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Abstract Bioinspired algorithms, such as evolutionary algorithms and ant colony optimiza-
tion, are widely used for different combinatorial optimization problems. These algorithms
rely heavily on the use of randomness and are hard to understand from a theoretical point of
view. This paper contributes to the theoretical analysis of ant colony optimization and studies
this type of algorithm on one of the most prominent combinatorial optimization problems,
namely the traveling salesperson problem (TSP). We present a new construction graph and
show that it has a stronger local property than one commonly used for constructing solutions
of the TSP. The rigorous runtime analysis for two ant colony optimization algorithms, based
on these two construction procedures, shows that they lead to good approximation in ex-
pected polynomial time on random instances. Furthermore, we point out in which situations
our algorithms get trapped in local optima and show where the use of the right amount of
heuristic information is provably beneficial.

Keywords Ant colony optimization · Traveling salesperson problem · Run time analysis ·
Approximation

1 Introduction

Bioinspired algorithms, such as evolutionary algorithms (EAs) (Eiben and Smith 2007) and
ant colony optimization (ACO) (Dorigo and Stützle 2004), are robust problem solvers that
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have found a wide range of applications in various problem domains. There are many suc-
cessful applications of this type of algorithms, but the theoretical understanding lags far
behind their practical success. Therefore, it is highly desirable to increase the theoretical un-
derstanding of these algorithms in order to gain new insights into their working principles,
which may lead to the design of even more successful approaches.

With this paper, we contribute to the theoretical understanding of bioinspired comput-
ing by rigorous runtime analyses. There have been many successful investigations of the
runtime behavior of evolutionary algorithms, which have highly increased their theoretical
foundation (see Neumann and Witt 2010 for a wide range of results on classical combina-
torial optimization problems). Regarding ACO algorithms, the theoretical analysis of their
runtime behavior seems to be much more difficult and has been started in 2006. First rigor-
ous insights have been provided by runtime analysis on classical pseudo-Boolean functions
(Gutjahr 2007; Gutjahr and Sebastiani 2008; Neumann et al. 2008, 2009; Neumann and
Witt 2009). Furthermore, there are results on classical combinatorial optimization problems
such as the computation of minimum spanning trees (Neumann and Witt 2010) and short-
est paths (Horoba and Sudholt 2009). Moreover, initial results have been obtained for the
well-known traveling salesperson problem (TSP) (Zhou 2009). Regarding ACO algorithms,
the TSP is the first problem to which this kind of algorithm has been applied. This makes
it a natural choice for studying the behavior of ACO algorithms for the TSP from a the-
oretical point of view. We contribute to this line of research and increase the theoretical
understanding of ACO algorithms by increasing the knowledge on the runtime behavior of
ACO algorithms for the TSP problem.

The design of ACO algorithms is inspired by the ability of ants to find a shortest path
between their nest and a common source of food. It is well known that ants find such a path
very quickly by using indirect communication via pheromones. This ants behavior inspired
researchers to build an algorithmic framework, that uses artificial ants to solve optimization
problems. In an ACO algorithm, solutions for a given problem are constructed by artificial
ants that carry out random walks on a so-called construction graph. The random walk (and
the resulting solution) depends on pheromone values that are values on the edges of the con-
struction graph. The probability of traversing a certain edge depends on its pheromone value.
One widely used construction procedure for tackling the TSP has already been analyzed in
Zhou (2009). This paper carries out the first runtime analysis of ant colony optimization for
the TSP problem. A tour is constructed in an ordered manner, where the iteratively cho-
sen edges form a path at all times. In this paper, we give new runtime bounds for ACO
algorithms using this construction procedure. In addition, we propose a new construction
procedure, where, in each iteration, an arbitrary edge not creating a cycle or a vertex of
degree three may be added to extend the partial tour. We analyze both construction methods
and point out their differences.

We examine the two mentioned ACO variants in a rigorous way. Our first goal is to get
insights into the local search behavior of the two approaches when the pheromone update
is high. We examine the locality of changes made, i.e., how many edges of the current-best
solution are also in the newly sampled tour, and how many are exchanged for other edges.
Afterwards, we consider the expected time until certain desired local changes have been
made to derive upper bounds on the optimization time for a particular TSP instance.

We show that the ordered edge insertion algorithm exchanges an expected number of
Ω(log(n)) many edges while the arbitrary edge insertion exchanges only an expected con-
stant number of edges. Arbitrary edge insertion has a probability of Θ(1/n2) for any specific
exchange of two edges, while ordered edge insertion has one of Θ(1/n3) (Zhou 2009). In-
vestigating the simple TSP-instance analyzed in Zhou (2009) for arbitrary edge insertions,
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we show an upper bound of O(n3 log(n)) on the expected number of steps to reach an opti-
mal solution, while the best known bound for ordered edge insertion is O(n6) (Zhou 2009).
Afterwards, we consider random graphs and show that both construction graphs lead in ex-
pected polynomial time to a good approximation on random instances. The paper extends
its conference version published as Kötzing et al. (2010) by presenting worst-case instances
for both algorithms. On these instances, the expected optimization time of both approaches
is exponential. Furthermore, we investigate the use of heuristic information and point out its
impact on the runtime behavior in a rigorous way.

Our theoretical results show that arbitrary edge insertion allows for better runtime bounds
thanks to its locality when compared to ordered edge insertion and gives a deeper under-
standing on the impact of various parameter settings of ACO algorithms for the TSP prob-
lem.

The rest of the paper is organized as follows. In Sect. 2 we introduce the problem and
the algorithms that we investigate. We analyze the number of edge exchanges for large
pheromone updates in Sect. 3 and prove runtime bounds for certain classes of instances in
Sect. 4. Section 5 shows instances where the behavior of both algorithms is exponential, and
Sect. 6 investigates the use of heuristic information in our algorithms. Finally, we finish with
some concluding remarks and topics for future work.

2 Problem and algorithms

We consider the symmetric traveling salesperson problem (TSP). Given is a complete undi-
rected graph G = (V ,E) and a weight function w : E → R+ that assigns positive weights
to the edges. The TSP problem asks for a tour of minimum weight that visits every ver-
tex exactly once and then returns to the start vertex. We investigate the behavior of ACO
algorithms on this problem. Our goal is to study the computational complexity of such algo-
rithms for the TSP. These studies provide new insights based on rigorous proofs regarding
situations in which ACO algorithms are successful.

