
Solving Problems with Unknown Solution Length at
(Almost) No Extra Cost

Benjamin Doerr
École Polytechnique,

Univ. Paris-Saclay, France

Carola Doerr
CNRS & Univ. Pierre et Marie Curie

Paris, France

Timo Kötzing
Friedrich-Schiller-Universität

Jena, Germany

ABSTRACT
Most research in the theory of evolutionary computation as-
sumes that the problem at hand has a fixed problem size.
This assumption does not always apply to real-world opti-
mization challenges, where the length of an optimal solution
may be unknown a priori.

Following up on previous work of Cathabard, Lehre, and
Yao [FOGA 2011] we analyze variants of the (1+1) evo-
lutionary algorithm for problems with unknown solution
length. For their setting, in which the solution length is
sampled from a geometric distribution, we provide mutation
rates that yield an expected optimization time that is of the
same order as that of the (1+1) EA knowing the solution
length.

We then show that almost the same run times can be
achieved even if no a priori information on the solution
length is available.

Finally, we provide mutation rates suitable for settings
in which neither the solution length nor the positions of the
relevant bits are known. Again we obtain almost optimal run
times for the OneMax and LeadingOnes test functions,
thus solving an open problem from Cathabard et al.
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F.2.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity—Nonnumerical Algorithms and
Problems
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1. INTRODUCTION
While the theory for evolutionary algorithms (EAs) in

static problem settings is well developed [1, 6, 9], a topic
that is not so well studied in the theory of EA literature
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is the performance of EAs in uncertain environments. Un-
certainty can have many faces, for example with respect to
function evaluations, the variation operators, or the dynam-
ics of the fitness function. Understanding how evolutionary
search algorithms can tackle such uncertain environments is
an emerging research topic; see [2] for a survey on examples
in combinatorial optimization, but also [7] for an excellent
survey also discussing different sources of uncertainty.

In this work we study what evolutionary algorithms can
achieve in the presence of uncertainty with respect to the
solution length. Quite surprisingly, we show that already
some variants of the simplest evolutionary algorithm, the
(1 + 1) EA, can be very efficient for such problems.

1.1 Previous Work
Our work builds on previous work of Cathabard, Lehre,

and Yao [4], who were the first to consider, from a theoretical
point of view, evolutionary algorithms in environments with
unknown solution lengths. Cathabard et al. assume that the
solution length is sampled from a fixed and known distribu-
tion D with finite support. More precisely, they assume that
the solution length n is sampled from a truncated version of
the geometric distribution, in which the probability mass for
values greater than some threshold N is shifted to the event
that n = N . In this situation, the algorithm designer has
access to both the upper bound N for the solution length
and the success probability q of the distribution.

Cathabard et al. analyze a variant of the (1 + 1) EA in
which each bit is flipped with probability 1/N and they also
study a variant with non-uniform bit-flip probabilities. In
the latter, the i-th bit is flipped independently of all other
bits with probability 1/(i + 1). They show that these vari-
ants have polynomial expected run times on OneMax and
LeadingOnes function, where the expectation is taken with
respect to the solution length and the random decisions of
the algorithm. An overview of the precise bounds obtained
in [4] is given in Table 2.

1.2 Our Results
We extend the work of Cathabard et al. in several ways. In

a first step (Section 3) we show that the regarded mutation
probabilities are sub-optimal. Making use of the concentra-
tion of the (truncated) geometric distribution, we design bit
flip probabilities that yield significantly smaller expected run
times (for both the OneMax and the LeadingOnes func-
tion). We complement this finding by a lower bound that
shows the optimality of our result. This proves that no mu-
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tation probabilities can yield a performance that is better
by more than a constant factor than our suggested ones.

While in the setting of Cathabard et al. we are in the
convenient situation that we have full knowledge of the dis-
tribution D from which the solution length is sampled, one is
sometimes faced with problems for which this knowledge is
not readily available. We therefore study in Section 4 what
can be done without any a priori knowledge about the solu-
tion length. In this situation we require that the algorithm
designer chooses bit flip probabilities (pi)i∈N such that, re-
gardless of the solution length n, the expected performance
of the (1 + 1) EA with bit flip probabilities (p1, . . . , pn) is
as small as possible. It is not obvious that this can be done
in polynomial time. In fact, for both algorithms studied by
Cathabard et al. as well as for any uniform choice of the bit
flip probabilities, the expected run time on this problem is
exponential in n (cf. Theorems 12 and 13).

We show (Theorems 14 and 15) that not only can we
tackle this problem with non-uniform bit flip probabilities,
but, quite surprisingly, this can be even done in a way that
yields almost optimal run times. Indeed, our results are
only a log1+ε n factor worse than the best possible choice of
mutation probabilities leading to Θ(n logn) and Θ(n2) run
time bounds for OneMax and LeadingOnes, respectively.
This factor can be made even smaller as we shall comment
at the end of Section 4.2.

Finally, we provide in Section 4.3 a second way to deal
with unknown solution lengths. We provide an alternative
variant of the (1+1) EA in which the bit flip probabilities are
chosen according to some (fixed) distribution at the begin-
ning of each iteration. For suitably chosen distributions Q,
the expected run times of the respective (1+1) EAQ on One-
Max and LeadingOnes are of the same asymptotic order as
those of the previously suggested solution with non-uniform
bit flip probabilities. In particular, they are, simultaneously
for all possible solution lengths n, almost of the same order
as the expected run time of a best possible choice of bit flip
probabilities knowing the solution length.

