
Scaling up Local Search for Minimum Vertex
Cover in Large Graphs by Parallel Kernelization

Wanru Gao1(B), Tobias Friedrich1,2, Timo Kötzing2, and Frank Neumann1

1 School of Computer Science, The University of Adelaide, Adelaide, Australia
wanru.gao@adelaide.edu.au

2 Hasso Plattner Institute, Potsdam, Germany

Abstract. We investigate how well-performing local search algorithms
for small or medium size instances can be scaled up to perform well
for large inputs. We introduce a parallel kernelization technique that is
motivated by the assumption that graphs in medium to large scale are
composed of components which are on their own easy for state-of-the-art
solvers but when hidden in large graphs are hard to solve. To show the
effectiveness of our kernelization technique, we consider the well-known
minimum vertex cover problem and two state-of-the-art solvers called
NuMVC and FastVC. Our kernelization approach reduces an existing
large problem instance significantly and produces better quality results
on a wide range of benchmark instances and real world graphs.

Keywords: Vertex cover · Local search algorithms

1 Introduction

Local search algorithms belong to the most successful approaches for many
combinatorial optimization problems [1,8]. The general problem of local search
approaches is that they can be trapped in local optima. Since often these
approaches include a random initialization or random components, running an
algorithm several times on a given instance might help with finding a global opti-
mum. However, if the probability of getting stuck in a local optimum is high,
then even repeated runs might not help to evade local optima.

In this paper, we present a new approach for scaling up existing high-
performing local search solvers in order to perform well on large graphs. Our
approach builds on the assumption that large graphs are composed of different
(hidden) substructures. Substructures are often found in large social network
graphs as social networks usually consist of (loosely connected) sub-communities.
In large graphs, the issue of local optima might occur in the different substruc-
tures of the given problem instance; having a large number of these substructures
where an algorithm even just fails with a small probability might make it very
hard for local search approaches to obtain the optimal solution. We present a
simple parallel kernelization approach that builds on theoretical investigations
regarding substructures on large graphs.
c© Springer International Publishing AG 2017
W. Peng et al. (Eds.): AI 2017, LNAI 10400, pp. 131–143, 2017.
DOI: 10.1007/978-3-319-63004-5 11

132 W. Gao et al.

Kernelization approaches have been shown to be very effective for design-
ing algorithms which have a good performance guarantee [7]. Recently, a tech-
nique of incorporating kernelization in evolutionary algorithms is proposed to
the NP-hard independent set problem [10]. The key idea of this approach is to
pre-process a given instance by making optimal decisions on easy parts of the
given input such that the overall problem instance is reduced. There are several
kernelization techniques available for the minimum vertex cover problem which
perform well if the number of vertices in an optimal solution is small. However,
the applicability to difficult instances which are usually dense graphs is limited
as the pre-processing does not significantly reduce the problem instance size.
As proposed by [15], identifying the ‘backbone’ solution component and then
making use of this information is beneficial for the local search algorithm.

We present a new way of reducing the problem instance size by parallel ker-
nelization (note that this is not a kernelization in the theoretical sense). In Sect. 2
we present theoretical investigations which assume that small substructures can
be solved effectively by a local search heuristic; we then turn these observa-
tions into a parallel kernelization technique. The approach uses existing local
search solvers to deal with large graphs. The key idea is to do μ parallel runs
of such a solver and reduce the given instance by fixing components that have
been selected in all μ runs and reducing the instance afterwards. The resulting
reduced instance is then solved by an additional run of the local search solver
and the combined result is returned as the final solution.

We consider the NP-hard minimum vertex cover (MVC) problem to illustrate
the effectiveness of our approach. Popular local search approaches for tackling
MVC include PLS [11], NuMVC [6], TwMVC [5], COVER [12] and FastVC [4].
Recently a branch-and-reduce algorithm for MVC is proposed [2]. Although this
exact algorithm gets stuck in solving some well-known benchmark problems, it
has shown good performance in dealing with sparse real world graphs.