In Stützle and Hoos (2000) a search heuristic was proposed for solving this problem,
based on ACO, called MMAS∗ (Min–Max Ant System). We reproduce a simpler version
thereof in Algorithm 1. This algorithm (or variations) was already used in different theoreti-
cal studies (Neumann et al. 2009; Zhou 2009). MMAS∗ works as follows. The best solution
that was found so far is always stored. The algorithm tries to find better solutions by iter-
atively generating candidate solutions that are discarded if they are at most as good as the
best-so-far solution.

The construction of a new candidate solution for a target graph G works as follows.
We imagine an artificial ant performing a random walk on an underlying graph, called the
construction graph, step by step choosing components of a new candidate solution. Our
components are the edges of the graph we are trying to find a minimal tour for.

Formally, for a given graph G, the construction graph C(G) is defined on the nodes
{s} ∪ E (where s is our distinguished start node), and an ant is allowed to travel to a node y

iff y is in the neighbor set N of the sequence of nodes of C(G) visited so far. We present
two possible choices for the neighbor sets for ACO on TSP, discussed in Sects. 2.1 and 2.2.
The G-edges thus visited by an ant in the random walk on C(G) are the components chosen
by the ant for the new tour.

In each step of its random walk on the construction graph, we want the ant to choose an
edge e in G with a probability based on the pheromone value τ(e) and on the heuristic value
η(e) of that edge. Pheromone values represent the memory of the ACO algorithm about the
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quality of previously sampled tours and direct the search toward promising areas; we will
say more about pheromones later. The heuristic information on an edge e is the inverse of
the weight of e, i.e., η(e) = 1/w(e); we use the heuristic value to bias the algorithm to favor
light edges over heavy ones (this choice of η is the most frequent choice for TSP in the
previous literature). Our ACO algorithm takes two parameters α and β; when choosing a
new edge, we sample proportionally to the pheromone value to the power of α times the
heuristic value to the power of β .

We use a procedure construct based on the pheromones τ as given in Algorithm 2. In
this paper, we consider two different approaches of constructing new solutions by specifying
the neighborhood function N of Algorithm 2 in Sects. 2.1 and 2.2.

After each iteration, the pheromones will be updated; edges that are part of the best-so-
far solution are rewarded, and their pheromone is increased; all other edges will have their
pheromone decreased. Formally, we use a procedure update. This procedure depends on
the evaporation factor ρ (0 ≤ ρ ≤ 1, a parameter of the ACO algorithm); small values of ρ

(close to 0) indicate low evaporation and small changes to pheromones per iterations; large
values (close to 1) indicate fast changes. Max–Min Ant System derives its name from max-
imal and minimal pheromone values that can be attained. We use τmax and τmin as param-
eters to the ACO algorithm to indicate the upper and lower bound, respectively. Formally,
the update procedure works as follows. For a tour x, let E(x) be the set of edges used
in x; for each edge e, the pheromone values are updated so that the new pheromone values

Algorithm 1: The algorithm MMAS∗.

function MMAS∗ on G = (V ,E) is1

τ(e) ← 1/|V |, for all e ∈ E;2

x∗ ← construct(τ );3

update(τ, x∗);4

while true do5

x ← construct(τ );6

if f (x) < f (x∗) then7

x∗ ← x;8

τ ← update(τ, x∗);9

Algorithm 2: The algorithm construct.

function construct based on τ, η,α,β is1

for k = 0 to n − 2 do2

R ← ∑
y∈N(e1,...,ek) τ (y)α · η(y)β ;3

Choose one neighbor z ∈ N(e1, . . . , ek) where the probability of selection of4

any fixed z ∈ N(e1, . . . , ek) is τ(z)α ·η(z)β

R
;

Let en be the (unique) edge completing the tour;5

return (e1, . . . , en);6
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τ ′ = update(τ, x) are such that

τ ′(e) =
{

min{(1 − ρ) · τ(e) + ρ, τmax} if e ∈ E(x),

max{(1 − ρ) · τ(e), τmin} otherwise.

The evaporation factor ρ determines the strength of an update. For several of our investi-
gations, we assume a strong pheromone update, i.e., ρ = 1, such that only the pheromone
values τmin and τmax are attained. Our goal is to get insights into the construction of solu-
tions implied by two different construction graphs. We will see that this is already difficult
as the probabilities of choosing certain components of a solution depend significantly on the
components chosen so far during the construction run. We are optimistic that the analyses
carried out in this paper will set the basis for further results regarding smaller pheromone
updates.

Following Zhou (2009), we use τmin = 1/n2 and τmax = 1 − 1/n throughout this paper,
where n is the number of nodes of the input graph; we initialize the values for pheromones
with 1/n. We say that the pheromones in an iteration of MMAS∗ are saturated if exactly
the edges of the best-so-far tour are at τmax and all others are at τmin. Our choice of τmin

and τmax ensures that, for saturated pheromones, resampling the previous tour has constant
probability for both constructions graphs below. Note that other choices for τmin and τmax

are also possible but not considered in this paper.
To measure the runtime of MMAS∗, it is common to consider the number of constructed

solutions. Often we investigate the expected number of constructed solutions until an opti-
mal tour or a good approximation of an optimal tour is obtained.

2.1 The input graph as construction graph

The construction graph is implicitly defined by introducing the neighborhood function N

(see Algorithm 2). The most common way of constructing a tour for the TSP is to start in
one vertex and to visit all the vertices one by one, thus growing a path containing all the
vertices; finally the path is closed and becomes a tour (see, e.g., Dorigo and Gambardella
1997). This is captured by defining a neighbor set function as follows. For each sequence σ

of previously chosen edges, we let U(σ) be the set of unvisited nodes and l(σ ) be the most
recently visited node (or, if σ is empty, some fixed node of the input graph); let

NOrd(σ ) = {{
l(σ ), u

} ∣
∣ u ∈ U(σ)

}
.

This neighborhood function is easy to compute and has linear size in the number of edges
needed to complete the tour. There are drawbacks of this neighborhood set that we will
discuss later. With MMAS∗

Ord we denote the MMAS∗ that uses this neighborhood (“Ord” is
mnemonic for the “ordered” way in which edges are inserted into the new tour).

2.2 An edge-based construction graph

There is no intrinsic reason for choosing the edges of the tour in an ordered way; we can
let the ant choose to add any edge to the set of edges chosen so far, as long as no cycle and
no vertex with degree at least three are created. This can be expressed by a neighbor set
function as follows. For each sequence σ of chosen edges, let P (σ) be the set of previously
chosen edges, and let

NArb(σ ) = (
E \ P (σ)

)

\{e′ ∈ E
∣
∣
(
V,P (σ) ∪ {

e′}) contains a cycle or a vertex of degree ≥ 3
}
.
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A drawback of this neighborhood function is that the resulting set has a size quadratic in
the number of edges required to complete the tour (since all edges between the components
of the partial tour constructed so far are choosable). With MMAS∗

Arb we denote the MMAS∗

that uses this neighborhood (“Arb” is mnemonic for the “arbitrary” way in which edges are
inserted into the new tour).