This second approach has an advantage over the non-
uniform bit flip probabilities in that it effectively ignores
bits that do not contribute anything to the fitness function
(irrelevant bits). Thus, even if only n bits at unknown posi-
tions have an influence on the fitness function, the same run
time bounds apply. In contrast, all previously suggested
solutions require that the n relevant bits are the leftmost
ones. This also answers a question posed by Cathabard et
al. [4, Section 6].

Our run time results are summarized in Tables 1 and 2.

2. ALGORITHMS AND PROBLEMS
In this section we define the algorithms and problems con-

sidered in this paper. For any problem size n, fitness func-
tion f : {0, 1}n → R, and vector ~p = (p1, . . . , pn) of bit flip
probabilities 0 ≤ pi ≤ 1, we consider the (1 + 1) EA~p, as
given by Algorithm 1.

The (1 + 1) EA~p samples an initial search point from
{0, 1}n uniformly at random. It then proceeds in rounds,
each of which consists of a mutation and a selection step.
Throughout the whole optimization process the (1 + 1) EA~p

maintains a population size of one, and the individual in
this population is always a best-so-far solution. In the mu-
tation step of the (1 + 1) EA~p the current-best solution x
is mutated by flipping the bit in position i with probability

Algorithm 1: The (1 + 1) EA~p for ~p = (p1, . . . , pn)
optimizing a pseudo-Boolean function f : {0, 1}n → R.

1 Initialization: Sample x ∈ {0, 1}n uniformly at
random and query f(x);

2 Optimization: for t = 1, 2, 3, . . . do
3 for i = 1, . . . , n do
4 With probability pi set yi ← 1− xi and set

yi ← xi otherwise;

5 Query f(y);
6 if f(y) ≥ f(x) then x← y;

pi, 1 ≤ i ≤ n. The fitness of the resulting search point y is
evaluated and in the selection step the parent x is replaced
by its offspring y if and only if the fitness of y is at least as
good as the one of x. Since we consider maximization prob-
lems here, this is the case if f(y) ≥ f(x). We are interested
in expected run times, i.e., the expected number of rounds
it takes until the (1 + 1) EA~p evaluates for the first time a
solution of maximal fitness and we therefore do not specify
a termination criterion. It is not difficult to see that the
(1 + 1) EA~p indeed generalized the standard (1 + 1) EA. In
fact, we obtain the (1+1) EA from the (1+1) EA~p if we set
pi = 1/n for all i ∈ [n] := {1, . . . , n}. We call such muta-
tion vectors with pi = pj for all i, j uniform mutation rates,
while we speak of non-uniform mutation rates if pi 6= pj for
at least one pair (i, j).

The two test functions we consider in this work are One-
Max and LeadingOnes. For a given problem size n, they
are defined as

Omn := OneMaxn(x) =

n∑
i=1

xi, and

Lon := LeadingOnesn(x)

= max{i ∈ [0..n] | ∀j ≤ i : xj = 1},

where [0..n] := {0} ∪ [n]. That is, the OneMax function
counts the number of ones in a bit string, while the Leadin-
gOnes function counts the number of initial ones. While
these two functions are certainly easy to optimize without
evolutionary algorithms, the (1 + 1) EA~p performs exactly
the same on all generalized OneMax and LeadingOnes
functions, which are obtained from the functions above
through an XOR of an arbitrary and unknown bit string
z ∈ {0, 1}n. Understanding how an evolutionary algorithm
behaves on these two functions is an important indicator for
how it manages to cope with the easier parts of more com-
plex optimization problems. OneMax and LeadingOnes
functions are for this reason the two best-studied problems
in the theory of evolutionary computation literature.

If a distribution D is known from which the solution
length is sampled we consider the expected run time of the
(1 + 1) EA~p on OneMaxD and LeadingOnesD, respec-
tively, which are the problems Omn resp. Lon with random
solution length n ∼ D. Note here that the expectation is
thus taken both with respect to the random solution length
and with respect to the random samples of the algorithm.

3. RANDOM SOLUTION LENGTH
We first consider the setting that has been introduced by

Cathabard, Lehre, and Yao [4]. After a short presentation
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setting bit flip probability OneMax LeadingOnes

Random Length ∼ Geo(q) uniform and fixed O(q−1 log q−1) Theorem 7 O(q−2) Theorem 10

uniform and fixed 2Ω(n) Theorem 12 2Ω(n) Theorem 13

Adversarial Length fixed O(n log2+ε n) Thm. 14, Cor. 16 O(n2 log1+ε n) Thm. 15, Cor. 16

uniform and random O(n log2+ε n) Thm. 17, Cor. 19 O(n2 log1+ε n) Thm. 18, Cor. 19

Table 1: Overview of Results for 1/N < q < 1/2 and ε > 0.

of the model in Section 3.1, a general lower bound for this
problem (Section 3.2), and the results of [4] in Section 3.3,
we show that the bounds in [4] can be improved by using
different (uniform) mutation rates (Section 3.4).

Table 2 summarizes the previously known bounds and our
contributions for the setting regarded in this section.

3.1 The Model
Cathabard et al. [4] consider the following model. The al-

gorithm designer knows the distribution D from which the
unknown solution length is drawn; only distributions with fi-
nite support are considered, so the algorithm designer knows
an upper bound N on the actual solution length n. He also
knows the class of functions from which the optimization
problem is taken (for example OneMax or LeadingOnes).

