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Abstract We consider stochastic versions of OneMax and LeadingOnes and ana-
lyze the performance of evolutionary algorithmswith andwithout populations on these
problems. It is known that the (1+1) EA onOneMax performs well in the presence of
very small noise, but poorly for higher noise levels.We extend these results toLeadin-
gOnes and tomany different noisemodels, showing how the application of drift theory
can significantly simplify and generalize previous analyses. Most surprisingly, even
small populations (of size Θ(log n)) can make evolutionary algorithms perform well
for high noise levels, well outside the abilities of the (1 + 1) EA. Larger population
sizes are even more beneficial; we consider both parent and offspring populations. In
this sense, populations are robust in these stochastic settings.

Keywords Run time analysis · Stochastic fitness function · Evolutionary algorithm ·
Populations · Robustness

1 Introduction

Evolutionary algorithms (EAs) are general-purpose problem solvers which can be
successfully applied to a wide variety of problems with small effort. In particular, EAs
are popular where no tailored solutions exist, for example because the structure of the
problem is inaccessible (given as a black box) or where the structure of the problem
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is very complicated. In particular, EAs are popular in settings including uncertainties,
such as noisy fitness (quality) evaluations; see [1] for a survey on examples in com-
binatorial optimization, but also [11] for an excellent survey also discussing different
sources of uncertainty.

We are interested in formally analyzing the performance of EAs in settings where
the fitness function is probabilistic, i.e., a given search point can have different fitness
values for different fitness evaluations. One way to deal with such uncertainty is to
replace fitness evaluations with an average of a (large) sample of fitness evaluations
and then proceed as if there was no noise. In this paper we are interested in a different
approach where we accept the noise and try to analyze how much noise can be over-
come by EAs without further modifications (note that this research can also be used to
decide how much resampling is necessary for successful optimization). This was first
done in [5], where a noisy variant of the well-known OneMax test function was ana-
lyzed for the simplest EA, the (1+1) EA. In essence, it was shown that the (1+1) EA
can deal with small noise levels, but not medium noise levels. Recently, there was a
sequence of papers discussing ant colony optimization for path finding problems in
the presence of uncertainty [2,6,20], see also [8,9] for early work in this area.

For this paper we are exclusively concerned with optimization problems defined
on bit strings of fixed length n. In this domain we have the two well-known (static)
test functions OneMax and LeadingOnes as follows. For each bit string x ∈ {0, 1}n
we let OneMax(x) be the number of 1s in x and LeadingOnes(x) is the number of
consecutive 1s counting from the left until the first occurrence of a 0. The performance
of various randomized search heuristics on these two static problems is known in detail.

Wemodify these test functions by adding noise.Wedistinguish between twogeneral
noise models: prior noise and posterior noise. In the first model we assume that the
noise comes from not evaluating the search point in question, but a noisy variant; an
example of this is the noise model used in [5], where, with probability p, a bit of the
search point was flipped before evaluation. In the second model the fitness value of a
search point obtains noise after evaluation. For example, one can add a value drawn
from a centered normal distribution (or add a value drawn from any other chosen
distribution; we call such noise additive posterior noise). Posterior noise is essentially
the model used in [2,6,8,20].

In each case we consider the noise to be independent for different elements of the
search space and for reevaluations (note that we assume that all algorithms reevaluate
each search point under consideration in every iteration).

In this paper we expand on the work done in [5] in three ways. First, we make the
results applicable to many different noise models; second, we analyze the Leadin-
gOnes function in noisy settings; third, we show how the use of populations can make
the EA much more robust towards noise.

Regarding the generalization, we reprove the results from [5] as a corollary to more
general theorems which can be applied in many different settings. The proofs of these
more general theorems rely heavily on drift theory, a modern tool which facilitates the
formal analysis of randomized search heuristics significantly. Note that this tool was
not available for [5]. Another tool suitable for the analysis of populations was recently
introduced in [14] in the context of non-elitism, i.e. just as in the setting with noise,
good solutions can get lost.
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Regarding the LeadingOnes test function, we give the first formal analysis of this
test function in a noisy setting.

Regarding the use of populations, the paper [18] gives a nice overview of several
different aspects where populations (and the use of crossover operators) are beneficial
for optimization of static fitness functions. In contrast to this, we show that populations
can also be highly beneficial in the context of stochastic fitness functions, as theymake
much higher noise levels tractable.

1.1 Detailed Contribution

The only algorithm we consider is the (μ + λ) EA, for different values of μ and λ

(see Sect. 2 for a detailed description). We consider the (1 + 1) EA as an EA that
does not rely on populations; this was the algorithm considered in [5]. Even when
we discuss EAs with populations, we only consider cases with μ = 1 or λ = 1, for
simplicity.

We consider optimization successful in the stochastic setting as soon as the algo-
rithm has evaluated the best static solution (in both our cases the all-1s bit string);
note that the best static solution is, in all of our models, also the solution with best
expected fitness. Whenever we consider the “run time” of an algorithm, this is under-
stood as the expected number of iterations (or generations) of the EA. In particular,
population-based EAs have a higher number of fitness evaluations than iterations (also
due to reevaluation of old search points). Note, however, that these numbers differ only
by a factor of μ + λ. Therefore, it makes sense to take the number of iterations as a
measure of the run time and the number of fitness evaluations can be directly inferred.
In fact, when fitness evaluations can be done in parallel (due to sufficient hardware),
the number of iterations is directly a measure for the run time.

In Sect. 3 we consider OneMax. In particular, we give a general theorem for
deriving upper bounds in different noise settings (Theorem 5) and a general Theorem
for deriving lower bounds (Theorem6).As a resultwe completely reprove the theorems
from [5] (Corollary 7). These results concern prior noise where, with probability p, a
(uniformly chosen) bit is flipped. As a further corollary, we show that the (1 + 1) EA
can optimize in the presence of additive posterior noise with variance of O(log n/n)

efficiently, but not, for example, in the presence of additive noise from an exponential
distribution with parameter 1 (Corollary 10). We consider additive posterior noise
taken from a normally distributed random variable in Corollary 11; here we can give
the precise threshold below which the (1+ 1) EA is successful. This list of corollaries
can easily be extended, for example to cover the case of prior noise based on mutation
(Corollary 8) or the noisemodel of “partial evaluation” considered in [4] (Corollary 9).

In Sect. 3.2 we show that populations can make an EA much more robust towards
noise. For example, a linear population is large enough to allow arbitrary values of p in
the setting of prior bit-flip noise. Furthermore, for constant p in the setting of prior bit-
flip noise (a setting far outside the abilities of the (1+1) EA for efficient optimization),
already a logarithmic population size suffices for efficient optimization. Similarly,
we get robustness of small populations for posterior noise models, for example for
exponentially distributed noise with constant parameter.
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Table 1 For different algorithms and different target problems, the range of noise parameter p is given for
which optimization is successful in polynomial time (in the model of prior noise from [5], with probability
p flipping a single bit)

OneMax LeadingOnes

(1 + 1) EA O(log n/n) O(1/n2)

(μ + 1) EA [0, 1], μ = Ω(log n/p) O(1/n2), μ ≥ 1

(1 + λ) EA [0, 1], λ = Ω(n log n/p) O(1/n), λ = Ω(log n)

In Sect. 4, we give our results for LeadingOnes. We show that the (1 + 1) EA
optimizes successfully in the presence of small noise, but we also give an example
of higher noise levels where optimization is unsuccessful. Here again populations are
helpful, even of logarithmic size. As expected, the LeadingOnes function is much
more sensitive to prior noise than the OneMax function.

For the specific noise model taken from [5], we give an overview of our results in
Table 1.

