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Abstract. Practical optimization problems frequently include uncer-
tainty about the quality measure, for example due to noisy evaluations.
Thus, they do not allow for a straightforward application of traditional
optimization techniques. In these settings meta-heuristics are a popular
choice for deriving good optimization algorithms, most notably evolu-
tionary algorithms which mimic evolution in nature. Empirical evidence
suggests that genetic recombination is useful in uncertain environments
because it can stabilize a noisy fitness signal. With this paper we want
to support this claim with mathematical rigor.

The setting we consider is that of noisy optimization. We study a
simple noisy fitness function that is derived by adding Gaussian noise to
a monotone function. First, we show that a classical evolutionary algo-
rithm that does not employ sexual recombination (the (µ+1)-EA) cannot
handle the noise efficiently, regardless of the population size. Then we
show that an evolutionary algorithm which does employ sexual recom-
bination (the Compact Genetic Algorithm, short: cGA) can handle the
noise using a graceful scaling of the population.

1 Introduction

Heuristic optimization is widely used in practice for solving hard optimization
problems for which no efficient problem-specific algorithm is known. Such prob-
lems are typically very large, noisy and constrained and cannot be solved by sim-
ple textbook algorithms. The inspiration for heuristic general-purpose problem
solvers often comes from nature. A well-known example is simulated annealing,
which is inspired from physical annealing in metallurgy. The largest and proba-
bly most successful class, however, are biologically-inspired algorithms, especially
evolutionary algorithms.

Evolutionary and Genetic Algorithms. Evolutionary Algorithms (EAs)
were introduced in the 1960s and have been successfully applied to a wide
range of complex engineering and combinatorial problems [1,10,24]. Like Dar-
winian evolution in nature, evolutionary algorithms construct new solutions
from old ones and select the fitter ones to continue to the next iteration.
The construction of new solutions from old ones, so-called reproduction, can

c© Springer-Verlag Berlin Heidelberg 2015
K. Elbassioni and K. Makino (Eds.): ISAAC 2015, LNCS 9472, pp. 140–150, 2015.
DOI: 10.1007/978-3-662-48971-0 13



The Benefit of Recombination in Noisy Evolutionary Search 141

be asexual (mutation of a single individual) or sexual (crossover of several
individuals). An EA that uses sexual reproduction is typically called Genetic
Algorithm (GA). Since the beginning of EAs, it has been argued that GAs
should be more powerful than pure EAs, which use only asexual reproduc-
tion [13]. This was debated for decades, but theoretical results and explana-
tions on crossover are still scarce. There are some results for simple artificial
test functions, where it was proven that a GA asymptotically outperforms an
EA without crossover [16,17,20,25,31,35] and the other way around [30]. How-
ever, these artificial test functions are typically tailored to the specific algorithm
and proof technique and the results give little insight into the advantage of sex-
ual reproduction on realistic problems. There are also a few theoretical results
for problem-specific algorithms and representations, namely coloring problems
inspired by the Ising model [32] and the all-pairs shortest path problem [5]. For
a nice overview of different aspects where populations and sexual recombination
are beneficial for optimization of static fitness functions, see [29].

The underlying search space of many optimization problems is the set {0, 1}n

of all length-n bit strings. Many problems (including combinatorial ones such as
the minimum spanning tree problem) have a straightforward formulation as an
optimization problem on {0, 1}n. Many evolutionary algorithms are applicable
to this search space without further modification adaption, and most formal
analyses of evolutionary algorithms consider this search space. A popular simple
fitness function on this search space is OneMax, which uses the number of 1s in
a bit string as fitness value. A cornerstone of the analysis of any search heuristic
is an analysis of its performance on the OneMax function [8,37], and studying
the class of OneMax functions has also lead to several breakthroughs in the field
of black-box complexity [4,9]. Finally, there are also works analyzing the use of
crossover for the OneMax function [7,28,33].