Based on this knowledge, the algorithm designer chooses
a vector (p1, . . . , pN ) of bit flip probabilities indicating with
which probability a bit is flipped in each round. In this work
we also regard a slightly more general model in which the
distributions over N may possibly have infinite support; the
algorithm designer then chooses an infinite sequence of bit
flip probabilities (p1, p2, . . .) = (pi)i∈N. After this choice of
bit flip probabilities, the actual solution length n is sampled
from the given distribution D. Then the (1 + 1) EA~p (Algo-
rithm 1) is run with mutation probabilities ~p = (p1, . . . , pn)
on the given problem with the given problem length.

Cathabard et al. [4] consider as distribution D the follow-
ing truncated geometric distribution, based on a geometric
distribution where the probability mass for values greater
than n are moved to n.

Definition 1 ([4]). The truncated geometric distribu-
tion TrunkGeo(N, q) with truncation parameter N and suc-
cess probability q ≥ 1/N satisfies, for all n ∈ N, that the
probability of TrunkGeo(N, q) = n is

q(1− q)n−1 if 1 ≤ n ≤ N − 1,

(1− q)n−1 if n = N,

0 otherwise.

Note that the truncated geometric distribution recovers the
geometric distribution Geo(q) for N =∞.

It is well known, respectively can be found in [4, Proposi-
tion 1], that for X = Geo(q) and Y = TrunkGeo(N, q) with
q ≥ 1/N

E[X] = q−1 and E[Y ] = Θ(q−1). (1)

Note that we trivially have E[Y ] ≤ E[X].

3.2 A General Lower Bound
What is a good lower bound for the expected run time

of any (1 + 1) EA~p on OneMax or LeadingOnes when

the length is sampled from some given distribution D on
N? If the algorithm designer would know the true length
n before he has to decide upon the mutation probabilities
(p1, . . . , pn), then the optimal bit flip probability for this so-
lution length could be chosen. For OneMax, the best choice
is to set ~p = (1/n, . . . , 1/n) as has been proven in [10, 11]
(note here that for fixed problem sizes, due to the symmetry
of OneMax, non-uniform mutation rates cannot be advan-
tageous over uniform ones). This results in an expected run
time of Θ(n logn).

For LeadingOnes, if the true length n is known, any
setting of the bit-flip probabilities leads to an expected run
time of Ω(n2) regardless of the choice of ~p, as the next lemma
shows.

Lemma 2. For any fixed solution length n and any vector
~p = (p1, . . . , pn) of mutation probabilities, the expected run
time of the (1 + 1) EA~p on LeadingOnesn is Ω(n2).

Using these lower bounds for fixed solution lengths,
Jensen’s Inequality and the convexity of n 7→ n logn and
n 7→ n2, respectively, we get the following general lower
bound.

Theorem 3. Let D be any distribution on N with a fi-
nite expectation of m. Then the expected run time of any
(1 + 1) EA~p on OneMaxD is Ω(m logm) and the expected
run time of any (1 + 1) EA~p on LeadingOnesD is Ω(m2).
Both bounds apply also to the setting in which the algo-
rithm designer can choose the mutation probabilities ~p =
(p1, . . . , pn) after the solution length n ∼ D has been drawn.

Using Equation (1), we get the following corollary.

Corollary 4. Let N ∈ N and q ≥ 1/N . Let D =
TrunkGeo(N, q) or D = Geo(q). The expected run time
of any (1 + 1) EA~p on OneMaxD is Ω(q−1 log q−1) and the
expected run time of any (1 + 1) EA~p on LeadingOnesD
is Ω(q−2). Both bounds apply also to the setting in which
the algorithm designer can choose the mutation probabilities
~p = (p1, . . . , pn) after the solution length n ∼ D has been
drawn.

3.3 Known Upper Bounds
Cathabard et al. [4] analyze the run time of the (1+1) EA~p

with uniform mutation probabilities p1 = . . . = pN = 1/N
and of the (1 + 1) EAi with pi = 1/(i + 1), 1 ≤ i ≤ N .

For OneMax they obtain the following results.

Theorem 5 (Results for OneMax from [4]). Let
N ∈ N, ε ∈ (0, 1), and q = N−ε. For D = TrunkGeo(N, q)
the expected run time of the (1 + 1) EA~p with
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lower bound Results from [4] Theorems 7 (OM) resp. 10 (LO)

problem Corollary 4 pi = 1/N pi = 1/(i + 1) pi = q/2 pi = q

OneMaxD Ω
(
q−1 log q−1

)
Θ
(
N log q−1

)
O
(
q−2 logN

)
Θ
(
q−1 log q−1

)
Θ (N logN)

LeadingOnesD Ω
(
q−2
)

Θ
(
Nq−1

)
Θ
(
q−3
)

Θ
(
q−2
)

Θ
(
Nq−1

)
Table 2: Expected run times of the (1 + 1) EA~p with ~p = (pi)

N
i=1 for D = TrunkGeo(N, q) and 1/N ≤ q ≤ 1/2

~p = (1/N, . . . , 1/N) on OneMaxD is Θ(N log q−1), while
the expected run time of the (1 + 1) EAi on OneMaxD is
O(q−2 logN).

This result shows that the (1 + 1) EA~p with ~p =

(1/N, . . . , 1/N) outperforms the (1 + 1) EAi for q < 1/
√
N ,

while the latter algorithm is preferable for larger q. As we
shall see in the following section one should not conclude
from this result that non-uniform bit flip probabilities are
the better choice for this problem.

