 0 is the
only pre-image of 0, we have that T is the random variable
denoting the first point in time t ∈ N for which f(Xt) = 0.
We want to apply the multiplicative drift theorem from [5]
to the sequence of random variables

(
f(Xt)

)
t∈N. For all
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s ∈ S′, we have

E
(
f
(
Xt)− f(Xt+1) | f(Xt) = s

)
≥ E

(
f
(
Xt)− f(Xt+1) | s− ε < Xt ≤ s

)
≥ E(Xt −Xt+1 | s− ε < Xt ≤ s)− 2ε

≥ δ (s− ε)− 2ε

≥ sδ (1− ε/δ − 2ε/(sδ)) .

From the condition on ε we know that this bound is positive.
Let I0 ⊆ S be a closed interval with P (X0 ∈ I0) > 0; thus,
there is s0 ≤ max(I0) such that P (f(X0) = f(s0)) > 0.
Hence, we get

E(T | X0 ∈ I0) ≤ E(T | f
(
X0) ≤ f(max(I0)))

≤ 1 + ln ((max(I0) + ε) /smin)

δ (1− 1/k − δ/k)

from the multiplicative drift theorem [5]. For every ε as
above, we have that b(ε) := E(T |f(X0)) is an upper bound
on E(T |X0). Thus, limε→0 b(ε) is also an upper bound on
E(T |X0), because for every z > limε→0 b(ε) an ε′ can be
found such that z > b(ε′). Thus,

E(T |X0 ∈ I0) ≤ lim
ε→0

b(ε) =
1 + ln (max(I0)/smin)

δ
.

This shows the claim.

2.2 Continuous Variable Drift
The variable drift theorem presented in [15] was improved

in two independent ways, once in [4] (allowing for non-
monotone drift functions) and in [21] (allowing for non-
differentiable drift functions).

It is easy to see that the proofs of these two drift theorems
can be combined to get the combined result as follows.

Theorem 2. Let (Xt)t≥0 be a sequence of random vari-

ables over a finite state space 0 ∈ S ⊆ R+
0 and let smin :=

min{x ∈ S|x > 0}. Furthermore, let T be the random
variable denoting the first point in time t ∈ N for which
Xt = 0. Suppose that there exist c ≥ 1, d > 0 and a function
h : R+ → R+ such that the function 1

h(x)
is integrable on

[smin, smax] and• for all t < T , E(Xt −Xt+1 | Xt) ≥ h(Xt);

• for all t < T , P (|Xt −Xt+1| ≤ d) = 1; and

• for all x < y with y − x ≤ d, we have h(x) ≤ c h(y).
Then

E(T | X0) ≤ c

(
smin

h(smin)
+

∫ X0

smin

1

h(x)
dx

)
.

For d = smax and c = 1, Theorem 2 yields and demands
as much as the theorem presented in [21]. A proof of this
theorem can be found in the appendix.

We can now adapt this variable drift theorem to one with
continuous search spaces much like in Theorem 1 for the case
of multiplicative drift, using the same proof idea. However,
we will need to add the restriction of h being continuous.

Theorem 3. Let (Xt)t≥0 be a sequence of random vari-

ables over a state space S = [smin, smax] ∪ 0 ⊆ R+
0 and let

smin > 0. Furthermore, let T be the random variable denot-
ing the first point in time t ∈ N for which Xt = 0. Suppose
that there exist c ≥ 1, d, δ > 0 and a h : R+ → R+ continu-
ous such that the function 1

h(x)
is integrable on [smin, smax]

and, for all t < T and closed intervals I ⊆ S with P (Xt ∈
I),

• E(Xt −Xt+1|Xt ∈ I) ≥ infx∈I h(x);

• P (|Xt −Xt+1| ≤ d− δ) = 1; and

• for all x < y with y − x ≤ d, we have h(x) ≤ c h(y).
Then, for all intervals I0 with P (X0 ∈ I0) > 0,

E(T | X0 ∈ I0) ≤ c

(
smin

h(smin)
+

∫ max(I0)

smin

1

h(x)
dx

)
.

Proof. Let hmin = infs∈[smin,smax] h(s); elementary
analysis shows hmin 6= 0. For all ε such that

0 < ε < min{hmin/4, d/2, δ/2}

we define f such that, for all x ≥ 0,

f(x) = max
(⌊x

ε

⌋
ε, smin

)
,

just as in the proof of Theorem 1. Let S′ = {0}∪{f(s) | s ∈
S}. Clearly, S′ is a finite set of positive numbers. For all
x > smin we have |f(x) − x| ≤ ε and f(smin) = smin.
We define a function h′ : R+ → R+, such that, for all x,
h′(x) = infx≤s<x+ε h(s)− 2ε, and c′ := c(1 + 2ε

hmin−2ε
). We

have, for all t < T and x ∈ S′,

E(f(Xt)− f(Xt+1) | f(Xt) = x)

≥ E(Xt −Xt+1 − 2ε | x ≤ Xt < x+ ε)

≥ E(Xt −Xt+1 | x ≤ Xt < x+ ε)− 2ε

≥ inf
x≤s<x+ε

h(s)− 2ε = h′(x)

and

P (f(Xt)− f(Xt+1) ≤ d) ≥ P (Xt −Xt+1 + 2ε ≤ d)

= P (Xt −Xt+1 ≤ d− 2ε)

≥ P (Xt −Xt+1 ≤ d− δ) = 1.