The MVC algorithms are usually evaluated on standard benchmarks and (in
more recent years on) large real world graphs. We take NuMVC and FastVC as
the baseline local search solvers for our new kernelization approach. These two
algorithms belong to the best-performing approaches for MVC. Our experimen-
tal results show that our new kernelization technique does not do any harm on
instances where NuMVC and FastVC are already performing well while improv-
ing results on graphs containing benchmark instances as connected components.

The outline of the paper is as follows. In Sect. 2, we present the theoretical
motivation for our parallel kernelization technique that is based on the assump-
tion that large graphs are composed of substructures. Section 3 outlines the
resulting local search approach with parallel kernelization for the vertex cover
problem. We evaluate the performance of our new approach on two state-of-
the-art MVC solvers in Sects. 4 and 5 on combinations of classical benchmark
instances and large real world graphs. Finally, we finish with some concluding
remarks.

Scaling up Local Search for Minimum Vertex Cover 133

2 Substructures in Large Graphs

Large graphs originating for example from social networks consist of a large
number of vertices and edges. Our approach builds on the assumption that these
graphs are composed of different substructures which on their own and at a small
scale would not be hard to handle by current local search approaches. This is
for example the case for social networks which are composed of different com-
munities. The difficulty arises through the composition of substructures which
are not known to the algorithm and which are hard to extract from the given
instances.

We would like to illustrate the problem by the following simple observations.
Assume that you are running some (randomly initialized) local search algorithm
on an instance that consists of different subparts si, 1 ≤ i ≤ k, where each part si
has the probability pi of failing to obtain that optimal sub-solution independently
of the other components. Then the probability of obtaining the optimal solution
is

k∏

i=1

(1 − pi).

Even if there is only a constant probability p′ = mink
i=1 pi, 0 < p′ < 1

of failing in each of the k components, the probability that the local search
algorithm would solve the overall instance would be exponentially small in k,
meaning, we only succeed with probability

k∏

i=1

(1 − pi) ≤
k∏

i=1

(1 − p′) = (1 − p′)k ≈ e−p′·k. (1)

In our kernelization, we run μ instances of the same local search algorithm
(randomly initialized). After some time t1 for each of these runs, we stop the
algorithm. After all μ solutions are computed, we freeze the setting for all those
components which are set the same way in all μ runs; then we run the local
search algorithm on the reduced instances with the frozen components removed.

Consider a component si again where the probability of failing is pi. The
probability that a run obtains the optimal solution for this component is (1−pi)
and the probability that μ random runs identify an optimal solution is (1 −
pi)µ. As long as the failure probability pi is only a small constant and μ is not
large, this term is still a constant that is sufficiently large, which shows that the
kernalization will likely be successful as well. Let |si| be the size of component
si. Furthermore, we assume that the whole instance s is composed of the k
subcomponents and we have |s| =

∑k
i=1 |si|.

The expected decrease in size of the original problem consisting of the com-
ponents si is given by

k∑

i=1

(1 − pi)µ|si|

134 W. Gao et al.

Algorithm 1. Local Search with Parallel Kernelization

1 Initialize P with µ solutions after µ different independent runs of MVC solver
with cutoff time t1.

2 Let set Va be the set of vertices which are selected by all solutions in P .
3 Construct an instance I with vertices v /∈ Va and edges which are not adjacent

to any vertex in Va.
4 Run MVC solver on instance I with cutoff time t2 to get a minimum vertex

cover Vs.
5 Construct the final solution V = Va ∪ Vs.

Assuming p̂ = maxk
i=1 pi, then we get

k∑

i=1

(1 − pi)µ|si| ≥ (1 − p̂)µ
k∑

i=1

|si| = (1 − p̂)µ · |s|, (2)

which reduces the whole instance by a fraction of at least (1 − p̂)µ.
We now consider the probability that one of the different components has

not achieved an optimal sub-solution in at least one of the μ runs. In such
a case our algorithm could potentially reduce the instance and fix vertices of
that component which do not belong to an optimal solution. In this case, the
kernelization step would fail and prevent us from obtaining the overall optimal
solution. Consider component si. The probability that all μ runs do not obtain
the optimal sub solution for this component is pµi . The probability that at least
one of them obtains the optimal sub-solution is therefore at least

