
Artificial Intelligence 216 (2014) 275–286
Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

The unbiased black-box complexity of partition is polynomial

Benjamin Doerr a, Carola Doerr b,c,∗, Timo Kötzing d

a École Polytechnique, Palaiseau, France
b Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, Paris, France
c CNRS, UMR 7606, LIP6, Paris, France
d Friedrich-Schiller-Universität Jena, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 September 2013
Received in revised form 20 June 2014
Accepted 24 July 2014
Available online 30 July 2014

Keywords:
Heuristic search
Run time analysis
Evolutionary computation

Unbiased black-box complexity was introduced as a refined complexity model for random-
ized search heuristics (Lehre and Witt (2012) [24]). For several problems, this notion avoids
the unrealistically low complexity results given by the classical model of Droste et al.
(2006) [10].
We show that for some problems the unbiased black-box complexity remains artificially
small. More precisely, for two different formulations of an NP-hard subclass of the well-
known Partition problem, we give mutation-only unbiased black-box algorithms having
complexity O (n logn). This indicates that also the unary unbiased black-box complexity
does not give a complete picture of the true difficulty of this problem for randomized
search heuristics.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Complexity theory aims at determining the difficulty of computational problems. In classical theoretical computer sci-
ence, the fruitful interplay between complexity theory, aiming at proving that a certain effort is necessary to solve a
problem, and theory of algorithms, giving an algorithmic solution for a problem and showing that it can be solved with
a certain computational effort, was a driving force to develop the field.

Developing a similarly thorough theory for heuristic search methods is at the heart of the theory of randomized search
heuristics community. The latter has been steadily growing in the last twenty years. Many tight or near-tight run time anal-
yses for various problems and algorithms exist, see, e.g., the recent textbooks [26,4,21]. In contrast to this, the complexity
theory of randomized search heuristics is still in its infancy.

A complexity theory for randomized search heuristics Applications of search heuristics typically do not consider the problem
as explicitly given, in contrast to traditional optimization algorithms which operate on a problem instance containing all
relevant information. Instead, a search heuristic supposes access to the problem instance via an oracle/as a black box and
the heuristic can learn about the concrete instance at hand only by learning the function value of the search points it
generates. Search heuristics are therefore called black-box optimization algorithms. The reasons for this restricted access
are manifold: sometimes no explicit representation of the problem exists (a function evaluation might correspond to a real
world experiment), sometimes we do not want to fully exploit the given representation (e.g., due to its size or complexity).
The efficiency of heuristic search methods is measured by the number of function evaluations until an optimal search point
is evaluated for the first time, or, depending on the context, until a solution of a certain quality has been found. This is

* Corresponding author.
http://dx.doi.org/10.1016/j.artint.2014.07.009
0004-3702/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.artint.2014.07.009
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
http://dx.doi.org/10.1016/j.artint.2014.07.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2014.07.009&domain=pdf

276 B. Doerr et al. / Artificial Intelligence 216 (2014) 275–286
very different from classical complexity notions (e.g., the Turing model of computation), which assume that the algorithm
is fully aware of the complete problem instance, and where efficiency of an algorithm is measured by counting the number
of arithmetic operations that it performs given the input data.

As the run time (also referred to as the optimization time) of a search heuristic is measured by the number of function
evaluations, this should be reflected in a corresponding complexity model. This is what black-box complexity models are
developed for. They try to give a reasonable estimate of how easily a problem can be optimized by typical search heuristic
methods. A useful black-box complexity notion thus provides lower bounds for a sufficiently large class of black-box search
methods. In the simplest black-box complexity model, the so-called unrestricted black-box complexity, one just counts the
number of function evaluations that are necessary to solve a problem, no single restriction is made on how the search
points are being generated. The unrestricted black-box complexity gives thus a lower bound for all black-box algorithms,
i.e., all algorithms that do not exploit knowledge about the problem instance other than those obtained from the function
evaluations—this class in particular contains all stochastic hill-climbing algorithms but also bio-inspired search heuristics like
evolutionary algorithms, physics-inspired algorithms like simulated annealing, and many other classes of search heuristics.
Hence, the unrestricted black-box complexity is a very general notion, independently studied in a number of different
scientific communities (see Section 2.3 for more details).

While theoretically very pleasing, it quickly turned out that the class of all black-box algorithms is possibly too wide
to deduce powerful statements for the most commonly used randomized search heuristics. Already in the seminal work
of Droste, Jansen, Tinnefeld, and Wegener [9] (see [10] for the journal version), it was observed that there are black-box
algorithms solving the MaxClique problem (the optimization version of the NP-complete decision problem Clique) using
a polynomial number of function evaluations.1

To increase the practical relevance of black-box complexity theory, a number of more restrictive models have been
developed. A promising direction is the so-called unbiased black-box complexity model by Lehre and Witt in [24], restricting
the class of admitted black-box optimization algorithms in a natural way which still includes a large class of commonly
used randomized search heuristics. In this model, all solution candidates are required to be obtained by variation operators.
These variation operators must be unbiased, that is, treat the bit positions and the bit entries 0 and 1 in an unbiased way
(see Section 2 for a precise definition). The unbiased black-box model admits a notion of arity in a natural way: A k-ary
unbiased black-box algorithm is one that employs only variation operators that take up to k arguments. This allows for
talking about mutation-only algorithms (unary algorithms, i.e., having arity one) or crossover-based algorithms (having arity
at least two) from a complexity-theoretic perspective.

Known results For several function classes the unbiased black-box complexity model leads to more realistic complexities.
While in the unrestricted model any function class consisting of a single function has a black-box complexity of one, in
the unbiased model more function evaluations are needed to generate an optimal solution from applying the variation
operators. For example, the mutation-only black-box complexity of any class of functions having a unique global optimum is
Ω(n log n) [24]. The (permutation-invariant) LeadingOnes function class, which is also one of the classic test problems in the
theory of randomized search heuristic community, has a mutation-only black-box complexity of Θ(n2) [24], matching the
run time of standard randomized search heuristics.2 The unrestricted black-box complexity of this LeadingOnes problem
is known to be of order Θ(n log log n) [1]. Hence, for both the unimodal and the LeadingOnes test problems, the unary
unbiased black-box model leads to much better complexity estimates than the unrestricted one.

When higher-arity variation operators are used, i.e., when the algorithm may combine two or more search points to
generate a new one, smaller, but still not completely unrealistic complexities were observed in [8]. For the classic test
problem OneMax, which assigns to each bit string the number of ones in it, the unary unbiased black-box complexity is
Ω(n log n) by the above mentioned lower bound, but it drops to O (n) for unbiased black-box algorithms of arity two.3

For LeadingOnes the binary unbiased complexity is shown to be O (n log n) (as opposed to the Ω(n2) bound for the unary
unbiased complexity by Lehre and Witt [24] mentioned above). For larger arity k ≤ log2 n, the k-ary unbiased black-box
complexity of OneMax is O (n/k) as shown in [15]. For LeadingOnes, it is known [13] that 3-ary operators reduce the
unbiased black-box complexity to O (n log n/ log log n). In the light of [1], it seems likely that larger arities again yield further
improvements, but no proof in this direction exists.

1 This does, of course, not provide an answer to whether or not P equals NP—as outlined above we do not count arithmetic operations, but just
function evaluations. An algorithm may perform a super-polynomial number of arithmetic operations between any two function evaluations; see Section 2.3
for a lightweight discussion on how black-box complexity relates to classic complexity theory and for a detailed presentation of an algorithm solving the
MaxClique problem in Θ(n2) function evaluations.

2 For the sake of completeness we give the definition of this problem. For every permutation π of the bit positions {1, . . . , n} and every length-n bit
string z the leadingones function f z,π (·) is defined by setting, for each bit string x ∈ {0, 1}n , f z,π (x) := max{i ∈ [0..n] | ∀ j ≤ i : zπ(j) = xπ(j)}; i.e., f z,π (x)
is the length of the longest common prefix of x and z with respect to π . The function class LeadingOnes is the collection { f z,π (·) | z, π} of all such
leadingones functions.