We conclude the paper with a discussion in Sect. 5. Note that this paper is an
extended and corrected version of [7]; we added several further corollaries and
expanded on many proofs. Since the publication of the conference version of this
paper, another work addressing the optimization of stochastic versions of OneMax
and LeadingOnes was published [4] where the focus was on non-elitist algorithms
optimizing with noise models based on certain kinds of unavailability of data (see
Corollary 9 for one of the noise models). Furthermore, several papers regarding opti-
mization with stochastic fitness functions were presented at the FOGA’15 conference.

2 Mathematical Preliminaries

In this paper we consider the (μ + λ) EA, an algorithm which bases its progress on
mutation (see Algorithm 1 for a detailed description). We consider only the mutation
operator which flips each bit independently with probability 1/n. Ties in the selection
of fitter individuals are broken so that individuals from the offspring population are
preferred (this allows the (1 + 1) EA to cross plateaus and is consistent with the
definition of, for example, [5]); further ties are broken uniformly at random.

Note that all references to the “run time” or the “number of steps” of an algorithm
always concern the expected first hitting time of the optimum, as mentioned above.

2.1 Drift Theorems

Wewill use a variety of drift theorems to derive the theorems of this paper.Drift, in this
context, describes the expected change of the best-so-far solution within one iteration
with respect to some potential. In later proofs we will define potential functions on
best-so-far solutions and prove bounds on the drift; these bounds then translate to
expected run times with the use of the drift theorems from this section.
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Algorithm 1: (μ + λ) EA
1 Let P be a set of μ uniformly chosen bit strings;
2 repeat
3 O ← ∅;
4 for i = 1 to λ do
5 pick x u.a.r. from P;
6 O ← O ∪ {mutate(x)};
7 for x ∈ P ∪ O do evaluate f (x);
8 P ← μ f -maximal elements from P ∪ O;
9 until forever;

The literature knows a large number of drift theorems; this selection is not repre-
sentative, but merely contains those theorems needed for this paper.

The simplest drift theorem concerns additive drift.

Theorem 1 (Additive Drift [10]) Let (D(t))t≥0 be random variables describing a
Markov process over a finite state space S ⊆ R

+
0 . Let T be the random variable that

denotes the earliest point in time t ≥ 0 such that D(t) = 0. If there exist c > 0 such
that

E
(
D(t) − D(t+1)|T > t

)
≥ c,

then

E(T |D(0)) ≤ D(0)

c
.

Another useful tool is the Variable Drift Theorem given in [13, Theorem 4.6] (inde-
pendently developed in [15, Section 8]); this drift theorem is applicable when the drift
is not uniform across the search space; frequently one can find a uniform lower bound
and use the additive drift theorem, but using the variable drift theorem will typically
give much better bounds. The version of the Variable Drift Theorem that we use is
due to [19], which removes the restriction of h being differentiable.

Theorem 2 (Variable Drift [19]) Let (D(t))t≥0 be random variables describing a
Markov process over a finite state space S ⊆ R

+
0 and let xmin := min{x ∈ S | x > 0}.

Furthermore, let T be the random variable that denotes the first point in time t ∈ N for
which D(t) = 0. Suppose that there exists a monotone increasing function h : R+ →
R

+ such that 1/h is integrable and

E
(
D(t) − D(t+1) | D(t)

)
≥ h(D(t))

holds for all t < T . Then,

E(T | D(0)) ≤ xmin

h(xmin)
+

∫ D(0)

xmin

1

h(x)
dx .
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Since we will make frequent use of it in the following sections, we will also give
the version of theMultiplicative Drift Theorem for upper bounds, due to [3], which is
implied by the previous Variable Drift Theorem.

Theorem 3 (Multiplicative Drift [3]) Let (D(t))t≥0 be random variables describing a
Markov process over a finite state space S ⊆ R

+
0 and let xmin := min{x ∈ S | x > 0}.

Let T be the random variable that denotes the earliest point in time t ≥ 0 such that
D(t) = 0. If there exist δ > 0 such that for all x ∈ S with P(D(t) = x) > 0 we have

E
(
D(t) − D(t+1)|D(t) = x

)
≥ δx,

then for all x ′ ∈ S with P(D(0) = x ′) > 0,

E
(
T |D(0) = x ′) ≤

1 + log
(

x ′
xmin

)

δ
.

Finally, in order to derive lower bounds on the run time of EAs, we use the Negative
Drift Theorem.

Theorem 4 (Negative Drift [16,17]) Let (D(t))t≥0 be real-valued random variables
describing a stochastic process over some state space. Suppose there is an interval
[a, b] ⊆ R, two constants δ, ε > 0 and, possibly depending on � = b − a, a function
r(�) satisfying 1 ≤ r(�) = o(�/ log �) such that, for all t ≥ 0, the following conditions
hold.

1. E(D(t+1) − D(t) | a < D(t) < b) ≥ ε;
2. For all j ≥ 0, P(|D(t+1) − D(t)| ≥ j | a < D(t)) ≤ r(�)

(1+δ) j
.

Then there is a constant c such that, for T = min{t ≥ 0 : D(t) ≤ a | D(0) ≥ b}, we
have

P(T ≤ 2c�/r(�)) = 2−Ω(�/r(�)).

3 OneMax

In this section we present our results regarding OneMax. We fix a (stochastic) One-
Max function f according to one of our models. For each of the stochastic models
we consider (see Corollaries 7 through 11), it is easy to verify that there is a sequence
of independent random variables (Xk)k≤n such that the following holds.

– For each evaluation of f on a bit string with exactly k 1s, the return value is drawn
at random ∼ Xk (recall that all evaluations of fitness functions are independent).

– ∀0 < j < k < n : P(Xk < Xk+1) ≤ P(X j < Xk+1); intuitively, the larger
the true difference in OneMax-value, the more likely this is reflected in a random
OneMax evaluation. This simplifies some conditions.
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Note that these two properties capture two important properties of the OneMax func-
tion: symmetry in the positions (only the number of 1s decides on the fitness, not
the position), and monotonicity (the more 1s a bit string has, the higher its fitness;
we need this comparison-based version, given the comparison-based definition of the
(1 + 1) EA).

We start by giving an upper and a lower bound for the (1 + 1) EA in Sect. 3.1.
In Sect. 3.2 we give upper bounds for EAs with parent populations and in Sect. 3.3
for EAs with offspring populations, showing that populations are efficient for the
stochastic versions of OneMax we consider.

3.1 The (1+ 1) EA on ONEMAX

Our first theorem gives an upper bound for the (1+ 1) EA on OneMax, generalizing
a theorem from [5]. The condition given by Eq. (1) intuitively says that more 1s look
better with a probability which is close to 1, getting closer the more 1s there are.
This increase in reliability of the evaluation is needed to counterbalance the increased
likelihood of finding worse search points the closer the best search point is to the
optimum.

Theorem 5 Suppose there is a positive constant c ≤ 1/15 such that

∀k < n : P(Xk < Xk+1) ≥ 1 − c
n − k

n
. (1)

Then the (1+ 1) EA optimizes f in Θ(n log n) steps. Furthermore, if Eq. (1) holds for
all k < n − � for some � with 2 < � ≤ n/2, and we have

∀k < n : P(Xk < Xk+1) ≥ 1 − �

n
,

then (1 + 1) EA optimizes f in expectation in O(n log(n)) + n2O(�) iterations.

Proof Let pk = c(n − k)/n. Let (D(t))t≥0 be the Markov process describing the
number of 1s of the (1 + 1) EA on f . We show that there is a positive multiplicative
drift driving the number of 1s up to n, more precisely we will show that there is a
constant z such that

∀t : E
(
D(t+1) − D(t) | D(t), D(t) < n

)
≥ z

n

(
n − D(t)

)
.