1 − pµi

and the probability that all components have at least one run where the optimal
sub-solution is obtained is therefore at least

k∏

i=1

(1 − pµi) ≥ (1 − p̂µ)k ≈ e−p̂µ·k. (3)

As an example, assume that the probability of the original approach failing
on each subcomponent is 10%, μ = 3, and k = 50. Then the expected reduction
according to Eq. 2 is (1−0.1)3 · |s| = 0.729 · |s|, that is, the resulting instance has
only 27.1% of the original number of vertices. The probability of not failing in the
reduction step according to Eq. 3 is (1−0.13)k = 0.999k whereas the probability
of a single run of the original approach not failing in at least one component
according to Eq. 1 is (1 − 0.1)k = 0.9k. For k = 50 we get a probability of not
failing in the kernelization step of 0.99950 ≈ 0.95 and a probability of not failing
in the original algorithm of 0.950 ≈ 0.005.

The user can control μ, and from our calculations we observe a trade-off
between reducing the number of vertices and the probability of fixing the wrong
vertices in at least one of these components, depending on μ.

Scaling up Local Search for Minimum Vertex Cover 135

3 Parallel Kernelization for Minimum Vertex Cover

We now show how to use the ideas discussed in the previous section in an
algorithmic sense. As mentioned previously, our approach assumes that there is
already a good local search solver for the given problem P for small to medium
size instances. Our goal is to use parallel kernelization to make it work for large
instances. While we taking the well-known NP-hard minimum vertex cover prob-
lem as an example problem, we expect that our approach is applicable to a wide
range of other problems as well.

The minimum vertex cover (MVC) problem can be defined as follows. Given
an undirected graph G = (V,E) where V denotes the set of vertices and E
denotes the set of edges, the goal is to find a smallest subset C ⊆ V such that
for all edge e ∈ E there is at least one endpoint included in C.

The main idea is to kernelize the vertex set and form a smaller instance for the
MVC solver to solve. Firstly the MVC solver is run μ times on the given graph
G = (V,E) with a cutoff time t1 for each run to achieve a set of μ solutions. The
vertices which are selected in all μ solutions, are added to a separate set Va and
the edges that are covered by the vertices of Va are removed from the edge set.
The new instance G′ = (V ′, E′) is formed by the vertices that are not selected
in all μ solutions and the edge set after deletion, meaning, we have V ′ = V \ Va

and E′ = E \ {e ∈ E | e ∩ Va �= ∅}. The MVC solver is run on the new instance
G′ to obtain a minimum vertex cover Vs. The overall solution for the original
graph G is

V C = Va ∪ Vs

and consists of the set of vertices which are selected in all μ initial solutions
and the minimum vertex cover achieved by the MVC solver running on the new
instance G′. It should be noted that it is crucial that the cutoff time t1 allows
the μ runs to have obtained at least nearly locally optimal solutions. A detailed
description of our approach is given in Algorithm1.

For our experimental investigations we use NuMVC [6] and FastVC [4] as
the MVC solvers. Both algorithms are based on the idea of iteratively solving
the deterministic problem from MVC.

NuMVC is one of the best performing local search approaches for MVC
and has an advantage over TwMVC [5] in that it does not require parameter
tuning for different types of benchmark instances. The authors introduce tech-
niques to select the vertices for exchange in two separate stages, which enable
the local search in a wider neighbourhood. The NuMVC algorithm keeps track
of the exchange in order to avoid reversing behavior. These two techniques make
NuMVC perform well in dealing with most MVC benchmark problems.

FastVC is a fast local search algorithm designed for dealing with large MVC
problems. It involves some relaxation in selecting the candidate vertices for
exchange, which accelerate the search process. It has performed well in some
large real world graphs.

In the following sections, we discuss our experiments carried out with
Algorithm 1 compared with the single run of the MVC solver; the total time
budget that both approaches can use is the same.

136 W. Gao et al.

All of the experiments are executed on a machine with 48-core Authenti-
cAMD 2.80 GHz CPU and 128 GByte RAM; note that the program uses only
a single core. The memory consumption depends on the instance size and the
MVC solver. The runtime will benefit from multi-threading and other parallel
execution techniques.

