
Theoretical Computer Science 620 (2016) 33–45
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Topological separations in inductive inference

John Case a, Timo Kötzing b,∗
a Department of Computer and Information Sciences, University of Delaware, Newark, DE 19716, USA
b Department 1: Algorithms and Complexity, Max-Planck-Institut für Informatik, 66123 Saarbrücken, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 30 October 2015

Keywords:
Inductive inference
Language learning
Non-computable learning
Topological

Re learning in the limit from positive data, a major concern is which classes of languages
are learnable with respect to a given learning criterion. We are particularly interested
herein in the reasons for a class of languages to be unlearnable. We consider two types
of reasons. One type is called topological where it does not help if the learners are allowed
to be uncomputable (an example of Gold’s is that no class containing an infinite language
and all its finite sub-languages is learnable — even by an uncomputable learner). Another
reason is called computational (where the learners are required to be algorithmic). In
particular, two learning criteria might allow for learning different classes of languages from
one another — but with dependence on whether the unlearnability is of type topological
or computational.
In this paper we formalize the idea of two learning criteria separating topologically in
learning power. This allows us to study more closely why two learning criteria separate in
learning power. For a variety of learning criteria, concerning vacillatory, monotone, (several
kinds of) iterative and feedback learning, we show that certain learning criteria separate
topologically, and certain others, which are known to separate, are shown not to separate
topologically. Showing that learning criteria do not separate topologically implies that any
known separation must necessarily exploit algorithmicity of the learner.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The learning theory of this paper pertains to trial and error learning of (algorithmic) descriptions, i.e., grammars or
programs, for formal languages L. This kind of learning is sometimes called learning in the limit, and herein it is such learning
from positive data only re such L. The languages are taken without loss of generality to be computably enumerable sets of
non-negative integers (i.e., natural numbers). As an example: a learner h (either algorithmic or not) is presented, in some
order, all and only the even numbers, and, after it sees for a while only multiples of 4, it outputs some description of the
set of multiples of 4. Then, when, h sees a non-multiple of 4, it outputs a description of the entire set of even numbers.

Many criteria for saying whether a learner h is successful on a language L have been proposed in the literature. Gold,
in his seminal paper [11], gave a first, simple learning criterion, we call TxtGEx-learning,1 where a learner is successful iff,
on every text for L (a listing of all and only the elements of L), it eventually stops changing its conjectures, and its final
conjecture is a correct description for L (this latter is the explanatory part of TxtGEx). Trivially, each single, describable

* Corresponding author.
E-mail addresses: case@udel.edu (J. Case), koetzing@mpi-inf.mpg.de (T. Kötzing).

1 Txt stands for learning from a text (list) of positive examples; G stands for Gold, who first described this mode of learning in the limit [11]; Ex stands
for explanatory.
http://dx.doi.org/10.1016/j.tcs.2015.10.036
0304-3975/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2015.10.036
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:case@udel.edu
mailto:koetzing@mpi-inf.mpg.de
http://dx.doi.org/10.1016/j.tcs.2015.10.036
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2015.10.036&domain=pdf

34 J. Case, T. Kötzing / Theoretical Computer Science 620 (2016) 33–45
language L has a suitable constant function as an TxtGEx-learner (this learner constantly outputs a description for L). Thus,
we are interested instead in knowing for which classes of languages L there is a single learner h learning each member of L.
A wide range of learning criteria including TxtGEx-learning have been investigated (see, for example, the textbook [17]).

Already Gold [11] found that certain classes of languages are not TxtGEx-learnable because of what was later called
topological considerations,2 e.g., when trying to TxtGEx-learn a class of languages containing an infinite language and all
the finite subsets of it, the learner cannot distinguish between the infinite set and any of its finite subsets as, at any time,
the learner has seen only finitely much positive data (and is missing information about the complement of the language);
furthermore, it turns out, for this example, not even uncomputable h can learn the class. Angluin [1] described another
essentially topological restriction of TxtGEx-learning. Intuitively, when one of these restrictions is not met, the learner just
does not get enough information to be successful, regardless of its power. We collect a number of previously known topo-
logical constraints on TxtGEx-learning in Section 3, along with such constraints for so-called strongly monotone learning.

