
Provably Optimal Self-adjusting Step Sizes
for Multi-valued Decision Variables

Benjamin Doerr1, Carola Doerr2(B), and Timo Kötzing3

1 École Polytechnique, Palaiseau, France
2 CNRS and Sorbonne Universités, UPMC Univ Paris 06, LIP6, Paris, France

carola.doerr@lip6.fr
3 Hasso-Plattner-Institut, Potsdam, Germany

Abstract. We regard the problem of maximizing a OneMax-like func-
tion defined over an alphabet of size r. In previous work [GECCO 2016]
we have investigated how three different mutation operators influence
the performance of Randomized Local Search (RLS) and the (1+1) Evo-
lutionary Algorithm. This work revealed that among these natural muta-
tion operators none is superior to the other two for any choice of r. We
have also given in [GECCO 2016] some indication that the best achiev-
able run time for large r is Θ(n log r(log n + log r)), regardless of how
the mutation operator is chosen, as long as it is a static choice (i.e., the
distribution used for variation of the current individual does not change
over time).

Here in this work we show that we can achieve a better performance
if we allow for adaptive mutation operators. More precisely, we analyze
the performance of RLS using a self-adjusting mutation strength. In this
algorithm the size of the steps taken in each iteration depends on the
success of previous iterations. That is, the mutation strength is increased
after a successful iteration and it is decreased otherwise. We show that
this idea yields an expected optimization time of Θ(n(log n + log r)),
which is optimal among all comparison-based search heuristics. This is
the first time that self-adjusting parameter choices are shown to outper-
form static choices on a discrete multi-valued optimization problem.

Keywords: Run time analysis · Adaptive parameter choices ·
Mutation · Theory

1 Introduction

We combine in this work two ideas that came up quite recently in the theory of
randomized search heuristics for the optimization of discrete problems: the study
of multi-valued functions f : {0, 1, . . . , r−1}n → R and an adaptive choice of the
parameters. For the multi-valued generalization of OneMax-type functions we
present a variant of Randomized Local Search (RLS) that chooses its step sizes
in a self-adjusting manner. We prove that this algorithm is optimal among all
comparison-based black-box optimizers. Even more, its expected optimization
c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 782–791, 2016.
DOI: 10.1007/978-3-319-45823-6 73

Provably Optimal Self-adjusting Step Sizes 783

time is strictly smaller than that of any comparison-based search heuristic using
static parameter choices. After the work presented in [5] this is only the second
time that a self-adjusting parameter setting is proven to outperform any static
choice for a discrete optimization problem, and it is the first time that this is
shown for a problem over multiple decision variables.

Some background information and references for the concepts used in this
work follow.

1.1 Optimization of Multi-valued OneMax Functions

Most research in discrete evolutionary computation theory regards problems that
are defined over the n-dimensional Hamming cube {0, 1}n, while many experi-
mental results exist also for other discrete search spaces (see, for example, [20]
and the references therein for early examples). Only few theoretical works exist
that study the extension of evolutionary algorithms and other randomized search
heuristics to more general domains Ω, cf. [7] for a discussion. In [7] we considered
the minimization of r-valued OneMax-type functions fz assigning to each string
x ∈ {0, 1, . . . , r − 1}n the sum

∑n
i=1 d(xi, zi) of the component-wise distances to

a fixed unknown string z ∈ {0, 1, . . . , r −1}n (cf. Sect. 2 for detailed definitions).
We have analyzed in [7] three different ways to extend RLS and the (1 + 1)

Evolutionary Algorithm (EA) to black-box optimizers for r-valued functions. All
three versions maintain the property that for RLS in each iteration the entry
of exactly one position i ∈ {1, . . . , n} is changed, while for the (1+1) EA an
independent coin flip with success probability 1/n decides whether or not the
entry of the i-th position is subject to change. The three variants thus differ in
how entries selected for modification are updated. The uniform step operator
replaces an entry by different one chosen uniform at random, while the ±1 step
operator adds or subtracts 1 from the current entry. For large r the operator
with the best performance on the r-valued generalizations of OneMax is the
Harmonic one which adds or subtracts to the current entry a number j ≤ r that
is chosen with probability proportional to 1/j. Its expected optimization time
on r-valued OneMax is Θ(n log r(log n + log r)).

A natural question to ask is whether a better performance with respect to r
can be achieved. However, from [4] we know that no static distribution of step
sizes can achieve a better run time than Ω((log r)2) for n = 1 (see [7] for a
discussion).