4 Experimental Results from NuMVC with Parallel
Kernelization

The implementation of NuMVC is open-source and implemented in C++. We
compiled the source code with g++ with ‘−O2’ option. The parameter set-
ting follows what is reported in [6]. We take NuMVC as the MVC solver in
Algorithm 1 The new approach to solve MVC is referred to as NuMVC-PK,
since it is strongly based on the original NuMVC program.

Each experiment on a certain instance for each algorithm is executed 10
times in order to gather statistics. The cutoff time for the first run in NuMVC-
PK is set based on initial experimental investigations on the different classes
of instances considered. Based on our theoretical investigations carried out in

Table 1. This table contains instances that have been tested on, which are generated
by duplicating one existing hard instance in BHOSLIB and DIMACS benchmark. The
instance name contains the name of original instance and the number of copies. The
cutoff time of single NuMVC is set to 3, 000 s. The parameters for NuMVC-PK are set
to µ = 5, t1 = 500 and t2 = 500. The average time for NuMVC to find the local optima
is reported in column tavg. The p-value is labelled as NA if the results from the 10
independent runs of the two algorithms are the same.

Scaling up Local Search for Minimum Vertex Cover 137

Sect. 2, it is important that each of the μ runs obtains at least a nearly locally
optimal solution for the given problem. This implies that a too small cutoff time
t1 might have detrimental effects.

Table 2. Experimental results on instances from some instances in DIMACS10 bench-
mark set. The cutoff time of the single NuMVC run is set to 1, 000 s. The parameters
for NuMVC-PK are set to µ = 3, t1 = 200 and t2 = 400.

4.1 DIMACS and BHOSLIB Benchmarks

There are some well-known MVC benchmarks which have been used to evalu-
ate the performance of different MVC solvers. Two of the benchmarks are the
DIMACS and the BHOSLIB benchmark sets.

The BHOSLIB (Benchmarks with Hidden Optimum Solutions) problems are
generated from translating the binary Boolean Satisfiability problems randomly
generated based on the model RB [14]. These instances have been proven to be
hard to solve, both theoretically and practically. The DIMACS benchmark is a
set of challenge problems which comes from the Second DIMACS Implementa-
tion Challenge for Maximum Clique, Graph Coloring and Satisfiability [9]. The
original Max Clique problems are converted to complement graphs to serve as
MVC problems.

With the same overall time budget, both NuMVC and NuMVC-PK have
good success rate for most of the instances.

4.2 Multiple Copies of the Well-Known Benchmark Problems

Most BHOSLIB instances and DIMACS instances can be solved with good
success rates by NuMVC [6]. We propose some simple combinations of these
existing benchmarks as new test cases. These will serve as very simple first
test cases for our kernelization method. The new instances are composed of
several sub-graphs and large in size of both vertices and edges. In particular,
we construct a new instance by considering independent copies of an existing
instance. Each single copy is easy to be solved by the MVC solver with a high
sucess rate, while the combined instance is much harder to solve.

138 W. Gao et al.

Table 3. Experimental results on instances from some real world graphs about social
networks, collaboration networks and websites. The cutoff time of the single NuMVC
run is set to 1, 000 s. The parameters for NuMVC-PK are set to µ = 3, t1 = 300 and
t2 = 100. The p-value is labelled as NA if the results from the 10 independent runs of
the two algorithms are the same.

Some examples of these kinds of instances are given in Table 1. The origi-
nal instances are selected from the BHOSLIB benchmark set or the DIMACS
benchmarks. The last number in the instance name after the underscore denotes
the number of copies of the given instance indicated by the first part of the
instance name. Although the original instances can be solved by NuMVC in rea-
sonable time, it takes much longer time for NuMVC to solve the multiplicated
new instances. NuMVC may get trapped at local optima, which are far away
from the global optima in search space. Table 1 shows the comparison between
results from NuMVC-PK and single run of NuMVC. The basic information about
the instances is included in Table 1 in the column Instance. The OPT column
lists the optimal (or minimum known) vertex cover size. The numbers in the
|V | and |E| columns are the numbers of vertices and edges in the correspond-
ing instances. NuMVC-PK is executed with parameters μ = 5, t1 = 500 and
t2 = 500, which means 5 independent runs of NuMVC to get initial solutions
after 500 s and then the original instance is processed based on the information
gathered from the five solutions to generate a new instance. As the last step,
NuMVC is run for another 500 s on the newly generated instance to achieve
the final solution. The information of the generated reduced instance is listed in
columns |V ′| and |E′|, where the average number of non-isolated vertices and
edges of the new instance are listed. NuMVC is executed for 3, 000 s to be com-

