
PAC Learning and Genetic Programming

Timo Kötzing
Algorithms and Complexity

Max-Planck-Institut für
Informatik

66123 Saarbrücken, Germany

Frank Neumann
School of Computer Science

University of Adelaide
Adelaide, SA 5005, Australia

Reto Spöhel
Algorithms and Complexity

Max-Planck-Institut für
Informatik

66123 Saarbrücken, Germany

ABSTRACT
Genetic programming (GP) is a very successful type of learn-
ing algorithm that is hard to understand from a theoretical
point of view. With this paper we contribute to the com-
putational complexity analysis of genetic programming that
has been started recently. We analyze GP in the well-known
PAC learning framework and point out how it can observe
quality changes in the the evolution of functions by random
sampling. This leads to computational complexity bounds
for a linear GP algorithm for perfectly learning any member
of a simple class of linear pseudo-Boolean functions. Fur-
thermore, we show that the same algorithm on the functions
from the same class finds good approximations of the target
function in less time.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

General Terms
Theory, Algorithms, Performance

Keywords
Genetic Programming, PAC Learning, Theory, Runtime Anal-
ysis

1. INTRODUCTION
Genetic programming (GP) [7] is an algorithmic approach

inspired by the evolution process in nature that has found
numerous applications in various domains (see e.g. Poli et
al. [11]). With this paper, we contribute to the theoretical
understanding of genetic programming by analyzing its be-
havior in a rigorous way. This approach was already very
successful in the field of evolutionary algorithms, where com-
putational complexity analysis has significantly increased

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

the theoretical understanding. Initial results on the com-
putational complexity of evolutionary algorithms for arti-
ficial pseudo-Boolean functions [13, 1] have set the basis
for later results on classical combinatorial optimization (see
Neumann and Witt [10] for an overview). Poli et al. [12]
state,“we expect to see computational complexity techniques
being used to model simpler GP systems, perhaps GP sys-
tems based on mutation and stochastic hill-climbing.”

The computational complexity analysis of genetic pro-
gramming has just been started by Durrett et al. [2]. In
their paper, they focus on simple problems such as ORDER
and MAJORITY introduced by Goldberg and O’Reilly [6]
and analyze the time to achieve an exact solution for these
given problems. Often it is the case that problems can-
not be solved exactly and one is satisfied with a good ap-
proximation. The most classical approach in computational
learning theory is to study this within the approximately
correct (PAC) learning framework of Valiant [14]. Recently,
it has been shown that a large class of functions is evolvable,
i. e. PAC learnable by an evolutionary algorithm [15, 3, 4].
However, the goal of these papers is to understand natural
evolution from a theoretical point of view rather than giving
explanations why and how evolutionary algorithms that are
used in practice work. The main difference of these stud-
ies to evolutionary algorithms used in practice relies in the
mutation operator which is very powerful, as it has the only
restriction that it works in polynomial time. On the other
hand, in GP mutation and crossover operators are much
more limited, as they either change solutions only slightly
or combine them into new ones. Motivated by this, we ex-
amine what classes of functions can be learned by genetic
programming that is restricted to simple mutation and/or
crossover operators.

The PAC learning framework provides a formal basis for
analyzing learning problems and has already been used for
the analysis of learning experiments in genetic program-
ming [8]. We start the computational complexity analysis of
linear genetic programming [5] in the PAC learning frame-
work. In contrast to tree-based genetic programming, linear
genetic programming does not evolve a tree structure but
evolves a linear representation of possible functions. Study-
ing our algorithms in the PAC learning framework enables us
to study the learnability of linear genetic programming in a
rigorous manner. We provide a framework for such an anal-
ysis and study a simple learning problem that is related to
the OneMax problem known from the computational com-
plexity analysis of evolutionary algorithms in the discrete
domain [9, 1].

We proceed as follows. Section 2 introduces the problem
and the algorithms that are subject to our analysis. We
point out how the difference in the quality of solutions can
be observed by random sampling in Section 3. These in-
sights are used in Sections 4 and 5 to analyze the compu-
tational complexity for learning exact functions as well as
good approximations. Finally, we finish with some conclud-
ing remarks.