Noisy Search. Heuristic optimization methods are typically not used for simple
problems, but for rather difficult problems in uncertain environments. Evolution-
ary algorithms are very popular in settings including uncertainties; see [2] for a
survey on examples in combinatorial optimization, but also [18] for an excellent
survey also discussing different sources of uncertainty. Uncertainty can be mod-
eled by a probabilistic fitness function, that is, a search point can have different
fitness values each time it is evaluated. One way to deal with this is to replace
fitness evaluations with an average of a (large) sample of fitness evaluations and
then proceed as if there was no noise. In this work we show that generic GAs
(with sexual reproduction) can overcome noise much more efficiently than using
this naive approach. To do this in a rigorous manner, we assume additive pos-
terior noise, that is, each time the fitness value of a search point is evaluated,
we add a noise value drawn from some distribution. This model was studied in
evolutionary algorithms without crossover in [6,11,12,14,34].

We will consider centered Gaussian noise with variance σ2 and use OneMax as
the underlying fitness function. Already such a seemingly simple setting poses
difficulties to the analysis of evolutionary algorithms, as these algorithms are
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not developed with the analysis in mind. Particularly algorithms with sexual
recombination have been resisting a mathematical analysis.

Our Results. We are interested in studying how well search heuristics can
cope with noise, for which we use the concept of graceful scaling (Definition 2);
intuitively, a search heuristic scales gracefully with noise if (polynomially) more
noise can be compensated by (polynomially) more resources.

We first prove a sufficient condition for when a noise model is intractable
for optimization by the classical (μ+1)-EA (Theorem 4) and show that this
implies that this simple asexual algorithm does not scale gracefully for Gaussian
noise (Corollary 5). On the other hand, we study the compact GA (cGA), which
models a genetic algorithm, and show how its gene-pool recombination operator
is able to “smooth” the noise sufficiently to exhibit graceful scaling (Theorem 9).

We proceed in Sect. 2 by formalizing our setting and introducing the algo-
rithms we consider. In Sect. 3 we give our results. Note that in this extended
abstract, we omit many proof details and provide only proof sketches due to
space constraints. We conclude the paper in Sect. 4.

2 Preliminaries

In the remainder of the paper, we will study a particular function class (OneMax)
and a particular noise distribution (Gaussian, parametrized by the variance).
Let σ2 ≥ 0. We define the noisy OneMax function om[σ2] : {0, 1}n → R := x �→
‖x‖1 + Z where ‖x‖1 := |{i : xi = 1}| and Z is a normally distributed random
variable Z ∼ N (0, σ2) with zero mean and variance σ2.

The following proposition gives tail bounds for Z by using standard estimates
of the complementary error function [36].

Proposition 1. Let Z be a zero-mean Gaussian random variable with variance
σ2. For all t > 0 we have

Pr (Z < −t) =
1
2

erfc
(

t

σ
√

2

)
≤ 1

2
e−t2/(2σ2)

and asymptotically for large t > 0,

Pr (Z < −t) =
1

1 + o(1)
σ√
2πt

e−t2/(2σ2).

2.1 Algorithms

The (μ + 1)-EA, defined in Algorithm1, is a simple mutation-only evolutionary
algorithm that maintains a population of μ solutions and uses elitist survival
selection. It derives its name from maintaining a population of μ individuals (ran-
domly initialized) and generating one new individual each iteration by mutating
a parent chosen uniformly at random from the current population. Then it eval-
uates the fitness of all individuals and chooses one with minimal value to be
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Algorithm 1. The (μ + 1)-EA
1 t ← 0;
2 Pt ← µ elements of {0, 1}n u.a.r.;
3 while termination criterion not met do
4 Select x ∈ Pt u.a.r.;
5 Create y by flipping each bit of x independently with probability 1/n;
6 Let z ∈ Pt ∪ {y} chosen s.t. ∀v ∈ Pt ∪ {y} : f(z) ≤ f(v);
7 Pt+1 ← Pt ∪ {y} \ {z};
8 t ← t + 1;

removed from the population, so that again μ individuals proceed to the next
generation.