3 The OneMax problem may seem strange, since it is clear that the unique global optimum is the all-ones string (1, . . . , 1). However, when regarded
in the unbiased black-box model, this function is equivalent to any function f z(·) : {0, 1}n → {0, 1, . . . , n}, x �→ |{i | xi = zi}| counting the number of bit
positions in which the evaluated string x agrees with the target string z. The unrestricted black-box complexity of the class { f z | z ∈ {0, 1}n} of generalized
OneMax functions is known to be Θ(n/ logn) by a classic result of Erdős and Rényi [16].

B. Doerr et al. / Artificial Intelligence 216 (2014) 275–286 277
Our result The above-mentioned results show that the (unary) unbiased black-box model for several classic test problems
gives complexity estimates much closer to the performance of commonly used randomized search heuristics. We show that
this observation does not extend in general to difficult combinatorial optimization problems. We demonstrate an NP-hard
subclass of the classic combinatorial optimization problem Partition which has a small polynomial unbiased black-box com-
plexity, even if the arity of the variation operators is restricted to one. More precisely, we consider the subclass Partition �=
of all Partition instances with pairwise different weights. For two natural formulations of this problem (one using a signed
and one using an unsigned objective function, see Sections 3.1 and 3.2) we prove that there exists a unary unbiased black-
box algorithm that solves any of such instances using only O (n log n) function evaluations. This result shows that there
are problems for which no efficient optimization algorithm exists (making the common assumption that the complexity
classes P and NP are not identical), but that have a (small) polynomial unbiased black-box complexity.

This paper is based on the conference paper [12].

2. Preliminaries

In this section we first introduce the notation used in this paper, followed by a formal definition of the unrestricted and
the unbiased black-box models and a brief discussion of the black-box complexity concept.

2.1. Notation

The positive integers are denoted by N. For any k ∈ N, we abbreviate [k] := {1, . . . , k}. Analogously, we define [0..k] :=
[k] ∪ {0}.

For a bit string x = x1 · · · xn ∈ {0, 1}n we denote by x̄ the bit-wise complement of x (i.e., for all i ∈ [n] we have x̄i = 1 − xi).
The bit-wise exclusive-OR is denoted by ⊕. We say that y is created from x by flipping the ith bit in x to define y as x ⊕ ei ,
where ei denotes the ith unit vector. For any bit string x we let OneMax(x) = |x|1 denote the number of 1s in x (also known
as the Hamming-weight of x). Let |x|0 := n − |x|1 denote the number of zeros in x.

For any set S we denote by 2S the power set of S , i.e., the set of all subsets of S . For any set of pseudo-Boolean
functions C and any function f :R →R we let f (C) = { f ◦ g | g ∈ C}.

For n ∈N, we let Sn be the set of all permutations of [n]. For σ ∈ Sn and x ∈ {0, 1}n we abbreviate σ(x) := xσ(1) · · · xσ(n) .
Lastly, with ln we denote the natural logarithm to base e := exp(1).

2.2. Unrestricted and unbiased black-box model

A usual way to measure the complexity of a problem is to measure the performance of the best algorithm out of some class
of algorithms (e.g., all those algorithms which can be implemented on a Turing machine [18,20]) on the (for this algorithm)
most difficult problem instance. As we would like to measure the complexity of a problem’s optimizability by randomized
search heuristics, we restrict the class of permissible algorithms to those which obtain information about the problem only
by learning the objective values of possible solutions (“search points”). Thus the objective function in this setting is given
as an oracle or as a black-box. Using this oracle, the algorithm may query the objective value of any solution; such a query
does only return this search point’s function value but no other information about the problem instance.

Here in this work we will be concerned only with so-called pseudo-Boolean functions, i.e., real-valued objective functions
defined on the set {0, 1}n of bit strings of length n. This is motivated by the fact that many randomized search heuristics,
in particular evolutionary algorithms, use such a representation. Black-box complexity notions are meaningful also in other
search domains and objective spaces, but for the sake of clarity, we restrict our definitions to the pseudo-Boolean settings.
Results and models for more general search spaces can be found in [27,11].

Naturally, we do allow that the algorithms use random decisions. It follows from the black-box concept that the only type
of action the algorithm may perform is, based on the objective values learned so far, deciding on a probability distribution
on {0, 1}n , sampling a search point x ∈ {0, 1}n according to this distribution, and querying its function value (often referred
to as “fitness” in the evolutionary computation community) from the oracle. This leads to the scheme of Algorithm 1, which
we call an unrestricted black-box algorithm.

As the performance measure of black-box algorithms we take the number of queries to the oracle performed by the
algorithm until it first queries an optimal solution. We call this the run time, or optimization time, of the black-box algorithm.
This is justified by the observation that, in typical applications of randomized search heuristics, evaluating the function
value of a search point is more costly than the generation of a new search point. Since we mainly talk about randomized
algorithms, we are interested in the expected number of queries.

We can now follow the usual approach in complexity theory. Let F be a class of pseudo-Boolean functions. The com-
plexity of an algorithm A for F is the maximum expected run time of A on a function f ∈ F (worst-case run time). The
complexity of F with respect to a class A of algorithms is the minimum (“best”) complexity among all A ∈ A for F .
The unrestricted black-box complexity of F is the complexity of F with respect to the class of all (unrestricted) black-box
algorithms. This is the black-box complexity as defined by Droste, Jansen, Tinnefeld, and Wegener [9,10].

Obviously, the class of all black-box algorithms is very powerful. For example, for any function class F = { f } consisting of
one single function, the unrestricted black-box complexity of F is 1—the algorithm that simply queries an optimal solution

278 B. Doerr et al. / Artificial Intelligence 216 (2014) 275–286
Algorithm 1: Scheme of an unrestricted black-box algorithm.

1 Initialization: Sample x(0) according to some probability distribution p(0) on {0, 1}n . Query f (x(0)).
2 Optimization: for t = 1, 2, 3, . . . until termination condition met do
3 Depending on ((x(0), f (x(0))), . . . , (x(t−1), f (x(t−1)))) choose a probability distribution p(t) on {0, 1}n .
4 Sample x(t) according to p(t) , and query f (x(t)).

Algorithm 2: Scheme of a k-ary unbiased black-box algorithm.

1 Initialization: Sample x(0) ∈ {0, 1}n uniformly at random and query f (x(0)).
2 Optimization: for t = 1, 2, 3, . . . until termination condition met do
3 Depending on (f (x(0)), . . . , f (x(t−1))) choose up to k indices i1, . . . , ik ∈ [0..t − 1] and a k-ary unbiased distribution D(· | x(i1), . . . , x(ik)).

4 Sample x(t) according to D(· | x(i1), . . . , x(ik)) and query f (x(t)).

of f at the first opportunity verifies this bound. Also, there are black-box algorithms solving MaxClique using a polynomial
number of queries in expectation [10]; see Section 2.3 for a brief discussion of this algorithm.

These drawbacks of the unrestricted black-box model inspired Lehre and Witt [24] to introduce a more restrictive black-
box model, where algorithms may generate new solution candidates only from random or previously generated search points
and only by using unbiased variation operators. Still this model includes most of the commonly studied search heuristics,
such as many (μ + λ) and (μ, λ) evolutionary algorithms (EAs), simulated annealing, the Metropolis algorithm, and the
Randomized Local Search algorithm.

Definition 1. For all k ∈ N, a k-ary unbiased distribution (D(· | y(1), . . . , y(k)))y(1),...,y(k)∈{0,1}n is a family of probability distri-

butions over {0, 1}n such that for all inputs y(1), . . . , y(k) ∈ {0, 1}n the following two conditions hold.