2. PROBLEM AND ALGORITHMS
We want to study simple genetic programming models in

the PAC learning framework. In contrast to simple evo-
lutionary algorithms whose computational complexity has
been studied, we have to deal with two sources of random-
ness. The first source is due to the algorithm itself which is
based on random decisions. The second source of random-
ness is due to the PAC learning framework which returns the
quality of a potential solution based on random sampling.

Our goal is to learn a linear function on bit strings x ∈
{0, 1}n

fOPT(x) =

n∑
i=1

wixi

where wi ∈ {−1, 1}, 1 ≤ i ≤ n.
We call this the identification problem and investigate a

simple genetic programming algorithm that starts with a
(random) function f and evolves it over time. Given a dis-
tribution D over the inputs of the target function fOPT, the
goal is to obtain a function f that outputs function values
similar to those returned by fOPT on random inputs from D.
In this paper, we assume D to be the uniform distribution
over {0, 1}n and measure the quality of a solution f by the
expected error |fOPT(x)−f(x)| of a random bit string x. In
the ideal case, we would like to get f = fOPT but this is not
always possible and not required for our model of learning.

We do not have direct access to the expected error of a
given function f . Instead, we approximate the quality of
f (depending on the target function fOPT and the given
distribution D) by sampling a multi-set of points S from D
and then adding up relative errors of the x ∈ S with respect
to fOPT. Formally, we let the error of f with respect to
fOPT on a single bit string x ∈ {0, 1}n be

ex(f, fOPT) = |f(x)− fOPT(x)|,

and the error of f with respect to fOPT on a set S ⊆ {0, 1}n
be

eS(f, fOPT) =
∑
x∈S

ex(f, fOPT).

We denote by |S| the sample size that is used in each itera-
tion of the algorithm. Of course, the sample size is of major
importance: on the one hand, it needs to be high enough
for the algorithm to be able to distinguish the quality of
different search points; on the other hand, it should be low
for the efficiency of practical implementations. A crucial
point of our analysis below is to show that a low polynomial
number of samples suffices in our setting.

Note that, depending on the given distribution, elements
might occur in S more than once. However, if we consider
the uniform distribution in our analysis and assume that
the sample size is always small compared to the size of the
sample space, this is very unlikely.

Algorithm 1: Linear GP for learning functions.

1 input Black-box target function fOPT ;
2 input Sample size z;
3 initialization Uniformly at random choose an initial

function f =
∑n
i=1 wixi;

4 repeat
5 Choose i ∈ [n] uniformly at random;
6 Obtain f ′ from f by flipping the ith weight;
7 Sample a set S ⊆ {0, 1}n of size z;
8 if eS(f ′, fOPT) ≤ eS(f, fOPT) then f ← f ′

9 until forever ;

We consider a simple linear GP algorithm [5] called Lin-
ear GP (see Algorithm 1) which is similar to the evolution-
ary algorithm analyzed by Valiant for the optimization of
monotone conjunctions [15]. Note that it does not work
with a tree structure as the tree-based genetic programming
approach analyzed by Durrett et al. [2]. We are rather in-
terested in how the right coefficients can be learned for the
given class of functions.

Our algorithm starts with a randomly chosen function f
and generates, in each iteration, a new function f ′ by flip-
ping exactly one weight. Flipping a weight wi means that
wi is replaced by −(wi), i. e. +1 turns into −1 and −1 turns
into +1. The new function f ′ replaces f if it has a smaller
error according to the error function eS .

Our goal is to analyze the expected number of iterations
until Linear GP has produced, for the first time, a solution
f that makes with probability 1 − ε an error of at most δ
when choosing an element x ∈ {0, 1}n according to D. For
exact learning, we set δ = 0 and ε = 0 and call the expected
number of iterations to achieve a solution to this the expected
learning time of the algorithm.

3. PROPERTIES OF UNIFORM SAMPLING
As pointed out previously, we consider sampling from {0, 1}n

according to the uniform distribution. To analyze the progress
that our algorithm can make on the considered problem, we
have to figure out how it can distinguish between the quality
of solutions. Note that the fitness of a solution is not deter-
ministic but itself a random variable that is determined by
the set of samples that is chosen in each iteration.

We start with a lemma that will be important for our anal-
ysis. For all n, we denote with Sn and S′n two independent
random variables which are both the sum of n independent
Bernoulli trials with success probability 1/2.

