
Topological Separations in Inductive Inference

John Case1 and Timo Kötzing2,�

1 Department of Computer and Information Sciences, University of Delaware,
Newark, DE 19716-2586, USA

case@cis.udel.edu
2 Institut für Informatik, Jena University, Germany

timo.koetzing@uni-jena.de

Abstract. A major question asked by learning in the limit from posi-
tive data is about what classes of languages are learnable with respect to
a given learning criterion. We are particularly interested in the reasons
for a class of languages to be unlearnable. We consider two types of rea-
sons. One type is called topological (as an example, Gold has shown that
no class containing an infinite language and all its finite sub-languages is
learnable). Another reason is called computational (as the learners are re-
quired to be algorithmic). In particular, two learning criteria might allow
for learning different classes of languages because of different topological
restrictions, or because of different computational restrictions.

In this paper we formalize the idea of two learning criteria separating
topologically in learning power. This allows us to study more closely why
two learning criteria separate in learning power. For a variety of learn-
ing criteria (concerning Fex, monotone, iterative and feedback learning)
we show that certain learning criteria separate topologically, and certain
others, which are known to separate, are shown not to separate topologi-
cally. Showing that learning criteria do not separate topologically implies
that any known separation must necessarily exploit some computational
restrictions.

1 Introduction

The learning theory of this paper pertains to trial and error learning of descrip-
tions, i.e., grammars or programs, for formal languages L. This kind of learning
is sometimes called learning in the limit, and herein it’s learning from positive
data only re such L. The languages are taken to be computably enumerable
sets of non-negative integers (i.e., natural numbers). As an example: a learner
h (either algorithmic or not) is presented, in some order, all and only the even
numbers, and, after it sees for a while only multiples of 4, it outputs some de-
scription of the set of multiples of 4. Then, when, h sees a non-multiple of 4, it
outputs a description of the entire set of even numbers.

Many criteria for deciding whether a learner h is successful on a language L
have been proposed in the literature. Gold, in his seminal paper [Gol67], gave

� The authors would like to thank the anonymous reviewers for their valuable feedback.

S. Jain et al. (Eds.): ALT 2013, LNAI 8139, pp. 128–142, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Topological Separations in Inductive Inference 129

a first, simple learning criterion, we call TxtGEx-learning1, where a learner
is successful iff, on every text for L (a listing of all and only the elements of
L), it eventually stops changing its conjectures, and its final conjecture is a
correct description for L (this latter is the explanatory part of TxtGEx). Triv-
ially, each single, describable language L has a suitable constant function as an
TxtGEx-learner (this learner constantly outputs a description for L). Thus,
we are interested instead in knowing for which classes of languages L there is
a single learner h learning each member of L. A wide range of learning crite-
ria including TxtGEx-learning have been investigated (see, for example, the
textbook [JORS99]).

Already Gold [Gol67] found that certain classes of languages are not
TxtGEx-learnable because of what was later called topological considerations2,
e.g., when trying to TxtGEx-learn a set of languages containing an infinite lan-
guage and all the finite subsets of it, the learner cannot distinguish between the
infinite set and any of its finite subsets as, at any time, the learner has seen only
finitely much positive data (and is missing information about the complement of
the language). Angluin [Ang80] described another essentially topological restric-
tion of TxtGEx-learning. Intuitively, when one of these restrictions is not met,
the learner just does not get enough information to be successful, regardless of
its computational power. We collect a number of previously known topological
constraints on TxtGEx-learning in Section 3, along with such constraints for
so-called strongly monotone learning.

A lot of work re the learning theory area of the present paper centers around
deciding whether one learning criterion I allows for learning classes of languages
which are not learnable in another learning criterion I ′ (we then say that I
separates from I ′). We are interested in analyzing more closely the reasons for
learning criteria to separate. In practice, such separations of learning criteria
either involve intricate computational (or algorithmicity) arguments (such as
program self-reference arguments or reductions to algorithmically undecidable
sets) or topological arguments. We give an example of each.

A learner is said to be consistent if, at any point, the language described
by its conjecture at that point contains all the data known at that same
point. We write consistent TxtGEx-learning as TxtGConsEx when only com-
putable learners are considered. It is well known that TxtGEx separates from
TxtGConsEx [OSW86]. An example set that cannot be TxtGEx-learned con-
sistently is the set of all non-empty languages where the least element is a coded

1 Txt stands for learning from a text (list) of positive examples; G stands for Gold, who
first described this mode of learning in the limit [Gol67]; Ex stands for explanatory.

2 These topological considerations arise, for example, for TxtGEx-learning, because
learning from positive data is missing information, e.g., the negative data. They are
involved in unlearnability results which hold for all learners h of the relevant type
fitting the criterion at hand — including, in particular, all uncomputable hs. The
associated proofs of unlearnability typically feature directly or indirectly winning
moves in a Banach-Mazur game where the goal set is co-meager — as in Baire cate-
gory theory [Jec78] — and Baire category theory is part of topology. The connection
to Baire category theory was first observed in [OSW83] (see also [OSW86]).



130 J. Case and T. Kötzing

description for the language (a code in some acceptable numbering of all com-
putably enumerable sets). It is clear that the only reason that this set cannot be
learned consistently by a computable learner is the algorithmic undecidability of
the consistency of a conjecture. And indeed, if the learners in both criteria are
not restricted to be computable the same classes of languages are learnable.