A lot of work re the learning theory area of the present paper centers around deciding whether one learning criterion I
allows for learning classes of languages which are not learnable in another learning criterion I ′ (we then say that I separates
from I ′). We are interested herein in analyzing more closely the reasons for learning criteria to separate. In practice, such
separations of learning criteria either involve intricate computational (or algorithmicity) arguments (such as program self-
reference arguments or reductions to algorithmically undecidable sets) or topological arguments. We give next an example
of each.

A learner is said to be consistent if, at any point, the language described by its conjecture at that point contains all the
data known at that same point. We write consistent TxtGEx-learning as TxtGConsEx when only computable learners are
considered. It is well known that TxtGEx separates from TxtGConsEx [24]. An example class that cannot be TxtGEx-learned
consistently is the class of all non-empty languages where the least element is a coded description for the language (a nu-
merical name of a description in some acceptable numbering of all computably enumerable sets). It is clear that the reason
that this class cannot be learned consistently by a computable learner is the algorithmic undecidability of the consistency of
a conjecture. And, indeed, if the learners in both criteria are not restricted to be computable, the same classes of languages
are learnable.

In contrast to this, consider iterative learning [29,28]. At any point, an iterative learner has as its input only its just previ-
ous conjecture and the current text datum. Iterative learning proceeds by processing the text item by item and also requires
the convergence to a correct conjecture (the Ex part), so that we call this learning criterion TxtItEx. It is well-known that
TxtGEx separates from TxtItEx. We consider the following proof of this separation [20,22]. Let L be the class containing
the language N+ (the language of all positive natural numbers) as well as every finite language containing 0. This class of
languages is clearly TxtGEx-learnable, even by learners which map a string of inputs to a conjecture in linear time. How-
ever, this class cannot be TxtItEx-learned. For suppose, by way of contradiction, that some (possibly even non-computable)
h would TxtItEx-learn this class of languages. Then, when being fed positive numbers, h will eventually output a conjecture
for N+ and not change conjecture any more. If now, after some more positive numbers, a 0 is presented, h has “forgotten”
which positive numbers were presented. A more formal proof can be found after the statement of Theorem 4.4 below.
This shows how iterative learning leaves the learner at an informational disadvantage; even removing any requirement of
computability for the learner cannot enable this iterative learning.

We would like to call separations of the first kind computational, and separations of the second kind topological. Note,
though, that the separating class in the second/topological example can be indexed in such a way that membership in
the languages in the class is uniformly decidable in linear time, while in the first/computational example the separating
class was not a uniformly decidable class at all. Thus, we formalize our idea of topological separation versus computational
separation herein as follows. We say that a learning criterion I separates topologically from a learning criterion I ′ iff there is a
uniformly linear-time decidable class of languages I-learnable by a linear-time computable learner, but not I ′-learnable even
by non-computable learners (see Section 2 for a more formal definition). Why do we require the uniform decision procedure
and the learner to be computable in linear time? There are at least two reasons. First, if a separation was witnessed only
by classes which are learnable by total learners, but not computationally very simple learners, then one can hardly claim
that there is no computational component to the separation; the same holds for the uniform decision procedure. Second,
our separations are stronger than if we would require only uniform computability. If two learning criteria separate, but not
topologically, then we say that these learning criteria separate computationally.

With these definitions we now have that TxtGEx and TxtItEx separate topologically, while TxtGEx and TxtGConsEx
separate only computationally. However, although some uncomputable learners can test consistency (in general they would
have to decide the halting problem) we do get that some learning criteria do separate topologically from their consistent
variant: TxtItEx and TxtItConsEx separate topologically, as our Theorem 4.5 in Section 4 below shows.

We next summarize informally some of our other main theorems also in Section 4 below.

2 These topological considerations arise, for example, for TxtGEx-learning, because learning from positive data is missing information, e.g., the negative
data. They are involved in unlearnability results which hold for all learners h of the relevant type fitting the criterion at hand — including, in particular, all
such uncomputable hs. The associated proofs of unlearnability typically feature directly or indirectly plays of a winning strategy for a Banach–Mazur game
where the goal set is co-meager — as in Baire category theory [14] — and Baire category theory is part of topology. The connection to Baire category theory
was first observed in [23] (see also [24]).

J. Case, T. Kötzing / Theoretical Computer Science 620 (2016) 33–45 35
For k > 0, TxtGFexk-learning is just like TxtGEx-learning except that instead of being restricted to exactly 1 correct
output conjecture in the limit, TxtGFexk-learning allows up to k correct output conjectures in the limit. Computationally,
i.e., with algorithmic learners h, from [4], these criteria form a strict learning power hierarchy with increasing k; however,
surprisingly, from our Theorem 4.2 below, topological separation fails, and the hierarchy collapses when uncomputable
learners are also allowed.