Remark: By using a slightly more careful analysis than
presented in [4], the bound for the (1+1) EAi on OneMaxD

can be improved to O(q−2 log q−1). In fact, an analysis sim-
ilar to the one in Section 3.4, that is disregarding outcomes
that are much larger than the expectation, will give that
result. It can also be shown that the requirement q = N−ε

is not needed as the O(q−2 log q−1) holds for all q > 1/N .
It also holds for the (non-truncated) geometric distribution
D = Geo(q).

For LeadingOnes, Cathabard et al. show the following
results.

Theorem 6 (Results for LeadingOnes from [4]).
For N , ε, q, and D as in Theorem 5, the expected run
time of the (1 + 1) EA~p with ~p = (1/N, . . . , 1/N) on
LeadingOnesD is Θ(Nq−1), while the expected run time
of the (1 + 1) EAi on LeadingOnesD is Θ(q−3).

Thus also for LeadingOnes the (1+1) EAi performs better
than the (1 + 1) EA~p with ~p = (1/N, . . . , 1/N) when q >

1/
√
N while the uniform (1 + 1) EA~p should be preferred

for smaller q.
Remark: As in the OneMax case the Θ(q−3) bound

for the (1 + 1) EAi holds more generally for all geometric
distributions Geo(q) with parameter q > 1/N .

From Theorems 5 and 6 we can see that for both
OneMaxD and LeadingOnesD the (1 + 1) EAi looses a
factor of 1/q with respect to the lower bound given by Corol-
lary 4. This will be improved in the following section.

3.4 Optimal Upper Bounds With Uniform
Mutation Probabilities

We show that for D being the (truncated or non-
truncated) geometric distribution there exist bit flip proba-
bilities ~p = (p1, . . . , pN ) and ~p = (pi)i∈N, respectively, such
that the expected run time of the (1+1) EA~p on OneMaxD

and LeadingOnesD is significantly lower than those of the
two algorithms studied by Cathabard et al. The expected
run times of our algorithm match the lower bounds given in
Corollary 4 and are thus optimal in asymptotic terms.

In both cases, i.e., both for OneMaxD and for
LeadingOnesD, the mutation rates yielding the improve-
ment over the results in [4] are uniform. Our results there-
fore imply that for these two problems, unlike conjectured

in [4], one cannot gain more than constant factors from using
non-uniform mutation probabilities.

The key observation determining our choice of the muta-
tion probability is the fact that the (truncated) geometric
distribution is highly concentrated. Hence, if we know the
parameters of the distribution, we can choose the mutation
probability such that it is (almost) reciprocal in each posi-
tion to the expected length of the solution. Thus, in the
setting of [4], i.e., for the truncated geometric distribution
with parameters N and q, we set pi := q/2 for all i ∈ [N ]
(recall equation (1)). Our approach naturally also works for
the (non-truncated) geometric distribution Geo(q), which is
also highly concentrated around its mean 1/q.

We remark without proof that similar results hold for
other distributions that are highly concentrated around the
mean, e.g., binomial distributions, and also highly concen-
trated unbounded distributions, such as Poisson distribu-
tions.

Theorem 7. For N ∈ N let 1/N ≤ q < 1/2, q
possibly depending on N . For D = Geo(q) and D =
TrunkGeo(N, q) the expected run time of the (1 + 1) EA~p

with ~p = (q/2, . . . , q/2) on OneMaxD is Θ(q−1 log q−1).

For the proof we will use the following upper bound for
the expected run time of the (1 + 1) EA on OneMax. A
similar upper bound can be found in [11, Theorem 4.1].

Lemma 8 ([10, Theorem 8]). For a fixed length n and
a uniform mutation vector ~p = (p, . . . , p) with 0 < p < 1,
the expected run time of the (1 + 1) EA~p on OneMaxn is at
most (ln(n) + 1)/(p(1− p)n).

Proof of Theorem 7. We first consider D =
TrunkGeo(N, q). We do not worry about constant
factors in this analysis and thus bound some expressions
generously.

Using Lemma 8 we can bound the expected run time of
the (1 + 1) EA~p on OneMaxD from above by

N−1∑
n=1

q(1− q)n−1(ln(n) + 1)

q/2(1− q/2)n
+

(1− q)N−1(ln(N) + 1)

q/2(1− q/2)N
. (2)

To bound the last summand in this expression, we first ob-
serve that, for all positive n,

(1− q
2
)n = (1− q + q2

4
)n/2 > (1− q)n/2. (3)

This shows that the last summand in (2) is at most

2(1− q)N/2−1(ln(N) + 1)/q,

which is O(q−1 log q−1). This can be seen as follows. For
q ≥ 2 ln ln(N)/N it holds (using the inequality 1 − q ≤
exp(−q)) that (1 − q)N/2−1 ≤ exp(−qN/2) ≤ 1/ ln(N) and
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thus 2(1− q)N/2−1(ln(N) + 1)/q = O(1/q), while for 1/N ≤
q ≤ 2 ln ln(N)/N we have (for some suitably chosen constant

C) (1 − q)N/2 ln(N) ≤ (1 − 1/N)N/2 ln(N) ≤ C(ln(N) −
ln(2 ln lnN)) = C ln(N/(2 ln lnN)) ≤ C ln(1/q).