Let t be given and let k := D(t) be at most n − 1.
Let E0 be the event that the new search point has at least one more 1 (i.e. D(t+1) ≥

k+1) and the comparison of old and new search point indicates correctly that the new
search point is better. We have that P(E0) ≥ (1− pk)(n − k)/(en), as the probability
for flipping exactly one 0-bit is at least (n − k)/(en), and the probability of accepting
the new (better) search point is at least 1 − pk .
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Let E1 be the event that the new search point has less 1s than the current search
point and that this new search point is nonetheless accepted (i.e. D(t+1) ≤ k − 1). We
have that P(E1) ≤ pk−1k/n, as the probability of creating a worse search point is at
most k/n (one of the 1-bits has to flip) and the probability of incorrectly accepting
a worse search point is at most pk−1. First, we show that the expected number of 1s
conditional on E1 is at least k − 2. For that notice that this expectation only decreases
if we condition additionally on the event E2 that no 0 flips to a 1. Let A be the set of
indiceswhere the current search point has a 1;without loss of generality, assume0 ∈ A.
Let, for all i ∈ A, Fi be the event that bit i flipped. Furthermore, let Y be the random
variable describing the number of flipping 1s. Note that E1 ⊆ ⋃

i∈A Fi . Now we see

E(Y | E1, E2) ≤
∑
i∈A

E(Y | Fi , E1, E2)P(Fi ) ≤ |A|
n

E(Y | F0, E1, E2) ≤ 2,

as Y conditioned on any Fi is 1 (for the i th bit flipping) plus an expected 1/n for every
other 0-bit. This shows E(D(t+1) | E1) ≥ k − 2 as desired.

Taking all parts together, we have

E(D(t+1) − D(t) | D(t), D(t) < n) ≥ P(E0) − 2P(E1)

≥ (1 − pk)
n − k

en
− 2pk−1

k

n

≥ n − k

en
− pk

(
2 + n − k

en

)
− 2c/n

≥ n − k

en
− 3pk − 2c/n

≥ n − k

n
(1/e − 5c).

Using c ≤ 1/15 we see that 1/e − 5c is a constant > 0. We apply the Variable Drift
Theorem (see Theorem 2) on the process (n − D(t))t describing the number of 0s
at iteration t , xmin = 1 and h such that, for all x > 0, h(x) = ax/n for a positive
constant a < 1/e− 5c. As the initial number of 0 is at most n, we get an expected run
time of O(n log n).

Regarding the “furthermore” clause, we do not have sufficient drift when we use
the number of 1s as the potential function. Thus, we change our potential function in a
way which could also be used to show an exp(O(n)) bound for optimizing the needle
function with the (1 + 1) EA. Intuitively, this drift function takes care of the plateau
of the last � OneMax values.

We define a helper function a so that, for all i ≥ 1,

a(i) =
{
2 i !

�! (10e�),
�−i if i ≤ �;

1, otherwise.

We now define the potential in terms of a as follows. A given search point with exactly
z 0s has potential
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g(z) =
z∑

i=1

a(i).

This potential function makes it particularly easy to compute the differences of the
potentials of similar search points (it is a sum of successive a(i)). We let (C (t))t be
the sequence of random variables describing the number of 0s in the current bit string
after t iterations. Let E0 and E1 be as above. For z ≥ � we see that we have a drift of
Ω(z/n) from the computations above. Suppose now z < �. Later we will need that,
for all i < �,

a(i)

a(i + 1)
= 10e�

i + 1

and, thus,
a(i) + 2a(i + 1) ≤ 2a(i). (2)

We now estimate howmuch the potential can fall conditional on sampling and accept-
ing a worse search point. We use E(C (t+1) | C (t) = z, E1) ≤ z + 2 as before and
make the worst-case assumption that we lose the complete potential from g(z) to g(�).
This gives

E
(
g(C (t)) − g(C (t+1)) | C (t) = z, E1

)
≥ g(z) − g(�) − 2

= −2 −
�∑

i=z+1

a(i)

≥ −2a(z + 1).

The last step can be seen with a straightforward induction employing Eq. (2).
Conditional on making progress at all (more precisely, conditional on E0), we gain

in potential by at least

g(z) − g(z − 1) = a(z).

The probability of accepting a better individual is, by assumption, at least 1− �/n.
Thus, taking all parts together, we have

E
(
g(C (t)) − g(C (t+1)) | C (t) = z

)

≥ P(E0)a(z) − P(E1)2a(z + 1)

≥
(
1 − �

n

)
z

en
a(z) − �

n

n − z

n
2a(z + 1).

Simple arithmetic and the conditions we have on � and z now show that this term is
at least b/n for some constant b. It is easy to see that g(�) = exp(O(�)). We now use
the Variable Drift Theorem (see Theorem 2) on the process (g(C (t)))t . We let h be
monotone and integrable such that, for all z with 0 < z ≤ � we have h(g(z)) = b/n,
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and for z > � h(g(z)) = az/n for a as above. Thus we see that the total expected
optimization time is at most

O(n g(�) + n log(n)),

where the first term accounts for potential values up to g(�) and the second term
accounts for higher values, where we have the higher drift of O(z/n). �

Nowwe come to our second theorem, a lower bound for the (1+1) EAonOneMax.

Theorem 6 Suppose there is � ≤ n/4 and a constant c ≥ 16 such that

∀k, n − � ≤ k < n : P(Xk < Xk+1) ≤ 1 − c
n − k

n
.

Then the (1 + 1) EA optimizes f in 2Ω(�) iterations with high probability.

Proof Wewant to show that there is a constant negative drift on the number of ones in
the interval between n−� and n; however, we will count iterations of the process only
when an actual change in the number of 1s occurs (i.e., we condition on the change),
as otherwise the drift would be too small (this will only yield a smaller bound than
when counting all other steps as well). See also [19] regarding an explicit negative
drift theorem in the presence of self-loops. Let k ≥ n − � be the number of 1s of the
current search point.

Let pk = c(n − k)/n. With a probability of at least pk−1k/(en) we decrease the
number of 1 by one (this is the chance of flipping exactly one bit, from 1 to 0, and then
accepting). This decrease of at least 1 times the probability of doing so is our negative
part of the drift.

Countering the negative part is a positive part. Let E0 be the event that the new
search point has at least one more 1 and the comparison of old and new search point
indicates correctly that the new search point is better. Clearly, the expected number of
1s conditional on E0 is at most k + 2 and P(E0) ≤ (n − k)/n. Thus, the expected
increase in 1s times the probability of making such an increase is at most 2(n − k)/n,
the positive part of the drift.

Since we do not count steps without change, it suffices to show that the negative
part of the drift is at least twice as large in magnitude as the positive part of the drift.
This would yield a negative drift of at least 1/3 (this uses that we have a minimal step
width of 1). Dividing the lower bound for the negative part of the drift by the upper
bound for the positive part of the drift, we get a ratio of

pk−1k

en

n

2(n − k)
≥ ck

2en
.

From k ≥ 3n/4 and c ≥ 16 we get the desired lower bound of 2 on the ratio. As the
(1+ 1) EA makes long jumps with sufficiently small probability, an application of the
Negative Drift Theorem (Theorem 4) concludes the proof. �
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Our two theorems can be used for easy corollaries, showing the optimization time
of the (1+1) EA given different noise models. We first consider the noise model given
in [5].

Corollary 7 ([5]) Suppose prior noise which, with probability p, flips a bit chosen
uniformly at random. Then we have that the (1 + 1) EA optimizes OneMax in an
expected number of iterations of

⎧⎪⎨
⎪⎩

Θ(n log n), if p = O(1/n);
polynomial, if p = O(log(n)/n);
superpolynomial, if p = ω(log(n)/n) ∩ 1 − ω(log(n)/n).