1.2 RLS with Self-adjusting Step Sizes

In this work we show that a better dependence on r can be achieved if we allow
the step operator to change over time. More precisely, we regard the algorithm
RLSa,b which works as follows. A current search point x ∈ {0, 1, . . . , r − 1}n is
maintained, along with a real-valued velocity vector v ∈ [1, r/4]n denoting the
step size in each dimension. In each iteration, one dimension i ≤ n is chosen
uniformly at random for variation; with probability 1/2 the value xi is increased
by �vi�, otherwise decreased by �vi�, all other dimension remain as in x. If this

784 B. Doerr et al.

new search point has better fitness, the old search point is discarded and the
step size vi is increased to avi (for some constant a > 1). If the new search point
has worse fitness, it is discarded and the velocity vi is decreased to bvi (for a
positive constant b < 1). See Algorithm 1 in Sect. 2.2 for details.

We show that, for suitable constants a and b, the expected optimization time
of RLSa,b on the set of r-valued OneMax functions is O(n(log n + log r)), thus
gaining a factor of at least log r over any RLS variant using static step sizes. This
bound is provably optimal among all comparison-based algorithms. That is, no
black-box algorithm can achieve a better performance on r-valued OneMax
functions unless it explicitly exploits absolute fitness-values.

1.3 Self-adjusting Parameter Choices

One easily observes that in continuous optimization static parameter choices
are not very meaningful. This is why for such problems several examples exist
where adaptive parameter choices are well understood also from a theoretical
perspective (for example, the works [2,14,15] analyze the convergence rates of
different evolution strategies). As has been noted in [7], however, such results are
difficult to compare to performance guarantees in discrete optimization let alone
being transferable to such problems. This is mostly due to the fact that in discrete
optimization we do not study the speed of convergence but the time needed to
hit an optimal solution. But even if one studies continuous optimization with an
a-priori fixed target precision (see [16] and the references therein), then typically
the norms used to evaluate a solution differ from the typically regarded 1-norm
used in discrete optimization.

For the discrete domain, several empirical works exist that suggest an advan-
tage of adaptive parameter updates (cf. [12], [13, Chap. 8], and [17] for sur-
veys). However, the first work formally showing an asymptotic gain over sta-
tic parameter selection is the self-adjusting choice of the population size of the
(1+(λ, λ)) GA proposed and analyzed in [5]. In that work the advantage is shown
for the classic OneMax functions fz : {0, 1}n → R, x �→ |{1 ≤ i ≤ n | xi = zi}|.
Our result is hence the first of its type for a multi-valued search problem in the
discrete domain.

Also when we include in our consideration other adaptive parameter choices1

only few situations exist for which an advantage over static parameter choices
could be proven. All these works study the optimization of pseudo-Boolean func-
tions f : {0, 1}n → R. To be more precise, the only theoretical investigations
of adaptive parameter choices in discrete optimization that we are aware of
1 Following the terminology introduced in [5, Sect. 3.1] we distinguish between

functionally-dependent and self-adjusting parameter choices. While functionally-
dependent parameter choices depend only on the current state of the algorithm, they
may explicitly use absolute fitness values. Fitness-dependent mutation rates are a
typical example for such functionally-dependent parameter choices. Self-adjusting
parameter choices, in contrast, do not depend on absolute fitness information but
rather on the success of previous iterations. This is the case of the parameter updates
of the RLSa,b considered in this work.

Provably Optimal Self-adjusting Step Sizes 785

analyze advantages of a fitness-dependent mutation rate for the (1+1) EA opti-
mizing LeadingOnes [3] and for RLS optimizing OneMax [8], a self-adjusting
choice of the number of parallel evaluations in a parallel EA [19] as well as a
fitness-dependent [6] and the above-mentioned self-adjusting [5] choice of the
population size for the (1 + (λ, λ)) GA.

We believe that self-adjusting parameter choices provide a possibility for
significant improvement of many search heuristics, and theoretical analyses can
offer guidance for how to design such self-adjustment mechanisms. Our work
shows that our mathematical toolbox, in particular drift analysis, is well-suited
to analyze such systems.

2 Preliminaries

For any positive integer n we set [n] := {1, 2, . . . , n} and [0..n] := {0} ∪ [n]. We
regard in this work r-valued functions over strings of length n, i.e., functions
f : [0..r − 1]n → R. The value of r may or may not depend on n, and it may or
may not be smaller or larger than n.

We briefly define below the problem setting and the self-adjusting version of
RLS that we aim at analyzing.