In contrast to this, consider iterative learning [Wie76, WC80]. At any point, an
iterative learner has as its input only its just previous conjecture and the current
text datum. Iterative learning proceeds by processing the text item by item and
also requires the convergence to a correct conjecture (the Ex part), so that this
learning criterion is called TxtItEx. It is well-known that TxtGEx separates
from TxtItEx. We consider the following proof of this separation [KS95, LZ96].
Let L be the set containing the language N+ (the language of all positive natural
numbers) as well as every finite language containing 0. This set of languages is
clearly TxtGEx-learnable, even by learners which map a string of inputs to
a conjecture in linear time. However, this set cannot be TxtItEx-learned. For
suppose, by way of contradiction, that some (possibly even non-computable)
h would TxtItEx-learn this set of languages. Then, when being fed positive
numbers, h will eventually output a conjecture for N+ and not change any more.
If now, after some more positive numbers, a 0 is presented, h has “forgotten”
what more positive numbers were presented. A more formal proof can be found
after the statement of Theorem 8 below. This shows how iterative learning leaves
the learner at an informational disadvantage; even removing any requirement of
computability for the learner cannot enable the iterative learning.

Intuitively, we want to call separations as in the first kind computational, and
separations of the second kind topological. Note, though, that the separating
class in the second/topological example can be indexed in such a way that mem-
bership in the languages in the class is uniformly decidable in linear time, while
in the first/computational example the separating class was not a uniformly de-
cidable class at all. Thus, we formalize our idea of topological separation versus
computational separation herein as follows. We say that a learning criterion I
separates topologically from a learning criterion I ′ iff there is a uniformly linear-
time decidable set of languages I-learnable by a linear-time computable learner,
but not I ′-learnable even by non-computable learners (see Section 2 for a more
formal definition). Note that the restriction to linear time is somewhat arbitrary;
in both cases this restriction is present to make sure that really only topological
properties witness the separation. A further advantage is that we the separa-
tions we get are stronger than if we would require only uniform computability.
It is an interesting open question whether, for reasonable learning criteria, this
restriction to linearly computable languages makes a difference. If two learning
criteria separate, but not topologically, then we say that these learning criteria
separate computationally.

With these definitions we now have that TxtGEx and TxtItEx separate
topologically, while TxtGEx and TxtGConsEx separate only computation-
ally. However, because testing consistency is an uncomputable task (in general
one would have to decide the halting problem) we do get that some learning



Topological Separations in Inductive Inference 131

criteria do separate topologically from their consistent variant: TxtItEx and
TxtItConsEx separate topologically, as our Theorem 9 in Section 4 below
shows. We next summarize informally some of our other main theorems also in
Section 4 below.

For k > 0, TxtGFexk-learning is just like TxtGEx-learning except that
instead of being restricted to exactly 1 correct output conjecture in the limit,
TxtGFexk-learning allows up to k correct output conjectures in the limit. Com-
putationally, i.e., with algorithmic learners h, from [Cas99], these criteria form
a strict learning power hierarchy with increasing k; however, surprisingly, from
our Theorem 6 below, topological separation fails, and the hierarchy collapses
when uncomputable learners are also allowed.

TxtFbkEx-learning is just like TxtItEx-learning except that the learner, at
any point, can, re the data presented before that point, simultaneously ask for
each of up to k numbers whether it is in that prior presented data, and the learner
can react to the answers. In [CJLZ99] it is shown that these criteria also form
a strict learning power hierarchy computationally with increasing k; however,
surprisingly, from our Theorem 12 below, the hierarchy also holds topologically.
But, from our Theorem 13 below, the hierarchy collapses topologically when the
potential separation witnesses L are restricted to contain no finite languages.

We believe that our work in this paper gives structural insight into learning
criteria and their differences. Furthermore, topological separations embody a
certain economy when showing learning criteria to separate: corollaries to each
topological separation are separations with respect to learner-restricted criteria
(such as partial, total or linear time computable learners) and with respect to
different levels of language complexities (such as arbitrary, uniformly decidable
or uniformly decidable in linear time language classes). Finally, this work also
shows how a study of uncomputable learners can help understand learning with
restricted computable power.

Note that some proofs are not included because of space restrictions.

2 Mathematical Preliminaries

Unintroduced complexity theoretic notation follows [RC94]. Other unintroduced
notation follows [Rog67].

N denotes the set of natural numbers, {0, 1, 2, . . .}. We let N
+ = N \ {0}. The

symbols ⊆, ⊂, ⊇, ⊃ respectively denote the subset, proper subset, superset and
proper superset relation between sets. For any set A, we let Pow(A) denote the
set of all subsets of A. ∅ denotes both the empty set and the empty sequence. R
denotes the set of all total functions N → N; LinF is the set of all linear-time
computable such functions.

With dom and range we denote, respectively, domain and range of a given
function. We sometimes denote a partial function f of n > 0 arguments
x1, . . . , xn in lambda notation (as in Lisp) as λx1, . . . , xn f(x1, . . . , xn). For
example, with c ∈ N, λx c is the constantly c function of one argument.