Proof Let c be given and suppose p ≤ c/n; let k < n − 2c. We estimate P(Xk <

Xk+1) by observing that the event Xk ≥ Xk+1 requires the individual with k 1s to be
evaluated to k + 1 or the other to k. Both have a probability of at most p. By the union
bound,we get either of the two eventswith probability atmost 2p ≤ 2c/n ≤ (n−k)/n.
Thus, we get the desired bound from Theorem 5 using the “furthermore” clause with
� = 2c.

Let now c be given and suppose p ≤ c log n/n.We get the bound P(Xk ≥ Xk+1) =
O(log n/n) just as in the last paragraph; this is sufficient up to a distance of O(log n)

from the optimum, which gives a polynomial bound using the “furthermore” clause
from Theorem 5 again.

Suppose p = ω(log n/n) ∩ 1 − ω(log n/n). Then, for all k ≥ 3n/4, we estimate
P(Xk = Xk+1) as follows. That Xk evaluates to k has a probability of at least (1− p);
that Xk+1 evaluates to k has a probability of at least p(k + 1)/n ≥ 3p/4. Since these
two probabilities are independent, we get

P(Xk = Xk+1) ≥ (1 − p)(3p/4).

Using the bounds on p, Theorem 6 now gives a superpolynomial run time. �
Note that, for the missing case of p = 1 − O(log(n)/n) in Corollary 7 we can apply
neither Theorem 5 nor Theorem 6 as the relevant constant c has a value of roughly 1
(for an upper bound we need c ≤ 1/15, for a lower bound we need c ≥ 16).

Just as easily we can make conclusions about different noise models. In the next
corollary we consider noise as given by flipping each bit with a certain probability.

Corollary 8 Suppose prior noise which flips each bit independently with probability
p. Then we have that the (1 + 1) EA optimizes OneMax in an expected number of
iterations of

⎧⎪⎨
⎪⎩

Θ(n log n), if p = O(1/n2);
polynomial, if p = O(log n/n2);
superpolynomial, if p = ω(log n/n2).
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Proof Suppose first p ≤ c/n2 for some constant c and let k < n − 2c. We estimate
P(Xk < Xk+1) by observing that that the event Xk ≥ Xk+1 requires the individual
with k 1s to be evaluated to at least k + 1 or the other to at most k. Both have a
probability of at most np by the union bound. Again by the union bound, we get either
of the two events with probability at most 2np ≤ 2c/n ≤ (n− k)/n. Thus, we get the
desired bound from Theorem 5.

Let now c be given and suppose p ≤ c log n/n2. We get the bound P(Xk ≥
Xk+1) = O(log n/n) just as in the last paragraph; this is sufficient up to a distance of
O(log n) from the optimum, which gives a polynomial bound using the “furthermore”
clause from Theorem 5.

We show the superpolynomial run time bound by distinguishing three cases for the
growth rate of p. For all k ≥ 3n/4, we estimate P(Xk = Xk+1). We will show a
bound of

P(Xk ≥ Xk+1) = ω(log(n)/n).

so that Theorem 6 gives a superpolynomial run time with � = ω(log(n)). Fix two
individuals x and y with k and k + 1 1s respectively.

Suppose first p = ω(log n/n2)∩O(1/n). That x evaluates to k has a probability of
at least (1 − p)n = Ω(1) (no bit flips); that y evaluates to at most k has a probability
of at least p(k + 1)/e ≥ 3pn/(4e). Since these two probabilities are independent, we
get

P(Xk ≥ Xk+1) ≥ Ω(1)(3pn/(4e)) = ω(log(n)/n).

Suppose now p = ω(1/n)∩O(log(n)/n). Fix log(n) positions for x at which there
is exactly one 0; fix log(n) positions of y where there are only 1s. The probability
that, after the noise is applied, x has at most as many 1s as y on the positions outside
of the fixed ones is at least 1/2 (due to symmetry, they have just as many 1s at these
positions). The probability that of all the fixed position exactly one in y flips is at least
log(n)p(1 − p)2 log(n)−1, as there are log(n) choices for the position in y. We can
bound this probability, using Bernoulli’s Inequality, as

log(n)p(1 − p)2 log(n)−1 ≥ log(n)ω(1/n) (1 − p(2 log(n) − 1))

≥ ω(log(n)/n)

(
1 − O

(
log(n)2

n

))

= ω(log(n)/n).

Together with the probability of 1/2 for x having at most as many 1s on the other bits,
this shows the desired bound.

Finally, suppose p = ω(log(n)/n). Align the bit positions so that there is only one
bit position where x and y differ. We first focus on the bit positions where x and y
are the same. After applying the noise, the probability that y has at most as many 1s
(within these bit positions) as x , is at least 1/2. The probability that, at the position
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where x and y differ, y has its bit flipped, is p. Thus, the probability of y evaluating
to at most as much as x is at least p/2, which gives again the desired bound. �

Next we consider the noise model “partial evaluation” given in [4]. Note that the
case of p constant of the next corollary was shown by [4].

Corollary 9 Suppose prior noise which sets each bit independently with probability
p to 0. Then we have that the (1 + 1) EA optimizes OneMax in an expected number
of iterations of

⎧⎪⎨
⎪⎩

Θ(n log n), if p = O(1/n2);
polynomial, if p = O(log n/n2);
superpolynomial, if p = ω(log n/n2).

We omit the proof, since it is basically the same as for the previous corollary.
Regarding posterior noise we give the following two corollaries.

Corollary 10 Suppose posterior noise, sampling from some distribution D with vari-
ance σ 2. Then we have that the (1 + 1) EA optimizes OneMax in an expected
polynomial time if σ 2 = O(log n/n). On the other hand, if, for example, D is expo-
nentially distributed with parameter 1, then the (1 + 1) EA optimizes OneMax in
superpolynomial time only.

Proof We have Xk ∼ k + D and Xk+1 ∼ k + 1 + D; let D′ be the difference of two
independent copies of D. We have

P(Xk < Xk+1) = P(0 < Xk+1 − Xk) = P(−1 < D′).

The variance of the difference of two random variables both with variance σ 2 is 2σ 2.
Now we apply Chebyshev’s Inequality to see that

P(|D′| ≥ 1) ≤ 2σ 2.

Thus, for σ 2 = O(log n/n), we get polynomial run time using Theorem 5.
In the case of D an exponential distributionwe have a constant chance of Xk ≥ k+2

and Xk+1 ≤ k + 2, which leads to the claimed result using Theorem 6. �
Corollary 11 Suppose posterior noise, sampling from a Gaussian distribution D ∼
N (0, σ 2) with variance σ 2. Then we have that the (1 + 1) EA optimizes OneMax
in an expected polynomial time if σ 2 ≤ 1/(4 log(n)). On the other hand, if σ 2 ≥
c/(4 log(n)) for any c > 1, then the (1+1) EA optimizesOneMax in superpolynomial
time only.

Proof Let D′ be the difference of two independent copies of D as in the proof of
Corollary 10. We have that D′ ∼ N (0, 2σ 2); thus

P
(−1 < D′) = 1

2

(
1 + erf

(
1

2σ

))
= 1 − 1

2
erfc

(
1

2σ

)
.
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Wewill use the following standard estimates of the complementary error function [21],
somewhat simplified by making the estimate more rough. For all x ,

exp(−x2)

2x + 2
≤ erfc(x) ≤ 2 exp(−x2)

x
(3)

We now first consider the positive part, so suppose σ 2 ≤ 1/(4 log(n)). Using the
upper bound from Eq. (3) and the fact that erfc is monotonically decreasing, we get

1

2
erfc

(
1

2σ

)
≤ 1

2
erfc

(√
log n

)
≤ exp(− log n)√

log n
≤ 1

n
.