Using again (3) we bound the first part of the sum (2) by

2

1− q

N−1∑
n=1

(1− q)n(ln(n) + 1)

(1− q/2)n

≤ 2

1− q

N−1∑
n=1

(ln(n) + 1)(1− q)n/2

= 2

N−1∑
n=1

(ln(n) + 1)(1− q)n/2−1.

To show that this expression is O(q−1 log q−1) we split the
sum into blocks of length k := d1/qe and use again the in-
equality 1−q ≤ exp(−q). This shows that the last expression
is at most

2

dN/ke−1∑
j=0

k∑
`=1

exp(−q( jk+`
2
− 1))(ln(jk + `) + 1)

≤ 2k

dN/ke−1∑
j=0

exp(− 1
k

( jk
2
− 1))(ln(j + 1) + ln(k) + 1)

= O(k ln k),

where the last equality can be best seen by first consider-

ing that
∑dN/ke−1

j=0 exp(− 1
k

( jk
2
− 1))(ln(k) + 1) = Θ(log k),

while
∑dN/ke−1

j=0 exp(− 1
k

( jk
2
− 1))(ln(j + 1)) = O(1). Sum-

marizing the computations above we see that (2) is of order
at most q−1 log q−1.

For D = Geo(q) the computations are almost identical.
By Lemma 8 and (3) the expected run time of the (1+1) EA~p

on OneMaxD is at most

2

1− q

∞∑
n=1

(1− q)n(ln(n) + 1)

(1− q/2)n

≤ 2

∞∑
n=1

(1− q)n/2−1(ln(n) + 1) = O(q−1 log q−1),

which can be seen in a similar way as above by splitting
the sum into blocks of size k := d1/qe and using 1 − q ≤
exp(−q).

It is interesting to note that the expected run time in-
creases to between Ω(N) and O(N logN) when the mutation
probability is chosen to be ~p = (q, . . . , q). This can easily
be seen as follows. For the upper bound we use Lemma 8
(ignoring the “+1” terms which are easily seen to play an in-
significant role) to obtain that the expected run time of the
(1 + 1) EA~p with ~p = (q, . . . , q) on OneMaxTrunkGeo(N,q) is

at most
∑N−1

n=1
q(1−q)n−1 ln n

q(1−q)n
+ (1−q)N−1 ln N

q(1−q)N
=
∑N−1

n=1
ln n
1−q

+

O(log(N)/q) = ln((N−1)!)
1−q

+ O(N logN) = O(N logN).

We can derive a strong lower bound of Ω(N logN) in the

case of 2−N/3 ≤ q ≤ 1/N from the following one for static
solution lengths.

Lemma 9 ([10, Theorem 9], [11, Theorem 4.1]).
For a fixed length n and a uniform mutation vector
~p = (p, . . . , p), the expected run time of the (1 + 1) EA~p

on OneMaxn is at least (ln(n) − ln lnn − 3)/(p(1 − p)n)

for 2−n/3 ≤ p ≤ 1/n and at least (ln(1/(p2n)) − ln lnn −
3)/(p(1− p)n) for 1/n ≤ p ≤ 1/(

√
n logn).

Thus, the expected run time of the (1 + 1) EA~p with ~p =

(q, . . . , q) and 2−N/3 ≤ q ≤ 1/N on OneMaxTrunkGeo(N,q) is

at least
∑N−1

n=1 q(1 − q)n−1 (ln(n)−ln lnn−3)
q(1−q)n

≥
∑N−1

n=1
1
2

ln n
1−q

=
1
2

ln((N−1)!)
1−q

= Ω(N logN). Similarly we can get a lower

bound of Ω(N) in case of 1/N ≤ q ≤ 1/(
√
N logN) by

using the lower bound of 1/(q(1−q)n) for any fixed solution
length n.

We now turn our attention to the LeadingOnes prob-
lems, where a similar approach as above yields the following
result.

Theorem 10. Let N ∈ N and 1/N ≤ q ≤ 1/2. For D =
TrunkGeo(N, q) and D = Geo(q) the expected run time of
the (1 + 1) EA~p with ~p = (q/2, . . . , q/2) on LeadingOnesD
is Θ(q−2).

We will derive this result from the following lemma, which
was independently proven in [3, Theorem 3], [10, Corollary
2], and in a slightly weaker form in [8, Theorem 1.2].

Lemma 11 ([3], [10], and [8]). For a fixed length n
and a mutation vector ~p = (p, . . . , p) with 0 < p < 1/2,
the expected run time of the (1 + 1) EA~p on LeadingOnesn
is exactly 1/(2p2)

(
(1− p)−n+1 − (1− p)

)
.

Proof of Theorem 10. We first consider the case that
the solution length is sampled from the truncated geometric
distribution TrunkGeo(N, q). Using Lemma 11 and (3) (in
the third and in the last step) the expected run time of the
(1 + 1) EA~p on LeadingOnesD is

N−1∑
n=1

q(1− q)n−1 2

q2

(
(1− q/2)−n+1 − (1− q/2)

)
+ A

≤ 2

q

N−1∑
n=1

(
(1− q)n−1

(1− q/2)n−1

)
+ A

≤ 2

q

∞∑
n=0

(1− q)n/2 + A

=
2

q

1

1− (1− q)1/2
+ A = O(q−2) + A,

where A is the summand that accounts for the event that
the solution length is N , i.e.,

A = (1− q)N−1 1

2q2

(
(1− q)−N+1 − (1− q)

)
= O

(
q−2) .