(i) ∀x, z ∈ {0,1}n : D
(
x
∣∣ y(1), . . . , y(k)

) = D
(
x ⊕ z

∣∣ y(1) ⊕ z, . . . , y(k) ⊕ z
);

(ii) ∀x ∈ {0,1}n ∀σ ∈ Sn : D
(
x
∣∣ y(1), . . . , y(k)

) = D
(
σ(x)

∣∣ σ (
y(1)

)
, . . . , σ

(
y(k)

))
.

We refer to the first condition as ⊕-invariance and to the second as permutation-invariance. An operator sampling from a
k-ary unbiased distribution is called a k-ary unbiased variation operator.

Note that the only 0-ary unbiased distribution over {0, 1}n is the uniform distribution. 1-ary, also called unary operators
are sometimes referred to as mutation operators, in particular in the field of evolutionary computation. 2-ary, also called
binary operators are often referred to as crossover operators. If we allow arbitrary arity, we call the corresponding model
the ∗-ary unbiased black-box model.

k-ary unbiased black-box algorithms can now be described via the scheme of Algorithm 2. The k-ary unbiased black-box
complexity of some class of functions F is the complexity of F with respect to all k-ary unbiased black-box algorithms.

Note that, for all k ≤ �, each k-ary unbiased black-box algorithm is contained in the �-ary unbiased black-box model. For
any set C of pseudo-Boolean functions we write UBBk(C) to denote the k-ary unbiased black-box complexity of C .

As mentioned in the introduction, Lehre and Witt [24] proved, among other results, that all functions with a single global
optimum have a unary unbiased black-box complexity of Ω(n log n). For several standard test problems this bound is met
by different unary randomized search heuristics, such as the (1 + 1) EA or the Randomized Local Search algorithm. Recall
that, as pointed out above, the unrestricted black-box complexity of any single such function is 1. For results on higher arity
models refer to [8,15].

Rather than bounding the expected run time of an algorithm, it is sometimes easier to show that it solves the given
problem with good probability in some fixed number of iterations. If we are only interested in asymptotic black-box com-
plexities, the following remark allows us to use such statements for computing upper bounds.

Remark 2. Suppose for a problem P there exists a black-box algorithm A that, with constant success probability, solves P
in s iterations (that is, queries an optimal solution within s queries). Then the black-box complexity of P is at most O (s).

Proof. Let c be an upper bound for the failure probability of algorithm A after s iterations. We let A′ be the algorithm
which performs independent runs of s iterations of A indefinitely one after the other. If Xi denotes the indicator variable
for the event that the ith independent run of A is successful (i.e., computes an optimum), then Pr[Xi = 1] ≥ 1 − c. Clearly,
Y := min{k ∈N | Xk = 1} is a geometric random variable with success probability at least 1 − c. Hence, E[Y] = (1 − c)−1, i.e.,
the expected number of independent runs of A until success is at most (1 − c)−1. Thus, we can optimize P in an expected
number of at most (1 − c)−1s iterations. Since c is constant, the claim follows. �

B. Doerr et al. / Artificial Intelligence 216 (2014) 275–286 279
2.3. Discussion of the black-box complexity concept

In this section, we briefly discuss the differences between classical complexity models and the black-box models intro-
duced above. The reader only interested in the result on Partition can skip this section without loss.

What distinguishes black-box complexity from classical complexity is the fact that in the black-box setting

• the algorithms have no access to the problem instance other than by sampling search points and learning their function
values, and that

• the cost measure is the number of such function evaluations that are needed to optimize a problem.

Recall that in classical complexity settings the problem instances are typically given as a white box, and instead of function
evaluations, one counts the number of arithmetic operations that are needed to compute an optimal solution (or the answer
to questions like satisfiability of the instance etc.). The motivation for the usage of the black-box model in evolutionary com-
putation is that they are typically applied to problems with very large or very complex descriptions. Instead of analyzing the
particular problem instance at hand, the idea is to learn about it by evaluating solution candidates. Since such evaluations
are typically the most costly part of an evolutionary algorithm, the cost of an algorithm is measured by the number of such
evaluations.

The black-box setting is a standard notion much beyond the evolutionary computation community. Black-box complex-
ity is also referred to as query complexity in classic computer science [2,19,23]. Very similar notions are used in learning
theory [3,5] and numerical integration theory (information-based complexity, see [25]).

In this short discussion, we would like to emphasize the fact that a polynomial black-box complexity of a problem does
not contradict standard complexity assumptions like P �= NP . To illustrate this, let us consider the already mentioned
MaxClique problem.

The optimization variant of the well-known NP-complete decision problem Clique is the following task: given a graph
G = (V , E), find a subset W ⊆ V of maximal size such that W forms a clique, i.e., such that all nodes in W are mutually
connected. We can model the MaxClique problem in the black-box setting by assigning to each subset W of V the objective
value f (W) := |W | if W is a clique, and f (W) := 0 otherwise. Optimizing MaxClique then corresponds in a natural way to
maximizing f . To model f as a pseudo-Boolean function, enumerate the vertices in V and identify a bit string x ∈ {0, 1}n

with the set of vertices for which the corresponding entry in x is one.
As has already been pointed out in [10], the unrestricted black-box complexity of MaxClique is at most

(n
2

) + 1. An
algorithm achieving this complexity does the following. In the first

(n
2

)
iterations, it queries the function values of all

possible subsets of size two (i.e., all bit strings with exactly two ones). This corresponds to asking whether or not an edge
between the two queried search points exists. Once this has been done for all

(n
2

)
possible edges, the algorithm has full

knowledge about G . It can thus compute offline, i.e., without any further function evaluations, a clique of maximal size. This
can be done, for example, by a brute force algorithm. The algorithm then terminates by asking in the

((n
2

)+1
)
st iteration the

search point that corresponds to the computed optimal solution. Clearly, it is not known how or if the offline computation
can be done in polynomial (CPU) time.

3. Partition

The fact that optimization versions of NP-hard problems (like the MaxClique problem mentioned in Section 2.3) can
be solved efficiently in the unrestricted black-box model is one of the main criticism received by it.

In this section we prove that in the unbiased black-box model, too, there are NP-hard problems whose optimization
version have a small polynomial black-box complexity. We consider the Partition problem, which is a well known, and
probably one of the most famous, NP-hard problem, cf. [22,18]. Given a multiset I of positive integers (“weights”), the
decision version of Partition asks whether or not it is possible to split the set into two disjoint subsets I = I0∪̇I1 such
that

∑
w∈I0

w = ∑
w∈I1

w . The corresponding optimization variant of Partition asks to find a partition (I0, I1) of I such
that the difference | ∑w∈I0

w − ∑
w∈I1

w| is minimized. To be more precise, we consider here an NP-hard subclass of
Partition, which will be described below.

Partition is also one of the few NP-hard problems for which theoretical investigations of randomized search heuristics
exist. In fact, it is known that Partition permits heuristics which solve many instances of the problem in a polynomial
number of function evaluations. For example, Frenk and Kan [17] showed that the greedy approach converges to optimality
almost surely for reasonably chosen random instances. Furthermore, greedy approaches are known to deliver in polynomial
number of queries solutions of good approximation quality. Witt [28] has shown that both the Randomized Local Search
algorithm and the (1 + 1) EA need at most O (n2) iterations until they reach for the first time a solution of approximation
quality 4/3. More results for the performance of greedy heuristics on Partition can be found in [6] and [28].

Despite these positive results on the performance of greedy strategies on random instances and their approximation
quality, Partition is an NP-hard problem, and it is thus widely believed that there is no algorithm solving it in polynomial
time. As we shall demonstrate below, we show that the difficulty of Partition is not sufficiently captured by the unary
unbiased black-box model. In fact, it is possible to solve Partition using only a small polynomial number of queries to the
problem instance.