The following lemma analyzes, for different values of k,
the probability that Sn+k, the number of successes in n+ k
trials, is larger than S′n, the number of successes in n trials.

Lemma 1. Let k, n ≥ 0 and pn = 1
2

(
2n
n

)
2−2n. Then

P (Sn+k > S′n) =
1

2
+

k−1∑
i=0

(
2n+ i

n

)
2−2n−i−1 − pn.

Note that pn is exactly the i = 0 term of the sum, and
that (by Stirling’s formula) we have

pn = (1 + o(1))
c√
n

for an appropriate constant c.

Proof. We prove Lemma 1 by induction on k. For k = 0,
we have, using symmetry and Vandermonde’s identity,

P (Sn > S′n) =
1

2
(1− P (Sn = S′n))

=
1

2
− 1

2

n∑
i=0

(
n

i

)(
n

i

)
2−2n

=
1

2
− 1

2

(
2n

n

)
2−2n

=
1

2
− pn.

Suppose the formula holds for some k. By conditioning
the random variable Sn+k+1 onto the outcome of the first
trial, we get the following.

P (Sn+k+1 > S′n)

=
1

2
P (Sn+k > S′n) +

1

2
P (1 + Sn+k > S′n)

= P (Sn+k > S′n) +
1

2
P (Sn+k = S′n)

= P (Sn+k > S′n) +
1

2

n∑
i=0

(
n+ k

i

)(
n

i

)
2−2n−k

= P (Sn+k > S′n) +

(
2n+ k

n

)
2−2n−k−1

=
1

2
+

k∑
i=0

(
2n+ i

n

)
2−2n−i−1 − pn,

where in the last step we used the induction hypothesis.
For convenience we state the following consequences of

Lemma 1.

Corollary 2. For all 0 ≤ x ≤ y ≤ n we have

P (Sy > S′x)

≤ 1

2
− pn if y = x

= 1
2

if y = x+ 1

≥ 1
2

+ pn
2

if y ≥ x+ 2.

(1)

P (Sy ≥ S′x) ≥ 1

2
+ pn (2)

P (Sy < S′x) ≤ 1

2
− pn (3)

P (Sy ≤ S′x)

≥ 1

2
+ pn if y = x

= 1
2

if y = x+ 1

≤ 1
2
− pn

2
if y ≥ x+ 2.

(4)

Proof. We only prove the statements concerning P (Sy >
S′x) – the other statements are obtained similarly or by tak-
ing complements. The bounds for y = x and y = x + 1 are
obtained by applying Lemma 1 and observing that px ≥ pn.
For the inequality when y ≥ x+ 2, we obtain by monotonic-
ity and again with Lemma 1 that

P (Sy > S′x) ≥ P (Sx+2 > S′x)

= 1/2 +

(
2x+ 1

x

)
2−2x−2

≥ 1

2
+
px
2
≥ 1

2
+
pn
2
.

fOPT +1, . . . ,+1 +1, . . . ,+1 −1, . . . ,−1 −1, . . . ,−1

f +1, . . . ,+1 −1, . . . ,−1 +1, . . . ,+1 −1, . . . ,−1

a(f) b(f) c(f) d(f)

Table 1: Difference between fOPT and f .

It follows from standard Chernoff bounds that for an ap-
propriate constant c,

z′ = c(pn)−2 log(n)

coin tosses suffice to correctly identify the side of the bias
of a coin with probability ≥ (1− n−4), provided this bias is
at least pn/2 (i.e., the coin comes up heads with probability
either ≥ 1/2 + pn/2 or ≤ 1− pn/2).

As we will see, in each iteration of Linear GP we are faced
with the problem of determining such a bias, with the ran-
dom samples playing the role of coin tosses. To be more
precise, the number of coin tosses corresponds to half the
number of samples: Only half of the samples help in identi-
fying the bias, namely those which have a 1 at the position
of the flip. As moreover the bias is indeed always at least
pn/2, the error probability with z = 2z′ samples is ≤ n−4

in every iteration, which implies by a union bound that with
probability 1 − o(1) we correctly identify the bias in each of
the first n3 iterations (the algorithm will be done long be-
fore that number of iterations). We may and will assume
throughout the rest of this paper that the bias is correctly
identified whenever Linear GP makes a fitness comparison
as described, as we just argued that this is what happens in
typical runs of our algorithms.