The compact genetic algorithm (cGA) [15] is a genetic algorithm that main-
tains a population of size K implicitly in memory. Rather than storing each indi-
vidual separately, the cGA only keeps track of population allele frequencies and
updates these frequencies during evolution. Offspring are generated according to
these allele frequencies, which is similar to what occurs in models of sexually-
recombining natural populations. Indeed, the offspring generation procedure can
be viewed as so-called gene pool recombination introduced by Mühlenbein and
Paaß [23] in which all K members participate in uniform recombination. Since
the cGA evolves a probability distribution, it is also a type of estimation of
distribution algorithm (EDA). The correspondence between EDAs and models
of sexually recombining populations has already been noted [22], and Harik
et al. [15] demonstrate empirically that the behavior of the cGA is equivalent to
a simple genetic algorithm at least on simple problems.

Algorithm 2. The compact GA
1 t ← 0;
2 p1,t ← p2,t ← · · · ← pn,t ← 1/2;
3 while termination criterion not met do
4 for i ∈ {1, . . . , n} do
5 xi ← 1 with probability pi,t, xi ← 0 with probability 1 − pi,t;

6 for i ∈ {1, . . . , n} do
7 yi ← 1 with probability pi,t, yi ← 0 with probability 1 − pi,t;

8 if f(x) < f(y) then swap x and y;
9 for i ∈ {1, . . . , n} do

10 if xi > yi then pi,t+1 ← pi,t + 1/K;
11 if xi < yi then pi,t+1 ← pi,t − 1/K;
12 if xi = yi then pi,t+1 ← pi,t;

13 t ← t + 1;

The first rigorous analysis of the cGA is due to Droste [8] who gave a gen-
eral runtime lower bound for all pseudo-Boolean functions, and a general upper
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bound for all linear pseudo-Boolean functions. Defined in Algorithm2, the cGA
maintains for all times t ∈ N0 a frequency vector (p1,t, p2,t, . . . , pn,t) ∈ [0, 1]n.
In the t-th iteration, two strings x and y are sampled independently from this
distribution where Pr(x = z) = Pr(y = z) =

(∏
i : zi=1 pi,t

)×(∏
i : zi=0(1 − pi,t)

)
for all z ∈ {0, 1}n. The cGA then compares the objective values of x and y, and
updates the distribution by advancing pi,t toward the component of the winning
string by an additive term. This small change in allele frequencies is equivalent
to a population undergoing steady-state binary tournament selection [15].

Let F be a family of pseudo-Boolean functions (Fn)n∈N where each Fn is a
set of functions f : {0, 1}n → R. Let D be a family of distributions (Dv)v∈R such
that for all Dv ∈ D, E(Dv) = 0. We define F with additive posterior D-noise as
the set F [D] := {fn + Dv : fn ∈ Fn,Dv ∈ D}.

Definition 2. An algorithm A scales gracefully with noise on F [D] if there is a
polynomial q such that, for all gn,v = fn + Dv ∈ F [D], there exists a parameter
setting p such that A(p) finds the optimum of fn using at most q(n, v) calls
to gn,v.

Algorithms that operate in the presence of noise often depend on a priori
knowledge of the noise intensity (measured by the variance). In such cases, the
following scheme can always be used to transform such algorithms into one
that has no knowledge of the noise character. Suppose A(σ2) is an algorithm
that solves a noisy function with variance at most σ2 within Tδ(σ2) steps with
probability at least 1 − δ. A noise-oblivious scheme for A is in Algorithm 3.

Algorithm 3. Noise-oblivious scheme for A

1 i ← 0;
2 repeat until solution found
3 Run A(2i) for Tδ(2

i) steps;
4 i ← i + 1;

If an algorithm A scales gracefully with noise, then the noise oblivious scheme
for A scales gracefully with noise. The following proposition holds by a simple
inductive argument.