Scaling up Local Search for Minimum Vertex Cover 139

pared to NuMVC-PK, which had the same time budget. We report the average
time for NuMVC to find the best solution in each run in the column tavg.

The size difference between the minimum vertex cover and the average value
found by the two approaches is reported in the column of Δ and Δ′ respectively.
We used the Wilcoxon unpaired signed-rank test on the solutions from different
runs of the algorithms for a given instance; the p-value is listed in Table 1. The
difference is evaluated based on a significance level of 0.05.

Since BHOSLIB and DIMACS benchmarks are hard MVC problems, making
sure all sub-graphs to be solved to optimality is hard for a single run of NuMVC,
which easily gets trapped in some local optimum. On the other hand, NuMVC-
PK shrinks the large instances and takes a fresh start on the reduced instance,
thereby improving the performance of the local search.

From the results we see that NuMVC-PK is able to reduce the instance size.
For the duplicated BHOSLIB and DIMACS instances, after 5 runs of NuMVC,
the NuMVC-PK generates new instances which keep only 1% to 3% of the edges
and 8% to 20% of the vertices. Unlike NuMVC, which usually makes no improve-
ment after 2, 000 s, NuMVC-PK finds the global optimum for 4 instances where
NuMVC ends up with local optima after 3, 000 s in all 10 runs. The parallel
kernelization mechanism significantly improves the performance of single run of
NuMVC in 7 of the instances.

4.3 Real World Graphs

Now we turn our attention to comparing NuMVC-PK with NuMVC on large
real world graphs as given by [13]. All of these selected graphs are undirected,
unweighted and with a large number of vertices and edges. In contrast to the
benchmark sets considered in Sect. 4.2, the global optima of these instances are
unknown. The graphs examined are taken from the social network, collabora-
tion network and web link (Miscellaneous) network packages. Some samples are
also selected from the DIMACS10 data sets which come from the 10th DIM-
CAS implementation challenge [3]. The graphs have a number of vertices in the
range of 15, 000 to 2, 600, 00 and a number of edges in the range of 40, 000 to
16, 000, 000.

The experimental results are summarized in Tables 2 and 3. Just as in Table 1,
the columns of |V | and |E| provide the brief information of the graphs (number
of vertices and edges, respectively). The categories NuMVC-PK and NuMVC
give the comparison between NuMVC-PK and single run of NuMVC. Since the
large real world graphs are not designed to be as hard as the combined BHOSLIB
instances, we use μ = 3 to get the initial solution set. The minimum vertex cover
found and the average number of minimum vertex cover in the ten independent
runs is reported in the table. The standard deviation for each instance is also
included to show the stability of the algorithms. NuMVC is run for 1, 000 s,
corresponding to the total budget of NuMVC-PK. Some easy instances which
can be easily solved by single run of NuMVC in short run time are omitted from
the table since both algorithms have a 100% success rate.

140 W. Gao et al.

For the real world graphs in social networks, collaboration networks and
web link networks packages, NuMVC-PK reduces the instances size by more
than 90% in the number of vertices and 70% in the number of edges. The size
of the instance is one of the main factors that affect the performance of the
MVC solvers for the real world graphs. The instances after shrinking have less
than 200, 000 vertices and 100, 000 edges. For graphs in dImacs10 package, the
generated instances maintain around 20% vertices and 40% edges in most cases.

Regarding Tables 2 and 3, we make the following observations.

– NuMVC-PK finds smaller minimum vertex cover in the ten independent runs
than NuMVC in 26 out of the 39 graphs.