Similarly for D = Geo(q) the expected run time of the
(1 + 1) EA~p on LeadingOnesD is bounded from above by

2

q

∞∑
n=1

(1− q)n−1

(1− q/2)n−1
≤ 2

q

∞∑
n=0

(1− q)n/2

=
2

q

1

1− (1− q)1/2
≤ 4

q2
,

where we recall that the last step follows from (3) for n = 1,

which provides (1− q)1/2 ≤ 1− q/2.

Just as for OneMaxD (with D = TrunkGeo(N, q)) we see
that also on LeadingOnesD the expected run time increases
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(in this case to Θ(N/q)) when the mutation probability is
chosen to be ~p = (q, . . . , q). By Lemma 11 this run time

equals
∑N−1

n=1 q(1− q)n−1 1
2q2

(
(1− q)−n+1 − (1− q)

)
+

A = 1
2q

∑N−1
n=1 (1− (1− q)n) + A =

1
2q

(
N − 1− 1−(1−q)N

q
+ 1
)

+ A = Θ(N/q) + A, where

A is the summand that accounts for the event that the
solution length is N , i.e.,

A = (1− q)N−1 1

2q2

(
(1− q)−N+1 − (1− q)

)
= Θ

(
q−2) .

4. ARBITRARY SOLUTION LENGTHS
In the setting described in Section 3 it is assumed that the

algorithm designer has quite a good knowledge about the so-
lution length. Not only does he know an upper bound N on
the solution length, but he may also crucially exploit its dis-
tribution. Indeed, we make quite heavy use in Theorems 7
and 10 of the fact that the (truncated) geometric distribu-
tion is highly concentrated around its expected value. That
so much information is available to the algorithm designer
can be a questionable assumption in certain applications.
We therefore regard in this section a more general setting
in which no a priori information is given about the possible
solution length n. That is, we regard a setting in which the
solution length can be an arbitrary positive integer. In this
setting neither do we have any upper bounds on n nor any
information about its distribution.

As before, our task is to decide upon on a sequence (pi)i∈N
of mutation probabilities 0 ≤ pi ≤ 1. An adversary may
then choose the solution length n and we run the (1+1) EA~p

with ~p = (p1, . . . , pn). In practical applications, this can be
implemented with a (possibly generous) upper bound on the
problem size.

We first show that uniform fixed bit flip probabilities nec-
essarily lead to exponential run times (see Section 4.1). We
then show two ways out of this problem. In Section 4.2 we
consider non-uniform bit flip probabilities and in Section 4.3
we show that we can have an efficient algorithm with uni-
form bit flip probabilities if we choose the bit flip probability
randomly in each iteration.

4.1 Uniform Bit Flip Probabilities
It seems quite intuitive that if nothing is known about

the solution length there is not much we can achieve with
uniform bit flip probabilities. In fact, for any fixed mutation
probability p ∈ [0, 1], we just need to choose a large enough
solution length n to see that the (1 + 1) EA~p with uniform
mutation probability p is very inefficient. More precisely, us-
ing [11, Theorem 6.5] we get the following theorem regarding
optimizing OneMax with uniform bit flip probabilities.

Theorem 12. Let p ∈ [0, 1] be a constant. Then there
exists a positive integer n0 ∈ N such that for all n ≥ n0 the
expected run time of the (1 + 1) EA~p with ~p = (p, . . . , p) on

OneMaxn is 2Ω(n).

It is quite intuitive that for large p the expected optimiza-
tion time of the (1 + 1) EA~p with ~p = (p, . . . , p) is very large
also for small problem sizes, as in this case typically too
many bits are flipped in each iteration. This has been made
precise by Witt, who showed that for p, n with p = Ω(nε−1),

the expected run time of the (1+1) EA~p is 2Ω(nε) with prob-

ability at least 1− 2−Ω(nε) [11, Theorem 6.3].

For LeadingOnes we get a similar lower bound from
Lemma 11.

Theorem 13. Let p ∈ (0, 1/2). Then the expected
run time of the (1 + 1) EA~p with ~p = (p, . . . , p) on

LeadingOnesn is 2Ω(n).

Proof. From Lemma 11 we have that the expected run
time of the (1 + 1) EA~p is, for n large enough,

1

2p2

(
(1− p)−n+1 − (1− p)

)
≥ 1

2

(
epn−p − 1

)
= 2Ω(n).

4.2 Non-Uniform Bit Flip Probabilities
One way to achieve efficient optimization with unknown

solution length is by using non-uniform mutation rates, that
is, different bit positions have different probabilities associ-
ated for being flipped during a mutation operation.

To state our results we need the concept of summable
sequences. Such sequences will be the basis for the se-
quence of bit flip probabilities. In short, a sequence (pi)i∈N
is summable if its series (

∑n
k=1 pk)n∈N converges (that is,

if it is bounded). The advantage of using summable se-
quences is that the probability of flipping only one single
bit is always constant, regardless of the total number of
bits considered, i.e., regardless of the problem length n.
This is in contrast to the sequence (1/(i + 1))i∈N consid-
ered in [4], which is not summable, and which has a chance
of (1/2)

∏n
i=2(1− 1/(i + 1)) = 1/n of flipping only the first

bit and a chance of (1/n)
∏n−1

i=1 (1 − 1/(i + 1)) = 1/n2 of
flipping only the nth bit. For this reason the (1 + 1) EAi is
very inefficient for the setting in which the solution length
can be arbitrary.