We let 〈·, ·〉 be a linear time computable, linear time invertible, pairing func-
tion [RC94] (a pairing function is a 1-1 and onto mapping N×N → N). Whenever



132 J. Case and T. Kötzing

we consider tuples of natural numbers as input to a function, it is understood
that the general coding function 〈·, ·〉 is used to code the tuples into a single
natural number. We similarly fix a coding for finite sets and sequences, so that
we can use those as input as well.

If a function f is not defined for some argument x, then we denote this fact
by f(x)↑, and we say that f on x diverges; the opposite is denoted by f(x)↓,
and we say that f on x converges. If f on x converges to p, then we denote this
fact by f(x)↓ = p.

The special symbol ? is used as a possible hypothesis (meaning “no change of
hypothesis”). We write f → p to denote that f : N → N∪{?} converges to p, i.e.,
∃x0 : f(x0) = p ∧ ∀x ≥ x0 : f(x)↓ ∈ {?, p}.3 P and R denote, respectively, the
set of all partial computable and the set of all computable functions (mapping
N → N).

We let ϕ be any fixed acceptable programming system for P (an acceptable
programming system could, for example, be based on a natural programming
language such as C or Java, or on Turing machines). Further, we let ϕp denote
the partial computable function computed by the ϕ-program with code number
p. A set L ⊆ N is computably enumerable (ce) iff it is the domain of a computable
function. Let E denote the set of all ce sets. We let W be the mapping such that
∀e : W (e) = dom(ϕe). For each e, we write We instead of W (e). W is, then, a
mapping from N onto E . We say that e is an index, or program, (in W ) for We.

The symbol # is pronounced pause and is used to symbolize “no new input
data” in a text. For each (possibly infinite) sequence q with its range contained
in N ∪ {#}, let content(q) = (range(q) \ {#}). For any function f and all i, we
use f [i] to denote the sequence f(0), . . . , f(i− 1) (the empty sequence if i = 0
and undefined, if one of these values is undefined).

2.1 Learning Criteria

In this section we formally introduce our setting of learning in the limit and
associated learning criteria. We follow [Köt09] in its “building-blocks” approach
for defining learning criteria.

A learner is a partial function from N to N∪{?} (note that, for this paper, we
do not always require computability of learners). A language is a ce set L ⊆ N.
Any total function T : N → N ∪ {#} is called a text. For any given language
L, a text for L is a text T such that content(T ) = L. This kind of text is what
learners usually get as information. With Txt(L) we denote the set of all texts
for L.

A sequence generating operator is an operator β taking as arguments a func-
tion h (the learner) and a text T and that outputs a function p. We call p the
learning sequence of h given T . Intuitively, β defines how a learner can interact
with a given text to produce a sequence of conjectures.

3 f on x converges should not be confused with f converges to.



Topological Separations in Inductive Inference 133

We define the sequence generating operators G and It (corresponding to the
learning criteria discussed in the introduction) as follows. For all learners h, texts
T and all i,

G(h, T )(i) = h(T [i]);

It(h, T )(i) =

{
h(∅), if i = 0; 4

h(It(h, T )(i− 1), T (i− 1)), otherwise.

Thus, in iterative learning, the learner has access to the previous conjecture,
but not to all previous data as in G-learning.

Another interesting sequence generating operator is set-driven learning (de-
noted Sd). We let, for all learners h and texts T ,

Sd(h, T )(i) = h(content(T [i])).

Successful learning requires the learner to observe certain restrictions, for
example convergence to a correct index. These restrictions are formalized in our
next definition.

A sequence acceptance criterion is a predicate δ on a learning sequence and a
text. We give the examples of explanatory (Ex) and consistent (Cons, [Ang80])
learning, which were discussed in Section 1, as well as conservative learning
(Conv, [Ang80]). Formally, we let, for all conjecture sequences p and texts T ,

Ex(p, T ) ⇔ [∃q : p converges to q ∧ content(T ) = Wq ];

Cons(p, T ) ⇔ [∀i : content(T [i]) ⊆ Wp(i)];

Conv(p, T ) ⇔ [∀i : content(T [i+ 1]) ⊆ Wp(i) ⇒ p(i) = p(i+ 1)].

We combine any two sequence acceptance criteria δ and δ′ by intersecting them;
we denote this by juxtaposition (for example, Cons is meant to be always used
together with Ex).

We are also interested in the following relaxation of the Ex restriction called
Fex-learning [CL82, OW82, Cas99]. Given a, b ∈ N, we let Fexa

b be the restric-
tion that, after finitely many conjectures, there are only b many conjectures in
the remaining learning sequence, and all of them are correct up to a mistakes
(incorrect classifications by a conjecture). Clearly, Ex is the case of a = 0 and
b = 1. We furthermore allow a = ∗ or b = ∗, to denote an arbitrary but finite
number. For Fexa

1 we also sometimes write Exa.
Next we introduce several variants of monotone learning. The first definition

of monotone learning is due to Jantke [Jan91], in the context of function learning.
For language learning, monotonicity was first studied in [LZ93]. We define the
following sequence acceptance criteria for variants of monotone learning.