A strong non-U-shaped iterative (TxtItSNUEx) learner h [10] additionally satisfies: on any text T for a language L to be
learned, if h on T ever outputs a correct conjecture for L, then h, forever after on T , must output this syntactically same
conjecture. It is shown in [6] that TxtItEx separates from TxtItSNUEx. From Theorem 4.6 below in Section 4, this separation
is even topological.

An iterative with counter (TxtItCtrEx) learner h [9] additionally has input access to the number of not necessarily distinct
data items seen so far. In [9] it is shown that TxtItCtrEx separates from TxtItEx. Surprisingly, from Theorem 4.7 below in
Section 4, this separation is actually topological.

TxtFbkEx-learning is just like TxtItEx-learning except that the learner, at any point, can, re the data presented before
that point, simultaneously ask for each of up to k numbers whether it is in that prior presented data, and the learner
can react to the answers. In [5] it is shown that these criteria also form a strict learning power hierarchy computationally
with increasing k; however, surprisingly, from our Theorem 4.9 below, the hierarchy also holds topologically. But, from our
Theorem 4.10 below, the hierarchy collapses topologically when the potential separation witnesses L are restricted to contain
no finite languages.3

We believe that our work in this paper gives structural insight into learning criteria and their differences. Furthermore,
topological separations embody a certain economy when showing learning criteria to separate: corollaries to each topolog-
ical separation are separations with respect to learner-restricted criteria (such as partial, total or linear time computable
learners) and with respect to different levels of language complexities (such as arbitrary, uniformly decidable or uniformly
decidable in linear time language classes). Finally, this work also shows how a study of uncomputable learners can help
understand learning with restricted computational power.

This paper is an extended version of [7].

2. Mathematical preliminaries

Unintroduced complexity theoretic notation follows [26]. Other unintroduced notation follows [27].
N denotes the set of natural numbers, {0, 1, 2, . . .}. We let N+ = N \ {0}. The symbols ⊆, ⊂, ⊇, ⊃ respectively denote

the subset, proper subset, superset and proper superset relation between sets. ∅ denotes both the empty set and the empty
sequence. R denotes the set of all total functions N → N; LinF is the set of all linear-time computable such functions.

With dom and range we denote, respectively, domain and range of a given function. We sometimes denote a partial
function f of n > 0 arguments x1, . . . , xn in lambda notation (as in Lisp) as λx1, . . . , xn f (x1, . . . , xn). For example, with
c ∈N, λx c is the constantly c function of one argument.

We let 〈·, ·〉 be a linear time computable, linear time invertible, pairing function [26] (a pairing function is a 1–1 and
onto mapping N × N → N). Whenever we consider tuples of natural numbers as input to a function, it is understood that
the general coding function 〈·, ·〉 is used to code the tuples into a single natural number. We similarly fix a coding for finite
sets and sequences, so that we can use those as input as well.

If a function f is not defined for some argument x, then we denote this fact by f (x)↑, and we say that f on x diverges;
the opposite is denoted by f (x)↓, and we say that f on x converges. If f on x converges to p, then we denote this fact by
f (x)↓ = p.

The special symbol ? is used as a possible hypothesis (meaning “no change of hypothesis”). We write f → p to denote
that f : N → N ∪ {?} converges to p, i.e., ∃x0 : f (x0) = p ∧ ∀x ≥ x0 : f (x)↓ ∈ {?, p}.4 P and R denote, respectively, the set of
all partial computable and the set of all computable functions (mapping N → N).

We let ϕ be any fixed acceptable programming system for P (an acceptable programming system could, for example,
be based on a natural programming language such as C or Java, or on Turing machines). Further, we let ϕp denote the
partial computable function computed by the ϕ-program with code number p. A set L ⊆ N is computably enumerable (ce)
iff it is the domain of a computable function. Let E denote the set of all ce sets. We let W be the mapping such that
∀e : W (e) = dom(ϕe). For each e, we write We instead of W (e). W is, then, a mapping from N onto E . We say that e is an
index, or program, (in W) for We .