– There are 4 graphs for which NuMVC-PK is not able to return a better
solution than NuMVC. These graphs have the property that they are hard or
large instances so local optima are not reached within time t1 or even 1, 000 s.

– There are 10 graphs where NuMVC-PK finds a minimum vertex cover smaller
by more than 50 than NuMVC.

For some large instances, the initialization process of NuMVC is very time
consuming. Enough time should be given for NuMVC to get initial solutions at
least near the local optima. For the same time limit, longer single initial runs
are more beneficial than shorter initial runs and longer runs after the freezing
phase. Therefore, a combination of larger t1 and smaller t2 may result in a better
solution for these instances.

Table 4. Experimental results on instances from some real world graphs about social
networks. The cutoff time of the single FastVC run is set to 1, 000 s. The parameters
for FastVC-PK are set to µ = 3, t1 = 200 and t2 = 400. The p-value is labelled as NA
if the results from the 10 independent runs of the two algorithms are the same.

5 Experimental Results from FastVC with Parallel
Kernelization

Like NuMVC, FastVC is also open-source and implemented in C++. The original
code in version 2015.11 is compiled with g++ and ‘−O2’ option. We use the
parameters as reported in [4]. Following the same terminology used for NuMVC,
we refer to the new algorithm with FastVC as the MVC solver in Algorithm 1
as FastVC-PK.

Scaling up Local Search for Minimum Vertex Cover 141

Table 5. This table contains instances that have been tested on, which are generated
by duplicating one existing hard instance in BHOSLIB benchmark. The instance name
contains the name of original instance and the number of copies. The cutoff time of
single FastVC is set to 3, 000 s. The parameters for FastVC-PK are set to µ = 5,
t1 = 500 and t2 = 500. The average time for FastVC to find the local optima is
reported in column tavg.

Both FastVC and FastVC-PK are tested on each certain instance for 10 times
in order to gather statistics. The cutoff time for the initial runs in FastVC-
PK is set based on initial experimental investigations on the different classes of
instances considered as FastVC. This step is important so that each of the μ runs
should obtain at least a nearly locally optimal solution for the given problem
according to the theoretical analysis in Sect. 2.

Similar to NuMVC, the integration of parallel kernelization into FastVC
keeps the good performance of the original algorithm in solving BHOSLIB and
DIMACS benchmarks. Some of the experimental results are reported in Table 4.
Then we turn to test FastVC and FastVC-PK with the multiple copies of the
benchmark problems. The results are presented in Table 5. The layout of the
table follows the same rules of the tables in the previous section.

According to the statistics in Table 5, we can make the following observations:

– Among the 24 instances, FastVC-PK significantly improves the solution qual-
ity of FastVC in 16 instances.

– In the 8 graphs where both algorithms obtain similar solutions, there are 5
instances where FastVC-PK finds the minimum vertex cover in the 10 runs
and the average solution size found by FastVC-PK is smaller than that from
FastVC in 7 instances.

142 W. Gao et al.

– There are 21 graphs where FastVC-PK finds a minimum vertex cover smaller
than that from FastVC.

From the experimental results, we find that the instances generated after
parallel kernelization have around 20% of the non-isolated nodes and less than
3% of the edges in the original graphs. In most instances shown in the table,
FastVC gets stuck in some local optima after running for less than 1, 000 s and
after that there is no improvement until the time limit is reached.

The graphs constructed from several independent copies of the existing
instances are denser than the real world graphs. A single run of FastVC per-
forms good in solving the real world graphs. Experiments are conducted on
FastVC and FastVC-PK on these kinds of graphs as well. Since FastVC-PK is
already able to find good solutions in a short time for most real world graphs
from the benchmark set, both approaches obtain similar results for the sparse
real world graphs. The parallel kernelization mechanism only improves FastVC
in a few instances. The experimental results from some example testcases are
shown in Table 4.