SMon = {(p, T ) | ∀i, j : i < j ⇒ Wp(i) ⊆ Wp(j)};
Mon = {(p, T ) | ∀i, j : i < j ⇒ Wp(i) ∩ content(T ) ⊆ Wp(j) ∩ content(T )};

WMon = {(p, T ) | ∀i, j : i < j ∧ content(T [j]) ⊆ Wp(i) ⇒ Wp(i) ⊆ Wp(j)}.
4 h(∅) denotes the initial conjecture made by h.



134 J. Case and T. Kötzing

For any sequence generating operator β and any combination of sequence
acceptance restrictions δ, Txtβδ is a learning criterion. A learner h Txtβδ-
learns the set

Txtβδ(h) = {L ∈ E | ∀T ∈ Txt(L) : δ(β(h, T ), T )}.
Abusing notation, we also use Txtβδ to denote the set of all Txtβδ-learnable

classes (learnable by some learner). For a set C of learners and a learning criterion
I we write CI to restrict the learning criterion to allow only learners from C for
learning.

To make the definitions from the introduction more formal, we say that a
learning criterion I separates from a learning criterion I ′ iff there is an PI-
learnable set L which is not PI ′-learnable (separation is thus with respect to
computable learners). I separates topologically from a I ′ iff there is a uniformly
linear-time decidable5 set L which is LinFI-learnable, but not RI ′-learnable.
Thus, topological separation implies separation. We say that I separates com-
putationally from I ′ iff I and I ′ separate, but not topologically.

If all PI ′-learnable sets are PI-learnable, but I separates topologically from
I ′, then we denote this very strong separation by I ′ ⊂topo I.

3 Topological Constraints

In this section we collect some well-known topological constraints on learning. We
start with some strong and important characterizations of RTxtGEx-learning,
followed by two more topological restrictions, including the famous theorem
about locking sequences (Theorem 3, introduced in [BB75]).

Theorem 1. Let L ⊆ E . The following are equivalent.

(1) L ∈ RTxtGEx.
(2) For each L ∈ L there is a finite set DL ⊆ L such that for all L′ ∈ L we have

that DL ⊆ L′ ⊆ L implies L′ = L.
(3) Let h be the function mapping a given finite sequence of numbers σ to the

least index e such that We is ⊆-minimal in L with content(σ) ⊆ We (the
least index for content(σ), if no such e exists). Then h RTxtGEx-learns L.

(4) L is prudently RTxtSdConsConvEx-learnable.6
(5) L is optimally RTxtSdEx-learnable.7

Proof. The equivalence of (1) and (2) is known as Angluin’s Criterion; Angluin
[Ang80] used an effective variant of this to characterize learnability of uniformly
computable sets. The version stated here is due to [OSW86], but see also [dJK96,
5 A set is uniformly linear-time decidable iff there is an enumeration (Li)i∈N of all the

sets from L such that λi, x x ∈ Li is computable in linear time.
6 Prudence refers to a learner making only conjectures for languages to be learned.
7 Optimal language learning was discussed in [CM11] and refers to learners which

could not converge earlier on a given text for a language to be learned without
converging later on another text for a language to be learned.



Topological Separations in Inductive Inference 135

JORS99]. We have “(2) ⇒ (3)” directly, as well as “(3) ⇒ (4)”. The implication
“(4) ⇒ (5)” was shown in [CM11] (with a slightly weaker condition and a stronger
result); finally, the implication “(5) ⇒ (1)” is trivial.

Note that Theorem 1 also implies that TxtGEx and TxtSdEx do not sepa-
rate topologically. The finite sets DL which exist for a given L with respect to a
learnable set L of languages as given by Theorem 1, part (2), are called telltales.

Another known implication of RTxtGEx-learnability is given by the fol-
lowing proposition and was essentially already known to Gold [Gol67] (this is
basically in the statement that no set of languages containing all finite languages
and at least one infinite language can be TxtGEx-learned).

Proposition 2. Let L be a set of language. If L is RTxtGEx-learnable, then,
for each infinitely ascending chain (Li)i∈N, we have

⋃
i∈N

Li �∈ L. Furthermore,
the converse does not hold.

Proof. Let (Li)i∈N be an infinitely ascending chain and suppose there is L ∈ L
such that

⋃
i∈N

Li ⊆ L. It suffices to show that there is x ∈ L \⋃i∈N
Li. From

Theorem 1 we know that there is D such that D ⊆ L and, for all i ∈ N, D �⊆ Li.
Thus, there is x ∈ D \⋃i∈N

Li.
To show that the converse does not hold, consider the set of all co-singletons,

together with N. It is well-known that this set is not learnable (N does not have
a finite telltale), but there are no infinitely ascending chains.

A sequence σ is called a locking sequence for h on L iff content(σ) ⊆ L, h(σ) is
an index for L and for all ρ with content(ρ) ⊆ L we have h(σ ρ) = h(σ) [BB75].

The following well known theorem is probably the most frequent use of topo-
logical restrictions to learning.

Theorem 3 ([BB75]). Let L be TxtGEx-learned by a learner h. Then, for
each sequence σ with content(σ) ⊆ L there is τ with content(τ) ⊆ L such that
σ τ is a locking sequence for h on L.

Note that this generalizes trivially to the case of iterative learning, and also
to cases of Fex-learning (see [Cas99]).

Finally, we can make similar characterizations also about strongly monotone
learning, which has many regularities (see also [HKK12]).