The symbol # is pronounced pause and is used to symbolize “no new input data” in a text. For each (possibly infinite)
sequence q with its range contained in N ∪ {#}, let content(q) = (range(q) \ {#}). For any function f and all i, we use f [i]
to denote the sequence f (0), . . . , f (i − 1) (the empty sequence if i = 0 and undefined, if one of these values is undefined).
We denote concatenation of sequences by juxtaposition.

3 This is interesting since most formal linguists model natural languages as infinite sets.
4 f on x converges should not be confused with f converges to.

36 J. Case, T. Kötzing / Theoretical Computer Science 620 (2016) 33–45
2.1. Learning criteria

In this section we formally introduce our setting of learning in the limit and associated learning criteria. We follow [18]
in its “building-blocks” approach for defining learning criteria.

A learner is a partial function from N to N ∪ {?} (note that, for this paper, we do not always require computability of
learners). A language is a ce set L ⊆ N. Any total function T : N → N ∪ {#} is called a text. For any given language L, a text
for L is a text T such that content(T) = L. This kind of text is what learners usually get as information. With Txt(L) we
denote the set of all texts for L.

A sequence generating operator is an operator β taking as arguments a function h (the learner) and a text T and that
outputs a function p. We call p the learning sequence of h given T . Intuitively, β defines how a learner can interact with a
given text to produce a sequence of conjectures.

We define the sequence generating operators G and It (corresponding to the learning criteria discussed in the introduc-
tion) as follows. For all learners h, texts T and all i,

G(h, T)(i) = h(T [i]);

It(h, T)(i) =
{

h(∅), if i = 05;
h(It(h, T)(i − 1), T (i − 1)), otherwise.

Thus, in iterative learning, the learner has access to the previous conjecture, but not to all previous data as in G-learning.
Another interesting sequence generating operator is set-driven learning ([28], denoted Sd). We let, for all learners h and

texts T ,

Sd(h, T)(i) = h(content(T [i])).
Successful learning requires the learner to observe certain restrictions, for example convergence to a correct index. These

restrictions are formalized in our next definition.
A sequence acceptance criterion is a predicate δ on a learning sequence and a text. We give the examples of explanatory

(Ex) and consistent (Cons, [1]) learning, which were discussed in Section 1, as well as conservative learning (Conv, [1]).
Formally, we let, for all conjecture sequences p and texts T ,

Ex(p, T) ⇔ [∃q : p converges to q ∧ content(T) = Wq];
Cons(p, T) ⇔ [∀i : content(T [i]) ⊆ W p(i)];
Conv(p, T) ⇔ [∀i : content(T [i + 1]) ⊆ W p(i) ⇒ p(i) = p(i + 1)].

We combine any two sequence acceptance criteria δ and δ′ by intersecting them; we denote this by juxtaposition (for
example, Cons is meant to be always used together with Ex). We are also interested in the following relaxation of the Ex
restriction called Fex-learning [8,25,4]. Given a, b ∈ N, we let Fexa

b be the restriction that, after finitely many conjectures,
there are only b many conjectures in the remaining learning sequence, and all of them are correct up to a mistakes (incorrect
classifications by a conjecture). Clearly, Ex is the case of a = 0 and b = 1. We furthermore allow a = ∗ or b = ∗, to denote
an arbitrary but finite number. For Fexa

1 we also sometimes write Exa .
Next we introduce several variants of monotone learning. The first definition of monotone learning is due to Jantke [13],

in the context of function learning. For language learning, monotonicity was first studied in [21]. We define the following
sequence acceptance criteria for variants of monotone learning. We let, for all conjecture sequences p and texts T ,

SMon(p, T) ⇔ [∀i, j : i < j ⇒ W p(i) ⊆ W p(j)];
Mon(p, T) ⇔ [∀i, j : i < j ⇒ W p(i) ∩ content(T) ⊆ W p(j) ∩ content(T)];

WMon(p, T) ⇔ [∀i, j : i < j ∧ content(T [j]) ⊆ W p(i) ⇒ W p(i) ⊆ W p(j)].
For any sequence generating operator β and any combination of sequence acceptance restrictions δ, Txtβδ is a learning

criterion. A learner h Txtβδ-learns the set

Txtβδ(h) = {L ∈ E | ∀T ∈ Txt(L) : δ(β(h, T), T)}.
Abusing notation, we also use Txtβδ to denote the set of all Txtβδ-learnable classes (learnable by some learner). For a

set C of learners and a learning criterion I we write CI to restrict the learning criterion to allow only learners from C for
learning.