6 Conclusions

We have presented a new approach on scaling up local search algorithms for large
graphs. Our approach builds on the theoretical assumption that large graphs
are composed of different substructures which are on their own not hard to
be optimized. Our approach is based on parallel kernelization and reduces the
given graph by making μ parallel randomized runs of the given local search and
fixing components that have been chosen in all μ runs. The resulting instance
is then tackled by an additional run of the local search approach. Considering
the Vertex Cover problem and the state-of-the-art local search solver NuMVC
and FastVC, we have shown that our parallel kernelization technique is able to
reduce standard benchmark graphs and large real world graphs to about 10–
20% of their initial sizes. Our approach outperforms the baseline local search
algorithm NuMVC and FastVC in most test cases.

The parallel kernelization approach presented in this paper can be applied to
a wide range of combinatorial optimization problems for which well performing
local search solvers are available. We plan to investigate the application to other
problems such as Maximum Clique and Maximum Independent Set in the future.

References

1. Aarts, E., Lenstra, J.K. (eds.): Local Search in Combinatorial Optimization. Dis-
crete Mathematics and Optimization. Wiley, Chichester (1997)

2. Akiba, T., Iwata, Y.: Branch-and-reduce exponential/FPT algorithms in practice:
a case study of vertex cover. Theor. Comput. Sci. 609, 211–225 (2016)

3. Bader, D.A., Meyerhenke, H., Sanders, P., Schulz, C., Kappes, A., Wagner, D.:
Benchmarking for Graph Clustering and Partitioning. In: Alhajj, R., Rokne, J.
(eds.) Encyclopedia of Social Network Analysis and Mining, pp. 73–82. Springer,
New York (2014)

Scaling up Local Search for Minimum Vertex Cover 143

4. Cai, S.: Balance between complexity and quality: local search for minimum vertex
cover in massive graphs. In: Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, 25–31
July 2015, pp. 747–753 (2015)

5. Cai, S., Lin, J., Su, K.: Two weighting local search for minimum vertex cover. In:
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pp.
1107–1113 (2015)

6. Cai, S., Su, K., Sattar, A.: Two new local search strategies for minimum vertex
cover. In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelli-
gence (2012)

7. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. TCS.
Springer, London (2013)

8. Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations and Applications.
Elsevier, San Francisco (2005)

9. Johnson, D.J., Trick, M.A. (eds.): Cliques, Coloring, and Satisfiability: Second
DIMACS Implementation Challenge, Workshop, 11–13 October 1993. American
Mathematical Society, Boston (1996)

10. Lamm, S., Sanders, P., Schulz, C., Strash, D., Werneck, R.F.: Finding near-optimal
independent sets at scale. In: Proceedings of the Eighteenth Workshop on Algo-
rithm Engineering and Experiments, ALENEX 2016, Arlington, Virginia, USA, 10
January 2016, pp. 138–150 (2016)

11. Pullan, W.: Phased local search for the maximum clique problem. J. Comb. Optim.
12(3), 303–323 (2006)

12. Richter, S., Helmert, M., Gretton, C.: A stochastic local search approach to vertex
cover. In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS (LNAI), vol.
4667, pp. 412–426. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74565-5 31

13. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph ana-
lytics and visualization. In: AAAI, pp. 4292–4293 (2015). http://networkrepository.
com

14. Xu, K., Boussemart, F., Hemery, F., Lecoutre, C.: A simple model to generate
hard satisfiable instances. In: Proceedings of the Nineteenth International Joint
Conference on Artificial Intelligence, IJCAI 2005, pp. 337–342 (2005)

15. Zhang, W., Rangan, A., Looks, M.: Backbone guided local search for maximum
satisfiability. In: Proceedings of the Eighteenth International Joint Conference on
Artificial Intelligence, IJCAI 2003, pp. 1179–1186 (2003)

http://dx.doi.org/10.1007/978-3-540-74565-5_31
http://networkrepository.com
http://networkrepository.com

	Scaling up Local Search for Minimum Vertex Cover in Large Graphs by Parallel Kernelization
	1 Introduction
	2 Substructures in Large Graphs
	3 Parallel Kernelization for Minimum Vertex Cover
	4 Experimental Results from NuMVC with Parallel Kernelization
	4.1 DIMACS and BHOSLIB Benchmarks
	4.2 Multiple Copies of the Well-Known Benchmark Problems
	4.3 Real World Graphs

	5 Experimental Results from FastVC with Parallel Kernelization
	6 Conclusions
	References