2.1 Multi-valued OneMax Problems

As in [7] we regard two classes of r-valued OneMax functions. These classes are
the collection of functions fz : [0..r −1]n → R;x �→ ∑n

i=1 d(xi, zi), z ∈ [0..r −1]n.
They differ in the metric d used to evaluate the distance of xi to zi. The first metric,
which we call the interval-metric dint, is the usual metric on the integers, i.e.,

dint(a, b) := |b − a|.

Note that in the interval-metric the fitness landscapes of the r-valued OneMax
functions are not isomorphic to each other. This can be easily seen, for example,
by comparing f(0,...,0) with f(r/2,...,r/2) which has a much more symmetric fitness
landscape. Note that, for the boundary handling we employ in this paper (see
Sect. 2.2), our results are unaffected by the exact choice of r-valued OneMax
function. This is why we also consider a second metric, which we call the ring-
metric dring. This metric connects the two endpoints of the interval [0..r − 1]
such that it forms a ring, i.e.,

dring(a, b) := min{|b − a|, |b − a + r|, |b − a − r|}.

Unlike the name OneMax suggests, we regard in this work the minimization of
the r-valued OneMax functions. It is easily seen that, regardless of the metric
in place, the unique global optimum of fz is thus the string z. We call z the
target vector of fz.

786 B. Doerr et al.

2.2 RLS with Self-adjusting Mutation Strength

We investigate the following natural generalization of RLS to a multi-valued
algorithm RLSa,b with a self-adjusting mutation strength whose update rules
are parametrized by the constants 1 < a ≤ 2 and 1/2 < b < 1. The algorithm is
summarized in Algorithm 1.

Algorithm 1. RLSa,b with self-adjusting step sizes maximizing a function
f : [0..r − 1]n → R

1 Initialization: Let v ∈ [1, �r/4�]n uniformly at random;
2 Sample x ∈ [0..r − 1]n uniformly at random and query f(x);
3 Optimization: for t = 1, 2, 3, . . . do
4 Choose i ∈ [n] uniformly at random;
5 for j = 1, . . . , n do
6 if j = i then with probability 1/2 let yj ← xj − �vj� and let

yj ← xj + �vj� otherwise
7 else yj ← xj

8 Query f(y);
9 if f(y) < f(x) then vi ← min{avi, �r/4�} else vi ← max{1, bvi}

10 if f(y) ≤ f(x) then x ← y

RLSa,b maintains a search point x ∈ [0..r−1]n as well as a real-valued velocity
vector v ∈ [1, �r/4�]n; we use real values for the velocity to circumvent rounding
problems. Both these strings are initialized uniformly at random, but it is not
difficult to verify that all results shown in this paper apply to any arbitrary
initialization of x and v. In one iteration of the algorithm a position i ∈ [n] is
chosen uniformly at random. The entry xi is replaced by xi−�vi� with probability
1/2 and by xi + �vi� otherwise (see below for how to deal with overstepping the
endpoints of the interval [0, r−1]). The entries in positions j 	= i are not subject
to mutation. The resulting string y replaces x if its fitness is at least as good as
the one of x, i.e., if f(y) ≤ f(x) holds (recall that we regard the minimization
of f). If the offspring y is strictly better than its parent x, i.e., if f(y) < f(x), we
increase the velocity vi in the i-th component by multiplying it with the constant
a and we decrease vi to bvi otherwise. The algorithm proceeds this way until
we decide to stop it. Since we regard in this work the time needed until RLSa,b

evaluates for the first time an optimal solution (this random variable is called
the run time of Algorithm 1), we do not specify any stopping criterion here.

We will now discuss some technical details.
It may happen that xi − �vi� < 0 or xi + �vi� > r − 1. If we are working

with the interval-metric then we assume that the algorithm does not change
its current position, that is, the offspring is discarded and the velocity is not
adjusted (decreasing the velocity in this case would lead to the same results).
In the ring-metric we identify all values modulo r, i.e., we identify values p < 0
with p + r and values p > r − 1 with p − r. Note that in the ring-metric it can

Provably Optimal Self-adjusting Step Sizes 787

happen that we decrease the fitness regardless of whether we add or subtract
from xi the value �vi�. This in particular applies when xi is close to r/2.

Furthermore, we emphasize that the velocity vector is an element in the
real interval [1, �r/4�], that is, it does not necessarily take integer values. This
technicality avoids that rounding inaccuracies accumulate over several velocity
adaptations. The velocity is capped at 1 (to avoid situations in which we do not
move at all) and at �r/4� (to avoid too large jumps).