To make the definitions from the introduction more formal, we say that a learning criterion I separates from a learning
criterion I ′ iff there is an P I-learnable set L which is not P I ′-learnable (separation is thus with respect to computable

5 h(∅) denotes the initial conjecture made by h.

J. Case, T. Kötzing / Theoretical Computer Science 620 (2016) 33–45 37
learners). I separates topologically from a I ′ iff there is a uniformly linear-time decidable6 set L which is LinFI-learnable,
but not RI ′-learnable. Thus, topological separation implies separation. We say that I separates computationally from I ′ iff I
and I ′ separate, but not topologically.

If all P I ′-learnable sets are P I-learnable, but I separates topologically from I ′ , then we denote this very strong separation
by I ′ ⊂topo I .

3. Topological constraints

In this section we collect some well-known topological constraints on learning. We start with some strong and important
characterizations of RTxtGEx-learning, followed by two more topological restrictions, including the famous theorem about
locking sequences (Theorem 3.3, introduced in [2]).

For the characterization of RTxtGEx-learning, we use the following two definitions. A learner is called prudent iff it only
makes conjectures for languages to be learned [24]. A learner h is called optimal iff there is no other learner h′ so that (i)
h′ never converges to a correct conjecture later than h on any text for a language to be learned, and (ii) there is a text for
a language to be learned on which h′ converges strictly earlier [10].

Theorem 3.1. Let L ⊆ E . The following are equivalent.

(1) L ∈RTxtGEx.
(2) For each L ∈L there is a finite set D L ⊆ L such that for all L′ ∈L we have that D L ⊆ L′ ⊆ L implies L′ = L.
(3) Let h be the function mapping a given finite sequence of numbers σ to the least index e such that We is ⊆-minimal in L with

content(σ) ⊆ We (the least index for content(σ), if no such e exists). Then h RTxtGEx-learns L.
(4) L is prudently RTxtSdConsConvEx-learnable.
(5) L is optimally RTxtSdEx-learnable.

Proof. The equivalence of (1) and (2) is known as Angluin’s Criterion; Angluin [1] used an effective variant of this to
characterize learnability of uniformly computable sets. The version stated here is due to [24], but see also [15,17]. We have
“(2) ⇒ (3)” directly, as well as “(3) ⇒ (4)”. The implication “(4) ⇒ (5)” was shown in [10] (with a slightly weaker condition
and a stronger result); finally, the implication “(5) ⇒ (1)” is trivial. �

Note that Theorem 3.1 also implies that TxtGEx and TxtSdEx do not separate topologically. The finite sets D L which
exist for a given L with respect to a learnable set L of languages as given by Theorem 3.1, part (2), are called telltales.

Another known implication of RTxtGEx-learnability is given by the following proposition and was essentially already
known to Gold [11] (this is basically in the statement that no set of languages containing all finite languages and at least
one infinite language can be TxtGEx-learned).

Proposition 3.2. Let L be a set of language. If L is RTxtGEx-learnable, then, for each infinitely ascending chain (Li)i∈N , we have ⋃
i∈N Li /∈L. Furthermore, the converse does not hold.

Proof. Let (Li)i∈N be an infinitely ascending chain and suppose there is L ∈L such that
⋃

i∈N Li ⊆ L. It suffices to show that
there is x ∈ L \ ⋃

i∈N Li . From Theorem 3.1 we know that there is D such that D ⊆ L and, for all i ∈N, D �⊆ Li . Thus, there is
x ∈ D \ ⋃

i∈N Li .
To show that the converse does not hold, consider the set of all co-singletons, together with N. It is well-known that

this set is not learnable (N does not have a finite telltale), but there are no infinitely ascending chains. �
A sequence σ is called a locking sequence for h on L iff content(σ) ⊆ L, h(σ) is an index for L and for all ρ with

content(ρ) ⊆ L we have h(σρ) = h(σ) [2].
The following well known theorem is probably the most frequent use of topological restrictions to learning.

Theorem 3.3. (See [2].) Let L be TxtGEx-learned by a learner h. Then, for each sequence σ with content(σ) ⊆ L there is τ with
content(τ) ⊆ L such that στ is a locking sequence for h on L.

Note that this generalizes trivially to the case of iterative learning, and also to cases of Fex-learning (see [4]). Note that,
for any a, b, a Fexa

b-locking sequence of a learner h on a language L would be a sequence σ of elements from L such that
there is a finite set D with |D| ≤ b of conjectures correct up to a mistakes such that, for each τ with elements from L,
h(στ) ∈ D . That is, D is fixed regardless of extension τ .