4. RUNTIME ANALYSIS
In this section, we analyze the behavior of Linear GP on

the identification problem. From now on, suppose a target
function fOPT is given. We will examine how Linear GP
starting with any function f will drift towards fOPT.

To do this, we distinguish different regions a, b, c, d of the
bit positions, depending on the values of fOPT and f at those
positions. Specifically, for all y, z ∈ {−1,+1}, we define a
function hy,z on functions f such that

hy,z(f) = |{i ≤ n | fOPT(ei) = y ∧ f(ei) = z}|.

Further, we abbreviate h+1,+1, h+1,−1, h−1,+1, h−1,−1, re-
spectively, with a, b, c, d, respectively. Table 1 summarizes
these definitions. We see that fOPT and f are identical on
the regions a and d. On the regions b and c they take on
opposite coefficients. Note that f = fOPT holds iff b(f) =
0 = c(f).

To analyze the behavior of Linear GP it is crucial to ex-
amine which changes can be achieved by changing one coef-
ficient of f . In the following, we examine this in detail and
demonstrate how a progress towards fOPT can be observed
by the random sampling performed in the algorithm.

Let f and f ′ be two possible solutions that differ in exactly
one weight. We think of f ′ as created from f by flipping
exactly one weight. We are carrying out a complete case
distinction.

• a(f) = a(f ′) − 1, b(f) = b(f ′) + 1, c(f) = c(f ′) and

f ′ (shift) condition
a-b r < s
b-a r > s
c-d r < s
d-c r > s

Table 2: Impact of possible shifts.

d(f) = d(f ′). We then call f ′ an a-b-shift (intuitively,
one bit position is shifted from region a to region b).

• a(f) = a(f ′) + 1, b(f) = b(f ′) − 1, c(f) = c(f ′) and
d(f) = d(f ′). We then call f ′ a b-a-shift.

• a(f) = a(f ′), b(f) = b(f ′), c(f) = c(f ′)−1 and d(f) =
d(f ′) + 1. We then call f ′ a c-d-shift.

• a(f) = a(f ′), b(f) = b(f ′), c(f) = c(f ′)+1 and d(f) =
d(f ′)− 1. We then call f ′ a d-c-shift.

It is easy to see that these cases cover all possibilities, as
fOPT does not change. Note that b-a-shifts and c-d-shifts
are desirable, while their opposities are not.

Let x ∈ {0, 1}n be a random bitstring sampled by the al-
gorithm. In order to analyze the drift towards fOPT, we con-
sider the difference in error E = ex(f, fOPT)− ex(f ′, fOPT)
of f and f ′ depending on x. If E is nonnegative, then we
prefer f ′ over f , given the sample x. Clearly, if x has a 0
at the bit position where f and f ′ differ, then E = 0. This
happens with probability 1/2. Otherwise, i.e., if x has a 1 at
the bit position where f and f ′ differ, we have E ∈ {−2,+2}
as follows.

Suppose x has r many 1s at the bit positions of b(f)
and s many 1s in the bit positions of c(f). Then we have
ex(f, fOPT) = |2r − 2s|, as the two different types of errors
that can be observed cancel each other out. We distinguish
the following cases.

• Suppose f ′ is an a-b-shift. Then ex(f ′, fOPT) = |2(r+
1)− 2s|. Thus we have E = +2 if r < s, and E = −2
otherwise.

• Suppose f ′ is a b-a-shift. Then ex(f ′, fOPT) = |2(r −
1)− 2s|. Thus we have E = +2 if r > s, and E = +2
otherwise.

• Suppose f ′ is a c-d-shift. Then ex(f ′, fOPT) = |2r −
2(s− 1)|. Thus we have E = +2 if r < s, and E = −2
otherwise.

• Suppose f ′ is a d-c-shift. Then ex(f ′, fOPT) = |2r −
2(s+ 1)|. Thus we have E = +2 if r > s, and E = +2
otherwise.

The necessary conditions for accepting possible shifts, de-
pending on x having a 1 where f and f ′ differ, are summa-
rized in Table 2.