280 B. Doerr et al. / Artificial Intelligence 216 (2014) 275–286
As mentioned, we consider an NP-hard subclass of Partition. In fact, it is not difficult to see that Partition remains
NP-hard if we restrict the problem to instances with pairwise different weights. The proof is routine, and we state it here
only for the sake of completeness.

Lemma 3 (Folklore). Partition remains NP-hard when restricted to instances I with v �= w for all v, w ∈ I .

Proof. Let I be an instance of the general problem class Partition (i.e., I may contain multiple instances of the same
integer). We create a new instance I ′ from I by the procedure described below. I ′ will have pairwise different weights
only and we will prove that an optimal partition for I ′ immediately yields an optimal partition for the original input I .

To construct I ′ , we first (arbitrarily) enumerate the values in I by ϕ , i.e., ϕ : I → [n] is a bijection. We then set c := n3

and we let I ′ := {cw + ϕ(w) | w ∈ I} ∪ [n]. By construction, all integers in I ′ do have different weights.
Let (I ′

0, I ′
1) be an optimal partition for I ′ . We set I0 := {(w − ϕ(w))/c | w ∈ I ′

0\[n]} and I1 := {(w − ϕ(w))/c | w ∈
I ′

1\[n]}. We use contraposition to show that (I0, I1) is an optimal solution for I . More precisely, we show that any partition
of I which is better than (I0, I1) gives rise to a partition of I ′ which is better than (I ′

0, I ′
1), contradicting the choice of

(I ′
0, I ′

1). Thus, if (I ′
0, I ′

1) is optimal, so is (I0, I1).
To prove the claim, assume that there exists a solution (O 0, O 1) for I with | ∑w∈O 0

w − ∑
w∈O 1

w| < | ∑w∈I0
w −∑

w∈I1
w|. We set O ′

0 := {c · w + ϕ(w) | w ∈ O 0} ∪ {ϕ(w) | w ∈ O 1} and O ′
1 := {c · w + ϕ(w) | w ∈ O 1} ∪ {ϕ(w) | w ∈ O 0}.

Note that c(
∑

w∈O 0
w − ∑

w∈O 1
w) = ∑

w∈O ′
0

w − ∑
w∈O ′

1
w .

We assume without loss of generality that
∑

w∈I0
w −∑

w∈I1
w > 0. Then

∑
w∈I ′

0
w −∑

w∈I ′
1

w > 0 since c(
∑

w∈I0
w −∑

w∈I1
w) > 0,

∑
w∈I0

ϕ(w) − ∑
w∈I1

ϕ(w) + ∑
w∈I ′

0∩[n] w − ∑
w∈I ′

1∩[n] w >
∑

w∈I0
ϕ(w) − ∑

w∈I1
ϕ(w) − ∑

i∈[n] i >
−(n2 + n) > −c (by definition of c and assuming n ≥ 2) and, thus,

∑
w∈I′

0

w −
∑

w∈I′
1

w = c

(∑
w∈I0

w −
∑

w∈I1

w

)
+

∑
w∈I0

ϕ(w) −
∑

w∈I1

ϕ(w) +
∑

w∈I′
0∩[n]

w −
∑

w∈I′
1∩[n]

w

> c − c = 0.

Similarly we obtain∣∣∣∣
∑

w∈I′
0

w −
∑

w∈I′
1

w

∣∣∣∣ > c

(∑
w∈I0

w −
∑

w∈I1

w

)
− c = c

(∑
w∈I0

w −
∑

w∈I1

w − 1

)

≥ c

∣∣∣∣
∑

w∈O 0

w −
∑

w∈O 1

w

∣∣∣∣ =
∣∣∣∣

∑
w∈O ′

0

w −
∑

w∈O ′
1

w

∣∣∣∣,

contradicting the optimality of (I ′
0, I ′

1) for I ′ (which implies | ∑w∈I ′
0

w − ∑
w∈I ′

1
w| ≤ | ∑w∈O ′

0
w − ∑

w∈O ′
1

w|). �
In the following, let Partition �= be the subclass of Partition instances with pairwise different weights.
There is no one best way of how to consider Partition�= as an optimization problem. For two different models of

Partition�= , different with respect to the objective function, we show (Theorems 4 and 6) that the unary unbiased black-box
complexity is O (n log n). That is, we give a unary unbiased black-box algorithm which solves any instance of Partition �= in
O (n log n) queries.

In Section 3.1 we consider a signed objective function where we learn from the function values which of the sums ∑
w∈I0

w and
∑

w∈I1
w is the larger one.

In Section 3.2 we then consider an unsigned objective function. This gives us, a priori, less information than the signed
case. However, we are still able to prove the same asymptotic bound. This second objective function is probably the more
natural one but note that the key arguments for our upper bound are essentially the same.

3.1. The signed objective function

As mentioned, we first consider a signed objective function for Partition�= . To this end, we define the sets FI :=
{(I0, I1) ∈ 2I × 2I | I0∪̇I1 = I} of feasible solutions for instance I . The signed objective function to measures the quality of
the queried solutions is defined as

f ∗
I : F → Z, (I0,I1) �→

∑
w∈I0

w −
∑

w∈I1

w.

Note that we aim at minimizing the absolute value | f ∗
I |.

Next we describe how we model Partition as a pseudo-Boolean problem. We fix as enumeration σ : I → [n] the ordering
of the elements in I , i.e., σ(v) < σ(w) for all v, w ∈ I with v < w . (All arguments that follow below could be easily

B. Doerr et al. / Artificial Intelligence 216 (2014) 275–286 281
Algorithm 3: Unary unbiased black-box algorithm for Partition �= with the signed objective function

1 Initialization:
2 Sample x(0) ← uniform(). Query f (x(0));
3 Initialize t ← 0 and , I ′

0, I ′
1, W0 = ∅;

4 Learning the integers:

5 while |Wt | < n do
6 t ← t + 1;
7 Sample x(t) ← RLS(x(0)). Query f (x(t));
8 Update Wt ← Wt−1 ∪ {| f (x(0)) − f (x(t))|/2};
9 if f (x(0)) > f (x(t)) then

10 I ′
0 ← I ′

0 ∪ {| f (x(0)) − f (x(t))|/2};

11 else I ′
1 ← I ′

1 ∪ {| f (x(0)) − f (x(t))|/2};
12 ;

13 Optimization:

14 Offline compute an optimal solution (O0, O1) and set
M ← {w ∈ O0 | w /∈ I ′

0} ∪ {w ∈O1 | w /∈ I ′
1}, the set of integers that need to be moved;

15 Set z ← x(0);
16 while |M| > 0 do
17 Sample y ← RLS(z). Query f (y);
18 if w := | f (y) − f (z)|/2 ∈ M then
19 ;
20 z ← y and M ← M\{w};

carried out using an arbitrary enumeration, but for the sake of readability we restrict ourselves to considering as σ the
natural ordering.) For any x ∈ {0, 1}n let I0(x) := {w ∈ I | xσ(w) = 0} and, accordingly, I1(x) := {w ∈ I | xσ(w) = 1}. Note that
{0, 1}n → FI , x �→ (I0(x), I1(x)) is a bijection between {0, 1}n and the original search space FI . It is therefore natural to
consider as objective function the function fI which is defined by

fI : {0,1}n → Z, x �→
∑

i∈[n],xi=0

σ−1(i) −
∑

i∈[n],xi=1

σ−1(i).

Theorem 4. The unary unbiased black-box complexity of Partition�= modeled via the signed objective functions fI is O (n log n),
where n := |I| denotes the size of the input set I .

Interestingly, the algorithm certifying Theorem 4 requires only two different variation operators, namely uniform(),
which samples a bit string x ∈ {0, 1}n uniformly at random and RLS(·) (randomized local search) which, given some x ∈
{0, 1}n , creates from x a new bit string y ∈ {0, 1}n by flipping exactly one bit in x, the bit position being chosen uniformly
at random. The following is straightforward to verify from the definition of unbiased variation operators.