6 A set is uniformly linear-time decidable iff there is an enumeration (Li)i∈N of all the sets from L such that λi, x x ∈ Li is computable in linear time.

38 J. Case, T. Kötzing / Theoretical Computer Science 620 (2016) 33–45
Finally, there are similar characterizations also about strongly monotone learning; for characterizations of computable
strongly monotone learning, see [31]. Below we give a characterization for the variant without computability requirements.
Note that strongly monotone learning has many regularities (see also [12]).

Theorem 3.4. Let L′ ⊆ E ; let L be the set of all of L′ and, for each finite set D, the set
⋂{L ∈ L′ | D ⊆ L}, where

⋂∅ = N. Then, for
each finite set D, there is a minimum L ∈L with D ⊆ L and the following are equivalent.

(1) L is RTxtGSMonEx-learnable.
(2) L′ is RTxtGSMonEx-learnable.
(3) For each L ∈L, there is a finite D ⊆N such that L is the minimum element of L with D ⊆ L.
(4) Let h be the function mapping a given finite set D to the least index e such that We is the minimum element in L with D ⊆ We.

Then h RTxtGSMonEx-learns L.

Proof. For each finite set D ,
⋂{L ∈L′ | D ⊆ L} is the minimum L ∈L with D ⊆ L.

We now show “(2) ⇒ (3)”, all other implications (going down and looping around) are straightforward. Let h be a
RTxtGSMonEx-learner for L′ . It suffices to show that each element L ∈ L′ has a finite set D as required, as all other
members of L have such a set by definition. Let L ∈ L′ and let σ be a locking sequence of h on L and let D = content(σ).
From Wh(σ) = L and h strong monotone we know that for each L′ ∈L′ with D ⊆ L′ , L ⊆ L′ . This gives that L is the minimum
language in L′ containing D; by the definition of L, this implies that L is also the minimum language of L containing D . �
4. Topological separations

In this section we present our new topological separations (and non-separations) concerning four different areas of
learning criteria. We start with Fex-learning, followed by monotone learning. Third we consider iterative learning followed
by a special variant of iterative learning where a learner can query for past data (feedback learning).

4.1. Fex learning

For Fex-learning we get topological separations in the hierarchy concerning the number of mistakes allowed (Theo-
rem 4.1; this is already implicit in [3, Theorem 2]) (see also [4] for a computational proof). However, in contrast to the
situation for computable learners, the hierarchy in the maximal number of distinct conjectures collapses to its first level,
for all error bounds (Theorem 4.2).

We will use the following notation in this section. For any a ∈ N and languages L, L′ , we write L =a L′ iff the symmetric
difference of L and L′ contains at most a elements; similarly, we write L =∗ L′ iff the symmetric difference of L and L′ is a
finite set.

Theorem 4.1. (See [3, Theorem 2].) For all a, we have that TxtGFexa+1
1 and TxtGFexa∗ separate topologically.

Proof. Let La+1 = {L | L =a+1
N}. Clearly, La+1 ∈ LinFTxtGFexa+1

1 by a learner which constantly outputs a fixed index for N.
Suppose, by way of contradiction, La+1 is RTxtGFexa∗-learnable as witnessed by some learner h ∈ R. Let σ be a locking

sequence for h on N (in the sense that, after σ , only conjectures for finite variants of N are presented). Choose any a + 1
elements not in σ which are contained in all the (finitely many) languages conjectured by h on sequences extending σ . Let
L be the set of natural numbers except these a + 1 elements. Then, clearly, L ∈ La+1. However, on any text for L extending
σ , h will not output a conjecture for a language with at most a mistakes, a contradiction. �
Theorem 4.2. For all a, b, we have that

RTxtGFexa
1 = RTxtGFexa

b.

In particular, TxtGFexa
b and TxtGFexa

1 do not separate topologically.

Proof. The inclusion “⊆” is trivial. For the converse, let L ∈ TxtGFexa
b as witnessed by h ∈ R. We now define some uncom-

putable functions. Let D ∈ R be such that, for all σ ,

D(σ) = {h(τ) | τ ⊆ σ ∧ Wh(τ) =∗ Wh(σ)}.7
Let h′ ∈R be such that, for all σ , h′(σ) is minimal with

7 We use “τ ⊆ σ ” to denote that σ extends τ .

J. Case, T. Kötzing / Theoretical Computer Science 620 (2016) 33–45 39
Wh′(σ) = content(σ) ∪
⋂

e∈D(σ)

We.