To further lighten the notation, we say that the algorithm “moves in the right
direction” or “towards the target value” if the distance to the target is actually
decreased by �vi�. Analogously, we speak otherwise of a step “away from the
target” or “in the wrong direction”.

2.3 Drift Analysis

The idea of drift analysis is to map the optimization process to a series of real-
valued random variables that measure, in a suitable way, the expected progress
that the algorithm achieves in one iteration. The hope is to show that this
expected progress systematically depends on the current state of the algorithm,
for example, in an additive or a multiplicative way. Drift theorems then help
to convert the expected progress made in one iteration to bounds on the time
needed to hit a certain goal such as identifying an optimal search point; cf. [10,18]
for a more detailed discussion of drift theory.

In the context of RLSa,b the state of the algorithm can be described by the
pair (x, v) consisting of the current search point x ∈ [0..r − 1]n and the current
velocity vector v ∈ [1, �r/4�]n. We will design in Sect. 3 a potential function g
that maps these states to real numbers in a way that the expected progress of one
iteration of RLSa,b depends on the current potential g(x, v) in a multiplicative
way. That is, for y and v′ denoting the resulting search point and velocity vector
after one iteration of RLSa,b, we will show that E(g(x, v) − g(y, v′)) ≥ δg(x, v)
for some positive constant δ. The following drift theorem will then allow us to
derive bounds on the expected run time of RLSa,b on any r-valued OneMax
function. This multiplicative drift theorem had first been introduced to the theory
of randomized search heuristics in [10]. A more direct proof of this results, that
also gives large deviation bounds, can be found in [9]. The variables X(t) in the
statement correspond to the state g(x, v) of the algorithm after t iterations.

Theorem 1 (from [10]). Let X(0),X(1), . . . be a random process taking values
in S := {0}∪[smin,∞) ⊆ R. Assume that X(0) = s0 with probability one. Assume
that there is a δ > 0 such that for all t ≥ 0 and all s ∈ S with Pr[X(t) = s] > 0
we have E[X(t+1)|X(t) = s] ≤ (1 − δ)s. Then T := min{t ≥ 0 | X(t) = 0}
satisfies E[T] ≤ ln(s0/smin)+1

δ .

3 Main Result

In this section we sketch the proof of the following statement (the full proof does
not fit the available space).

788 B. Doerr et al.

Theorem 2. For constants a, b satisfying 1 < a ≤ 2, 1/2 < b ≤ 0.9, 2ab−b−a >
0, a+ b > 2, and a2b > 1 (one can choose, for example, a = 1.7 and b = 0.9) the
expected run time of RLSa,b (Algorithm1) on any generalized r-valued OneMax
function is Θ(n(log n + log r)) and this is optimal among all comparison-based
algorithms.

The lower bound as well as the statement that no comparison-based algo-
rithm can have an expected run time of smaller order easily follows from a
coupon collector argument and the information-theoretic lower bound. In a bit
more detail, we note that in the initial solution there are, with high probability,
Θ(n) positions i in which the value xi does not agree with that of the target
string. The algorithm has to touch each of these positions at least once, which by
the well-known coupon collector theorem (cf. [1, Sect. 1] for an introduction to
this problem) requires Θ(n log n) iterations on average and with high probabil-
ity. The Ω(n log r) follows from the observation that there are rn possible target
strings in total. Since RLSa,b exploits only the information whether or not the
offspring has a fitness value that is at least as good as that of its parent (in the
decision of whether or not to replace the parent) and whether or not its fitness
is strictly better (in the decision how to update the velocity), it is a comparison-
based algorithm that uses only log2(3) bits of information per iteration. As such
it therefore needs Ω(log(rn)) = Ω(n log r) iterations in expectation to optimize
any unknown r-valued OneMax function. See [11] for how to turn the latter
information-theoretic consideration into a formal proof.

To prove the upper bound we use drift analysis; multiplicative drift analysis
to be more precise. To this end, as explained in Sect. 2.3, we need to find a map-
ping of the state (x, v) of the algorithm to a real value. This potential function
should measure some sort of distance to the target state. We briefly discuss this
potential function below. Proving that it yields the required multiplicative drift
is the purpose of Lemma 3.