Thus, we get polynomial run time using Theorem 5.
Regarding the negative part, let c > 1 and suppose σ 2 ≥ c/(4 log(n)). Using the

lower bound from Eq. (3) and again the fact that erfc is monotonically decreasing, we
get, asymptotically for any c′ with 1/c < c′ < 1,

1

2
erfc

(
1

2σ

)
≥ 1

2
erfc

(√
log n/c

)
≥ exp(− log n/c)

2
√
log n/c + 2

≥ 1

nc′ .

This leads to the claimed result using Theorem 6. �

3.2 Parent Populations: The (μ + 1) EA on ONEMAX

In this section we give upper bounds for a EAs using parent populations, i.e. we
consider the (μ+1) EA. From [22]we know that the (μ+1) EA needsΘ(μn+n log n)

iterations to optimize the static version of OneMax. We conjecture a similar run time
for sufficiently benevolent noisy versions, but, for simplicity also for the requirements
on the noise model, we only give the slightly weaker bound of O(μn log n). To bound
the negative drift, we also require that the noise has only a very small range.

Theorem 12 Let μ be given and suppose, for each k ≤ n, Xk ∈ [k − 1, k + 1]. For
each k < n, let Ak be the event that, when drawing μ independent copies of Xk and
one copy of Xk+1 and then sorting with breaking ties uniformly, the value of Xk+1
does not come out least. If there is a positive constant c ≤ 1/15 such that

∀k, n/4 < k < n : P(Ak) ≥ 1 − c
n − k

nμ
, (4)

then the (μ + 1) EA optimizes f in an expected number of O(μn log n) iterations.

Note that the requirement of Eq. (4) might seem to get more restrictive with growing
μ; however, it only gets linearly more restrictive in the fraction on the right-hand-side,
while the impact of growing μ on the probability of the event Ak is typically much
stronger.
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Proof Let pk = c(n − k)/(nμ).
We show that there is a positive drift on the number of ones in the current best

search point. Let k be the number of 1s of the current best search point.
Let E0 be the event that the new search point has at least one more 1 than the

best one and this new search point is not removed in the selection step. We have
P(E0) ≥ (1 − pk)(n − k)/(eμn).

Let E1 be the event that the new search point has less 1s than the current best search
point, the best search point is unique, and that this unique search point is discarded
(if the best search point is not unique, E1 is the empty event). From the bound on the
range of the noise we get that the best search point with k 1s can only be discarded if
all other search point have at least k − 2 1s. Thus, the number of 1s conditional on E1
(if E1 �= ∅) is at least k − 2. We have P(E1) ≤ pk−1. Thus, the expected increase in
the number of 1s is at least

P(E0) − 2P(E1) ≥ (1 − pk)
n − k

eμn
− 2pk−1

= n − k

eμn
− pk

(
2 + n − k

eμn

)
− 2c/(nμ)

≥ n − k

eμn
− 3pk − 2c/(nμ).

Using the choice of c ≤ 1/15, we see that we have sufficient multiplicative drift, and
our claim follows from the Multiplicative Drift Theorem (see Theorem 3). �

From these theoremswe can again derivemany corollaries regarding concrete noise
models. These includes corollaries implying an exponential speedups of populations
of logarithmic size, when compared with the performance of the (1 + 1) EA.

Corollary 13 Suppose prior noise which, with probability p, flips a bit uniformly at
random. Letμ ≥ 12 log(15n)/p. Thenwe have that the (μ+1) EA optimizesOneMax
in an expected number of O(μn log n) iterations. In particular, for p = 1/2, we have
that a population size of μ = 24 log(15n) suffices for an expected optimization time
of O(μn log n).

Proof In order to apply Theorem 12 we consider μ independent copies of Xk (called
low individuals) and one copy of Xk+1 (called high individual).

Suppose first p ≤ 1/(32n). Using Chernoff bounds, we can assume that at least
μ/2 low individuals will evaluate to k. Now the high individual can only come out
last in the sorting described in Theorem 12 if it evaluates down and looses in the tie
breaking against at least μ/2 low individuals; this happens with a probability of at
most

p

μ/2
≤ 1

16nμ
.

Thus, Theorem 12 concludes the claim for this case.
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Suppose now p > 1/(32n). For k ≥ n/4, the probability that none of the low
individuals is evaluated to k − 1 is at most

(
1 − p

4

)μ

(as each individual is evaluated noisily with probability p and, using k ≥ n/4, with
probability at least 1/4 the noise has a negative effect on the fitness).

For μ large enough (recall that μ increasing with increasing n), we have pμ/6 ≥
log(μ), as can be seen by the following case distinction.

μ ≤ n2 : pμ/6 ≥ 2 log(15n) ≥ 2 log(n) ≥ log(μ);
μ > n2 : pμ/6 ≥ μ/(6 · 32n) ≥ √

μ/198 ≥ log(μ).

Let q = 1 − p/4. We have

μ = 4 (μ/12 + μ/6)

≥ 4

(
log(15n)

p
+ log(μ)

p

)

= 4
log(15nμ)

p
.

We use the inequality x ≤ − log(1 − x) for x = p/4 and get

μ ≥ 4 log(15nμ)

−4 log(q)
= − log(15nμ)

log(q)
.

Taking all inequalities together we get that the probability that none ofμ individuals
with k 1s is evaluated to k − 1 is at most

(
1 − p

4

)μ = qμ ≤ 1

15nμ
.

Theorem 12 gives the desired result. �
Corollary 13 requires larger μ for smaller p, while small noise (small values of p)
should make optimization easier. Consider the following case as an illustrative exam-
ple for why small noise might be bad for efficient optimization. Assume we have
μ = Θ(log n) and p = Θ(1/

√
n). We have that, with constant probability, all low

individuals are truthfully evaluated. Furthermore, Xk+1 = k has a probability of
Θ(1/

√
n), assuming a large value of k. This shows that there is a chance of Θ(1/

√
n)

to remove the best individual from the population, making Theorem 12 inapplicable.
The assumptions of Theorem 12 are very strong, even if they do not hold there might
be efficient optimization, but this will likely require much more refined techniques
(probably considering the diversity of the population).
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3.3 Offspring Populations: The (1+ λ) EA on ONEMAX

In this section we give upper bounds for a EAs using offspring populations, i.e. we
consider the (1 + λ) EA. From [12, Theorem 4] we know that the (1 + λ) EA needs
O(n log n + nλ) iterations to optimize the static version of OneMax.

Theorem 14 Let λ ≥ 24 log n and, for each k < n, let Yk denote the maximum over
λ observed values of Xk (belonging to inferior individuals) and let Zk denote the
maximum over at least λ/6 observed values of Xk (belonging to better individuals).
Suppose there is q < 1 such that

∀k < n : P(Yk < Xk+1) ≥ q, (5)

and

∀k < n : P(Yk−1 < Zk) ≥ 1 − q

5

�λ

en + �λ
. (6)

Then the (1 + λ) EA optimizes f in O((n log n/λ + n)/q) iterations and needs
O((n log n + nλ)/q) fitness evaluations.

Proof We show that there is a positive drift on the number of 1bits. Let k be the number
of 1-bits of the current search point and � the number of 0-bits, such that k + � = n.
Let pk = (q/5)�λ/(en + �λ).

Let E0 be the event that at least one offspring is improved by at least 1 and is
correctly accepted. Let E1 be the event that at least one offspring has less 1s than the
current search point, and that it is still accepted. We have that P(E0) can be bounded
below by

q

(
1 −

(
1 − �

en

)λ
)

≥ q
(
1 − e− �λ

en

)
≥ q

�λ

en + �λ
.

In order to estimate P(E1) let E2 be the event that more than λ/6 copied offspring
are created. We have

P(E1) = P(E1|E2)P(E2) + P(E1|E2)P(E2).