Let L ∈ L and T a text for L. Then D on T converges to a finite set of indices which are finite variants of L (as h only
outputs finitely many syntactically distinct conjectures which are eventually all finite variants of L). Let D0 be this set; note
that some conjectures in D0 may make more than a mistakes. However, D0 contains some element e0 with We0 =a L. We
now have, for all i large enough,

Wh′(T [i]) = content(T [i]) ∪
⋂

e∈D0

We.

As
⋂

e∈D0
We is a finite variant of L, h′ on T converges to an index e1 for a finite variant of L with L ⊆ We1 . Furthermore,

we have We1 ⊆ L ∪ We0 , which shows We1 =a L as desired. �
4.2. Monotone learning

In this section we want to take a look at some variants of monotone learning. Theorem 4.3 gives the results on what
separates topologically and what does not.

Theorem 4.3. We have

(1) RGWMonEx =RGEx; and
(2) GSMonEx ⊂topo GMonEx ⊂topo GEx.

Proof. Regarding (1), the direction “⊆” is trivial; for the direction “⊇” we use the characterization given in Theorem 3.1 to
see that L is conservatively learnable, which implies learnable by a weakly monotone learner.

Regarding GMonEx ⊂topo GEx, consider the set of all co-singleton languages. These are clearly LinFGEx-learnable by the
learner which conjectures the language which misses only the least not-presented number. Suppose, by way of contradiction,
that this set of languages is RGMonEx-learnable, as witnessed by some learner h ∈ R. Let σ be a locking sequence of h on
N \ {0}. Let a be the least element of N+ \ content(σ), and let σ ′ be such that σσ ′ is a locking sequence for h on N \ {a}.
Then we have a ∈ Wh(σ) and a /∈ Wh(σσ ′) , but, for all a′ not in content(σσ ′), σσ ′ can be extended to a text for N \ {a′}, a
contradiction to h monotone.

Regarding GSMonEx ⊂topo GMonEx, consider L to contain the set of all even numbers 2N, as well as, for each a ∈ N, the
language La = {2a + 1} ∪ {2b | b ≤ a}. L can be LinFGMonEx-learned by conjecturing 2N until an odd number 2a + 1 is
presented, at which time La is conjectured. Suppose, by way of contradiction, L can be RGSMonEx-learned, as witnessed
by some learner h ∈R. Let σ be a locking sequence of h on 2N. Let a be such that 2a is the maximal element in σ (without
loss of generality, σ contains at least one element). Then σ can be extended to a text for La; thus, let σ ′ be such that σσ ′
is a locking sequence for h on La . Thus, we have Wh(σ) = 2N, but 2N �⊆ Wh(σσ ′) , a contradiction. �
4.3. Iterative learning

Iterative learning requires the learner to forget past data; thus, it is not surprising that many separations involving
iterative learning are topological in nature. We first repeat the well-known proof that iterative learning is less powerful than
TxtGEx-learning from the introduction [20,22], followed by the topological separation of iterative and consistent iterative
learning. In Theorem 4.6 we show that, interestingly, strong non-U-shapedness (and thus conservativeness) and iterative
learning separate topologically; this is a significant strengthening of a result from [6], where the separation of iterative
and strongly non-U-shaped iterative learning was shown. Furthermore, in Theorem 4.7, we show that iterative-with-counter
learning separates topologically from iterative learning, strengthening a result from [9]. Finally, we consider coding tricks in
iterative learning.

Theorem 4.4. We have TxtItEx ⊂topo TxtGEx.

Proof. Let L be the set containing N+ as well as every finite language containing 0. This set of languages is clearly
TxtGEx-learnable in linear time. Suppose, by way of contradiction, L is RTxtItEx-learned by a learner h ∈ R. Let σ be
a locking sequence for h on N+ . Let x and y be two elements from N+ \ content(σ). Then the sequences σ x0∞ and σ y0∞
are for two different languages to be learned by h, but h will converge to the same index on both (if any). �
Theorem 4.5. We have TxtItConsEx ⊂topo TxtItEx.