Theorem 4. Let L′ ⊆ E ; let L contain all of L′ and, for each finite set D, the
set

⋂{L ∈ L′ | D ⊆ L}, where
⋂ ∅ = N. Then, for each finite set D, there is a

minimum L ∈ L with D ⊆ L and the following are equivalent.

(1) L is RTxtGSMonEx-learnable.
(2) L′ is RTxtGSMonEx-learnable.
(3) For each L ∈ L, there is a finite D ⊆ N such that L is the minimum element

of L with D ⊆ L.
(4) Let h be the function mapping a given finite set D to the least index

e such that We is the minimum element in L with D ⊆ We. Then h
RTxtGSMonEx-learns L.



136 J. Case and T. Kötzing

4 Topological Separations

In this section we present our new topological separations (and non-separations)
concerning four different areas of learning criteria. We start with Fex-learning,
followed by monotone learning. Third we consider iterative learning followed by
a special variant of iterative learning where a learner can query for past data
(feedback learning).

4.1 Fex Learning

For Fex-learning we get topological separations in the hierarchy concerning the
number of mistakes allowed (Theorem 5; this is already implicit in [BC96, The-
orem 2]) (see also [Cas99] for a computational proof). However, in contrast to
the situation for computable learners, the hierarchy in the maximal number of
distinct conjectures collapses to its first level, for all error bounds (Theorem 6).

Theorem 5 ([BC96, Theorem 2]). For all a, we have that TxtGFexa+1
1 and

TxtGFexa
∗ separate topologically.

Theorem 6. For all a, b, we have that

RTxtGFexa
1 = RTxtGFexa

b .

In particular, TxtGFexa
b and TxtGFexa

1 do not separate topologically.

Proof. The inclusion “⊆” is trivial. For the converse, let L ∈ TxtGFexa
b as

witnessed by h ∈ R. We now define some uncomputable functions. Let D ∈ R
be such that, for all σ,

D(σ) = {h(τ) | τ ⊆ σ ∧Wh(τ) =
∗ Wh(σ)}.

Let h′ ∈ R be such that, for all σ, h′(σ) is minimal with

Wh′(σ) = content(σ) ∪
⋂

e∈D(σ)

We.

Let L ∈ L and T a text for L. Then D on T converges to a finite set of indices
which are finite variants of L (as h only outputs finitely many syntactically
distinct conjectures which are eventually all finite variants of L). Let D0 be this
set; note that some conjectures in D0 may make more than a mistakes. However,
D0 contains some element e0 with We0 =a L. We now have, for all i large enough,

Wh′(T [i]) = content(T [i]) ∪
⋂

e∈D0

We.

As
⋂

e∈D0
We is a finite variant of L, h′ on T converges to an index e1 for a finite

variant of L with L ⊆ We1 . Furthermore, we have We1 ⊆ L ∪We0 , which shows
We1 =a L as desired.



Topological Separations in Inductive Inference 137

4.2 Monotone Learning

In this section we want to take a look at some variants of monotone learning.
Theorem 7 gives the results on what separates topologically and what does not.

Theorem 7. We have

(1) RGWMonEx = RGEx; and
(2) GSMonEx ⊂topo GMonEx ⊂topo GEx.

Proof. Regarding (1), the direction “⊆” is trivial; for the direction “⊇” we use
the characterization given in Theorem 1 to see that L is conservatively learnable,
which implies learnable by a weakly monotone learner.

Regarding GMonEx ⊂topo GEx, consider the set of all co-singleton lan-
guages. These are clearly LinFGEx-learnable by the learner which conjectures
the language which misses only the least not-presented number. Suppose, by way
of contradiction, that this set of languages is RGMonEx-learnable, as witnessed
by some learner h ∈ R. Let σ be a locking sequence of h on N \ {0}. Let a be
the least element of N

+ \ content(σ), and let σ′ be such that σσ′ is a locking
sequence for h on N \ {a}. Then we have a ∈ Wh(σ) and a �∈ Wh(σσ′), but, for all
a′ not in content(σσ′), σσ′ can be extended to a text for N\{a′}, a contradiction
to h monotone.

Regarding GSMonEx ⊂topo GMonEx, consider L to contain the set of all
even numbers 2N, as well as, for each a ∈ N, the language La = {2a + 1} ∪
{2b | b ≤ a}. L can be LinFGMonEx-learned by conjecturing 2N until an
odd number 2a + 1 is presented, at which time La is conjectured. Suppose, by
way of contradiction, L can be RGSMonEx-learned, as witnessed by some
learner h ∈ R. Let σ be a locking sequence of h on 2N. Let a be such that 2a
is the maximal element in σ (without loss of generality, σ contains at least one
element). Then σ can be extended to a text for La; thus, let σ′ be such that σσ′

is a locking sequence for h on La. Thus, we have Wh(σ) = 2N, but 2N �⊆ Wh(σσ′),
a contradiction.

4.3 Iterative Learning

Iterative learning requires the learner to forget past data; thus, it is not surprising
that many separations involving iterative learning are topological in nature.
We first repeat the well-known proof that iterative learning is less powerful
than TxtGEx-learning from the introduction [KS95, LZ96], followed by the
topological separation of iterative and consistent iterative learning (we omit the
proof due to space constraints). Finally, we consider coding tricks in iterative
learning.