To simplify the notation below, for a given search point x and the target bit
string z and the chosen metric d, we let di = d(xi, zi) (for all i ≤ n) be the
distance vector of x to z. Thus, the goal is to reach a state in which the distance
vector is (0, . . . , 0). We now want to define a potential function in dependence on
(d, v) (where of course d is dependent on x) such that it is 0 when d is (0, . . . , 0)
and strictly positive for any x 	= (0, . . . , 0). Furthermore, we easily see that
there are two important ways to make progress, either by advancing in terms
of fitness or by adjusting the velocity to a value that is more suitable to make
progress in future iterations. This has to be reflected in the potential function.
Our ultimate goal being the minimization of fitness, it is not difficult to see that
some preference should be given to a progress in fitness. This can be achieved
by multiplying the term accounting for the appropriateness of the velocity with
some constant c < 1. We measure the appropriateness of the velocity as the
maximum of the ratios di/(2vi) and 2vi/di, reflecting the fact that a velocity
of di/2 is very well-suited for progress; smaller values give less progress, while
larger values lead to a badly adjusted velocity in the next iteration (and very
large values make progress in fitness impossible).

Provably Optimal Self-adjusting Step Sizes 789

One problem in getting good drift is that velocities vi just below 2di allow
for jumping over the target while increasing the (already too large) velocity.
We get around this problem by observing that it is equally likely that the large
velocity is reduced because of a jump in the wrong direction, and then, while
still larger than di, will still give a good improvement when overstepping the
goal. We reflect this in the potential function by giving a penalty term of pdi

(for some suitable constant p) on any state (d, v) having a too large velocity.
To sum up this discussion we use as potential function the following map

g : [0..r − 1]n × [1, �r/4�]n → R, (x, v) �→ ∑n
i=1 gi(di, vi) where gi(di, vi) := 0 for

di = 0 and for di ≥ 1

gi(di, vi) := di +

{
cdi max{2vi/di, di/(2vi)}, if vi ≤ 2bdi;
cdi max{2vi/di, di/(2vi)} + pdi, otherwise

(1)

and c, p are (small) constants specified below.
Summarizing all the conditions needed below, we require that the constants

a, b, c, p satisfy 1 < a ≤ 2, 1/2 < b ≤ 0.9, 2ab − b − a > 0, a + b > 2, a2b > 1,
8abc + 2p + 4c/b ≤ 1/16, p > 8c

(
a+b
2 − 1

)
, and p > 4(a − 1)c > 0.

We can thus choose, for example, a = 1.7, b = 0.9, p = 0.01, and c = 0.001.
The following lemma, together with the observation that the initial potential

is of order at most nr2 plugged into the multiplicative drift theorem (Theorem1)
proves the desired overall expected run time of O(n log(nr)).

Lemma 3. Let d 	= (0, . . . , 0) and v ∈ [1, �r/4�]n. Let (d′, v′) be the state of
Algorithm1 started in (d, v) after one iteration (i.e., after a possible update of x
and v). The expected difference in potential satisfies

E (g(d, v) − g(d′, v′) | d, v) ≥ δ

n
g(d, v)

for some positive constant δ.

4 Conclusions

While in [7] we analyzed static mutation operators for optimizing multi-valued
functions f : [0..r − 1]n → R, in this paper we gave an operator based on self-
adjusting step sizes. We proved that, in the case of RLS, this leads to a provably
optimal run time for r-valued OneMax functions.

Already for the analysis of RLS we gave an intricate drift-argument, with
many different cases to consider and penalty terms for resolving situations which
would otherwise allow for search points with negative drift. Extending our results
to the case of the (1+1) EA might thus be a very challenging task, pushing the
limits of drift theory.

Note that we chose a specific step size adaptation scheme which guarantees
optimal run time. It would also be interesting to investigate other adaptation
schemes. For example, the step size, in each iteration, could be drawn from a

790 B. Doerr et al.

distribution (just as in one of the operators presented in [7]), and the parameters
of this distribution are adapted.

Another issue with step sizes is that infeasible areas of the search space might
be reached (in our setting this can happen if we use the interval metric). The
issue of boundary handling is a known problem, and our boundary handling
technique is by no means the only way for dealing with it. We believe that our
choice is natural and leads to a “fair” treatment of all parts of the search space,
and it leads to an optimal run time for our setting. It might be interesting to see
whether there are other settings where a different boundary handling is more
natural, or gives better run time.

Acknowledgments. This research benefited from the support of the “FMJH Program
Gaspard Monge in optimization and operation research”, and from the support to this
program from EDF (Électricité de France).