3 Number of edge exchanges

Now we turn to properties of locality of the two algorithms. In particular, we consider the
case where all pheromone values are saturated; in this case we can bound the expected num-
ber of edges by which a newly constructed solution x differs from the best-so-far solution
x∗, if we do not use heuristic information. The values we use for τmin and τmax ensure that the
solution x∗ is reproduced with constant probability. We show that MMAS∗

Ord and MMAS∗
Arb

differ significantly in the expected number of edges that they exchange in this situation.
The expected number of edge exchanges is closely related to the local search ability of the
algorithms. Local search procedures such as 2-opt are very common for the TSP problem,
and our goal is to determine whether MMAS∗

Ord and MMAS∗
Arb have a strong local search

behavior such that they are able to work without additional local search procedures.
In the following, we distinguish two algorithms with respect to their local search ability.

For a tour t , we are in particular interested in tours t ′ such that t and t ′ differ by exchanging
2 or 3 edges, called a 2-Opt or a 3-Opt neighbor, respectively. For the remainder of this
section, we let α = 1 and β = 0.

3.1 The behavior of MMAS∗
Ord

We examine a particular iteration of MMAS∗
Ord with best-so-far solution x∗ and saturated

pheromone values. We show that the expected number of edges where x∗ and the newly
constructed solution x differ is Ω(logn). Thus, MMAS∗

Ord does not have a strong local
property.

The reason for this large number of exchange operations is as follows. With constant
probability, the ant will first rediscover a constant fraction of the tour T corresponding to
the currently best solution and then choose an edge not belonging to T . Again with constant
probability, from now on, the ant will always choose edges from T , if possible. With high
probability, after choosing an edge not from T , there are two edges from T available to
be chosen next. The ant will follow one of them until no more such edges are available.
A subpath of T , most likely a constant fraction of n long, remains to be traversed, starting
from a random vertex. Again, the ant will have two edges to choose from and follow this
subpath to the end. Thus, intuitively, a logarithmic number of new edges will be introduced
in the new solution.

To turn this reasoning into a proof, we give a lemma in which we consider the following
random process, capturing the situation after an ant has left the high pheromone path for
the first time. Let Wt be the random variable of a walk on the sequence (1, . . . , t) of t

vertices. Wt starts at a random vertex and will go to the just previous or following vertex
in the sequence with equal probability, if both are available and unvisited. If only one is
available and unvisited, Wt will go to this one. If none are available and unvisited, the walk
will jump uniformly at random to an unvisited vertex. The walk ends as soon as all vertices
are visited.
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Lemma 1 For each t , let Xt be the random variable denoting the number of jumps made
by the walk Wt on the sequence (1, . . . , t) of t vertices. Then we have

∀t ≥ 3: E(Xt) ≥ 1

6
ln(t).

Proof We start by giving a recursive definition of Xt . Clearly, X1 = 0 and X2 = 0. Let t ≥ 3.
The walk can start with uniform probability in any vertex and will never jump if the first or
last vertex has been chosen. Otherwise, with equal probability, the walk will start in either
of the two possible directions. After visiting all nodes in the chosen direction, the walk will
jump once and then perform a walk according to Xj , where j is the number of unvisited
nodes just before the jump. Thus, we get, for all t ≥ 3,

E(Xt) = 1

t

t−1∑

i=2

(
1

2

(
1 + E(Xi−1)

) + 1

2

(
1 + E(Xt−i )

)
)

= t − 2

t
+ 1

t

(
1

2

t−1∑

i=2

E(Xi−1) + 1

2

t−1∑

i=2

E(Xt−1)

)

= t − 2

t
+ 1

t

t−2∑

i=1

E(Xi) = t − 2

t
+ 1

t

t−2∑

i=3

E(Xi).

The claim of the lemma is true for t = 3. We show the remainder of the claim by induction
on t . Let t ≥ 4 and for all i, 3 ≤ i < t , E(Xi) ≥ 1

6 ln(i).
We have

E(Xt) = t − 2

t
+ 1

t

t−2∑

i=3

E(Xi).

Using t ≥ 3, we have (t − 2)/t ≥ 1/3. Thus, also using the induction hypothesis,

E(Xt) ≥ 1

3
+ 1

t

t−2∑

i=3

1

6
ln(i)

= 1

3
+ 1

t

1

6
ln

(
t−2∏

i=3

i

)

= 1

3
+ 1

t

1

6
ln

(
(t − 2)!/2

)

≥ 1

3
+ 1

t

1

6

(
(t − 2) ln

(
(t − 2)/e

) + 1 − ln(2)
)

≥ 1

3
+ 1

t

1

6

(
(t − 2) ln

(
(t − 2)/e

))

≥ 1

6
− t − 2

6t
+ 1

6

(

1 + t − 2

t
ln(t − 2)

)

≥ 1

6

(

ln(t − 2) + 1 − 2

t
ln(t − 2)

)

≥ 1

6
ln(t). �
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We can now use this lemma to give one of the main theorems in this section, bounding
the expected number of edge exchanges which MMAS∗

Ord will make when saturated.

Theorem 2 If in an iteration of MMAS∗
Ord the pheromone values are saturated, then, in the

next iteration of MMAS∗
Ord, the newly constructed tour will exchange an expected number of

Ω(log(n)) of edges.

Proof Let E be the event that an ant leaves the tour T corresponding to the currently best
solution x∗ before having visited at most n/2 vertices and at least 2. In each of the n/2
first iterations Ω(n) edges not from T are available with pheromone ≥ 1/n2 each; only one
(or two) edges from T with pheromone ≤ 1 is available. Thus, in each of these iterations,
an edge not from T is chosen with probability 1/n. We have that P (E) is Ω(1), as (1 −
1/n)n/2 ≤ e−1/2.

Let E′ be the event that, after the ant left the path for the first time, the ant will never
choose an edge not from T . Using Bernoulli’s inequality, we have that P (E) is Ω(1). Sup-
pose that r vertices are left to be chosen, and let X be the random variable of the number of
edges not from T chosen after the first choice not from T , not counting the closing of the
tour at the very end. Then we have that the random variable of X given E′ equals Wr .

Now we get the desired result from Lemma 1. �

However, constructing new solutions with few exchanged edges is still somewhat likely.
In Zhou (2009) it is shown that the probability for a particular 2-Opt step is Ω(1/n3).