Theorem 8. We have TxtItEx ⊂topo TxtGEx.

Proof. Let L be the set containing N
+ as well as every finite language containing

0. This set of languages is clearly TxtGEx-learnable in linear time. Suppose,



138 J. Case and T. Kötzing

by way of contradiction, L is RTxtItEx-learned by a learner h ∈ R. We let
h∗ be the TxtGEx-learner equivalent to h. Let σ be a locking sequence for h∗

on N
+. Let x and y be two elements from N

+ \ content(σ). Then the sequences
σx0∞ and σy0∞ are for two different languages to be learned by h, but h will
converge to the same index on both (if any).

Theorem 9. We have TxtItConsEx ⊂topo TxtItEx.

In [JMZ13] the authors investigate the interesting question of how much cod-
ing helps with iterative learning. Loosely speaking, coding refers to an iterative
learner exploiting the access to the current conjecture for storage purposes, by
coding the information to be stored into the conjecture. The authors defined
and analyzed a very interesting collection of learning criteria which aim at re-
stricting the ability to exploit such coding. Here we just want to mention two
of these learning criteria. One of the most restricted criteria requires the learner
to exclusively use hypotheses from a Friedberg numbering, a complete and effec-
tive numbering of all computably enumerable sets, without repetitions. A much
more relaxed learning criterion called extensional TxtItEx allows using the
W -system for conjectures; however, it is required that, when presented with
equivalent conjecture and identical input elements, the learner must produce
equivalent conjectures.

It is easy to see that these two restrictions do not separate topologically,
but that in fact they allow for learning the same sets of languages by learners
from R. However, the separation of TxtItEx and extensional TxtItEx shown
in [JMZ13] makes use only of topological arguments and a very simple set of
languages, so that we get the following theorem.

Theorem 10 ([JMZ13, Theorem 22]). TxtItEx and extensional TxtItEx
separate topologically.

Furthermore, it is easy to see that the set from [JMZ13] witnessing the topo-
logical separation can be modified to contain infinite languages only.

4.4 Feedback Learning

There are many extensions of iterative learning studied in the literature. In
this section we are interested in feedback learning, where a learner is allowed to
query for past data [Wie76, LZ96]. In particular, we are interested in hierarchies
spanned by feedback learners [CJLZ99].

We will model feedback learning with upto k ∈ N (parallel) feedback queries
as a specific sequence generating operator Fbk. The learner has the same infor-
mation in each iteration as in iterative learning, but can first choose a set of up
k elements and then use the additional information of which of these elements
have been presented before to compute the next conjecture.

The first theorem will show that, in general, the separations in the hierarchy of
feedback learning are witnessed by topological separations. However, unlike for



Topological Separations in Inductive Inference 139

computable learners (see [CJLZ99]), when restricted to sets of infinite languages
only, the hierarchy collapses to its first layer (Theorem 13). First we note that
the hierarchy holds in general also topologically.

Theorem 11. For all k > 0, we have that TxtFbkEx and TxtFbk−1Ex∗

separate topologically. In particular, TxtFbk−1Ex ⊂topo TxtFbkEx.

Proof. Let k ∈ N. For each i < k and each x, let ai(x) = 2(kx + i). Note that
λi, x ai(x) is 1−1 with range 2N (with i ranging over natural numbers < k). For
each t, x let bt(x) = 2〈t, x〉+ 1. We have λt, x bt(x) is 1− 1 with range 2N+ 1.

Let L contain the following languages.

L̃ = 2N;

∀t ∈ N : Lt =
⋃
i<k

{ai(x) | x < t} ∪ range(bt);

∀j < k ∀t, y ∈ N : Lj,t,y =
⋃
i<k

{ai(x) | x < t} ∪ {bt(x) | x ≤ y} ∪ {aj(t+ y)}.

We have L ∈ TxtFbkEx by a learner h0 as follows. The initial conjecture
is for L̃. When an element bt(x) is presented, query for {ai(t + x) | i < k}.
If none of the queries is positive, conjecture and index for Lt; if aj(t + x) is
positive, conjecture an index for Lj,t,x (no other results are consistent with L)
and keep this conjecture henceforth. If the current conjecture is for Lt and aj(x)
is presented for some x ≥ t, output a conjecture for Lj,t,x−t and never change.
In all other cases, do not change the conjecture. It is straightforward to verify
that this learner will TxtFbkEx-learn L.

Suppose, by way of contradiction, L ∈ TxtFbk−1Ex∗ as witnessed by some
learner h. Let σ be a locking sequence for h on L̃ (the final conjecture will, thus,
be for a finite variant of L̃). Let t be such that content(σ) ⊆ ⋃

i<k{ai(x) | x < t}.
Let τ be a sequence of all elements in

⋃
i<k{ai(x) | x < t}. Consider the text

σ τ bt for Lt. Then there are j < k and y ∈ N such that (i) after σ τ bt[y], the
conjecture is for a finite variant of Lt; (ii) h is converged on σ τ bt after σ τ bt[y];
and (iii) h, while being presented the data σ τ bt[y+1], never queried aj(t+ y).
These j and y exist as only k − 1 queries are allowed per iteration, but k more
item are possible each iteration.