Proposition 3. Suppose fn,v ∈ F [D] is a noisy function with unknown vari-
ance v. Fixing n and assume that, for all c > 0 and all x, cTδ(x) ≤ Tδ(cx). Then
for any s ∈ Z+, the noise-oblivious scheme optimizes fn,v in at most Tδ(2sv)
steps with probability at least 1 − δs.

3 Results

We derive rigorous bounds on the optimization time, defined as the first hitting
time of the process to the true optimal solution (1n) of om[σ2], on a mutation-
only based approach and the compact genetic algorithm.
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3.1 Mutation-Based Approach

In this section we consider the (μ + 1)-EA. We will first, in Theorem 4, give a
sufficient condition for when a noise model is intractable for optimization by a
(μ+1)-EA. While uniform selection removes any individual from the population
with probability 1/(μ + 1), the condition of Theorem4 requires that the noise is
strong enough so that the (μ + 1)-EA will remove any individual with at least
half that probability. Then we will show that, in the case of additive posterior
noise sampled from a Gaussian distribution, this condition is fulfilled if the noise
is large enough, showing that the (μ+1)-EA cannot deal with arbitrary Gaussian
noise (see Corollary 5).

Theorem 4. Let μ ≥ 1 and D a distribution on R. Let Y be the random variable
describing the minimum over μ independent copies of D. Suppose

Pr(Y > D + n) ≥ 1
2(μ + 1)

.

Consider optimization of OneMax with reevaluated additive posterior noise from
D by (μ+1)-EA. Then, for μ bounded from above by a polynomial, the optimum
will not be evaluated after polynomially many iterations w.h.p.

Proof Sketch. For all t and all i ≤ n let Xt
i be the random variable describing

the proportion of individuals in the population of iteration t with exactly i 1s.
The proof is by induction on t that

∀t,∀i ≥ an : E(Xt
i ) ≤ ban−i,

where a, b and c are specifically chosen constants. In other words, the expected
number of individuals with i 1s is decaying exponentially with i after an. This
will give the desired result with a simple union bound over polynomially many
time steps. ��

We apply Theorem 4 to show that large noise levels make it impossible for
the (μ + 1)-EA to efficiently optimize when the noise is significantly larger than
the range of objective values. The proof is a simple exercise in bounding the tails
of a Gaussian distribution using Proposition 1.

Corollary 5. Consider optimization of om[σ2]by (μ + 1)-EA. Suppose σ2 ≥ n3

and μ bounded from above by a polynomial in n. Then the optimum will not be
evaluated after polynomially many iterations w.h.p.

3.2 Compact GA

Let T � be the optimization time of the cGA on om[σ2], namely, the first time
that it generates the underlying “true” optimal solution 1n. We consider the
stochastic process Xt = n − ∑n

i=1 pi,t and bound the optimization time by
T = inf{t ∈ N0 : Xt = 0}. Clearly T � ≤ T since the cGA produces 1n in the
T -th iteration almost surely. However, T � and T can be infinite when there is
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a t < T � where pi,t = 0 since the process can never subsequently generate any
string x with xi = 1. To circumvent this, Droste [8] estimates E(T �) conditioned
on the event that T � is finite, and then bounds the probability of finite T �. In
this paper, we will prove that as long as K is large enough, the optimization
time is finite (indeed, polynomial) with high probability. To prove our result, we
need the following drift theorem.

Theorem 6 (Tail Bounds for Multiplicative Drift [3,21]). Let {Xt : t ∈
N0} be a sequence of random variables over a set S ⊆ {0} ∪ [xmin, xmax] where
xmin > 0. Let T be the random variable that denotes the earliest point in time
t ≥ 0 such that Xt = 0. If there exists 0 < δ < 1 such that E(Xt − Xt+1 | T >
t,Xt) ≥ δXt, then

Pr
(

T >
λ + ln(X0/xmin)

δ

∣∣∣∣ X0

)
≤ e−λ for all λ > 0.