Remark 5. uniform() is a (0-ary) unbiased variation operator. RLS(·) is a unary unbiased variation operator.

Proof of Theorem 4. We show that Algorithm 3 is an unbiased algorithm that, for any instance I of Partition�= , needs an
expected O (|I| log |I|) function evaluations to compute a partition (O0, O1) ∈ 2I ×2I such that | ∑w∈O0

w −∑
w∈O1

w| is
minimized. Since it only employs the two variation operators uniform() and RLS(·), it is an unbiased black-box algorithm
of arity one.

Fix a problem instance I of Partition�= , let n := |I| denote its size, and abbreviate f := fI .
The algorithm works as follows. It starts with a uniformly sampled solution x(0) . In a first phase, the algorithm learns all

n different weights of the problem instance. To this end, it samples from x(0) new search points x(t) which differ from x(0)

in exactly one position. The steps in lines 9 to 11 are needed to remember which weights are in the same equivalence class
of the partition induced by x(0) . Note that they do not require any additional queries.

After an expected number of (1 + o(1))n ln n iterations, we have learned the weights of the problem instance as follows.
First note that in the tth iteration of the algorithm, the weight of the flipped bit is | f (x(0)) − f (x(t))|/2. Therefore, let
Wt := {| f (x(0)) − f (x(s))|/2 | s ∈ [t]}. By a coupon collector argument (cf., e.g., Theorem 1.21 in [4]) the expected number
of queries until we have flipped each bit position of x(0) at least once is (1 + o(1))n ln n. Thus, we can expect that we
need t∗ ∈ (1 + o(1))n ln n queries until Wt∗ = I . That is, we can assume to have learned all n different weights in I in
(1 + o(1))n ln n queries.

Knowing the problem instance I we can compute an optimal partition (O0, O1) for I offline, i.e., we do not need to
query any further search points for this step. The computation can be done, e.g., by applying the brute force algorithm
which compares all 2n possible solutions. All we need to do now is to create a representation of (O0, O1) via unbiased
variation operators of arity at most 1.

282 B. Doerr et al. / Artificial Intelligence 216 (2014) 275–286
To this end let us define I ′
0(x(0)) := {| f (x(0)) − f (x(s))|/2 | s ∈ [t∗], f (x(0)) > f (x(s))} and, accordingly, I ′

1(x(0)) :=
{| f (x(0)) − f (x(s))|/2 | s ∈ [t∗], f (x(0)) < f (x(s))}. It is easily verified that x(0) is a binary representation of the partition
(I ′

0(x(0)), I ′
1(x(0))).

To create (O0, O1) we set M := {w ∈O0 | w /∈ I ′
0(x(0))} ∪ {w ∈O1 | w /∈ I ′

1(x(0))}, the set of all weights that, in order to
generate the optimal solution (O0, O1), need to be moved from one of the sets I ′

0(x(0)), I ′
1(x(0)) to the other one.

In the optimization phase we do the following. In each iteration we create a new solution y from the current solution z
by flipping exactly one bit of z. If w := | f (y) − f (z)|/2 ∈M, we update z ← y and M ←M\{w}.

By the same coupon collector argument as above we can expect that after (1 + o(1))n ln n such one bit flips we have
flipped each bit position i ∈ [n] at least once. That is, after an expected number of (1 + o(1))n ln n queries, we have M = ∅
and we have thus created (O0, O1).

This shows how to optimize an arbitrary instance I of the Partition �= problem modeled via the signed objective function
in an expected number of 2(1 + o(1))n ln n = O (n log n) queries by an unbiased algorithm of arity one. �
3.2. The unsigned objective function

One might dislike the fact that in the proof of Theorem 4 we neither minimize nor maximize fI itself but only its abso-
lute value | fI |. However, we can achieve the same asymptotic optimization complexity as in the statement of Theorem 4 if
we only allow the latter, unsigned objective function. Although the algorithm itself does not become more difficult to define,
the proof of correctness is more technical. The difficulty for the analysis stems from the fact that, given two bit strings x and
y which differ in only one bit position, we cannot unambiguously learn from the corresponding function values | fI(x)| and
| fI(y)| the weight of the flipped bit, cf. Remark 7. This results in a slightly more complex procedure to learn the different
weights.

Theorem 6. The unary unbiased black-box complexity Partition�= with respect to | fI | is O (n logn), where n := |I| denotes the size
of the input set I .

For a clearer presentation of the proof, we defer some technical elements used in the proof of Theorem 6 to lemmas
that will be presented after the proof of the main theorem.

Proof of Theorem 6. By Remark 2 it suffices to show that there exists an algorithm that, for an arbitrary instance I of
Partition�= , has at least constant success probability to compute an optimal search point within O (|I| log |I|) function
evaluations. We present a unary unbiased algorithm, Algorithm 4 that does so even with high probability (w.h.p.), that is,
with probability 1 − o(1).

For the remainder of the proof, we fix again an instance I of Partition �= , let n := |I|, and we abbreviate f := | fI |,
where fI is defined as in Section 3.1.

For readability purposes we introduce the following notation, which—this is important to note—are a priori not
identifiable for the algorithm. Using the notation from Section 3.1, each x ∈ {0, 1}n clearly corresponds to a partition
(I0(x), I1(x)) ∈ FI . We set S0(x) := ∑

w∈I0(x) w and S1(x) := ∑
w∈I1(x) w , the corresponding sums of the weights in the

equivalence classes of that partition. Let Imax(x) := I0(x) if S0(x) ≥ S1(x) and let Imax(x) = I1(x) otherwise. We call Imax(x)
the “heavier” bin and we call the other one the “lighter” bin. Lastly, let wmax = maxI be the largest weight appearing in
instance I .

The general approach of Algorithm 4 is the following. First we produce a string which represents a solution where all
weights are in the same class of the partition, i.e., at the end of this phase we have Imax(x) = I . With high probability this
can be achieved with 4n ln n queries. Next, we perform 2n ln n RLS steps (i.e., random one-bit flips). Through this we learn
all n different weights in I w.h.p. After that, we compute an optimal solution offline. A representation of this solution can
be generated in another 3n ln n iterations w.h.p.

If in any iteration of Algorithm 4 we have constructed a solution s with f (s) = 0 we are obviously done and do not need
to run the algorithm any further. Therefore, we assume in the following that for all search points s but possibly the last one
we have f (s) �= 0.

Like the algorithm that we described in the previous subsection, Algorithm 4 employs only two different variation oper-
ators, uniform() and RLS(·), which (cf. Remark 5) are unbiased and of arity 0 and 1, respectively. It remains to show that
w.h.p. Algorithm 4 queries an optimal solution after O (n log n) queries. We show correctness for the three phases. The high
probability statement follows from a simple union bound over the failure probabilities.

Phase 1: Shifting all weights to the same bin. We query in the first step of this first phase 2n ln n random bit strings x(1,ti)

that differ from the initial uniform solution x(1,0) in exactly one bit. By the coupon collector argument, with probability at
least 1 − n−1, there exists for each i ∈ [n] at least one ti ≤ 2n ln n such that x(1,0) and x(1,ti) differ exactly in the ith bit.
Lemma 8, which will be presented below, shows that for each string x(1,�) ∈ {x(1,t) | t ∈ [0..2n ln n]} of maximal function
value f (x(1,�)) = max{ f (x(1,t)) | t ∈ [0..2n ln n]} it holds that wmax ∈ Imax(x(1,�)). In lines 6 and 7 of Algorithm 4 we fix one
such � and set x := x(1,�) .

B. Doerr et al. / Artificial Intelligence 216 (2014) 275–286 283
Algorithm 4: Unary unbiased black-box algorithm for Partition �= with the unsigned objective function.