Theorems 14 and 15 show that not knowing the solution
length n does not harm the run time more than by a factor of
order log1+ε n with respect to the optimal bound when the
problem length is known a priori, cf. also Corollary 16 for
an explicit sequence yielding this bound. In fact, we prove
that the additional cost caused by not knowing the solution
length in advance is even a bit smaller, cf. the comments
after Corollary 16.

We start with the theorem regarding OneMax.

Theorem 14. Let (pi)i∈N be a monotonically decreasing
summable sequence with Σ :=

∑∞
i=1 pi < 1. Then, for any

n ∈ N, the expected run time of the (1 + 1) EA~p with ~p =
(p1, . . . , pn) on OneMaxn is at most logn/(pn(1 − Σ)) =
O(logn/pn).

Proof. We make use of the multiplicative drift theo-
rem [5, Theorem 3] and show that for every n and every
search point x with n− k ones, the probability to create in
one iteration of the (1+1) EA~p with ~p = (p1, . . . , pn) a search
point y with OneMaxn(y) > OneMaxn(x) is at least of or-
der k/pn. This can in fact be seen quite easily by observing
that the probability to increase the OneMax-value of x by
exactly one is at least

kpn

n∏
j=1

(1− pj) ≥ kpn

(
1−

n∑
j=1

pj

)
≥ kpn

(
1−

∞∑
j=1

pj

)
= kpn (1− Σ) .

From this an upper bound of log n/(pn(1 − Σ)) for the run
time of the (1 + 1) EA~p follows immediately from the mul-
tiplicative drift theorem.
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Next we consider LeadingOnes. The proof follows along
similar lines as the one for OneMax and uses a fitness level
argument instead of multiplicative drift (using additive drift
would also be possible).

Theorem 15. Let (pi)i∈N be a monotonically decreasing
summable sequence with Σ :=

∑∞
i=1 pi < 1. Then, for any

n ∈ N, the expected run time of the (1 + 1) EA~p with ~p =
(p1, . . . , pn) on LeadingOnesn is at most n/(pn(1− Σ)) =
O(n/pn).

Proof. Let n, k ∈ N with k < n and let x ∈ {0, 1}n with
Lo(x) = k − 1. The probability to get in one iteration of
the (1 + 1) EA~p with ~p = (p1, . . . , pn) a search point y with
Lo(y) > Lo(x) is at least

pk

k−1∏
j=1

(1− pj) ≥ pk(1−
k−1∑
j=1

pj) ≥ pk(1− Σ) ≥ pn(1− Σ).

By a simple fitness level argument (see, e.g., the work by
Sudholt [10] for background and examples of this method),
the expected run time of the (1+1) EA~p on LeadingOnesn
is thus at most n/(pn(1− Σ)).

It is well known that for every constant ε > 0 the se-
quence (1/(i log1+ε i))i∈N is summable (this can be proven
via Cauchy’s condensation test). It is obviously also mono-
tonically decreasing in i. Theorems 14 and 15, together
with the sequence (pi)i∈N := (1/(2Si log1+ε i))i∈N for S :=∑∞

i=1 1/(i log1+ε i), therefore imply the following corollary.

Corollary 16. For every positive constant ε there exists
a sequence of mutation probabilities (pi)i∈N such that for
any n the expected run time of the (1 + 1) EA~p with ~p =
(p1, . . . , pn) on OneMaxn is O(n log2+ε n) and is of order
n2 log1+ε n for LeadingOnesn.

The bound from Corollary 16 can be improved by regard-
ing the following summable sequences.

For any r ∈ R and any i ∈ N≥2 let

log(i) r :=

{
log2(log(i−1) r), if log(i−1)(r) ≥ 2;

1, otherwise;

where log(1) r := log2 r if r ≥ 2 and log(1) r := 1 otherwise.
For every constant ε > 0 and all positive integers s, i let

ps,εi := 1/

(
i(log(s)(i))1+ε

s−1∏
j=1

log(j)(i)

)
. (4)

For every ε > 0 and every s ≥ 1 the sequence (ps,εi )i∈N
is summable. Furthermore, this sequence clearly is mono-
tonically decreasing. Choosing larger and larger s therefore
gives better and better asymptotic run time bounds in The-
orems 14 and 15.

4.3 Randomized Bit Flip Probability
In the conclusions of [4] the authors ask the following: how

can we optimize efficiently when an upper bound N on the
problem length is known, but only n bits at unknown posi-
tions are relevant for the fitness? It is not difficult to see
that our previous solutions with non-uniform bit flip proba-
bilities will not be able to assign appropriate bit flip proba-
bilities to the relevant bit positions. However, any uniform

choice of bit flip probabilities will effectively ignore irrele-
vant bit positions. In this section we consider a variation
of the (1 + 1) EA where the bit flip probability p is chosen
randomly from a distribution Q on (0, 1) in each iteration
(the distribution Q does not change over time). This muta-
tion probability is then applied independently to each bit,
i.e., each bit of the current best solution is independently
flipped with probability p. See Algorithm 2 for the detailed
description of the (1 + 1) EAQ.

Algorithm 2: The (1 + 1) EAQ for a distribution
Q on (0, 1) optimizing a pseudo-Boolean function f :
{0, 1}n → R.