Thus in all four cases we have to analyze the probability
of sampling an x with strictly more (strictly less) 1s in the
b(f) region than in the c(f) region, conditional on x having
a 1 where f and f ′ differ. If the position where f and f ′

differ is in the a- or d-region of f , this conditioning has no
effect; however, if it is in the b- or c-region, it guarantees us
a 1 where we would have a random coin toss otherwise. In
view of this and using that the number of 1s on a given set

f ′ (shift) P (E = +2|xi = 1)
a-b Sb(f) < S′c(f)
b-a Sb(f)−1 ≥ S′c(f)
c-d Sb(f) ≤ S′c(f)−1

d-c Sb(f) > S′c(f)

Table 3: Overview of Distributions for the Error
Terms

of k bits in a random bit string is distributed as Sk, we get
Table 3 showing the corresponding conditional probabilities
for E = +2. (Note that Sb(f)−1 ≥ S′c(f) is equivalent to

1 + Sb(f)−1 > S′c(f).)
We are now able to bound the runtime of the algorithm.

Recall that we have to deal with the fact that the fitness
values are random variables. We will do so as described in
Section 3. Recalling that pn is Θ(1/

√
n), we see that the

number of samples required is only z = O((pn)−2 logn) =
O(n logn).

Theorem 3. If |S| ≥ c0n log(n), c0 a large enough con-
stant, the expected learning time of Linear GP is O(n2).

Proof. To prove the theorem, we consider a typical run
of the algorithm. We show that the algorithm will find the
function fOPT with probability at least α, where α is a con-
stant, within Cn2 generations, C a constant, independently
of the starting point of the algorithm. If we have not found
fOPT after this number of iterations, we view this as a restart
of the algorithm (with the current value of f as the new
starting value). As the expected number of such restarts is
at most α−1, i.e. constant, this suffices to guarantee an ex-
pected number of generations of O(n2) until fOPT is found.

We analyze the optimization time of Linear GP in two
phases, and upper bound the probabilities that undesired
events happen during the phases. The first phase ends as
soon as, for the current solution f , |b(f) − c(f)| ≤ 1. We
will see that this condition will never be violated once es-
tablished (with high probability; recall our assumption that
the bias is correctly identified in every iteration of Linear
GP from Section 3).

Phase 1: We consider a phase of c1n logn, where c1 an
appropriate constant, steps and show that this phase is suc-
cessful with probability α1 = 1− o(1/n).

Without loss of generality, assume b(f) ≥ c(f) + 2. We
show that, under the assumption that the bias is always cor-
rectly identified, the potential |b(f)− c(f)| never increases,
and decreases with probability at least |b(f) − c(f)|/n. By
a standard coupon-collector argument, this implies that the
first phase will finish in O(n logn) iterations with high prob-
ability.

We use Lemma 1 and Table 3 to get the following proba-
bilities for E = +2 for the different shifts f ′, given a sample
x.

f ′ (shift) P (E = +2|xi = 1)
a-b ≤ 1/2− pn
b-a ≥ 1/2 + pn
c-d ≤ 1/2− pn/2
d-c ≥ 1/2 + pn/2

Thus, the undesired events consisting of a-b- and c-d- shifts
have a negative bias of at least pn/2 and are therefore never

accepted, while the desired b-a-shifts have a positive bias of
at least pn/2 and are always accepted. Furthermore, a b-a-
shift occurs with probability b(f)/n ≥ |b(f)−c(f)|/n, which
shows that our potential |b(f) − c(f)| is decreased with at
least the claimed probability. This completes our argument
for Phase 1.

We now show that once a function f with |b(f)−c(f)| ≤ 1
is reached, the condition |b(f)− c(f)| ≤ 1 also holds for all
subsequent generations. Clearly, if b(f) = c(f), no shift f ′

will have |b(f ′) − c(f ′)| > 1. Thus, without loss of gen-
erality, assume c(f) = b(f) + 1. The only shift f ′ with
|b(f ′)− c(f ′)| > 1 is an a-b-shift. According to Table 3, this
shift has a negative bias of at least pn/2 and is therefore not
accepted.

Phase 2: For Phase 2, we consider a phase of c2n
2 steps,

where c2 an appropriate constant, and show that this phase
is successful with probability α2 = Ω(1). For b(f) = c(f),
we get the following table of transition probabilities.

f ′ (shift) P (E = +2|xi = 1)
a-b ≤ 1/2− pn
b-a = 1/2
c-d = 1/2
d-c ≤ 1/2− pn

We get a b-a- or c-d-shift with probability (b(f) + c(f))/n,
and accept such a shift with probability 1/2 (and reject the
other possible shifts).