The following lemma bounds the drift on Xt, conditioned on the event that
no allele frequency gets too small.

Lemma 7. Consider the cGA optimizing om[σ2] and let Xt be the stochastic
process defined above. Assume that there exists a constant a > 0 such that pi,t ≥ a
for all i ∈ {1, . . . , n} and that Xt > 0, then E(Xt − Xt+1 | Xt) ≥ δXt where
1/δ = O(

σ2K
√

n
)
.

Proof Sketch. Let x and y be the offspring generated in iteration t and Zt =
‖x‖1 − ‖y‖1. Then Zt = Z1,t + · · · + Zn,t where

Zi,t =

⎧⎪⎨
⎪⎩

−1 if xi = 0 and yi = 1,
0 if xi = yi,
1 if xi = 1 and yi = 0.

Let E denote the event that in line 8, the evaluation of om[σ2] correctly ranks x
and y. Then

E(Xt − Xt+1 | Xt) =
E(|Zt|)

K

(
1 − 2Pr(E)

)
.

Using combinatorial arguments and properties of the Poisson-Binomial distribu-
tion, the expectation of |Zt| can be bounded from below by aXt

√
2/n. The proof

can then be completed by bounding the probability that x and y are incorrectly
ranked, which is at most 1

2

(
1 − Ω(σ−2)

)
. This follows from straightforward devi-

ation bounds on the normal distribution derived from Proposition 1. ��
To use Lemma 7, we require that the allele frequencies stay large enough dur-

ing the run of the algorithm. Increasing the effective population size K obviously
translates to finer-grained allele frequency values, which means slower dynamics
for pi,t. Indeed, provided that K is set sufficiently large, the allele frequencies
remain above an arbitrary constant for any polynomial number of iterations with
very high probability. This is captured by the following lemma.
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Lemma 8. Consider the cGA optimizing om[σ2] with σ2 > 0. Let 0 < a < 1/2
be an arbitrary constant and T ′ = min{t ≥ 0: ∃i ∈ [n], pi,t ≤ a}. If K =
ω(σ2

√
n log n), then for every polynomial poly(n), n sufficiently large, Pr(T ′ <

poly(n)) is superpolynomially small.

Proof Sketch. Let i ∈ [n] be an arbitrary index. Let {Yt : t ∈ N0} be the tochastic
process Yt = (1/2 − pi,t) K. The proof begins by first showing that

E(Yt | Y1, . . . , Yt−1) ≤ Yt−1 − Ω(σ−2)
1√
n

.

The idea behind this claim is a follows. Obviously, Yt − Yt−1 ∈ {−1, 0, 1} and it
suffices to bound the conditional expectation of this difference in one step. Again
let x and y be the offspring generated in iteration t. The argument proceeds by
considering the substrings of x and y induced by the remaining indexes (in [n] \
{i}), which are by definition statistically independent. Let E denote the event
that these substrings are equal. If xi �= yi, then whichever string contains a 1 in
the i-th position has a strictly greater “true” fitness, and the change in Yt with
respect to Yt−1 depends only on the event that om[σ2] incorrectly ranks x and y.
This probability can be bounded as in Lemma7 and the 1/

√
n factor comes a

bound on Pr(E) that arises from the fact that the number of positions j ∈ [n]\{i}
where xj �= yj has a Poisson-Binomial distribution. It is then straightforward to
show that the contributions to the expected difference conditioned on E remains
strictly negative. This is simply an exercise in checking the remaining possibilities
and bounding their probability.