Theorem 3 (Zhou 2009) Let t be a tour found by MMAS∗
Ord, and let t ′ be a 2-Opt neighbor

of t . Suppose that the pheromone values are saturated. Then MMAS∗
Ord constructs t ′ in the

next iteration with probability Ω(1/n3).

Adding some simple observations, we also get a matching upper bound.

Theorem 4 Let t be a tour found by MMAS∗
Ord. Suppose that the pheromone values are

saturated. Then there is a tour t ′ which is a 2-Opt neighbor of t , and MMAS∗
Ord constructs

t ′ in the next iteration with probability Θ(1/n3).

Proof The lower bound is from Zhou (2009). Let t ′ be a 2-Opt neighbor of t as follows.
t ′ follows t from the start vertex for �n/3� cities, then skips �n/3� to some city v. Then t ′

visits all skipped cities in reverse order before jumping to the city after v (with respect to
the order in which t visits cities). Then t ′ follows t to the end.

We now analyze the likelihood for MMAS∗
Ord to sampling t ′. Following t in original or

reversed order has a constant probability, even when accumulated over all the tour. Thus,
we focus on the times when t ′ does not follow t . At the time of the first change, the ant
does not choose the edge included in t , which has pheromone τmax, but instead an edge with
pheromone value τmin. According to the edge selection mechanism of MMAS∗

Ord, this has
a probability of Θ(1/n2). The second time t ′ does not follow t , and MMAS∗

Ord still has a
constant fraction of the cities left to visit. Each of them will be the next with equal probability
(as all of them have an edge with pheromone value τmin leading to them), which gives this
particular choice of t ′ a probability of Θ(1/n). The result follows from the independence of
all the choices. �
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3.2 The behavior of MMAS∗
Arb

In this section we examine the expected number of edge exchanges of MMAS∗
Arb. In The-

orem 7 we show that the expected number of edges where x∗ and x differ is Θ(1). Thus,
MMAS∗

Arb does make only local changes.
We start this section with the following lemma regarding the probability of choosing

edges with low pheromones.

Lemma 5 Let k ≤ √
n. Consider an iteration of MMAS∗

Arb where the pheromone values are
saturated. Suppose that, in the next iteration of MMAS∗

Arb, at most k edges are chosen that
are not from the best-so-far tour. Then the ant will choose edges of the best-so-far tour with
probability 1 − O(1/n) as long as any is admissible.

Proof We call an edge with pheromone level τmax a “high” edge; the others are “low” edges.
We consider an iteration of MMAS∗

Arb. We analyze the situation where, out of the n edges
to be chosen to create a new tour, there are still i edges left to be chosen, and at most k

of these edges already chosen are low edges. Let ai be the number of high edges left to be
chosen in this case, and let bi be the number of low edges still choosable. The edges chosen
so far partition the graph into exactly i components. For each two components, there are
between 1 and 4 edges to connect them (each component is a path with at most 2 endpoints,
only the endpoints can be chosen for connecting with another component); thus, there are
between

(
i

2

)
and min

(
4
(

i

2

)
,
( n

2

))
edges left to be chosen. As there are i edges left to be

chosen for the tour, at most k of which are low edges, and each low edge can block at most
3 high edges from being chosen (one at each endpoint, plus one which would complete a
premature cycle), we get

i − 3k ≤ ai ≤ i + k,
(

i

2

)

− (i + k) ≤ bi ≤ min

(

4

(
i

2

)

,

(
n

2

))

.

Thus, the probability to choose a low edge is at most

bi

ai

· τmin

τmax
≤ min

(
4
(

i

2

)
,
( n

2

))

i − 3k

τmin

τmax
≤ 4i2

i − 3k
· 1

n2(1 − 1/n)
.

For i ≥ 3
√

n, this term is O(1/n). For i ≤ 3
√

n, this is also O(1/n) as long as there is at
least one high edge to choose. �

Next we show that, for a fixed k, making k edge exchanges is likely.

Theorem 6 Let k = O(1). If in an iteration of MMAS∗
Arb the pheromone values are satu-

rated, then, in the next iteration of MMAS∗
Arb with probability Θ(1), the newly constructed

tour will choose k new edges and otherwise rechoose edges of the best-so-far tour as long
as any are admissible.

Proof We use the terminology from Lemma 5, as well as the bounds on ai and bi .
The ant iteratively chooses n edges for the new tour. Let M be a set of k iterations (a

k-elementary subset of {1, . . . , n}). We would like to bound the probability that the ant, in
all iterations not belonging to M , will choose high edges as long as there are any admissible
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(regardless of what happens in the iterations belonging to M). Using the union bound and
Lemma 5, this probability is Θ(1). Let d > 0 be a constant lower bound on this probability.

For each k-element subset M of {1, . . . , n}, the probability of choosing a low edge on all
positions of M , and choosing a high edge on all other positions is lower bounded by

d
∏

i∈M

((
i

2

)

− (i + k)

)

τmin

/(
(i + k)τmax + n2τmin

)

≥ dτ k
min

∏

i∈M

(
i2 − i

2
− (i + k)

)/
(i + k + 1)

≥ dτ k
min

∏

i∈M

(
i2

2(i + k + 1)
− 2

)

≥ dτ k
min

∏

i∈M

(
i

2k + 4
− 2

)

.

Let ci,k = i/(2k + 4) − 2. Note that, for any set M with |M| ≤ k, we have
∑n

i=1,i �∈M ci,k =
Θ(n2). Now we have that the probability of choosing low edges on any k positions is lower
bounded by

dτ k
min

∑

M⊆{1,...,n}
|M|=k

∏

i∈M

ci,k

= d

k!n2k

n∑

i1=1

(
n∑

i2=1,i2 �∈{i1}

(

. . .

(
n∑

ik=1,ik /∈{i1,...,ik−1}

k∏

j=1

cij ,k

)))

= d

k!n2k

(
n∑

i1=1

ci1,k

)(
n∑

i2=1,i2 /∈{i1}
ci2,k

)

. . .

(
n∑

ik=1,ik �∈{i1,...,ik−1}
cik,k

)

≥ d

k!n2k

(
n∑

i=1

ci,k

)k

= Θ(1). �

For the expected number of edge exchanges, we get the following.

Theorem 7 If in an iteration of MMAS∗
Arb the pheromone values are saturated, then, in the

next iteration of MMAS∗
Arb, the newly constructed tour will exchange an expected number of

O(1) edges.