References

1. Auger, A., Doerr, B.: Theory of Randomized Search Heuristics. World Scientific,
Singapore (2011)

2. Auger, A., Hansen, N.: Linear convergence on positively homogeneous functions
of a comparison based step-size adaptive randomized search: the (1+1) ES with
generalized one-fifth success rule. CoRR, abs/1310.8397 (2013). http://arxiv.org/
abs/1310.8397

3. Böttcher, S., Doerr, B., Neumann, F.: Optimal fixed and adaptive mutation rates
for the leadingones problem. In: Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph,
G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 1–10. Springer, Heidelberg (2010)

4. Dietzfelbinger, M., Rowe, J.E., Wegener, I., Woelfel, P.: Tight bounds for blind
search on the integers and the reals. Comb. Probab. Comput. 19, 711–728 (2010)

5. Doerr, B., Doerr, C.: Optimal parameter choices through self-adjustment: applying
the 1/5-th rule in discrete settings. In: Proceedings of the ACM Genetic and Evo-
lutionary Computation Conference (GECCO 2015), pp. 1335–1342. ACM (2015)

6. Doerr, B., Doerr, C., Ebel, F.: From black-box complexity to designing newgenetic
algorithms. Theor. Comput. Sci. 567, 87–104 (2015)

7. Doerr, B., Doerr, C., Kötzing, T.: The right mutation strength for multi-valued
decision variables. In: Proceedings of the ACM Genetic and Evolutionary Compu-
tation Conference (GECCO 2016). ACM (2016, to appear). http://arxiv.org/abs/
1604.03277

8. Doerr, B., Doerr, C., Yang, J.: Optimal parameter choices via precise black-box
analysis. In: Proceedings of the ACM Genetic and Evolutionary Computation Con-
ference (GECCO 2016). ACM (2016, to appear)

9. Doerr, B., Goldberg, L.A.: Adaptive drift analysis. Algorithmica 65, 224–250
(2013)

10. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica
64, 673–697 (2012)

11. Droste, S., Jansen, T., Wegener, I.: Upper and lower bounds for randomized search
heuristics in black-box optimization. Theor. Comput. Syst. 39, 525–544 (2006)

12. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary.
IEEE Trans. Evol. Comput. 3, 124–141 (1999)

http://arxiv.org/abs/1310.8397
http://arxiv.org/abs/1310.8397
http://arxiv.org/abs/1604.03277
http://arxiv.org/abs/1604.03277

Provably Optimal Self-adjusting Step Sizes 791

13. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Hei-
delberg (2003)

14. Hansen, N., Gawelczyk, A., Ostermeier, A.: Sizing the population with respect to
the local progress in (1,λ)-evolution strategies - a theoretical analysis. In: Proceed-
ings of the IEEE Congress on Evolutionary Computation (CEC 1995), pp. 80–85.
IEEE (1995)

15. Jägersküpper, J.: Rigorous runtime analysis of the (1+1) ES: 1/5-rule and ellip-
soidal fitness landscapes. In: Wright, A.H., Vose, M.D., De Jong, K.A., Schmitt,
L.M. (eds.) FOGA 2005. LNCS, vol. 3469, pp. 260–281. Springer, Heidelberg (2005)

16. Jägersküpper, J.: Oblivious randomized direct search for real-parameter optimiza-
tion. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 553–564.
Springer, Heidelberg (2008)

17. Karafotias, G., Hoogendoorn, M., Eiben, A.: Parameter control in evolutionary
algorithms: trends and challenges. IEEE Trans. Evol. Comput. 19, 167–187 (2015)

18. Kötzing, T.: Concentration of first hitting times under additive drift. Algorithmica
75, 490–506 (2016)

19. Lässig, J., Sudholt, D.: Adaptive population models for offspring populations and
parallel evolutionary algorithms. In: Proceedings of the ACM Workshop on Foun-
dations of Genetic Algorithms (FOGA 2011), pp. 181–192. ACM (2011)

20. Rudolph, G.: An evolutionary algorithm for integer programming. In: Davidor, Y.,
Schwefel, H.-P., Mönner, R. (eds.) (PPSN 1994). LNCS, pp. 139–148. Springer,
Heidelberg (1994)

	Provably Optimal Self-adjusting Step Sizes for Multi-valued Decision Variables
	1 Introduction
	1.1 Optimization of Multi-valued OneMax Functions
	1.2 RLS with Self-adjusting Step Sizes
	1.3 Self-adjusting Parameter Choices

	2 Preliminaries
	2.1 Multi-valued OneMax Problems
	2.2 RLS with Self-adjusting Mutation Strength
	2.3 Drift Analysis

	3 Main Result
	4 Conclusions
	References