1 Initialization: Sample x ∈ {0, 1}n uniformly at
random and query f(x);

2 Optimization: for t = 1, 2, 3, . . . do
3 Sample bit flip probability pt from Q;
4 for i = 1, . . . , n do
5 With probability pt set yi ← 1− xi and set

yi ← xi otherwise;

6 Query f(y);
7 if f(y) ≥ f(x) then x← y;

To make the problem more explicit, we are asked to find
a distribution Q on (0, 1) such that the (1 + 1) EAQ effi-
ciently optimizes for any n ∈ N and any pairwise different
b1, . . . , bn ∈ N the functions

OneMaxb1,...,bn(x) :=

n∑
i=1

xbi , respectively

LeadingOnesb1,...,bn(x) := max{i ∈ [0..n] | ∀j ≤ i : xbj = 1}.

In Theorems 17 and 18 we show that such a distribu-
tion Q exist. That is, there is a distribution Q such that
the corresponding (1 + 1) EAQ efficiently optimizes any
OneMaxb1,...,bn and any LeadingOnesb1,...,bn function, re-
gardless of the number of relevant bits and regardless of their
positions.

We start with our main result regarding OneMax.

Theorem 17. Let (pi)i∈N ∈ (0, 1)N be a monotonically
decreasing summable sequence. Set Σ :=

∑∞
j=1 pj. Let Q be

the distribution which assigns the mutation probability 1/i a
probability of pi/Σ.

For any n ∈ N and any pairwise different positive inte-
gers b1, . . . , bn the expected run time of the (1 + 1) EAQ on
OneMaxb1,...,bn is O (log(n)/p2n).

Proof. The probability to sample a mutation probability
between 1/(2n) and 1/n is

2n∑
j=n

pj ≥ np2n.

We disregard all iterations in which we do not sample a
mutation probability between 1/(2n) and n (they can only
be beneficial). Thus, on average, we consider at least one
iteration out of 1/(np2n).

Assuming that x is a search point with n− ` ones (in the
relevant positions) and that the sampled bit flip probability
p satisfies 1/(2n) ≤ p ≤ 1/n, the probability to make a
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progress of exactly one is at least

`p(1− p)n−1 ≥ `/(2n)(1− 1/n)n−1 ≥ `/(2en).

Thus, we have an expected progress in each iteration of
at least `

2en
np2n = O (`p2n) . Therefore, by the multi-

plicative drift theorem [5, Theorem 3], we need in ex-
pectation O(log(n)/p2n) iterations to optimize function
OneMaxb1,...,bn .

For LeadingOnes we obtain the following.

Theorem 18. Let (pi)i∈N and Q as in Theorem 17.
For any n ∈ N and any pairwise different b1, . . . , bn ∈

N the expected run time of the (1 + 1) EAQ on
LeadingOnesb1,...,bn is O (n/p2n).

Proof. This proof follows along similar lines as the one
for OneMax. We have again that the probability to have a
bit flip probability between 1/(2n) and 1/n in an iteration
is at least np2n.

Let x be a search point with LeadingOnesb1,...,bn(x) = `.
Given a mutation probability p between 1/(2n) and 1/n, the
probability to create in one iteration of the (1 + 1) EAQ a
search point y of fitness greater than ` is at least

p(1− p)`−1 ≥ 1/(2n)(1− 1/n)n−1 ≥ 1/(2en).

Thus, we have an expected progress in each iteration of
at least 1

2en
np2n = O(p2n). Therefore, by the fitness level

method (see again [10] for a discussion of this method),
we need in expectation O(n/p2n) iterations to optimize
LeadingOnesb1,...,bn .

By choosing the summable sequence with entries as in (4)
and s = 1, the two theorems above immediately yield the
following result.

Corollary 19. The expected run time of the described
(1 + 1) EAQ with Q using the summable sequence (4)
with s = 1 on OneMaxb1,...,bn is O

(
n log2+ε n

)
and on

LeadingOnesb1,...,bn it is O(n2 log1+ε n).

Note that, just as discussed after Corollary 16, choosing
larger and larger s gives asymptotically better and better
bounds.

5. SUMMARY AND OUTLOOK
We have analyzed the performance of variants of the

(1 + 1) EA in the presence of unknown solution lengths.
While for highly concentrated solution length non-uniform
mutation probabilities are not advantageous (or at least not
to a significant degree), they are crucial in a setting in which
we do not have any knowledge about the solution length.
Surprisingly, even in the latter situation, a sequence of (non-
uniform) mutation probabilities exists such that the corre-
sponding (1 + 1) EA is almost optimal, simultaneously for
all possible solution lengths.

We have also investigated a setting in which the relevant
bit positions can be arbitrary in number and position. Pos-
sibly even more surprisingly, even this can be handled quite
efficiently by a (1 + 1) EA variant for the two test functions
OneMax and LeadingOnes.

We believe the setting of unknown solution length to be
relevant for numerous real-world applications. As a next
step toward a better understanding of how this uncertainty

can be tackled efficiently with evolutionary algorithms, we
suggest to investigate more challenging function classes, e.g.,
starting with the class of all linear functions. It is not clear
a priori if bounds similar to the ones presented in Section 4
can be achieved for such problems.

From a mathematical point of view it would also inter-
esting to investigate the tightness of our bounds in Sec-
tion 4. We do not know whether some choice of muta-
tion probabilities gives an upper bound of O(n logn) for
OneMax or O(n2) for LeadingOnes. We recall that the
sequences (1/(n log(n)))n∈N as well as (1/p∞,ε

i )i∈N with
p∞,ε
i := lims→∞ ps,εi are not summable. Removing the gap

entirely is therefore likely to require a substantially different
approach.
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