Proof We use the terminology from Lemma 5, as well as the bounds on ai and bi .
Our goal is to bound the expected number of low edges that are introduced into a new

solution, so let the random variable Xi denote the number of chosen new edges after i edges
have been chosen. In the beginning of the construction, X0 = 0 holds and afterwards, we
may choose (with small probability) a low edge in a given step of the construction. We want
to study the construction process and show that we choose only a small number of low edges
during the construction process.
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Let (Xi)i∈N be the Markov-chain where Xi denotes the number of chosen low edges after
i iterations. Then we have X0 = 0 and, for all i, Xi+1 ∈ {Xi,Xi + 1}. We are interested in
E(Xn) (and we want this to be O(1)).

We call a run good if the number of low edges is at most
√

n, i.e., k ≤ √
n holds. We

call a run bad if k >
√

n holds. In the following, we show that the expected number of
edge exchanges of all good runs is O(1). Later on, we show that the probability of having a
bad run is exponentially small, which implies that this has almost no effect on the expected
number of edge exchanges.

Let us consider the good runs, i.e., the case k ≤ √
n. Let T be the random variable de-

noting the first time when no high edge is choosable. We have

E(Xn) = E(XT + n − T ) = E(XT ) + n − E(T ),

as, after T iterations, all chosen edges will be low edges. The number of choosable high
edges goes down by one if we choose a high edge and by at most three if we choose a
low edge. In a good run, we will choose a low edge with probability O(1/n) according to
Lemma 5. Thus, we can apply an additive drift theorem (He and Yao 2004) to get E(T ) =
n − O(1). Another application gives E(XT ) = O(1), as T ≤ n and we have an expected
increase of O(1/n) per iteration. This implies that the expected number of low edges in a
good run is O(1).

It remains to show that a bad run happens only with small probability. Let Ci be the
condition that we have chosen at most

√
n low edges after i steps, i.e., the run has not been

bad until step i. Clearly, Prob(C0) = 1 since the number of chosen low edges is 0 at the
beginning. Let us assume that Ci−1 has happened. Then the probability of choosing a low
edge in step j , 1 ≤ j ≤ i, is at most c/n, c an appropriate constant, and the probability to
choose within i steps at least

√
n low edges is at most
(

i√
n

)

(c/n)
√

n = e−Ω(
√

n).

Hence, Prob(¬Ci | Ci−1) = e−Ω(
√

n), and Prob(¬Cn) = Prob(
⋃n

i=1(¬Ci | Ci−1)) = e−Ω(
√

n)

by the union bound. Hence, a bad run happens with probability most e−Ω(
√

n). Pessimisti-
cally, we assume that each bad run contributes n low edges. The contribution of the bad runs
to the expected number of low edges is therefore at most

e−Ω(
√

n) · n,

i.e., exponentially small, which completes the proof. �

As a corollary to Theorem 6, we get the following:

Corollary 8 Let t be a tour found by MMAS∗
Arb, and let t ′ be a tour which is a 2-Opt

neighbor of t . Suppose that the pheromone values are saturated. Then MMAS∗
Arb constructs

t ′ in the next iteration with probability Θ(1/n2).

Proof The tour t has Θ(n2) many 2-Opt neighbors. By Theorem 6, MMAS∗
Arb will con-

struct, with constant probability, a tour that exchanges one edge and otherwise rechooses
edges of t as long as possible. This new tour is a 2-Opt neighbor of t . As all 2-Opt neighbors
of t are constructed equiprobably (thanks to the symmetry of the construction procedure),
we obtain the desired result. �
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4 Polynomial upper runtime bounds

In this section we give polynomial upper bounds for the ACO algorithms. First we analyze
the optimization behavior on a simple TSP instance already studied by Zhou (2009). Then
we look at random instances. For this section, we let α = 1 and β = 0 again.

4.1 A simple instance

Zhou (2009) carried out the first runtime analysis of ACO algorithms for the TSP. He ana-
lyzed the time it takes ACO algorithms to obtain optimal solutions for some simple example
instances. His analyses are based on the observation that ACO algorithms are able to imitate
2-Opt and 3-Opt operations. One particularly simple instance that is considered in Zhou
(2009) consists of a single Hamiltonian cycle in which all edges have cost 1 (called light
edges), while all remaining edges have a large weight of n (called heavy edges). This in-
stance is called G1, and it is clear that the Hamiltonian cycle of light edges is the unique
optimum. The author shows that MMAS∗

Ord obtains an optimal solution for G1 in expected
time O(n6 + (1/ρ)n logn) for arbitrary ρ with 0 < ρ ≤ 1. The proof is based on the fol-
lowing idea: As long as the current solution is not optimal, there is always a 2-Opt or 3-Opt
operation that leads to a better tour. Zhou shows that the probability of performing this oper-
ation is Ω(1/n5). From this the result follows because at most n improvements are possible
and O(logn/ρ) is the so-called freezing time, i.e., the time to bring all pheromone values to
upper or lower bounds.

In this section, we prove that the expected optimization time of MMAS∗
Arb for the in-

stance G1 is O(n3 logn + (n logn)/ρ). This is considerably better than the bound of O(n6)

proved before in Zhou (2009) for MMAS∗
Ord. Note that we do not provide lower bounds, so

it is open whether MMAS∗
Ord has a running time as low as the one of MMAS∗

Arb. We strongly
suspect that it has not. Furthermore, our analysis is much simpler than the one from Zhou
(2009) and saves an unnecessary case analysis, which could also be avoided in the analysis
of MMAS∗

Ord.
In the following lemma we consider a single improvement. Following the notation in

Zhou (2009), let Ak , k ≤ n, denote the set of all tours consisting of exactly n − k light and k

heavy edges. These are exactly the tours with a total weight of n − k + kn.

Lemma 9 Let τmin = 1/n2 and τmax = 1 − 1/n. Denote by Xt the best-so-far tour sequence
produced by MMAS∗

Arb on TSP instance G1 until iteration t > 0 and assume that Xt is
saturated. Then the probability of an improvement, given 1 ≤ k ≤ n heavy edges in Xt ,
satisfies sk = P (Xt+1 ∈ Ak−1 ∪ · · · ∪ A0 | Xt ∈ Ak) = Ω(k/n3).

Proof We consider an arbitrary light edge e = {u,v} /∈ T that is not contained in the best-
so-far tour T . Since each vertex of G1 is incident to two light edges, both u and v are
incident to exactly one light edge different from e. Since edge e does not belong to T , there
must exist two different heavy edges e0, e1 ∈ T on the tour such that e0 is incident on u and
e1 incident on v. Now we denote by e′

0 ∈ T and e′
1 ∈ T with e′

0 �= e0 and e′
1 �= e1 the other two

edges on T that are incident to u and v, respectively. We would like to form a new tour that
contains e and still e′

0 and e′
1 but no longer e0 and e1. The set of edges (T ∪ {e}) \ {e0, e1}

has cardinality n − 1 but might contain a cycle. If that is the case, there must be a heavy
edge e2 ∈ T from the old tour on that cycle (since there is a unique cycle of light edges
in G1). In this case, we additionally demand that the new tour does not contain e2. Since the
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undesired edges e0, e1 and possibly e2 are heavy and e is a light edge outside the previous
tour, any tour that is a superset of (T ∪ {e}) \ {e0, e1, e2} is better than T .