Equation (6) gives us P(E1|E2) ≤ pk . By using a Chernoff bound we further get
P(E2) ≤ e−λ/24. Bounding the other probabilities by 1 we obtain P(E1) ≤ pk +
e−λ/24. Conditioning on E1, the expected number of ones is at least k−2. Furthermore,
due to our definition of pk and � = n − k we can show the following inequality:

pk = q

5

�λ

en + �λ
=

q
5

1 + en
(n−k)λ

≥
q
5

1 + en
λ

≥
q
5

n (1+e)
λ

= qλ

5n(1 + e)
,

where the inequalities follow from the trivial bounds k ≤ n−1 and n ≥ 1, respectively.
Since λ ≥ 24 log n, the last term is bounded below by 1/n. Altogether, the expected
increase in the number of 1s is
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P(E0) − 2P(E1) ≥ q
�λ

en + �λ
− 2

(
pk + e− λ

24

)

≥ q
�λ

en + �λ
− 2

(
pk + 1

n

)

≥ q
�λ

en + �λ
− 4pk

=
(
q − 4q

5

)
�λ

en + �λ
,

where the third inequality follows from pk ≥ 1/n, as shown above. Since the last term
is positive, we can apply Theorem 3, which yields an upper bound of O((n log n/λ +
n)/q) for the expected number of iterations. Since λ fitness evaluations are performed
in each iteration the expected number of fitness evaluations until an optimum is found
is therefore O((n log n + nλ)/q). �

Again, the previous theorem allows us to easily derive corollaries in the context of
noise. In the following we present two corollaries showing that offspring populations
can handle much higher noise levels than the (1 + 1) EA. We first consider the noise
model given in [5].

Corollary 15 Suppose prior noise which, with probability p > 0, flips a bit uniformly
at random. Then, for λ ≥ max{12/p, 24}n log n, the (1 + λ) EA optimizes OneMax
in time O((n2 log n/λ + n2)/p), i.e. the (1 + λ) EA needs O((n2 log n + n2λ)/p)
fitness evaluations until an optimum is found.

Proof Let c = max{12/p, 24}. In order to applyTheorem14we need to checkEqs. (5)
and (6). Let q = p/n.

We show Eq. (5) by considering the event that the good individual evaluates better
than it is. Note that then, any noise affecting the worse individuals does not harm the
comparison since misevaluations can only differ from the true fitness by 1. We get

P(Yk < Xk+1) ≥ 1 −
(
1 − p + pk

n

)
≥ p

n
= q.

Reusing our above considerations regarding the probability that at least one of λ/6
individuals improves, and due to our choice of λ ≥ cn log n we have

P(Yk−1 < Zk) ≥ 1 −
(
1 − p + pk

n

)λ/6

≥ 1 − 1

e
pλ
6n

≥ 1 − 1

n2

≥ 1 −
q
5

1 + en
(n−k)λ

,

123



480 Algorithmica (2016) 75:462–489

thus fulfilling Eq. (6). The claim now follows from Theorem 14. �
The last corollary shows that offspring populations permit the optimization process

to cope with a much higher level of noise than the (1 + 1) EA (see Corollary 7).
For the posterior noise model, we can show an even greater improvement over the

(1 + 1) EA, similar to the result regarding parent populations.

Corollary 16 Let any non-positive additive posterior noise be given which has
a non-zero probability p of evaluating to > −1. Then we have that for λ ≥
max{10e,−(6 log(n/p)/(log(1− p))} (implying λ = Ω(log(n/p)/p)), the (1+λ) EA
optimizes OneMax in time O((n log n/λ + n)/p).

Proof Let D be the posterior noise such that D ≤ 0 and P(D > −1) = p. Further-
more, let

λ ≥ max

⎧⎨
⎩10e,

−6 log
(
n
p

)

log(1 − p)

⎫⎬
⎭ .

Note that since D ≤ 0 we have that Yk ≤ k which gives us

P(Yk ≥ Xk+1) ≤ P(k ≥ Xk+1) = P(D ≤ −1) = 1 − p,

which yields P(Yk < Xk+1) ≥ p, fulfilling the first condition of Theorem 14 with
q = p.

In order to show Eq. (6) we use the same bound as before. Note that individuals
can not me misevaluated better than they are since we only consider negative, additive
posterior noise. Hence, Yk−1 ≥ Zk implies that all of at least λ/6 individuals at fitness

k need to evaluate to ≤ k − 1, i. e. P(Yk−1 ≥ Zk) ≤ (1− p)
λ
6 . We have Furthermore,

due to our choice of λ, we have (1 − p)λ/6 ≤ pn−1. Thus, using λ ≥ 10e from the
above definition, we have

P(Yk−1 < Zk) ≥ 1 − p

n
≥ 1 −

p
5 λ

2en
≥ 1 −

p
5

1 + en
(n−k)λ

,

fulfilling the second condition, and the claim follows from Theorem 14. �
Similar to Corollary 12 the last corollary applies, for example, to additive posterior
noise taken from −Exp(1) (where Exp(β) denotes the exponential distribution with
parameter β).

4 LeadingOnes

We follow up on the section about OneMax with results for LeadingOnes. For this
purpose we now fix a stochastic LeadingOnes function f according to one of our
models. For each k, we let xoptk be the bit string which has only 1s, except for position
k + 1; let xpesk be the bit string with k leading ones and otherwise only 0s. In a sense,
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xoptk is optimal for a bit string with a leading ones value of k, while xpesk is pessimal.

We let (Xopt
k )k≤n and (Xpes

k )k≤n be two sequences of independent random variables

such that, for all k ≤ n, Xopt
k ∼ f (xoptk ) and Xpes

k ∼ f (xpesk ). We will assume the
following about f .

– For each evaluation of f on a bit string with the leftmost zero at position k + 1,
the return value is drawn according to a distribution which is in between Xpes

k and

Xopt
k with respect to stochastic dominance.

– ∀ j ≤ k < n : P(Xopt
j < Xopt

k+1) ≥ P(Xopt
k < Xopt

k+1).

– ∀ j ≤ k < n : P(Xpes
j < Xpes

k+1) ≥ P(Xpes
k < Xpes

k+1).

We show that, despite the more drastic consequences of noise, we still find suffi-
cient conditions for efficient optimization similar to the ones we have already seen in
Sect. 3.

We begin by giving upper and lower bounds for the (1 + 1) EA in Sect. 4.1.
In Sects. 4.2 and 4.3 we show the effectiveness of parent and offspring popu-
lations, respectively, for the stochastic LeadingOnes problem by giving upper
bounds.

4.1 The (1+ 1) EA on LEADINGONES

Similar to the analysis of OneMax subject to noise, we start by giving an upper bound
for the (1 + 1) EA. As we see in the next theorem, the condition for LeadingOnes
is more strict than in the case of OneMax: the reliability of correct evaluations is
required to be 1 − O(1/n2) close to the optimum (see Eq. (7)).

Theorem 17 Suppose there is a positive constant c < 1/(6e) such that

∀k < n : P(Xopt
k < Xpes

k+1) ≥ 1 − c

kn
(7)

Then the (1 + 1) EA optimizes f in O(n2) iterations in expectation.

Proof Let pk = c/(kn). We show that there is a positive drift on the number of leading
1-bits. Let k be the length of the prefix of the current search point consisting of 1s.