Now we have that h on the text σ τ aj(t + y) bt[y] bt(y)
∞ for Lj,t,y will

converge to the same conjecture as on σ τ bt, a contradiction (the two languages
are not finite variants).

The class witnessing the separation in the just prior proof employed finite as
well as infinite languages. Already in [CJLZ99] it was noted that the hierarchy
collapses to the first level when concerned with sets of infinite languages only,
if the class to be learned can be indexed such that membership is uniformly
decidable. We will generalize this result by showing more generally how, given
any text for an infinite language from a countable set, one can extract a listing
of all natural numbers infinitely often. Such a listing in learning was termed an



140 J. Case and T. Kötzing

onto counter in [Köt11] (see also [CM08]) and, with the help of a single feedback
query, can be used to simulate fat text, a text where each datum is presented
infinitely often (see [JORS99, Proposition 3.37]); the details can be found in the
proof of Theorem 13.

Lemma 12. Let L be a countable set of infinite languages. Then there is a func-
tion f : N → N such that, for each L ∈ L, f restricted to L has infinitely many
pre-images for each element of N. Furthermore, if L is uniformly computably
enumerable,8 then f is computable.

Proof. Let (Li)i∈N be an enumeration of the elements of L. We define the
function f inductively via a growing set D of pairs 〈x, y〉; we will define f as
mapping any such x to its associated y.

In the formal argument we will use a function g mapping any finite set of
pairs D and an i to the minimum element x ∈ Li which is not the left part of
a pair in D (for the “furthermore” clause we will choose the first x ∈ Li found
which is larger than any left part of a pair in D). This always exists, as all Li

are supposed infinite and there are only finitely many pairs in D. We let

D0 = ∅; (1)
D〈i,y,t〉+1 = D〈i,y,t〉 ∪ {〈g(D〈i,y,t〉, i), y〉}. (2)

Let D =
⋃

i∈N
Di. It is clear that for each x there is at most one y with 〈x, y〉 ∈ D.

Thus, D is the graph of a (partial) function; let f be an arbitrary extension of
this function.

To show the correctness, let L ∈ L and let i be such that Li = L; let y ∈ N.
For all t, from the definition of D〈i,y,t〉+1 we see that there is an xt ∈ Li such
that 〈xt, y〉 ∈ D. Thus, for all t, f(xt) = y as desired.

The “furthermore” clause is straightforward.

The idea is now as follows. When trying to learn a set of infinite languages L,
we can use an associated f to produce a fat text as follows: if presented with a
data from an L ∈ L, mapping all data with f will enumerate all of N infinitely
often. This effectively produces an onto counter. Using these numbers for the
queries will allow for learning iteratively with fat text, which is known to equal
TxtGEx-learning [JORS99, Proposition 3.37].

See also [CJLZ99, Theorem 5] for a similar theorem, specialized to uniformly
computable sets of infinite languages, but with stronger conclusion, which can
be concluded with the “furthermore” clause in Lemma 12 and Angluin’s original
telltale condition for uniformly decidable sets of languages [Ang80].

Theorem 13. Let L be a set of infinite computably enumerable languages.
Then

L ∈ RTxtFb1Ex ⇔ L ∈ RTxtGEx.

8 A set of languages L is uniformly computably enumerable iff there is r ∈ R such that
L = {Wr(i) | i ∈ N}.



Topological Separations in Inductive Inference 141

In particular, TxtGEx and TxtFb1Ex do not separate topologically on sets
of infinite languages.

Proof. The implication “⇒” is trivial. For the converse, let L ∈ TxtGEx.
Let f be a function as given by Lemma 12 for L (or even all infinite com-

putably enumerable sets). Let (Li)i∈N be an enumeration of L. According to the
characterization from Theorem 1, we know that L is learnable via telltale sets.
We let p be a 1-1 function such that p(D) is an index for Li with i minimal such
that Li contains all of D and the telltale for Li is contained in D (an index for
∅, if no such i exists).

Next we define a 1-feedback learner h ∈ R. For this we note that a 1-feedback
learner can make arbitrarily many feedback queries m at the cost of changing
its conjecture for m iterations (ignoring the new input data). Thus, whenever a
learner makes a mind change anyway, arbitrarily much data can be queried.

The initial hypothesis of h is p(∅). When presented with datum z and previous
hypothesis p(D), query for f(z). If the query comes out negative or f(z) is
already included in the language corresponding to the current hypothesis, h keeps
its old conjecture p(D). Otherwise, suppose the current conjecture of h is for some
Lj; then h makes a mind change and, using additional iterations as described
above, h queries all the data of all the (finite) telltales of the languages (Li)i<j ,
gathering the positives in a set D′. The conjecture of h is now p(D∪D′∪{f(z)}).
Using f , h effectively simulates iterative learning from fat text, a text where each
datum is presented infinitely often; this is known to equal RTxtGEx-learning
[JORS99, Proposition 3.37].

Regarding correctness, let L ∈ L and let T be a text for L. From the choice
of f we know that h queries each item infinitely often. In particular, every L′

with L \L′ �= ∅ previous in the order of (Li)i∈N will be discarded eventually. As
soon as all the elements from the telltale of L have been presented, these will
be queried at the next mind change, after which the conjecture will stay correct.
It follows from the telltale condition that no incorrect conjecture can be kept
indefinitely.