For 1 ≤ j ≤ n/4, we denote by Me(j) the intersection of the following three events, and
we prove that Prob(Me(j)) = Ω(1/n4); later, we take a union over different j and e to get
an improved bound.

1. The first j − 1 steps of the construction procedure choose edges from T ∗ := T \
{e0, e1, e2}, and the j th step chooses e.

2. e′
0 is chosen before e0 and e′

1 before e1.
3. All steps except the first one choose from T ∗ as long as this set contains applicable edges.

Note that e0 and e1 are no longer applicable once {e, e′
0, e

′
1} is a subset of the new tour.

For the first subevent, assume that all of the first i < j edges have been chosen from the
set T ∗. Then there are n − i edges from T and n − i − 3 edges from T ∗ left. Finally, there
are at most n2/2 edges outside of T . Using that Xt is saturated, the probability of choosing
another edge from T ∗ can be seen to be at least

(n − i − 3)τmax

(n − i)τmax + n2τmin/2
≥ n − i − 3

n − i + 1

(assuming n ≥ 2). Altogether, the probability of only choosing edges from T ∗ in the first
j − 1 steps is at least

j−2∏

i=0

n − i − 3

n − i + 1
≥

(
3n/4 − 1

3n/4 + 3

)n/4−1

= Ω(1)

because j ≤ n/4. The probability of choosing e in the j th step is at least τmin/n = 1/n3

since the total amount of pheromone in the system is at most n. Altogether, this shows that
the first subevent has a probability of occurring of Ω(1/n4).

The second subevent has a probability of occurring of at least (1/2)2 = 1/4 because all
applicable edges in T are chosen with the same probability (using that Xt is saturated).

For the third subevent, we study a step of the construction procedure in which there
are i applicable edges from T left, and all edges chosen so far are from the set T ∪ {e}.
We need a more precise bound on the number of applicable edges outside of T . Removing
k ≥ 1 edges from T breaks the tour into k connected components, each of which has at
most two vertices of degree less than 2. Since e /∈ T has been chosen, at most two edges
from T are excluded from our consideration. Therefore, the number of connected compo-
nents in the considered step of the construction procedure is at most i +2. Hence there are at
most

( 2(i+2)

2

) ≤ 2(i + 2)2 ≤ 18i2 edges outside of T applicable. The probability of choosing
neither e2 nor an edge outside T in this situation is at least

iτmax

(i + 1)τmax + 18i2τmin
.

Hence, given the second subevent, the probability of the third subevent is at least

n−1∏

i=1

i · τmax

(i + 1)τmax + 18i2τmin

=
n−1∏

i=1

(
i

i + 1
· (i + 1) · τmax

(i + 1)τmax + 18i2τmin

)
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≥ 1

n

n−1∏

i=1

i + 1

(i + 1) + 18(i + 1)2
/
(τmax · n2)

≥ 1

n

(
n∏

i=1

1 + 18i
/(

τmax · n2
)
)−1

≥ 1

n

(

1 + 18

n − 1

)−n

= Ω(1/n).

Altogether, this shows that the intersection Me(j) of the three subevents happens with a
probability of Ω(1/n4).

Finally, we consider the union Me := ⋃
j≤n/4 Me(j), which refers to including e in any of

the first n/4 steps. Since the events Me(j) are disjoint for different j , we obtain Prob(Me) =
(n/4) · Ω(1/n4) = Ω(1/n3). Similarly, for all light edges e /∈ T (of which there are k),
the events Me are disjoint (as a different new edge is picked in the first step). Thus, the
probability of an improvement is Ω(k/n3) as desired. �

Theorem 10 Let τmin = 1/n2 and τmax = 1 − 1/n. Then the expected optimization time of
MMAS∗

Arb on G1 is O(n3 logn + n(logn)/ρ).

Proof Using Lemma 9 and the bound O(logn/ρ) on the freezing time, the waiting time
until a best-so-far solution with k heavy edges is improved is bounded by O((logn)/ρ) +
1/sk) = O((logn)/ρ +n3/k). Summing up, we obtain a total expected optimization time of
O(n(logn)/ρ) + ∑n

k=1(1/sk) = O(n3 logn + n(logn)/ρ). �

4.2 Random instances

The 2-Opt heuristic is a simple local search heuristic for the TSP, which starts with an arbi-
trary tour and performs 2-Opt steps until a local optimum is found. This heuristic performs
well in practice both in terms of running time and approximation ratio (Johnson and Mc-
Geoch 1997). On the other hand, it has been shown to have exponential running time in
the worst case (Englert et al. 2007), and there are instances with local optima whose ap-
proximation ratio is Ω(logn/log logn) (Chandra et al. 1999). To explain this discrepancy
between theory and practice, 2-Opt has been analyzed in a model of random instances rem-
iniscent of smoothed analysis (Spielman and Teng 2004). In this model, n points are placed
at random in the d-dimensional Euclidean space. Each point vi (i = 1,2, . . . , n) is chosen
independently according to its own probability density fi : [0,1]d → [0, φ] for some pa-
rameter φ ≥ 1. It is assumed that these densities are chosen by an adversary, and hence, by
adjusting the parameter φ, one can interpolate between worst and average case: If φ = 1,
there is only one valid choice for the densities, and every point is chosen uniformly at ran-
dom from the unit hypercube. The larger φ, the more concentrated can the probability mass
be, and the closer is the analysis to a worst-case analysis.

It has been shown that the expected number of steps of 2-Opt is O(n4+1/3 · log(nφ) ·φ8/3)

and that the expected approximation ratio is O( d
√

φ), partially explaining the success of
2-Opt in practice (Englert et al. 2007). We analyze the expected running time and approxi-
mation ratio of MMAS∗

Arb and MMAS∗
Ord on random instances. For this, we have to take a

closer look into the results from Englert et al. (2007), which bound the expected number of
2-Opt steps until a good approximation has been achieved.

The upper bound on the expected number of steps is based on the observation that with
high probability every 2-Opt step leads to a significant decrease of the tour length. Hence,
the argument is not affected if between the 2-Opt steps other changes are made to the tour
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as long as these changes do not increase the length of the tour. We show the following
theorem.