For all z, let h̄(z) = infz≤s<z+ε h(s). We have, for all
x < y with y − x ≤ d, using hmin ≤ h̄(y), we have

c′h′(y) = c

(
1 +

2ε

hmin − 2ε

)(
h̄(y)− 2ε

)
≥ c

(
1 +

2ε

h̄(y)− 2ε

)(
h̄(y)− 2ε

)
= ch̄(y)

≥ ch̄(y)− 2ε

≥ h̄(x)− 2ε

= h′(x).

Thus, we can apply Theorem 2 to the sequence of random
variables (f(Xt))t∈N. Thus, for all closed intervals I0 ⊆ S

with P (Xt ∈ I0) we have

E(T | X0 ∈ I0) ≤ E(T | f(X0) ≤ max(I0))

≤ c′
(

f(smin)

h′(f(smin))
+

∫ max(I0)

f(smin)

1

h′(x)
dx

)

≤ c′
(

smin

h̄(smin)− 2ε
+

∫ max(I0)

smin

1

h̄(x)− 2ε
dx

)
.

As above, we can choose ε arbitrarily small, so that c′ con-
verges to 1 and, for all x, h′(x) converges to h(x). As in
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Theorem 1, we can take the infimum of all upper bounds as
an upper bound, leading to

E(T | X0 ∈ I0) ≤ c

(
smin

h(smin)
+

∫ max(I0)

smin

1

h(x)
dx

)
.

This shows the claim.

Finally, we will use a simplified continuous version of the
drift theorem concerned with negative drift from [20]; note
that the given proof makes no particular use of the require-
ment of finiteness of the search space, so that we state the
following theorem without this condition.

Theorem 4. Let (Xt)t≥0 be a sequence of random vari-

ables over a state space S = [smin, smax] ⊆ R. Furthermore,
let T be the random variable denoting the first point in time
t ∈ N for which Xt = smin. Suppose that there is a minimal
drift ε > 0 and a maximal step size δ such that, for all t < T
and closed intervals I ⊆ S with P (Xt ∈ I),

• E(Xt −Xt+1|Xt ∈ I) ≥ ε; and

• P (Xt −Xt+1 ≤ δ) = 1.

Let ` = (smax − smin)/δ. Then there is a constant c > 0
such that

P (T ≤ 2c`) = 2−Ω(`).

This follows from [20, Theorem 4] by rescaling the search
space by a factor of 1/δ. The second condition is here simpli-
fied: instead of requiring the probability to jump a distance
of d to be inverse exponentially related to d, we just require
that the probability of large jumps is 0.

3. THE ACO ALGORITHMS
In this section we first formally introduce the single-

destination shortest path (SDSP) problem. Afterwards the
two algorithms which we will analyze in Section 4 are pre-
sented in detail.

3.1 Problem Definition
The single-source shortest path problem is one of the

most-studied problems in computer science. Given a
weighted graph (V,E,w), the goal is to find a shortest path
from a given source-vertex to every other vertex in the graph.
In this work, we analyze the single-destination shortest path
problem. Here, from every vertex in the graph, a shortest
path has to be found to a single destination vertex. Both
problems are equivalent, because one provides the optimal
solution for the other if the direction of all edges are reverted.
For the sake of simplicity we only deal with weakly con-
nected directed acyclic graphs (DAGs) with a unique sink.
This ensures that there is a path from every vertex to the
sink, which we regard as the destination vertex.

To model the stochastic SDSP, we exchange the determin-
istic weights w of a graph with random variables X. Each
edge e now carries a random variable Xe ∈ [0, 1] that serves
as stochastic weight. The deterministic version of SDSP is
a special case of the stochastic SDSP, in which all random
variables have variance zero.

Definition 5. Let (V,E) be a DAG (we allow for mul-
tiple parallel edges). Assume that there is a unique sink

(a vertex without outgoing edges). For each edge e ∈ E,
let Xe ∈ [0, 1] be a random variable describing the stochas-
tic length of e. We denote by X = (Xe)e∈E the family of
all these. For any (directed) path p consisting of the edges
Ep ⊆ E, we let Xp =

∑
e∈Ep Xe be the (random) length of

the path p.
If, for each path p in G, Xp is a random variable in [0, 1],

then the triple G = (V,E,X) is called graph with (bounded)
stochastic edge weights or simply a stochastic-weight graph.