1 Initialization:
2 Sample x(1,0) ← uniform(). Query f (x(1,0));
3 Shifting all weights to one bin:

4 for t = 1 to 2n lnn do
5 Sample x(1,t) ← RLS(x(1,0)) and query f (x(1,t));

6 Let � ∈ arg max0≤t≤2n ln n f (x(1,t));
7 x ← x(1,�);
8 for t = 2n lnn + 1 to 4n lnn do
9 Sample y ← RLS(x) and query f (y);

10 if f (y) > f (x) then x ← y;
11 ;

12 Learning the instanceI:

13 for t = 1 to 2n lnn do
14 Sample x(2,t) ← RLS(x) and query f (x(2,t));

15 Optimization:

16 Compute an optimal solution (O0, O1) such that wmax ∈ O1 offline and set M ←O1.
17 for t = 1 to 2n lnn do
18 Sample x(3,t) ← RLS(x) and query f (x(3,t));
19 if f (x) > 2wmax and f (x(3,t)) < f (x) then
20 compute w := (f (x) − f (x(3,t)))/2;
21 if w �= wmax and w ∈M then
22 x ← x(3,t); M ← M\{w};

23 for t = 1 to n lnn do
24 Sample x(4,t) ← RLS(x) and query f (x(4,t));

Lemma 8 and Lemma 9 verify the following. If y is created from x by flipping the ith bit of x, then f (y) > f (x) if and
only if the ith heaviest weight is not in the heavier bin, i.e., σ(i) /∈ Imax(x).

In the second step of the first phase we aim at creating a string x′ with Imax(x′) = I . We do that by querying y = RLS(x)
and updating x ← y if and only if f (y) > f (x). From the statement of the previous paragraph this is the case only if the bit
flip has moved the corresponding weight from the lighter to the heavier bin. Again from the coupon collector argument it
follows that after an additional 2n ln n iterations we have Imax(x) = I , with probability at least 1 − n−1.

Hence, after a total number of 4n ln n + 1 iterations, we have created a bit string x with Imax(x) = I , with probability at
least 1 − 2n−1.

Phase 2: Learning instance I . As in the previous subsection we learn the different weights by performing random
one-bit flips. Since the objective function reveals only unsigned function values, we need to argue how the weights of
the elements that have been shifted can be derived from the function values. We distinguish two cases. Either we have
wmax ≥ ∑

w∈I w/2, in which case, by the coupon collector argument, one of the sampled strings x(2,t) , t ∈ [2n ln n] is
optimal (i.e., {wmax} = Imax(x(2,t)) for some t ∈ [2n ln n]) with probability at least 1 − n−1. In this case we are immediately
done. Otherwise we have that for any t ≤ 2n ln n it holds that f (x(2,t)) < f (x) (since we are always shifting exactly one
weight from the bin containing all weights to the empty one) and that the corresponding weight which has been flipped
from one bin to the other is of weight (f (x) − f (x(2,t)))/2. In this case we have, again by the coupon collector argument,
that I ′ := {(f (x) − f (x(2,t)))/2 | t ∈ [2n ln n]} equals I , with probability at least 1 − n−1.

Phase 3: Creating the optimal solution. Knowing instance I , the algorithm computes an optimal solution (O0, O1) for
I offline, e.g., by the brute force algorithm. Note that for each y ∈ {0, 1}n and its bitwise complement ȳ it holds that
f (ȳ) = f (y). Thus, we can assume without loss of generality that (O0, O1) is chosen such that wmax ∈O1.

For creating the bit string which corresponds to (O0, O1), we initialize M :=O1. Throughout this phase M denotes the
set of all weights that, in order to create the string corresponding to (O0, O1), still need to be “moved” from one bin to the
other. The key idea here is that we required wmax ∈M and that we do not accept the weight wmax to be flipped too early.
This is important for the following reason.

Recall from Remark 7 that if y is created from x by flipping the ith bit in x and if f (y) < f (x) then the corresponding
weight σ−1(i) ∈ {((f (x) − f (y))/2), (f (x) + f (y))/2}. But, as long as f (x) > 2wmax we have (f (x) + f (y))/2 > wmax (unless
f (y) = 0 in which case we are done). That is, as long as f (x) > 2wmax it holds in the situation above that σ−1(i) =
(f (x) − f (y))/2.

It is easy to verify that as soon as f (x) ≤ 2wmax we have M = {wmax}. It again is the coupon collector argument which
ensures with probability at least 1 − n−1 that after 2n ln n iterations of the third phase we are in this situation. Thus, all
we need to do now is to put wmax from bin Imax(x) to the other one, i.e., we need to flip σ(wmax). As for each iteration
the probability to flip this position is 1/n, we can bound the probability that we have flipped it after an additional n ln n
iterations from below by 1 − (1 − 1/n)n ln n ≥ 1 − 1/n. Here we have used that for all r ∈ R we have 1 + r ≤ exp(r). �

284 B. Doerr et al. / Artificial Intelligence 216 (2014) 275–286
Let us now prove the statements omitted in the proof of Theorem 6. We use the same notation as above.

Remark 7. Let I be an instance of Partition �= equipped with the ordering σI and objective function f = | fI |. If y has been
created from x by flipping the ith bit of x and 0 �= f (y) �= f (x) �= 0, we cannot uniquely identify the corresponding weight
wi = σ−1(i). More precisely, if we do not have further knowledge on the size of the weights, there are the two possibilities

wi ∈
{ { 1

2 (f (y) − f (x)), 1
2 (f (y) + f (x))}, if f (y) > f (x),

{ 1
2 (f (x) − f (y)), 1

2 (f (y) + f (x))}, if f (y) < f (x).

Proof. The first statement clearly follows from the second. We give an example nevertheless, to illustrate the situation. Let
I := {1, 2, 3, 4, 6}, let σI be the ordering of I , and let x := (1, 0, 0, 0, 1), i.e., weights 1 and 6 are in one bin and the other
weights are in the second bin. Then f (x) = |7 − 9| = 2. Now both bit strings y := (0, 0, 0, 0, 1) and z := (1, 0, 1, 0, 1) have
Hamming distance 1 from x and both have function value f (y) = |6 − 10| = 4 = f (z). Hence, knowing x, knowing that
|x − z|1 = 1, and knowing the function values f (x) and f (z) does not suffice to compute the bit in which x and z differ.

To prove the second statement we assume first that f (y) > f (x). If weight wi /∈ Imax(x) then clearly we have f (y) =
f (x) +2wi . We therefore assume that wi ∈ Imax(x). Then wi ∈ Imax(y) for otherwise f (y) = f (x) −2wi < f (x) contradicting
our assumption f (y) > f (x). Hence, f (y) = 2wi − f (x). Note that in this case we necessarily have wi > f (x).

Assume now that f (y) < f (x). In this case we must have wi ∈ Imax(x) for otherwise f (y) = f (x) + 2wi > f (x). If
wi /∈ Imax(y) then clearly we have f (y) = f (x) − 2wi . On the other hand, wi ∈ Imax(y) implies wi > f (x)/2 and f (y) =
2wi − f (x).

This enumerates all possible combinations and the claim follows. �
Lemma 8. Let I be an instance of Partition�= , let σ = σI be its ordering, and let f = | fI |. Furthermore, let x(0) ∈ {0, 1}n and for
each i ∈ [n] let x(i) be created from x(0) by flipping the ith bit.

If we choose � ∈ [0..n] such that f (x(�)) = max{ f (x(t)) | t ∈ [0..n]}, then wmax ∈ Imax(x(�)).