We stick to our previous notation and denote by E0 the event that the new search
point has a longer prefix consisting of 1s and the comparison of old and new search
point indicates correctly that the new search point is better. Let E1 be the event that
the new search point has a smaller number of leading ones than the current search
point, and that it is accepted. Conditioning on E1 we can trivially bound the expected
number of leading ones below by 0. We have P(E0) ≥ (1 − pk)/(en) and P(E1) ≤
pk−1(1− e−1) ≤ pk−1. Therefore, the expected increase in the number of leading 1s
is
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P(E0) − kP(E1) ≥ (1 − pk)

en
− kpk−1

= 1 − c
kn

en
− ck

(k − 1)n

≥ 1

en
− c

ekn2
− 2c

n

≥ 1

en
− c

n

(
1

e
+ 2

)

≥ 1

en
− 3c

n
.

Due to our choice of c < 1/(6e) we have a positive additive drift of 1/(2en) leading
to an upper bound of O(n2) for the expected run time of the algorithm by applying
the Additive Drift Theorem (see Theorem 1). �

It is only to be expected that noise disrupts the optimization of LeadingOnes
immensely. Consequently, our following corollaries to Theorem 17 are rather weak
with respect to the noise allowed (basically, the algorithm will only experience
constantly many incorrect decisions during optimization, in expectation). First, we
consider prior noise where one bit is flipped uniformly at random before evaluation.

Corollary 18 Suppose prior noise which, with probability p, flips a bit uniformly at
random. Then we have that in expectation the (1+ 1) EA optimizes LeadingOnes in
O(n2) iterations if p ≤ 1/(6en2).

Proof Suppose first p ≤ 1/(6en2) and let k < n. We estimate P(Xopt
k < Xpes

k+1) by

observing that the event Xopt
k ≥ Xpes

k+1 requires the individual with k 1s to be evaluated
to ≥ k + 1 or the other to ≤ k. The first option has a probability of at most p/n, the
second of pk/n. Hence, P(Xopt

k < Xpes
k+1) ≥ 1− (k + 1)/(6en3) ≥ 1− 1/(6en2) and

the desired bound follows from Theorem 17. �
Regarding posterior noise we give the following corollary.

Corollary 19 Suppose posterior noise, sampling from some distribution D with vari-
ance σ 2. Thenwe have that the (1+1) EA optimizesLeadingOnes in O(n2) iterations
in expectation if σ 2 ≤ 1/(12en2).

Proof Note that, in this case, Xopt
k ∼ Xpes

k , for all k ≤ n. With the same argument as

in Corollary 10 we have P(Xopt
k < Xpes

k+1) ≥ 1 − 2σ 2. Thus, for σ 2 = 1/(12en2) the
claim follows from Theorem 17. �

Next we give a lower bound for the (1 + 1) EA for the prior noise model. We will
not give a general lower bound that holds for both of our models because it is very easy
for the (1 + 1) EA to detect an inferior noisy offspring by selection if LeadingOnes
is subjected to posterior noise.

Theorem 20 Suppose prior noise which, with probability 1/2, flips a bit uniformly at
random. Then we have that the (1+1) EA optimizes LeadingOnes in 2Ω(n) iterations
in expectation.
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Proof It is sufficient to show that there is a constant negative drift on the number of
ones in the interval between 99n/100 and n. Let k ≥ 99n/100 be the number of 1s of
the current search point. Note that the number of 1s k is a trivial upper bound for the
number of leading ones.

Let E0 be the event that the new search point has at least one more 1 than the current
search point and the comparison of old and new search point indicates that the new
search point is to be accepted. The expected number of 1s conditional on E0 is at most
k + 2 and we have a trivial bound of P(E0) ≤ (n − k)/n ≤ 1/100.

Let E1 be the event that the new search point differs from the old by flipping
exactly one 1 in the right half of positions, and that it is accepted. We want to estimate
P(E1). There are at least 49n/100 1s in the right half of positions, so the probability
of flipping exactly one of them and no other is at least 49/(100e). In order to estimate
the probability of accepting such an offspring, we consider two cases. First, assume
that the parent has a leading ones value of at least n/2. Then the probability of the
noisy evaluation evaluating the parent to a value <n/2 is at least 1/4 (by choosing to
flip a bit in the left half in the evaluation), while evaluating the offspring to its true
value ≥n/2 has a probability of at least 1/2. In total we have P(E1) ≥ 49/(800e) in
this case.

Second, assume that the parent has a leading ones value of <n/2. Then both parent
and offspring have the same leading ones value; with probability 1/4 they both evaluate
to their true value, which favors the offspring. Thus, in this case, we get P(E1) ≥
49/(400e). Overall we have now P(E1) ≥ 49/(800e) > 1/50

Thus, we have that the total (negative) drift of

P(E1) − 2P(E0) ≥ 49/(800e) − 2/100

which gives us a constant negative drift. Since long jumps are sufficiently small (due
to our choice of using the number of 1s as potential), we can apply Theorem 4 which
yields our result. �

4.2 Parent Populations: The (μ + 1) EA on LEADINGONES

In this section we give upper bounds for EAs using parent populations, i.e. we consider
the (μ + 1) EA. As for the (μ + 1) EA on OneMax, we again only give the weaker
bound of O(μn2) for the sake of simplicity instead of Θ(μn log n + n2) which is the
bound for the static version of LeadingOnes ([22]). Note that the proofs for the upper
bounds for the (1 + 1) EA carry over to the case of the (μ + 1) EA.

Theorem 21 Let μ be given and, for each k < n, let Yk denote the minimum over μ

observed values of Xopt
k . If there is a positive constant c < 1/(6e) such that

∀k : n/4 < k < n ⇒ P(Yk < Xpes
k+1) ≥ 1 − c

μkn
, (8)

then the (μ + 1) EA optimizes f in O(μn2) iterations in expectation.
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Note that, due to the dependence of Yk on μ, Eq. (8) typically gets less restrictive with
growing μ, just as in Theorem 12.

Proof Let pk = c/(μkn). We show that there is a positive drift on the number of
leading 1-bits of a current best individual. Let k be the length of the prefix of the
current search point consisting of 1s. Let E0 be the event that a best individual is
improved by at least 1 and accepted by mutation. Let E1 be the event that the new
individual has a smaller prefix consisting of 1s and that the unique best individual is
dropped from the parent population.We have that P(E0) ≥ (1− pk)/(eμn), assuming
pessimistically that there is only one best individual. On the other hand P(E1) ≤ pk−1.

Since, conditioned on E1, the expected number of leading ones of a best individual
is trivially at least 0 we can bound the expected increase in the number of leading 1s
of a best individual below by

P(E0) − kP(E1) ≥ (1 − pk)
1

eμn
− kpk−1

= 1

eμn
− c

eμ2kn2
− 2c

μn

≥ 1

eμn
− c

μn

(
1

e
+ 2

)

≥ 1

eμn
− 3c

μn

and the last term can be bounded below by 1/(2eμn) due to our choice of c < 1/(6e).
Applying Theorem 1 yields an upper bound of 2eμn2 for the expected number of
iterations until the optimum is found. Taking the cost of initialization into account we
have an expected run time of μ + 2eμn2, proving our claim. �

Theorem 21 is not strong enough to derive a good upper bound for the prior noise
model where a bit flip is performedwith certain probability. Regarding posterior noise,
we can still derive the following corollary.

Corollary 22 Let any non-negative additive posterior noise be givenwhich has a non-
zero constant probability of evaluating to <1. Then there is a constant c such that, for
n/(8e) ≥ μ ≥ c log n, the (μ + 1) EA optimizes LeadingOnes in time O(μn2).