Note that, in a DAG with a unique sink, the sink is reachable
from every other vertex. Furthermore, every graph where
edge weights are random according to bounded distributions
can be scaled and shifted to be a stochastic-weight graph
in the sense defined above without changing the (expected)
shortest path tree of this “normalized” instance (but with
changes to the behavior of the algorithms in this paper);
that is, if all random weights are in the interval [a, b] (with
a < b), then mapping all weights with

x 7→ x− a
b− a

will lead to such normalized weights.

3.2 MMAS-fp
MMAS-fp is very similar to the ACO-algorithms for SDSP

given in [1,4,14]; the key difference is the fitness proportional
pheromone update, instead of pheromone update based on
the best-so-far solution. The MMAS starts with a homo-
geneous pheromone distribution on the edges of the graph,
and then iteratively updates this distribution. Every itera-
tion, from each vertex of the graph (other than the sink) an
artificial ant performs a random walk over the graph until
it hits the sink, and then updates the pheromones on the
edges outgoing from its start vertex. Note that, in contrast
to many applications, only one ant (per vertex) is used, as
opposed to sending out several ants and then (for example)
choosing only the best to make an update.

The complete MMAS-fp algorithm is described in Algo-
rithm 1 and uses other definitions from this section.

Algorithm 1 MMAS-fp

1: Parameters: ρ, τmin;
2: Input: DAG G = (V,E);
3: initialize pheromones τ
4: while termination criterion not met do
5: for u ∈ V in parallel do
6: construct simple path pu from u to sink w.r.t. τ ;
7: w ← evaluate(pu);
8: Eu ← {(u, v) ∈ E | v ∈ V };
9: for e ∈ Eu do

10: if e first edge in pu then
11: τ(e)← max((1− ρ)τ(e) + ρ(1− w)), τmin);
12: else
13: τ(e)← max((1− ρ)τ(e), τmin);
14: return τ ;

Path construction.
An ant constructs a path as follows. If the ant is cur-

rently in vertex v after walking the path p and v is not the
sink, it randomly chooses one of the edges leaving v. The
pheromones are stored in a function τ : E → R+. We let Ev
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be the set of edges leaving v, and we let the probability of
choosing edge e ∈ Ev be exactly

P (“choose edge e ”) =
τ(e)∑

e′∈Ev τ(e′)
.

Afterwards the ant traverses the chosen edge, adds its new
position to the path p and further builds its path from there.
Algorithm 2 specifies the path construction. At the begin-
ning, the pheromone values of all edges coming from a ver-
tex of out-degree m are initialized with 1/m to make every
choice equally probable. Note that, since we will only be
dealing with DAGs, the path construction does not have to
consider loops.

Algorithm 2 Path Construction

1: Input: DAG G = (V,E), start vertex u, pheromones τ ;
2: i← 0, v0 ← u;
3: V1 ← {p ∈ V |(v0, v) ∈ E};
4: while Vi+1 6= ∅ do
5: i← i+ 1
6: choose vi ∈ Vi proportional to τ(vi−1, vi);
7: Vi+1 ← {v ∈ V |(vi, v) ∈ E};
8: return (v0, . . . , vi)

Pheromone Update.
After all ants have finished constructing their paths, the

pheromones are updated; each ant starting from a vertex v,
updates all and only the edges leaving v. To get a Max-
Min Ant System, we ensure that no pheromone value drops
below a predefined threshold τmin. An explicit upper bound
for the pheromones is not needed, because every edge loses
a factor of ρ of its pheromones and can gain at most ρ, such
that the highest value the pheromones can reach is 1.

For a given vertex v, let ev be the edge that the ant start-
ing at v chose as the first edge, and let w be the (randomly
evaluated) length of its path; then, for each edge e outgoing
from v, the new pheromone on e is

τ ′(e) =

{
max((1− ρ)τ(e) + ρ(1− w), τmin), if e = ev;

max((1− ρ)τ(e), τmin), otherwise.

In particular, all edges evaporate some pheromone, and only
the chosen edge gets rewarded, with a higher amount of
pheromone the shorter the path is.

3.3 MMAS-fp with Normalization
A problem with MMAS-fp is that, for low average val-

ues of the random variables, all pheromone values more or
less approach the lower pheromone border, which makes the
influence of the value of τmin too strong.

Thus, we introduce the a variant of MMAS-fp, called
MMAS-fp-norm, which performs a normalization of the phe-
romone values at the end of each iteration (see Algorithm 3).

As we will see, for this variant of MMAS-fp we get tighter
bounds on the optimization time.