Theorem 11 For ρ = 1, MMAS∗
Arb finds in time O(n6+2/3 · φ3) with probability 1 − o(1) a

solution with approximation ratio O( d
√

φ).

Proof As we have argued in Corollary 8, if all edges are saturated and there is an improving
2-Opt step possible, then this step is performed with probability at least Ω(1/n2). From
Englert et al. (2007) we know that from any state, the expected number of 2-Opt steps until
a tour is reached that is locally optimal for 2-Opt is at most O(n4+1/3 · log(nφ) · φ8/3) even
if in between other changes are made to the tour that do not increase its length. Hence, using
Markov’s inequality, we can conclude that MMAS∗

Arb has reached a local optimum after
O(n6+2/3 · φ3) steps with probability 1 − o(1).

From Englert et al. (2007) we also know that every locally optimal tour has an expected
approximation ratio of O( d

√
φ). Implicitly, the proof of this result also contains a tail bound

showing that with probability 1−o(1) every local optimum achieves an approximation ratio
of O( d

√
φ). The theorem follows by combining the previous observations and taking into ac-

count that for our choice of ρ, all edges are saturated after the first iteration of MMAS∗
Arb. �

Taking into account that a specific 2-Opt operation in MMAS∗
Ord happens with probability

of Ω(1/n3) in the next step, we get the following results.

Theorem 12 For ρ = 1, MMAS∗
Ord finds in time O(n7+2/3 · φ3) with probability 1 − o(1) a

solution with approximation ratio O( d
√

φ).

5 Exponentially hard instances

Our previous investigations show that MMAS∗
Ord and MMAS∗

Arb achieve good approxima-
tions for a large class of problems. In this section we present instances where MMAS∗

Ord and
MMAS∗

Arb have an exponential optimization time. This way we hope to understand better
what kind of structures in graphs present problems for ACO for the TSP.

In the following, we assume τmin and τmax to be given bounds on the pheromones (∈ R>0),
and ρ = 1.

We consider the family (Gn,wn)n∈N of metric graphs on {1, . . . , n} × {0,1} such that

∀n,∀i, i ′, j, j ′: wn

(
(i, j),

(
i ′, j ′)) =

⎧
⎪⎨

⎪⎩

1 if i = 0 = i ′,
2cn if i = 1 = i ′,
cn otherwise.

(1)

We call the edges of weight cn the bridge edges, the edges of weight 1 the trap edges (as they
trap weight-sensitive MMAS), and the others far edges. One can depict the graph (Gn,wn)

as shown in Fig. 1. Within the left Kn, all edge weights are 1, within the right all are 2cn.
All edges between the two are of weight cn.

The graph has the following property which we will use for our analysis.

Property 13 Let p be a tour in Gn. If p consists of k trap edges, k far edges, and 2n − 2k

bridge edges, the total weight of p is w(p) = k + 2kcn + (2n − 2k)cn = k + 2ncn.
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Fig. 1 The Graph (Gn,wn)

Note that for each n ∈ N, the optimal tour of (Gn,wn) only consists of bridge edges and
the total cost of an optimal tour is OPT = 2ncn.

In our calculations, we will make use of the following inequalities. By Bernoulli’s in-
equality, we have

∀n ∈ N,∀x ∈ [0,1]: (1 − x)n ≥ 1 − nx. (2)

In particular,

∀n ∈ N,∀x ∈ [0, n]:
(

1 − x

n

)n

≥ 1 − x. (3)

For all n ∈ N, we set

cn = 22n+2n3 τmax

τmin
. (4)

Theorem 14 With probability 1 − 2−Ω(n), the optimization time of MMAS∗
Ord and MMAS∗

Arb

on Gn using α = 1 and β = 1 is at least 2n.

Proof Let E be the event that MMAS∗
Ord or MMAS∗

Arb with α = β = 1 on Gn in the first
2n iterations always chooses an edge of weight ≤ n over and edge of weight ≥ cn, when
possible. We show that

P (E ) ≥ 1 − 2−n.

Let p be the probability to choose in a single choice one out of 2n − 2 weight-cn edges
over a single edge of weight ≤ n. From the construction rule of the algorithm we get

p ≤
∑2n−2

j=1 τmax/cn

τmin/n + ∑2n−2
j=1 τmin/cn

≤ 2nτmax/cn

τmin/n

≤ 2n2

cn

· τmax

τmin

= 1

22n+1n
. (5)
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In the worst case, the ant is presented with such a choice 2n times in each of the 2n iterations.
Thus,

P (E ) ≥
2n·2n∏

i=1

(1 − p) (6)

= (1 − p)2n+1·n (7)

≥
(2)

1 − (
2n+1 · n)

p (8)

≥
(5)

1 − 2−n. (9)

�

As a corollary to the proof of Theorem 14, we have the following:

Corollary 15 Let f : N → N. There is a family (Gn)n∈N of graphs such that, with proba-
bility 1 − 2−Ω(n), after 2n steps of MMAS∗

Ord and MMAS∗
Arb, the currently best solution has

value at least f (n) · OPT.

Proof This can be proven by modifying (Gn,wn) such that all far edges have weight
(f (n) + 1) · (2ncn). The optimal path remains the same (with the same cost), while the
tour that starts with n − 1 trap edges has a weight of f (n) · OPT. �

In contrast to the previous negative results, we show that α = 1 and β = 0 lead to a
polynomial expected optimization time. Together with Theorem 14, this shows that the use
of heuristic information is destructive for the optimization of Gn.

Theorem 16 With probability 1−2−Ω(n), the optimization times of MMAS∗
Ord and MMAS∗

Arb
on Gn using α = 1 and β = 0 are O(n4) and O(n3), respectively.

Proof Let n ∈ N. We give a fitness based partition of the possible tours through (Gn,wn).
We let, for all k with 0 ≤ k < n,

Ak = {
p tour |w(p) = k + 2cn

}
.

According to Property 13, {Ak | 0 ≤ k < n} is a partitioning of all possible tours of Gn.
Note that the worst path cost is given by first traversing only trap edges, for a total cost of
2ncn + n − 1. This path traverses exactly two bridge edges.