References

[Ang80] Angluin, D.: Inductive inference of formal languages from positive data.
Information and Control 45, 117–135 (1980)

[BB75] Blum, L., Blum, M.: Toward a mathematical theory of inductive inference.
Information and Control 28, 125–155 (1975)

[BC96] Baliga, G., Case, J.: Learnability: Admissible, co-finite, and hypersimple
sets. Journal of Computer and System Sciences 53, 26–32 (1996)

[Cas99] Case, J.: The power of vacillation in language learning. SIAM Journal on
Computing 28, 1941–1969 (1999)

[CJLZ99] Case, J., Jain, S., Lange, S., Zeugmann, T.: Incremental concept learning
for bounded data mining. Information and Computation 152, 74–110 (1999)

[CL82] Case, J., Lynes, C.: Machine inductive inference and language identifica-
tion. In: Nielsen, M., Schmidt, E.M. (eds.) ICALP 1982. LNCS, vol. 140,
pp. 107–115. Springer, Heidelberg (1982)



142 J. Case and T. Kötzing

[CM08] Case, J., Moelius, S.: U-shaped, iterative, and iterative-with-counter learn-
ing. Machine Learning 72, 63–88 (2008)

[CM11] Case, J., Moelius, S.: Optimal language learning from positive data. Infor-
mation and Computation 209, 1293–1311 (2011)

[dJK96] de Jongh, D., Kanazawa, M.: Angluin’s thoerem for indexed families of
r.e. sets and applications. In: Proc. of COLT (Computational Learning The-
ory), pp. 193–204 (1996)

[Gol67] Gold, E.: Language identification in the limit. Information and Control 10,
447–474 (1967)

[HKK12] Heinz, J., Kasprzik, A., Kötzing, T.: Learning in the limit with lattice-
structured hypothesis spaces. Theoretical Computer Science 457, 111–127
(2012)

[Jan91] Jantke, K.: Monotonic and non-monotonic inductive inference of functions
and patterns. In: Dix, J., Schmitt, P.H., Jantke, K.P. (eds.) NIL 1990. LNCS,
vol. 543, pp. 161–177. Springer, Heidelberg (1991)

[Jec78] Jech, T.: Set Theory. Academic Press, NY (1978)
[JMZ13] Jain, S., Moelius, S., Zilles, S.: Learning without coding. Theoretical Com-

puter Science 473, 124–148 (2013)
[JORS99] Jain, S., Osherson, D., Royer, J., Sharma, A.: Systems that Learn: An In-

troduction to Learning Theory, 2nd edn. MIT Press, Cambridge (1999)
[Köt09] Kötzing, T.: Abstraction and Complexity in Computational Learning in the

Limit. PhD thesis, University of Delaware (2009),
http://pqdtopen.proquest.com/#viewpdf?dispub=3373055

[Köt11] Kötzing, T.: Iterative learning from positive data and counters. In: Kivinen,
J., Szepesvári, C., Ukkonen, E., Zeugmann, T. (eds.) ALT 2011. LNCS,
vol. 6925, pp. 40–54. Springer, Heidelberg (2011)

[KS95] Kinber, E., Stephan, F.: Language learning from texts: Mind changes, lim-
ited memory and monotonicity. Information and Computation 123, 224–241
(1995)

[LZ93] Lange, S., Zeugmann, T.: Monotonic versus non-monotonic language learn-
ing. In: Proc. of Nonmonotonic and Inductive Logic, pp. 254–269 (1993)

[LZ96] Lange, S., Zeugmann, T.: Incremental learning from positive data. Journal
of Computer and System Sciences 53, 88–103 (1996)

[OSW83] Osherson, D., Stob, M., Weinstein, S.: Note on a central lemma of learning
theory. Journal of Mathematical Psychology 27, 86–92 (1983)

[OSW86] Osherson, D., Stob, M., Weinstein, S.: Systems that Learn: An Introduction
to Learning Theory for Cognitive and Computer Scientists. MIT Press,
Cambridge (1986)

[OW82] Osherson, D., Weinstein, S.: Criteria of language learning. Information and
Control 52, 123–138 (1982)

[RC94] Royer, J., Case, J.: Subrecursive Programming Systems: Complexity and
Succinctness. Research Monograph in Progress in Theoretical Computer
Science. Birkhäuser, Boston (1994)

[Rog67] Rogers, H.: Theory of Recursive Functions and Effective Computability.
McGraw Hill, New York (1987); reprinted by MIT Press, Cambridge (1987)

[WC80] Wexler, K., Culicover, P.: Formal Principles of Language Acquisition. MIT
Press, Cambridge (1980)

[Wie76] Wiehagen, R.: Limes-Erkennung rekursiver Funktionen durch spezielle
Strategien. Elektronische Informationverarbeitung und Kybernetik 12,
93–99 (1976)

http://pqdtopen.proquest.com/#viewpdf?dispub=3373055

	Topological Separations in Inductive Inference
	1 Introduction
	2 Mathematical Preliminaries
	2.1 Learning Criteria

	3 Topological Constraints
	4 Topological Separations
	4.1 Fex Learning
	4.2 Monotone Learning
	4.3 Iterative Learning
	4.4 Feedback Learning

	References