4. RUNTIME ANALYSIS
In this section we analyze the algorithms from Section 3 on

the stochastic SDSP. We start with an analysis of m-parallel
links, multigraphs representing simple decision points for the
algorithm. Afterwards, we use the results of the analysis

Algorithm 3 MMAS-fp-norm

1: Parameters: ρ, τmin;
2: Input: DAG G = (V,E);
3: initialize pheromones τ
4: while termination criterion not met do
5: for u ∈ V in parallel do
6: construct simple path pu from u to sink w.r.t. τ ;
7: w ← evaluate(pu);
8: Eu ← {(u, v) ∈ E | v ∈ V };
9: for e ∈ Eu do

10: if e first edge in pu then
11: τ(e)← max((1− ρ)τ(e) + ρ(1− w)), τmin);
12: else
13: τ(e)← max((1− ρ)τ(e), τmin);
14: r =

∑
e∈Eu τ(e);

15: for e ∈ Eu do
16: τ(e)← τ(e)/r;
17: return τ ;

for parallel links to give an upper bound on the expected
running time of the algorithm on arbitrary graphs. But first
we give some definitions.

If an edge e was constantly reinforced, its pheromone value
τ would still not increase arbitrarily high, but converge to a
point where the reinforcement and the loss of the evapora-
tion cancel out. The closer τ gets to this point, the smaller
is its expected gain. At the same time, other edges can be at
τmin and will therefore not lose any more pheromone. This
motivates the following definition, which we will use as our
optimization goal.

Definition 6. Let v be a vertex in a stochastic-weight
graph (V,E,X). We call v β-optimized iff the probability of
choosing the first edge on an optimal path from v to the sink
is at least (1 − β). We call a graph β-optimized iff all its
vertices are β-optimized.

Of course two edges with random variables that have al-
most identical expected value will be hard to tell apart and
the relation between the pheromones on those edges will
change only very slowly. The difference in the expected value
of the random variables between the optimal edge(s) and the
others will be an important measurement for the difficulty
of the problem, which motivates the following definition.

Definition 7. Let v be a vertex of degree m in a
stochastic-weight graph (V,E,X). For every outgoing edge
ei of v let `i denote the expected length of the shortest path
from v to the sink using ei. Without loss of generality we
assume that `i ≤ `i+1 for all 1 ≤ i ≤ n− 1. We call the ver-
tex v δ-different iff, for all i with 2 ≤ i ≤ n, we have either
`i = `1 or `i−`1 ≥ δ. We call the vertex v strictly δ-different
iff, for all i with 2 ≤ i ≤ n, we have that `i−`1 ≥ δ. We call
a graph (strictly) δ-different iff all its vertices are (strictly)
δ-different.

4.1 MMAS-fp on Parallel Links
We start our analysis with a simple case in which the ants

will make only a single decision with m alternatives. A sim-
ple mathematical model for this is a graph with only two
vertices, one of them the sink, and multiple parallel links
towards the sink. An m-parallel link is a directed multi-
graph with two vertices and m edges e1, e2, . . . em from one
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vertex to the sink; every edge represents one alternative.
The following diagram illustrates this graph.

...

e1

e2

em

In this case, MMAS-fp simplifies a lot, as only one ant
constructs a solution in every iteration, and each path con-
structions consists only of a single choice. This will allow
us to make an easier mathematical analysis; later, we will
reduce the case of general graphs to multiple applications of
our findings for parallel links.

The crucial step in analyzing an algorithm with a drift
theorem lies in finding a suitable potential function. At all
times the potential has to decrease in expectation, for the
Multiplicative Drift Theorem by at least a constant factor.
Also, all states of potential 0 must be optimal states.

In every iteration, we denote with τ the pheromone of the
optimal edge emax, and with r the sum of the pheromone on
the edges. For further analysis, we choose φ = 1 − τ/r as
the potential. As τ ≤ r, the potential lies always between
zero and one. When the potential is very small, then we
know that the probability of choosing the optimal edge is
very high, namely 1− φ = τ/r.

As in many other analyses of ACO systems, it is interest-
ing to see that the total pheromone r behaves very similar
to the pheromones on a single edge. In particular, it loses
a factor of ρ of its pheromones in every iteration as well
and gets reinforced with a random variable between 0 and
1 times ρ, that is built out of the random variables of the
single edges and their probability to be chosen. But as it
can never get reinforced with a value grater than ρ and also
ρ of its pheromones evaporate, r is bounded from above, as
the next lemma proves.

Lemma 8. Let (V,E,X) m-parallel link; let the evapora-
tion factor ρ be 0 < ρ < 0.5, and τmin ≤ 1/m. Then,
after every iteration of MMAS-fp, we have r ≤ 2 and
r(1− ρ) + τminmρ+ ρ ≤ 2.