The proof is then finished by applying a refinement to the negative drift
theorem of Oliveto and Witt [26,27] (cf. Theorem 3 of [19]). Implicitly ignoring
self-loops in the Markov chain (which can only result in a slower process), we
have Y1 = 0 and |Yt − Yt+1| ≤ 1 <

√
2, and thus for all s ≥ 0,

Pr(T ′ ≤ s) ≤ s exp
(

− (1/2 − a)K|ε|
32

)
,

with ε = −Ω(σ−2/
√

n). Since K = ω(σ2
√

n log n), Pr(T ′ ≤ s) = sn−ω(1).
So, for any polynomial s = poly(n), with probability superpolynomially close

to one, Ys has not yet reached a state larger than (1/2 − a)K, and so pi,t > a
for all 0 ≤ t ≤ s. As this holds for arbitrary i, applying a union bound retains
a superpolynomially small probability that any of the n frequencies have gone
below a by s = poly(n) steps. ��

It is now straightforward to prove that the optimization time of the cGA is
polynomial in the problem size and the noise variance. This is in contrast to the
mutation-based (μ + 1)-EA, which fails when the variance becomes large. This
means the cGA scales gracefully with noise in the sense of Definition 2 applied
to the om[σ2] noise model.

Theorem 9. Consider the cGA optimizing om[σ2] with variance σ2 > 0. If
K = ω(σ2

√
n log n), then with probability 1 − o(1), the cGA finds the optimum

after O(Kσ2
√

n log Kn) steps.
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Proof. We will consider the drift of the stochastic process {Xt : t ∈ N0} over the
state space S ⊆ {0}∪ [xmin, xmax] where Xt = n−∑n

i=1 pi,t. Hence, xmin = 1/K.
Fix a constant 0 < a < 1/2. We say the process has failed by time t if there

exists some s ≤ t and some i ∈ [n] such that pi,s ≤ a. Let T = min{t ∈ N0 : Xt =
0}. Assuming the process never fails, by Lemma 7, the drift of {Xt : t ∈ N0} in
each step is bounded by E(Xt − Xt+1 | Xt = s) ≥ δXt where 1/δ = O(

σ2K
√

n
)
.

By Theorem 6, Pr (T > (ln(X0/xmin) + λ) /δ) ≤ e−λ. Choosing λ = d ln n for
any constant d > 0, the probability that T = Ω(Kσ2

√
n log Kn) is at most n−d.

Letting E be the event that the process has not failed by O(Kσ2
√

n log Kn)
steps, by the law of total probability, the hitting time of Xt = 0 is bounded by
O(Kσ2

√
n log Kn) with probability (1 − n−d) Pr(E) = 1 − o(1) where we can

apply Lemma 8 to bound the probability of E . ��

4 Conclusions

In this paper we have examined the benefit of sexual recombination in evolution-
ary optimization on the fitness function om[σ2]. The noise-free function (om[0]) is
efficiently optimized by a simple hillclimber in Θ(n log n) steps (this well-known
statement follows from a coupon collector argument). Corollary 5 asserts that
mutation-only (and by extension, simple hillclimbers) cannot optimize om[σ2] in
polynomial time without using some kind of resampling strategy to reduce the
variance. The intuitive reason for this is that the probability of generating and
accepting a worse individual becomes larger than the probability of generating
and accepting a better individual: mutation has a bias towards bit strings with
about as many 0s as 1s, and for high noise the probability of accepting slightly
worse individuals is about 1/2. Thus, mutation-only evolutionary algorithms do
not scale gracefully in the sense that they cannot optimize noisy functions in
polynomial time when the noise intensity is sufficiently high.

On the other hand, we proved that a genetic algorithm that uses gene pool
recombination can always optimize noisy OneMax (om[σ2]) in expected polyno-
mial time, subject only to the condition that the noise variance σ2 is bounded
by some polynomial in n. Intuitively, the cGA can leverage the sexual operation
of gene pool recombination to average out the noise and follow the underlying
objective function signal.

Our results highlight the importance of understanding the influence of dif-
ferent search operators in uncertain environments, and suggest that algorithms
such as the compact genetic algorithm that use some kind of recombination are
able to scale gracefully with noise.
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