Proof. We assume that wmax /∈ Imax(x(�)) to show the contrapositive. If � = 0, we can flip the bit corresponding to wmax
(by our assumption on σ this is the nth bit) in x(0) to get f (x(n)) = f (x(0)) + 2wmax > f (x(0)). Similarly, if � = n then
f (x(0)) = f (x(n)) + 2wmax. All other values of � imply wmax /∈ Imax(x(0)) (by the assumption that wmax /∈ Imax(x(�))) and
thus, f (x(n)) − f (x(0)) = 2wmax. But since the weights are pairwise different, σ−1(�) < wmax and thus f (x(�)) − f (x(0)) <
2wmax. �

The previous lemma has shown that the largest weight wmax is in the larger of the two bins of x(�) . The following
lemma shows that if we have iteratively increased the value of x(�) through 1-bit flips, we only have shifted weights from
the smaller bin to the larger one.

Lemma 9. Let I be an instance of Partition�= , let σ := σI be the ordering of I , and f := | fI |.
(i) If x ∈ {0, 1}n with f (x) ≥ wmax , then for all i ∈ [n] we have f (x ⊕ ei) > f (x) if and only if wi := σ−1(i) /∈ Imax(x�).
(ii) For x(0), . . . , x(n) and � as in Lemma 8 we have f (x(�)) ≥ wmax .

Proof. (i). Let x ∈ {0, 1}n with f (x) ≥ wmax and let i ∈ [n]. Clearly, if wi /∈ Imax(x) then f (x ⊕ei) = f (x) +2wi > f (x). On the
other hand, if wi ∈ Imax(x) then either f (x ⊕ei) = f (x) −2wi < f (x) or f (x ⊕ei) = 2wi − f (x) ≤ 2wi − wmax ≤ wmax ≤ f (x).

(ii). If wmax /∈ Imax(x(0)), then � = n since for all i ∈ [n] we have

f
(
x(n)

) = f
(
x(0)

) + 2wmax ≥ f
(
x(0)

) + 2wi ≥ f
(
x(i)).

The above calculation immediately yields f (x(�)) > wmax.
Therefore, we may thus assume that wmax ∈ Imax(x(0)). To show the contrapositive, let us also assume that

f (x(�)) < wmax. Then f (x(0)) ≤ f (x(�)) < wmax and thus f (x(n)) = 2wmax − f (x(0)) > wmax > f (x(�)), contradicting the choice
of �. Thus, f (x(�)) ≥ wmax. �

It is not difficult to see that already with 3-ary variation operations it is possible to access every bit position in a linear
number of iterations. Hence, a small modification of Algorithm 3 solves Partition �= and even Partition in a linear number
of steps, using only unbiased variation operators of arity at most 3. This implies, in particular, that the unrestricted black-box
complexity of Partition is linear in |I|. The latter can be seen alternatively by the fact that we can learn the weights by
querying first the all-zeros bit string and then the n different unit vectors (0, . . . , 0, 1, 0, . . . , 0).

Remark 10. The 3-ary unbiased black-box complexity of Partition is at most linear in the size |I| of the input set I .

B. Doerr et al. / Artificial Intelligence 216 (2014) 275–286 285
4. Conclusions

We have shown that the unbiased black-box model allows for algorithms which solve the optimization version of the
NP-hard partition problem in a polynomial number of queries, even if the arity of the algorithms is restricted to one. Our
result indicates that the unbiased black-box model, while clearly closer to the truth than the unrestricted one, still does not
provide a complete picture on how difficult it is to solve a given problem via randomized search heuristics. It seems that
further restrictions to the power of the algorithms are needed to obtain meaningful results. A recent step into this direction
is the work by the first two authors [14], who, following a suggestion by Nikolaus Hansen, investigate a black-box model
where the algorithm can only compare the quality of solutions, but has no access to the absolute function values. We do
not know yet the black-box complexity of, e.g., Partition in this new model.

We should note, though, that observing smaller-than-expected black-box complexities does not always reveal a weakness
of the black-box complexity model regarded. In [7], the authors exhibit the first O (n log n) crossover-based (unbiased) evo-
lutionary algorithm for the OneMax function class, which shows that the O (n log n) bound for the 2-ary unbiased black-box
complexity of OneMax found in [8] is not as unnatural as it might have seemed at first.

Acknowledgements

This work was done while Benjamin Doerr and Timo Kötzing were with the Max Planck Institute for Informatics (MPII),
Saarbrücken, Germany and Carola Doerr was with the MPII and the LIAFA, Université Paris Diderot (Paris 7), France.

Carola Doerr gratefully acknowledges support from a Google Europe Fellowship in Randomized Algorithms, from the
Alexander von Humboldt Foundation, and the Agence Nationale de la Recherche (project ANR-09-JCJC-0067-01).

Timo Kötzing was supported by the Deutsche Forschungsgemeinschaft (DFG) under grant NE 1182/5-1.
Parts of this work have been done during the Dagstuhl seminar 10361 “Theory of Evolutionary Algorithms”.

References

[1] Peyman Afshani, Manindra Agrawal, Benjamin Doerr, Carola Doerr, Kasper Green Larsen, Kurt Mehlhorn, The query complexity of finding a hidden
permutation, in: Space-Efficient Data Structures, Streams, and Algorithms—Papers in Honor of J. Ian Munro on the Occasion of His 66th Birthday, in:
Lecture Notes in Computer Science, vol. 8066, Springer, 2013, pp. 1–11.

[2] David Aldous, Minimization algorithms and random walk on the d-cube, Ann. Probab. 11 (1983) 403–413.
[3] Dana Angluin, Queries and concept learning, Mach. Learn. 2 (1988) 319–342.
[4] Anne Auger, Benjamin Doerr, Theory of Randomized Search Heuristics, World Scientific, 2011.
[5] Nader H. Bshouty, Richard Cleve, Ricard Gavaldà, Sampath Kannan, Christino Tamon, Oracles and queries that are sufficient for exact learning, J. Comput.

Syst. Sci. 52 (1996) 421–433.
[6] Edward G. Coffman, Ward Whitt, Recent asymptotic results in the probabilistic analysis of schedule makespans, in: Philippe Chrétienne, Edward G.

Coffman, Jan Karel Lenstra, Zhen Liu (Eds.), Scheduling Theory and Its Applications, Wiley, 1995, pp. 15–31.
[7] Benjamin Doerr, Carola Doerr, Franziska Ebel, Lessons from the black-box: fast crossover-based genetic algorithms, in: Proc. of the Annual Genetic and

Evolutionary Computation Conference, GECCO’13, ACM, 2013, pp. 781–788.
[8] Benjamin Doerr, Daniel Johannsen, Timo Kötzing, Per Kristian Lehre, Markus Wagner, Carola Winzen, Faster black-box algorithms through higher arity

operators, in: Proc. of the 11th ACM Workshop on Foundations of Genetic Algorithms, FOGA’11, ACM, 2011, pp. 163–172.
[9] Stefan Droste, Thomas Jansen, Karsten Tinnefeld, Ingo Wegener, A new framework for the valuation of algorithms for black-box optimization, in: Proc.

of the 7th Workshop on Foundations of Genetic Algorithms, FOGA’03, Morgan Kaufmann, 2003, pp. 253–270.
[10] Stefan Droste, Thomas Jansen, Ingo Wegener, Upper and lower bounds for randomized search heuristics in black-box optimization, Theory Comput.