Proof. We prove the statement by induction over the
number of the iterations. We denote with rt the total phero-
mone after t iterations. For the induction base, r0 ≤ 2 comes
directly from the choice of 1/m for the initial pheromone
values. For the induction step we have that

rt+1 ≤ rt (1− ρ) + τminmρ+ ρ ≤ rt − rtρ+ ρ+ ρ,

as every Xe can evaluate only to numbers smaller 1 and
mτmin ≤ 1. Now we use the induction hypothesis and get

rt+1 ≤ rt(1− ρ) + ρ+ ρ ≤ 2(1− ρ) + ρ+ ρ ≤ 2

as desired.

Equipped with these tools we can now formally prove an
upper bound on the expected number of iterations that are
needed to β-optimize a strictly δ-different m-parallel link.

Theorem 9. Let G = (V,E,X) be a strictly δ-different
m-parallel link. Let β, ρ and τmin be such that 0 < β < 0.5,
0 < ρ ≤ βδ

8
and τmin ≤ ρ/m. Then, after in expectation

O

(
ln (1/β)

δρτmin

)

iterations of MMAS-fp, G is β-optimized.

Proof. We let emax be the (unique) optimal edge and let
x = 1 − E(Xemax). For all t ∈ N, let τ t be the pheromone
on emax and rt be the total pheromone in iteration t; fur-

thermore, let Y t =
(

1− τt

rt

)
for 1− τt

rt
≥ β and 0 else. Let

T be the random variable describing the first point in time
t such that Y t < β. Then, for all t < T , we have

E
(
∆tY

)
:= E

(
Y t − Y t+1 | Y t = 1− τ t

rt

)
=

(
1− τ t

rt

)
− E

(
1− τ t+1

rt+1

)
= E

(
τ t+1

rt+1

)
− τ t

rt

Fix any t < T and let τ = τ t, r = rt and ∆Y = ∆tY . Be-
cause in the worst case m edges can be at τmin and thus not
lose any pheromones and with P (“emax gets selected”) = τ

r
we have

E

(
τ t+1

rt+1

)
≥ τ

r

τ (1− ρ) + ρx

(r −mτmin) (1− ρ) +mτmin + ρx

+
(

1− τ

r

) τ (1− ρ)

(r −mτmin) (1− ρ) +mτmin + ρ(x− δ) .

To enhance readability let A := r (1− ρ)+ρx+ρτminm−ρδ;
with some straightforward manipulations, we get

E (∆Y ) ≥ −τ
r

+
τ

r

τ (1− ρ) + ρx

A+ ρδ
+
(

1− τ

r

) τ (1− ρ)

A

= τ
ρδ
(
1− τ

r

)
(1− ρ)− Aρτminm

r

A (A+ ρδ)
.

Because of Lemma 8 we know A+ρδ ≤ 2 and with ρx−ρδ <
ρ and r ≥ τminm we have

E (∆Y ) ≥ τ

4

(
ρδ
(

1− τ

r

)
(1− ρ)− 2ρ

)
.

As ρ < 0.5:

E (∆Y ) ≥ τρ

4

((
1− τ

r

)
0.5δ − 2ρ

)
.

From ρ ≤ βδ
8

and
(
1− τ

r

)
≥ β we get ρ <

(1− τ
r )δ

8
, and we

get 2ρ <
(
1− τ

r

)
δ/4 and thus(

1− τ

r

)
0.5δ − 2ρ ≥ 0.25

(
1− τ

r

)
δ.

So we have

E (∆Y ) ≥ τ

32

(
1− τ

r

)
ρδ ≥

(
1− τ

r

) τminρδ

32
≥ Y t τminρδ

32
.

We have τ0 = 1
m

, so Y 0 =
(
1− 1

m

)
and once Y t < β,

the optimization process is finished. Now we can apply the
continuous multiplicative drift theorem on the the random
variables Y t, which gives

E(T ) = O

(
ln (1/β)

δρτmin

)
.

This finishes the proof.

If we choose ρ = Θ (βδ) and τmin = Θ (ρ/m) we get an

optimization time of O
(
m ln (1/β)

β2δ3

)
.

70



4.2 MMAS-fp-norm on Parallel Links
Now we turn to the analysis of MMAS-fp with normaliza-

tion. In this case, the total pheromone is always 1, so we
use as potential 1− τ , with τ the pheromone on the optimal
edge.

Let G = (V,E,X) be a strictly δ-different m-parallel link.
For all t ∈ N, let τ t be the pheromones in the t-th iteration
of the MMAS-fp-norm Algorithm and let Y t = (1− τ t) and
∆tY = Y t−Y t+1. Let T be the random variable describing
the first time when Y t ≤ β.

As the drift function we use

h : R+ → R+, x→ min(x, (1− x))
δρ

9
.