Proof Let D be the posterior noise and p = P(D < 1) a non-zero constant. Let
c = −3/ log(1 − p) and �n/(8e)� ≥ μ ≥ �c log n�. We have

P(Yk < Xk+1) = 1 − P(D ≥ 1)μ ≥ 1 − (1 − p)−3 log n/ log(1−p),

and the last term equals 1 − n−3. Using μ ≤ n/(8e), we have

1 − 1

n3
≥ 1 − 1/(8e)

μn2
≥ 1 − 1/(8e)

μkn
,

for all 1 ≤ k ≤ n. Since 1/(8e) < 1/(6e) holds, we can apply Theorem 21, which
yields the result. �
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4.3 Offspring Populations: The (1+ λ) EA on LEADINGONES

In this section we consider the (1 + λ) EA. The next theorem gives conditions for
efficient optimization of stochastic LeadingOnes problems. Note that Theorem 14
establishes a similar result for OneMax. The bound we give is the same as is shown
for static LeadingOnes in [12].

Theorem 23 Let λ ≥ 72 log n and, for each k < n, let Yk denote the maximum over
λ observed values of Xopt

k (belonging to inferior individuals) and let Zk denote the
maximum over at least λ/6 observed values of Xpes

k (belonging to better individuals).
Suppose there is q < 1 with q ≥ 6e/n such that

∀k < n : P(Yk < Xpes
k+1) ≥ q, (9)

and

∀k < n : P(Yk−1 < Zk) ≥ 1 −
q
3

k(1 + en
λ

)
. (10)

Then the (1 + λ) EA optimizes f in expectation in O((n + n2/λ)/q) iterations and
needs O((n2 + λn)/q) fitness evaluations.

The proof of Theorem 23 is essentially identical to the proof of Theorem 14. We
therefore omit it here.

We give the following corollary showing that even small offspring populations can
lead to an improvement over the (1 + 1) EA.

Corollary 24 Let p ≤ c/n for some constant c < 1/(12e + 2). Suppose prior noise
which, with probability p, flips a bit uniformly at random. Then, for λ ≥ 72 log n
with λ = o(n), the (1+ λ) EA optimizes LeadingOnes in expectation in O(λn + n2)
iterations.

Proof In order to apply Theorem 23 we need to show Eqs. (9) and (10). We can show
the former considering the event that none of λ inferior individuals is evaluated better
than it is and that the good individual is evaluated to its true value. Let k < n, then we
get

P(Yk < Xpes
k+1) ≥

(
1 − p

n

)λ

(1 − p) ≥ (1 − p)2 ≥ 1 − 2c.

Thus, Eq. (9) holds for q = 1 − 2c, since c is a constant.
Regarding Eq. (10) we have that the probability that at least one of at least λ/6 good

individuals is not evaluated worse is 1− (pk/n)λ/6. Reusing our above considerations
regarding the probability that inferior individuals do not improve, we have

123



486 Algorithmica (2016) 75:462–489

P(Yk−1 < Zk) ≥
(
1 − p

n

)λ
(
1 −

(
pk

n

) λ
6
)

≥
(
1 − cλ

n2

)(
1 −

(
ck

n2

) λ
6
)

≥
(
1 − cλ

n2

)2

≥ 1 − 2cλ

n2
.

Due to our choice of c < 1/(12e + 2) we have 2c < (1 − 2c)/6e, i. e. 2c < q/(6e).
Hence, we can further bound the last term and get

1 − 2cλ

n2
> 1 −

q
6e
n2
λ

= 1 −
q
3

2 en2
λ

≥ 1 −
q
3

n + en2
λ

≥ 1 −
q
3

k + ekn
λ

.

Thus, Eq. (10) holds and the claim follows from Theorem 23. �
We follow up by showing an even greater improvement over the (1+ 1) EA for the

posterior noise model. In this case

Corollary 25 Let any non-positive, additive posterior noise be given which has a
non-zero constant probability p of evaluating to > −1. Then we have that for en ≥
λ ≥ max{6e,−12 log(n/p)/ log(1− p)} (implying λ = Ω(log(n/p)/p)∩ O(n)) the
(1 + λ) EA optimizes LeadingOnes in expectation in O(n + n2/λ) iterations.

Proof Let D be the posterior noise, such that D ≤ 0 and P(D > −1) = p. Further-
more, let

en ≥ λ ≥ max

⎧
⎨
⎩6e,

−12 log
(
n
p

)

log(1 − p)

⎫
⎬
⎭ .

Note that since D ≤ 0 we have that Yk ≤ k which gives us

P(Yk ≥ Xk+1) ≤ P(k ≥ Xk+1) = P(D ≤ −1) = 1 − p,

which yields P(Yk < Xk+1) ≥ p, fulfilling the first condition of Theorem 23 with
q = p.

In order to check Eq. (10) we use the same bound as before. Note that individuals
can not me misevaluated better than they are since we only consider negative, additive
posterior noise. Hence, Yk−1 ≥ Zk implies that all of at least λ/6 individuals at fitness

k need to evaluate to ≤ k − 1, i. e. P(Yk−1 ≥ Zk) ≤ (1 − p)
λ
6 . Due to our choice of

λ, we have (1 − p)λ/6 ≤ pn−2. We can estimate

P(Yk−1 < Zk) ≥ 1 − p

n2
≥ 1 −

p
3 λ

2en2
≥ 1 −

p
3

n
(
1 + en

λ

) ≥ 1 −
p
3

k(1 + en
λ

)
,
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where the second inequality follows from λ ≥ 6e and the third inequality stems from
our assumption of λ ≤ en. Thus, the second condition is fulfilled, and the claim
follows from Theorem 23. �

Just as for Corollary 12 the last corollary applies, for example, to additive posterior
noise taken from −Exp(1).

5 Conclusion

In this paper we consider the optimization of noisy versions of OneMax and Leadin-
gOnes. The summary of the results is that populations are necessary for successful
optimization for any substantial noise levels. The surprising result is that even very
small populations (of size logarithmic in the problem size) already lead to very high
robustness to noise (see Corollaries 13 and 24).

From the formal analysis we see the reason for this robustness: In a (parent) pop-
ulation of size μ, while the best individual might look bad in a given iteration, there
will surely be (objectively) worse individuals which also look worse. This holds as
long as there are enough individuals in the parent populations to make sure that one
of them will evaluate worse than the (objectively) best individual, and while the noise
can never be very disruptive. For example, if a non-best individual will evaluate worse
than the best individual with constant probability, a logarithmic number of non-best
individuals is large enough to get very high confidence that such a bad individual is
dropped. This observation probably extends to the analysis of the (μ + λ) EA with
μ > 1 and λ > 1; here the same approach of computing the drift could lead to further
results.

As for offspring populations, in the (1 + λ) EA the current individual is cloned
multiple times and thus hedges against bad evaluations (as long as good evaluations
are sufficiently likely). This does not extend to the analysis of the (μ + λ) EA with
μ > 1 and λ > 1 in a straightforward way, as clones might be made from sub-optimal
individuals.

All these analyses would probably carry over easily to different mutation probabil-
ities: changing them by a constant factor should only change some constants of the
theorems. An entirely different question is about what happens if not all old search
points are reevaluated, as for example in [20]. For high noise values, this will likely
disrupt optimization heavily.

While we get very accurate statements about the capabilities of the (1 + 1) EA in
stochastic environments (including upper and lower bounds), there is still a lot to learn
about the capabilities of population-based EAs. On the one hand we do not get any
lower bounds, on the other hand we believe that the positive results can be extended.
We believe that such extensions will require more refined techniques: all our bounds
are based on worst-case assumptions about the distribution of the search points (for
example in Theorem 12 we assume that we have only one good individual and all
other individuals are worse by exactly 1). We think that the results of the (1 + λ) EA
might be easier to extend than the results for the (μ+1) EA, as the former has a much
easier to control state from one iteration to the next (only the best individual survives).
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Finally, it would be very interesting to see analyses of other algorithms on stochastic
fitness functions. Especially interesting would be an analysis of crossover, or any kind
of estimation of distribution algorithm, including ant colony optimization algorithms.
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