Syst. 39 (2006) 525–544.
[11] Benjamin Doerr, Timo Kötzing, Johannes Lengler, Carola Winzen, Black-box complexities of combinatorial problems, Theor. Comput. Sci. 471 (2013)

84–106.
[12] Benjamin Doerr, Timo Kötzing, Carola Winzen, Too fast unbiased black-box algorithms, in: Proc. of the 13th Annual Genetic and Evolutionary Compu-

tation Conference, GECCO’11, ACM, 2011, pp. 2043–2050.
[13] Benjamin Doerr, Carola Winzen, Black-box complexity: breaking the O (n logn) barrier of LeadingOnes, in: Artificial Evolution (EA’11), Revised Selected

Papers, in: Lecture Notes in Computer Science, vol. 7401, Springer, 2012, pp. 205–216.
[14] Benjamin Doerr, Carola Winzen, Ranking-based black-box complexity, Algorithmica 68 (2014) 571–609.
[15] Benjamin Doerr, Carola Winzen, Reducing the arity in unbiased black-box complexity, Theor. Comput. Sci. 545 (2014) 108–121, http://dx.doi.org/

10.1016/j.tcs.2013.05.004, forthcoming.
[16] Paul Erdős, Alfréd Rényi, On two problems of information theory, Magy. Tud. Akad. Mat. Kut. Intéz. Közl. 8 (1963) 229–243.
[17] Johannes B.G. Frenk, Alexander H.G. Rinnooy Kan, The rate of convergence to optimality of the LPT rule, Discrete Appl. Math. 14 (1986) 187–197.
[18] Michael R. Garey, David S. Johnson, Computers and Intractability, A Guide to the Theory of NP-Completeness, W. H. Freeman & Co., 1990.
[19] Dirk Hausmann, Bernhard Korte, Lower bounds on the worst-case complexity of some oracle algorithms, Discrete Math. 24 (1978) 261–276.
[20] Juraj Hromkovič, Algorithmics for Hard Problems: Introduction to Combinatorial Optimization, Randomization, Approximation, and Heuristics, Springer,

2001.
[21] Thomas Jansen, Analyzing Evolutionary Algorithms—The Computer Science Perspective, Springer, 2013.
[22] Richard M. Karp, Reducibility among combinatorial problems, in: Proc. of a Symposium on the Complexity of Computer Computations, Plenum Press,

1972, pp. 85–103.
[23] Donna Crystal Llewellyn, Craig Tovey, Michael Trick, Local optimization on graphs, Discrete Appl. Math. 23 (1989) 157–178.
[24] Per Kristian Lehre, Carsten Witt, Black-box search by unbiased variation, Algorithmica 64 (2012) 623–642.
[25] Erich Novak, Ian H. Sloan, Joseph F. Traub, Henryk Woźniakowski, Essays on the Complexity of Continuous Problems, European Mathematical Society

(EMS), Zürich, 2009.

http://refhub.elsevier.com/S0004-3702(14)00099-X/bib41667368616E6941444C4D573132s1
http://refhub.elsevier.com/S0004-3702(14)00099-X/bib41667368616E6941444C4D573132s1
http://refhub.elsevier.com/S0004-3702(14)00099-X/bib41667368616E6941444C4D573132s1
http://refhub.elsevier.com/S0004-3702(14)00099-X/bib416C646F75733833s1
http://refhub.elsevier.com/S0004-3702(14)00099-X/bib416E673A6A3A38383A71756572696573s1
http://refhub.elsevier.com/S0004-3702(14)00099-X/bib4175676572443131s1
http://refhub.elsevier.com/S0004-3702(14)00099-X/bib6273686F757479313939366F7261636C6573s1
http://refhub.elsevier.com/S0004-3702(14)00099-X/bib6273686F757479313939366F7261636C6573s1
http://refhub.elsevier.com/S0004-3702(14)00099-X/bib436F66666D616E573935s1
http://refhub.elsevier.com/S0004-3702(14)00099-X/bib436F66666D616E573935s1
http://refhub.elsevier.com/S0004-3702(14)00099-X/bib446F65727244453133s1
http://refhub.elsevier.com/S0004-3702(14)00099-X/bib446F65727244453133s1
http://refhub.elsevier.com/S0004-3702(14)00099-X/bib446F6572724A4B4C57573131s1
http://refhub.elsevier.com/S0004-3702(14)00099-X/bib446F6572724A4B4C57573131s1
http://refhub.elsevier.com/S0004-3702(14)00099-X/bib44726F7374654A57464F4741s1
http://refhub.elsevier.com/S0004-3702(14)00099-X/bib44726F7374654A57464F4741s1
http://refhub.elsevier.com/S0004-3702(14)00099-X/bib44726F7374654A573036s1
http://refhub.elsevier.com/S0004-3702(14)00099-X/bib44726F7374654A573036s1
http://refhub.elsevier.com/S0004-3702(14)00099-X/bib446F6572724B4C573133s1
http://refhub.elsevier.com/S0004-3702(14)00099-X/bib446F6572724B4C573133s1
http://refhub.elsevier.com/S0004-3702(14)00099-X/bib446F6572724B573131s1
http://refhub.elsevier.com/S0004-3702(14)00099-X/bib446F6572724B573131s1
http://refhub.elsevier.com/S0004-3702(14)00099-X/bib446F6572725731316561s1
http://refhub.elsevier.com/S0004-3702(14)00099-X/bib446F6572725731316561s1
http://refhub.elsevier.com/S0004-3702(14)00099-X/bib446F657272573134s1
http://dx.doi.org/10.1016/j.tcs.2013.05.004
http://refhub.elsevier.com/S0004-3702(14)00099-X/bib4572643633s1
http://refhub.elsevier.com/S0004-3702(14)00099-X/bib4672656E6B523836s1
http://refhub.elsevier.com/S0004-3702(14)00099-X/bib47617265794A3930s1
http://refhub.elsevier.com/S0004-3702(14)00099-X/bib486175736D616E6E31393738323631s1
http://refhub.elsevier.com/S0004-3702(14)00099-X/bib48726F6D6B6F7669634F3033s1
http://refhub.elsevier.com/S0004-3702(14)00099-X/bib48726F6D6B6F7669634F3033s1
http://refhub.elsevier.com/S0004-3702(14)00099-X/bib4A616E73656E3133s1
http://refhub.elsevier.com/S0004-3702(14)00099-X/bib4B6172703732s1
http://refhub.elsevier.com/S0004-3702(14)00099-X/bib4B6172703732s1
http://refhub.elsevier.com/S0004-3702(14)00099-X/bib4C6C6577656C6C796E3A313938393A4C4F473A36353037322E3635303736s1
http://refhub.elsevier.com/S0004-3702(14)00099-X/bib4C65687265573132s1
http://refhub.elsevier.com/S0004-3702(14)00099-X/bib4E6F76616B5354573039s1
http://refhub.elsevier.com/S0004-3702(14)00099-X/bib4E6F76616B5354573039s1
http://dx.doi.org/10.1016/j.tcs.2013.05.004

286 B. Doerr et al. / Artificial Intelligence 216 (2014) 275–286
[26] Frank Neumann, Carsten Witt, Bioinspired Computation in Combinatorial Optimization – Algorithms and Their Computational Complexity, Springer,
2010.

[27] Jonathan Rowe, Michael Vose, Unbiased black box search algorithms, in: Proc. of the 13th Annual Genetic and Evolutionary Computation Conference,
GECCO’11, ACM, 2011, pp. 2035–2042.

[28] Carsten Witt, Worst-case and average-case approximations by simple randomized search heuristics, in: Proc. of the 22nd Annual Symposium on
Theoretical Aspects of Computer Science, STACS’05, Springer, 2005, pp. 44–56.

http://refhub.elsevier.com/S0004-3702(14)00099-X/bib4E65756D616E6E573130s1
http://refhub.elsevier.com/S0004-3702(14)00099-X/bib4E65756D616E6E573130s1
http://refhub.elsevier.com/S0004-3702(14)00099-X/bib414242s1
http://refhub.elsevier.com/S0004-3702(14)00099-X/bib414242s1
http://refhub.elsevier.com/S0004-3702(14)00099-X/bib576974743035s1
http://refhub.elsevier.com/S0004-3702(14)00099-X/bib576974743035s1

	The unbiased black-box complexity of partition is polynomial
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Unrestricted and unbiased black-box model
	2.3 Discussion of the black-box complexity concept

	3 Partition
	3.1 The signed objective function
	3.2 The unsigned objective function

	4 Conclusions
	Acknowledgements
	References