Intuitively, we can show a small drift if only very little phe-
romone is on the desired edge (as this edge is chosen in-
frequently) and similarly, only a small edge when already
a lot of pheromone is present (as the update rule, in this
case, makes only very small updates); for medium amounts
of pheromone we can expect the best drift. In the following
we will prove all three conditions that are needed for the
Continuous Variable Drift Theorem separately. Afterwards,
we put everything together in the proof of Theorem 13.

We start with condition one, which requires that for every
possible potential, the drift-function h gives a lower bound
on the drift expected if given a state with that potential.

Lemma 10. Let β, τmin and ρ be such that 0 < β < 0.5,
0 < τmin ≤ βδ

2m
and 0 < ρ ≤ 0.5. Then, for all t < T ,

E
(
∆tY | Y t = 1− τ

)
≥ h

(
Y t
)
.

Proof. Let emax be the optimal edge. With x we denote
1 − E(Xemax). Let t ∈ N with Y t > β, let τ := τ t and
∆Y = ∆tY . Then

E (∆Y ) = (1− τ)− E
(
1− τ t+1 | Y t = 1− τ

)
= E

(
τ t+1 | Y t = 1− τ

)
− τ.

In the following we denote τ ′ as the pheromone on emax

before the normalization and r′ as the sum of all pheromones

at the same time, such that τ t+1 = τ ′

r′ . As, in the worst case,
m edges can be at τmin and thus not lose any pheromones
and with P (“emax gets selected”) = τ we have

E(τ t+1) ≥ τ τ (1− ρ) + ρx

(1−mτmin) (1− ρ) +mτmin + ρx

+ (1− τ)
τ (1− ρ)

(r −mτmin) (1− ρ) +mτmin + (ρx− ρδ)

To enhance readability, we let A = (1− ρ)+ρx+ρτminm−
ρδ. Then we have

E (∆Y ) ≥ −τ + τ
τ (1− ρ) + ρx

A+ ρδ
+ (1− τ)

τ (1− ρ)

A

=
ρδ (1− τ) τ (1− ρ)− τA (A+ ρδ)

A (A+ ρδ)

+
Aτ (τ (1− ρ) + ρx) +A (1− τ) τ (1− ρ)

A (A+ ρδ)
.

Because in every iteration r′ can only gain at most ρ, we
have that A + ρδ ≤ r′max ≤ 1 + ρ and thus A(A + ρδ) ≤

(1 + ρ)2.

E (∆Y ) ≥ τ

(1 + ρ)2

(
ρδ (1− τ) (1− ρ) +

A (−A− ρδ + τ (1− ρ) + ρx+ (1− τ) (1− ρ))
)

=
τ

(1 + ρ)2
(ρδ (1− τ) (1− ρ)−A (ρτminm))

Because in every iteration r′ can only lose at most ρ, we
have that A ≥ r′min ≥ 1− ρ and thus

E (∆Y ) ≥ τρ(1− ρ)

(1 + ρ)2
(δ(1− τ)− τminm)

From τmin ≤ βδ
2m

we get that τminm ≤ βδ
2

. As (1 − τ) ≥ β

we have δ(1− τ)− τminm ≥ δ(1−τ)
2

and

E (∆Y ) ≥ τ(1− τ)δρ
(1− ρ)

2(1 + ρ)2
.

As 0 < ρ < 0.5 we have

E (∆Y ) ≥ τ(1− τ)
δρ

9
≥ h(1− τ) = h(Y t)

as desired.

The following lemma deals with the second condition of
the Theorem 1. It gives an upper bound on how much the
potential function can change in one step. The main ar-
gument is that τ can only change by ρ at most, because it
either loses a factor ρ of its current value, which is never big-
ger than 1, or it gains ρXemax with Xemax being at most 1.

Lemma 11. Let 0 < ρ < 0.5. For all t < T we have

P (|Y t − Y t+1| < 4ρ) = 1.

Proof. Let t < T , τmin ≤ τ t ≤ (1−β) and τ := τ t. In the
following we denote τ ′ as the pheromone on the optimal edge
before the normalization and r′ as the sum of all pheromones

at the same time such that τ t+1 = τ ′

r′ . If τ t+1 > τ t then

|(1− τ)− (1− τ t+1)| ≤ τ ′

r′
− τ ≤ τ + ρ

1− ρ − τ < 4ρ

and if τ t+1 ≤ τ t

|(1− τ)− (1− τ t+1)| ≤ τ − τ ′

r′
≤ τ − τ(1− ρ)

1 + ρ
< 4ρ.

This finishes the proof.

With the following lemma we give a factor by which the
drift function may decrease at most in one step for increasing
potential.