Let k ∈ N with 0 < k < n, and let a tour in Ak be given. Pick any trap edge {u1, u2}
and any far edge {v1, v2} in the tour. The probability that MMAS will, as the only change,
change the edges {u1, u2} and {v1, v2} for {u1, v1} and {v2, u2} (2-change) is lower bounded
by either 1/n3 (Theorem 3) or 1/n2 (Corollary 8), and will yield a tour from Ak−1. Thus,
we get the claimed runtime bounds. �

6 Benefit of heuristic information

In the previous section, we have shown how the use of heuristic information can harm the
optimization of ACO algorithms. We now describe an example where a sufficiently large
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Fig. 2 The graph G�

Fig. 3 The tour Tzigzag

value of β is essential for efficient optimization. Let k be even. Take a graph on n = 2k + 2
nodes consisting of k + 1 columns and two rows, hence k adjacent cells. More precisely, the
vertex set is V = {0, . . . , k} × {0,1}, and the edge set is

{{
(i,0), (i,1)

} ∣
∣0 ≤ i ≤ k

} ∪ {
(0,0), (k,1)

}

︸ ︷︷ ︸
=:E|

∪ {{
(i,0), (i + 1,0)

} ∣
∣0 ≤ i ≤ k − 1

} ∪ {{
(i,1), (i + 1,1)

} ∣
∣0 ≤ i ≤ k − 1

}

︸ ︷︷ ︸
=:E−

.

The edges in E− are called horizontal and receive weight 1, and the edges in E| are called
vertical and receive weight 2. Finally, we make the graph complete by giving all edges that
are not contained in {E− ∪ E|} the large weight cn := 2n; we call these edges heavy and
the other ones light. Let the resulting instance be called G� (see Fig. 2 for an illustration).
Obviously, the shortest tour Topt in G� travels along the border of the structure by taking all
edges in E− plus {(0,0), (0,1)} and {(k,0), (k,1)}. There is only one more tour that does
not use heavy edges, namely the following tour called Tzigzag: It contains all edges from E|
and the edges {(i,0), (i + 1,0)} for odd i as well as {(i,1), (i + 1,1)} for even i. Finally, the
tour is closed by the edge {(0,0), (k,1)}. See Fig. 3 for an illustration.

Lemma 17 All tours on G� except for Topt and Tzigzag use at least one heavy edge.

Proof We consider a tour not using heavy edges and show that is must equal either Topt or
Tzigzag. Each node on the tour must be connected by two light edges. Since node (0,1) is
incident on only two light edges, these two edges {(0,0), (0,1)} and {(0,1), (1,1)} must be
used. The other edge to connect {0,0} must be either {(0,0), (1,0)} or {(0,0), (k,1)}. In the
first case, the vertical edge {(1,1), (1,1)} is unavailable since it would close a cycle, hence
the horizontal edges {(1,0), (2,0)} and {(1,1), (2,1)} must be taken in order to include the
nodes in column 2. Iterating this argument, we obtain Topt as the only remaining tour without
heavy edges.

In the second case, only the two light edges {(1,0), (1,1)} and {(1,0), (2,0)} are avail-
able in order to connect (1,0). Then only two light edges are left in order to connect (2,1),
and iteratively we obtain Tzigzag as the only remaining tour without heavy edges. �
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Using the previous lemma, we prove that the optimization time of our algorithms is
exponential with probability exponentially close to 1.

Theorem 18 Consider MMAS∗
Ord with α = 1 and starting vertex (0,0). If β = 1, it needs

an expected number nΩ(n) of iterations to find the optimum tour for G�, while with β = n it
finds the optimum in 1 iteration with probability 1 − 2−Ω(n).

Proof Let β = 1. We claim that the probability of creating Tzigzag as initial solution is 2−O(n).
Assume that the ant has already followed the first j , 0 ≤ j ≤ n − 1, edges of Tzigzag. Then
there are either one or two admissible light edges in the current neighborhood. Since τmin =
1/n2 and the weight of a light edge is at most 2, the ant will continue on a heavy edge only
with probability at most |E| · 1/cn

τmin/2 = 2−Ω(n). Since the weight of light edges is within a ratio

of 2, the ant continues on (j + 1)st edge of Tzigzag with probability at least 1/3 − 2−Ω(n); if
j = n − 1, the probability is even 1. Altogether, the claim follows.

In the following, we assume that Tzigzag is the best-so-far tour and claim that the probabil-
ity of constructing a better tour is n−Ω(n). Since the probability of having Tzigzag as best-so-far
tour is at least 2−O(n), this will imply an expected number of 2−O(n) ·nΩ(n) = nΩ(n) iterations.

To show the claim, we use Lemma 17, which implies that the only tour improving Tzigzag

is Topt. We consider for 1 ≤ j ≤ k − 1 the event that the ant has already created a path
consisting of j edges without a vertical edge between inner columns. Then the ant is either
at vertex (0, j) or (1, j −1). If j is even, the ant has just taken an edge from E−, and the only
permissible edge in the neighborhood with pheromone value τmax is from E|. The probability

of not taking that edge is at most (2+n2/cn)·τmin
τmax/2 ≤ 3/n, where we have used that there are at

most 2 light edges incident on any node. There are at least �(k − 1)/2� = Ω(n) occasions
where j is even. The probability of never taking the E|-edge in any of these occasions is
n−Ω(n).

Finally, we study the case β = n. Then the probability of taking a permissible weight-2
edge in the neighborhood is by a factor of 2−n less likely than taking a weight-1 edge.
The ratio is even smaller with respect to weight-2 and weight-cn edges. Hence, if already
j edges of Topt have been included, the next edge taken is not from Topt with probability at
most n2 · 2−n. The probability of making such a mistake at least once in n trials is at most
n · n2 · 2−n = 2−Ω(n). �

7 Conclusions

Our theoretical results show that ACO with the usual construction procedure for the TSP
(with our ranges of parameters) samples solutions that are in expectation far away from the
currently best one in terms of edge exchanges, even if the pheromone values have touched
their corresponding bounds. We have examined a new construction graph, which we showed
to have stronger locality. This provably stronger locality has led to better provable runtime
bounds; in particular, we showed both algorithms to perform well on random instances if the
pheromone update is high. Finally, we gave example graphs on which both variants of ACO
will require exponential optimization time with various parameter settings and investigated
the impact of heuristic information.

It remains open whether there are TSP instances for which the nonlocality of ordered
edge insertion provably gives better runtime bounds than the more local arbitrary edge in-
sertion. Furthermore, it remains to be seen whether the more local construction procedure
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can outperform the classical procedure in experimental benchmarks. Practical implementa-
tions of ACO on TSP usually perform additional local searches interleaved with the searches
of the ACO, which might make up for the lower locality of the classical construction proce-
dure.

Future work should consider the behavior of the algorithms for small pheromone updates.
It is not clear how to transfer the proofs for the random instances given in this paper to
the ACO algorithms with small choices of ρ, as there may be many small improvements
preventing us to prove freezing of the pheromones (in polynomial time). Furthermore, it
is desirable to investigate the new construction procedure by experimental studies. Initial
experiments show an advantage of the new procedure, but we need to carry out further
investigations to confirm such a claim.
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