Without loss of generality, we focus on the case b(f) =
c(f) + 1, for which we get the following table of transition
probabilities.

f ′ (shift) P (E = +2|xi = 1)
a-b ≤ 1/2− pn
b-a ≥ 1/2 + pn
c-d ≤ 1/2− pn/2
d-c = 1/2

We get (and accept) a b-a-shift with probability b(f)/n.
Taking these two tables together, we see that, when b(f) =

c(f), neither b(f) nor c(f) can increase, and both can de-
crease. However, such a decrease might be reversed later:
If we start with a c-d-shift, then a d-c-shift has probability
1/2. However, a b-a-shift would also be accepted (since then
b(f) > c(f)), leading to b(f) = c(f) again (but both one
lower than at the start of the argument). As such a b-a-shift
has a probability ≥ b(f)/n, we will only repeat the initial
c-d-shift about n/b(f) times (in expectation) until we de-
creased both b(f) and c(f). As such a c-d-shift itself only
occurs about every n/b(f)-th generation, we obtain that in
total we have to wait an expected number of Θ((n/b(f))2)
steps to decrease b(f) = c(f) by 1.

Thus, Phase 2 is done after an expected number of ≤∑n
i=1

n2

i2
= O(n2) many steps. Using Markov’s inequality

this phase is successful within c2n
2 steps, c2 an appropriate

constant, with probability α2 = Ω(1).
Both phases are successful with probability α = α1 ·α2 =

Ω(1) which implies that the expected learning time is upper
bounded by

α−1 · (c1n logn+ c2n
2) = O(n2).

5. APPROXIMATIONS
The results presented so far gave bounds on the expected

time until the optimum is found. However, by taking a closer
look at the above analysis of the optimization behavior of
Linear GP, we also see that Linear GP exhibits a good ap-
proximation behavior in asymptotically less time than what
is needed for exact identification.

Theorem 4. If |S| ≥ c0n log(n), c0 a large enough con-
stant, the expected number of generations until the best-so-
far function found by Linear GP has an expected error ≤ δ
is O(n logn+ n2/δ2).

In particular, we can find a function with expected error
at most

√
n/ log(n) in time O(n logn).

Proof. We use the notation of the proof of Theorem 3.
Note that a function f with b(f) = c(f) =: t has expected
error 2E[Sb(f) − S′c(f)] = O(

√
t). Thus we have an approxi-

mation as desired if we find a function f with b(f) = c(f) =
O(δ2).

As we saw in the proof of Theorem 3, a time of O(n logn)
suffices to find a function f with |b(f)− c(f)| ≤ 1.

For Phase 2, we are now interested in the potential d(b(f)+
c(f))/2e. As we have seen in the proof of Theorem 3, this po-
tential never increases (with high probability), and decreases
with probability Ω((b(f)/n)2). Thus by a coupon-collector
type argument, the expected time until the potential falls be-

low δ2 is O(
∑n
i=δ2

n2

i2
) = O(n2/δ2). This proves the claimed

bound on the number of generations until an approximation
as desired is found.

Note that Theorem 4 holds for all choices of fOPT. How-
ever, for many choices of fOPT, we get better time bounds
for the expected time until a good approximation is reached.

Theorem 5. Suppose fOPT has a linear number of weights
1 and −1 each. If |S| ≥ c0n log(n), c0 a large enough con-
stant, the expected number of generations until the best-so-
far function found by Linear GP has an expected error ≤ δ
is O(n+ n2/δ2).

Proof. We use the notation of proof of Theorem 3. The
first phase of the Linear GP finishes as soon as, for the
current best solution f , |b(f)−c(f)| ≤ 1. From the condition
on fOPT we get initial values for b(f) and c(f) linear in
n. As the smaller of two does not decrease during Phase 1
(see proof of Theorem 3), Linear GP will (in expectation)
lower the potential |b(f) − c(f)| by a constant. Thus, after
time linear in n, Phase 1 will be over. The initialization or
Phase 1 fails with a sufficiently small probability, such that
the result follows in that case from Theorem 4. Otherwise,
the remainder of the analysis is as in the proof of Theorem 4
and gives the desired bound.