Lemma 12. For all x, y ∈ R+ with τmin ≤ x < y ≤ 1 −
τmin and y − x ≤ 4ρ, we have h(x) ≤

(
1 + 4ρ

τmin

)
h(y).

Proof. For y ≤ 0.5 we have h(y) = y ρδ
9

, which is
monotonous and therefore we have h(x) ≤ ch(y) for every
c ≥ 1. For y ≥ 0.5 we have h(y) = (1− y)k, with k = δρ/9.
We have

h(x)

h(y)
=

1− x
1− y ≤

1− y + 4ρ

1− y ≤ 1 +
4ρ

τmin

as desired.
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Now we put the pieces together and apply the variable
drift theorem, which will give us the desired upper bound
on the runtime of MMAS-fp-norm on parallel links.

Theorem 13. Let β, τmin and ρ be such that 0 < β < 0.5,
0 < τmin ≤ βδ

2m
and 0 < ρ ≤ 0.5. Then, after in expectation

O

(
ln(1/(τminβ))

δmin(ρ, τmin)

)
iterations of MMAS-fp-norm, the strictly δ-different m-
parallel link G is β-optimized.

Proof. For all t ∈ N, we change Y t to 0 if τ < β (this
can only increase drift). Lemmas 10 to 12 show that with
d = 4ρ and c = 1+ 4ρ

τmin
for h all conditions of the continuous

variable drift theorem are fulfilled. Thus, we get

E(T | Y0) ≤ c
(

smin

h(smin)
+

∫ Y0

smin

1

h(x)
dx

)
= c

(
β

βρδ/9
+

∫ 1−τmin

β

1

h(x)
dx

)
= c

9

ρδ

(
1 +

∫ 0.5

β

1

x
dx+

∫ 1−τmin

0.5

1

1− xdx
)
.

This equals

c
9

ρδ

(
1 +

∫ 0.5

β

1

x
dx+

∫ 0.5

τmin

1

y
dy

)
=

(
1 +

4ρ

τmin

)
9

ρδ

(
1 + 2 ln 0.5− ln(τmin)− lnβ

)
= O

(
ln(1/(τminβ))

min(τmin, ρ)δ

)
.

This finishes the proof.

Recall that, for MMAS-fp, Theorem 9 gives a bound of

O

(
ln (1/β)

δρτmin

)
.

The bound of Theorem 13 improves on the denominator,
as it now only included the smaller of τmin and ρ; however,
the numerator as an addition log(1/τmin), which is compar-
atively small.

Especially for the next section, we are also interested in
how long an edge stays optimized. As we have drift in the
right direction and a small step size, an application of the
negative drift theorem [20] gives us an answer.

Theorem 14. Let β, τmin and ρ be such that 0 < β <
0.5, 0 < τmin ≤ βδ

2m
and 0 < ρ ≤ 0.5. Then, once G is

β-optimized, there is a constant c such that, for all s, G
stays (β + sρ)-optimized for 2cs iterations with probability

1− 2−Ω(s).

Proof. In Lemma 10 we proved a strictly positive drift
towards being β-optimized. From Lemma 11 we know that
the step-size of the potential is in O(ρ). Now the drift theo-
rem concerned with negative drift from Oliveto and Witt [20]
in the simplified form stated in Theorem 4 gives the desired
result.

Theorem 14 allows for the following interpretation of small
pheromone update factor ρ: the MMAS does not quickly
adapt to unlucky evaluations of random variables, but con-
servatively stays with the medium-term best option.

4.3 MMAS-fp-norm on SDSP
In this section we extend our analysis to arbitrary graphs.

We suppose our graphs to be δ-different and give an up-
per bound on the expected runtime on the algorithm to β-
optimize the graph. Note that every graph is δ-different for
some δ > 0, but usually this δ is not known beforehand,
which makes it hard to set the parameters right. To avoid
confusion we first introduce vocabulary that will help us talk
about the length of paths more clearly.

Definition 15. Let v be a vertex in the directed
stochastic-weight graph. We define OEPL(v) (optimal ex-
pected path length) as the expected length of the in path from
v to the sink which is shortest in expectation.

The main idea in the following proofs is to start with the
sink, which is of course always optimized, and then gradually
widen the circle of optimized vertices until the whole graph
is optimized, as was done previously in many other papers.

Whenever a decision making process in a vertex has to
be analyzed, a parallel link is constructed to simulate this
process such that Theorem 13 can be applied. This step is
performed in Lemma 16.

Lemma 16. Let v be a vertex of degree m in a δ-different
stochastic-weight graph G = (V,E,X) without parallel edges.
Suppose that all vertices on a shortest path from v to the
sink except for v be δ/(2n)-optimized and stay so optimized
for any polynomial number of rounds. Then, with parame-

ters ρ and τmin such that δ2

16n2 = τmin ≤ ρ ≤ 0.5, after in

expectation O
(

ln (n/δ)
δτmin

)
iterations of MMAS-fp-norm, v is

δ/(4n)-optimized.