The other extreme case for fOPT compared with Theo-
rem 5 is when only constantly many weights are +1 (or −1).
In this case we also get a fast optimization behavior.

Theorem 6. Suppose fOPT has either constantly many
weights 1 or constantly many weights −1. If |S| ≥ c0n log(n),
c0 a large enough constant, the expected number of genera-
tions until the best-so-far function found by Linear GP has
an expected error O(1) is O(n logn).

Proof. We use the notation of proof of Theorem 3. We
have seen that Phase 1 ends after O(n logn) steps. From

that time on we have |b(f) − c(f)| ≤ 1. Since one of b(f)
and c(f) is bounded above by a constant (from the condi-
tion of fOPT), we have that both are bounded above by a
constant. Now even the worst case error is bounded above
by a constant.

6. CONCLUSIONS
Genetic Programming is a successful type of learning al-

gorithm. Understanding GP in a rigorous way is a hard and
challenging task. With this paper, we contributed to its the-
oretical understanding by analyzing it within the PAC learn-
ing framework for a simple type of linear function. We have
pointed out how GP can observe differences in the quality of
functions by random sampling. This insight leads to compu-
tational complexity bounds for learning the optimal function
by Linear GP. Furthermore, we analyzed the approximation
behavior of the algorithm and pointed out that good ap-
proximations can be achieved within even better runtime
guarantees.

Future work should consider variants of our algorithm that
are allowed to flip more than one weight in each iteration.
Note that our analysis relied on the fact that always exactly
one weight is flipped. Allowing more weights to be flipped in
each iteration requires additional insights into the sampling
process. We are optimistic that such results can be obtained
in the near future. Another topic for future research is to
extend the analysis to classes of functions where the coeffi-
cients can take on more than two values. Again, such results
would be very valuable and should lead to new theoretical
insights for genetic programming in the PAC learning frame-
work.

7. REFERENCES
[1] S. Droste, T. Jansen, and I. Wegener. On the analysis

of the (1+1) evolutionary algorithm. Theoretical
Computer Science, 276:51–81, 2002.

[2] G. Durrett, F. Neumann, and U.-M. O’Reilly.
Computational complexity analysis of simple genetic
programming on two problems modeling isolated
program semantics. In Proc. of FOGA’11, pages
69–80. ACM, 2011.

[3] V. Feldman. Evolvability from learning algorithms. In
Proc. of STOC’08, pages 619–628. ACM, 2008.

[4] V. Feldman. A complete characterization of statistical
query learning with applications to evolvability. In
Proc. of FOCS’09, pages 375–384. IEEE, 2009.

[5] C. Ferreira. Gene Expression Programming:
Mathematical Modeling by an Artificial Intelligence,
volume 21 of Studies in Computational Intelligence.
Springer, 2006.

[6] D. E. Goldberg and U.-M. O’Reilly. Where does the
good stuff go, and why? How contextual semantics
influences program structure in simple genetic
programming. In EuroGP’98, pages 16–36. Springer,
1998.

[7] J. R. Koza. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, MA, USA, 1992.

[8] I. Kushchu. Genetic programming and evolutionary
generalization. IEEE Trans. Evolutionary
Computation, 6:431–442, 2002.

[9] H. Mühlenbein. How genetic algorithms really work:
mutation and hillclimbing. In Proc. of PPSN’92, pages
15–26. Elsevier, 1992.

[10] F. Neumann and C. Witt. Bioinspired Computation in
Combinatorial Optimization – Algorithms and Their
Computational Complexity. Springer, 2010.

[11] R. Poli, W. B. Langdon, and N. F. McPhee. A Field
Guide to Genetic Programming. lulu.com, 2008.

[12] R. Poli, L. Vanneschi, W. B. Langdon, and N. F.
McPhee. Theoretical results in genetic programming:
the next ten years? Genetic Programming and
Evolvable Machines, 11:285–320, 2010.

[13] G. Rudolph. Convergence properties of evolutionary
algorithms. Hamburg: Kovac, 1997.

[14] L. G. Valiant. A theory of the learnable. Commun.
ACM, 27:1134–1142, 1984.

[15] L. G. Valiant. Evolvability. J. ACM, 56, 2009.