Proof. Let p be a shortest path from v to the sink such
that every vertex other than v is δ/(2n)-optimized; let v′ be
the second vertex on p (right after v). Thus, an ant start-
ing from v using the edge to v′ and then walking randomly
according to the construction procedure construct a path of
expected length x with

x ≤ OEPL(v) + 1− (1− δ/(2n))n

≤ OEPL(v) + δ/2

as we deviate from the optimal path with probability at
most 1 − (1 − δ/(2n))n, and this gives a path of length at
most 1 (this uses the definition of stochastic-weight graph,
which requires all path lengths to be random variables in
[0, 1]); the second inequality uses Bernoulli’s inequality. All
paths not using the edge (v, v′) can in the worst case have
an expected length y of at least

y ≥ OEPL(v) + δ

as G is δ-different. Let m be the out-degree of v in G.
Now we can simulate the optimization of v by constructing a
parallel link G′ consisting of v and the sink. We use m edges
from v to the sink with random variables X1, . . . Xm ∈ [0, 1]
with expected values E(X1) = OEPL(v)+δ/2 and E(Xi) =
OEPL(v) + δ for all i with 2 ≤ i ≤ m; thus, we have

E(Xi)− E(X1) ≥ δ

2
.

Thus, the constructed parallel link G′ is a strictly δ′ := δ/2-
different stochastic-weight graph. As G has no parallel
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edges, the out-degree m of v is bounded by n. The opti-
mization time of G′ gives an upper bound on the time until
v in G is optimized: X1 represents all the (in expectation)
shortest paths, the other Xi represent the other choices. We
apply Theorem 13 with β = δ/(2n) such that the crucial in-
equality

τmin =
δ2

16n2
=

δ

4n

δ

2

1

2n
≤ βδ′

2m

is fulfilled. The theorem yields that after

O

(
ln(1/(τminβ))

δ′τmin

)
= O

(
ln(1/(τminδ))

δτmin

)
iterations of MMAS-fp-norm G′ is δ/(4n)-optimized.

Now all that is left to do is applying Lemma 16 to every
vertex in an order such that the lemma is always applied
to vertices the shortest expected paths of which use only
vertices that are already optimized. Note that this Theorem
applies to a limited range of ρ, for which a good bound is
derivable.

Theorem 17. Let G = (V,E,X) be a δ-different
stochastic-weight graph. Let τmin and ρ be such that

τmin ≤
δ2

16n2
and τmin ≤ ρ ≤

δ

4n(logn)2
.

Then, after in expectation

O

(
n ln (1/(τminδ))

δτmin

)
iterations of MMAS-fp-norm the graph is δ/2-optimized.

Proof. We apply Theorem 14 with s = (logn)2 and
Lemma 16 once for each vertex going backwards in a topo-
logical sorting of all vertices. This gives a high probability
of success within the stated time bound; using a standard
restart argument, we get the desired bound on the expecta-
tion.

If we plug τmin into the runtime formula, we get an expres-
sion dependent only on the graph-size n and the difference δ:

O

(
n3 ln (n/δ)

δ3

)
.

Note that a very similar proof would also work with the
MMAS-fp algorithm.

5. SUMMARY
In this work we saw that MMAS-fp (with or without nor-

malization) is well suited for solving the stochastic SDSP
problem for stochastic-weight graphs: in contrast to other
algorithms, it optimizes the expected path length, as op-
posed to “winning paths” (paths which come out shorter
than any other path with a probability of at least 50%) like
in [4] for an elitist MMAS.

On the downside, a parameter δ has to be estimated up-
front in order to set the parameters right. An upper bound
for the expected optimization time of the algorithm then
depends on this constant δ and the size of the graph n:

O
(
n3 ln (n/δ)

δ3

)
. In future works, one could try to make the

parameters dependent of an approximation factor instead of
the not very practical value δ. It would also be interesting

to see how MMAS-fp behaves for δ too small; we conjecture
that, in this case, the algorithm would converge to some
“robust” solution, a solution which has very good expected
value even when deviating from it randomly.

For the analysis we used drift theorems on the continuous
pheromone-values; in particular, for the algorithms we con-
sidered, the state of the algorithm is a random element of
an uncountable set, if the random variables used have un-
countable support. Thus, we cannot restrict ourselves to a
finite state space, which drift theorems usually demand. In
order to be able to use drift analysis, we showed that the
finiteness-condition is mostly superfluous: we proved that a
multiplicative and a variable drift theorem are true for an
interval in R as the search space. It will be interesting to
see if the conditions of the theorem can be further weakened,
making drift analysis an even more universal and handy tool.
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