Proof. Let L contain the language L∗ = {〈a, b〉 | a > 0, b ∈ N} as well as, for each c ∈ N, the language Lc = {〈a, b〉 | a ≤ c, b ∈
N}. Intuitively, as long as no pair 〈0, b〉 was encountered, L∗ should be guessed; as soon as such a pair is presented, an

40 J. Case, T. Kötzing / Theoretical Computer Science 620 (2016) 33–45
iterative learner finds a pair with the largest first component a in the remaining text and updates its conjecture to be for
La; this can clearly be done in linear time. There will always be a pair with the appropriate a still coming up, as there are
infinitely many such pairs in any target language. This shows L ∈ LinFTxtItEx.

Suppose now, by way of contradiction, L ∈ RTxtItConsEx as witnessed by some learner h ∈ R. Let σ be a locking
sequence for h on L∗ . Let c = max{a | ∃b : 〈a, b〉 ∈ content(σ)}. Let σ ′ be such that σσ ′ is a locking sequence for h on Lc .
Then h on σ 〈c +1, 0〉 must output the same conjecture as on σ . Therefore, as h is iterative, h gives the same output on σσ ′
and σ 〈c + 1, 0〉σ ′ , a conjecture for Lc by the choice of σ ′ . Thus, the conjecture is inconsistent on σ 〈c + 1, 0〉σ ′ , a sequence
which can be extended to a text for Lc+1, a contradiction. �

A significant weakening of the restriction of conservativeness is strongly non-U-shapedness [30,10], formally defined as
follows. For all conjecture sequences p and texts T ,

SNU(p, T) ⇔ [∀i : content(T) = W p(i) ⇒ p(i) = p(i + 1)].

Theorem 4.6. We have TxtItSNUEx ⊂topo TxtItEx.

Proof. For this proof, we assume 〈·, ·〉 to be a linear time, linear time invertible pairing function. We define the following
sequences, which will serve us as data.

∀i : a(i) = 2i;
∀i,k : bk(i) = 2〈k, i〉 + 1.

Let L contain the following languages (we write, for all i, j, i ≡2 j iff i and j are both even or both odd, i.e. if they are
congruent modulo 2).

L0 = content(a);
L1 = content(a) ∪

⋃
k∈N

content(bk);

∀k, j : Lk, j = content(a[k]) ∪ content(bk[j + 1]) ∪ {a(k + i) | i < j, i ≡2 j}.
Clearly, L is uniformly linear time decidable with the given numbering. L is iteratively learnable (in linear time) as follows.
First conjecture L0. As soon as some bk(j) appeared, memorize k and the maximal j that appears (the k is always the same)
and conjecture Lk, j . Also memorize if ever an a(k + i) with i odd appeared, and also if an a(k + i) with i even appeared. If
ever both an a(k + i) with i odd and a(k + i) with i even appeared, conjecture L1 and stay with this conjecture from now
on. As all memorizations can only finitely often lead to a mind change, the resulting learner TxtItEx-learns L. Intuitively,
the memorizations to learn whether both even and odd data appears is necessary, but forbidden to SNU-learners, which we
will exploit to get the separation.

Suppose now, by way of contradiction, there is h ∈ R TxtItSNUEx-learning L. Let σ be a locking sequence of h on L0
and let k be minimal such that content(σ) ⊆ content(a[k]). For each j, let τ j be a listing of all the (finitely many) elements
from content(a) ∩ Lk, j .

We will now recursively define, for all j, a number z(j) > 0 as follows. Let j be given such that, for all i < j, z(i) > 0 is
defined. Then

στ jbk(0)z(0) . . . bk(j − 1)z(j−1)bk(j)∞

is a text for Lk, j . As this is a language which is learned by h, there exists y > 0 such that h on

στ jbk(0)z(0) . . . bk(j − 1)z(j−1)bk(j)y

is an index for Lk, j . Let z(j) > 0 be the minimal such y and let

α j+1 = στ jbk(0)z(0) . . . bk(j)z(j).

We now recursively construct a text T for L1 as follows. We let

ρ0 = σ ;
∀ j : ρ j+1 = ρ j bk(j)z(j) τ j.

We let T be the limit of the ρi , i.e., T = ⋃
j∈N ρ j (we consider a sequence as the set of pairs mapping an i to the ith

element of the sequence). Clearly, T is a text for L1. Let α0 = σ .
We conclude the proof by showing that, for all j, h gives the same output on α j as on ρ j , as this shows that h on T

makes infinitely many mind changes, a contradiction to h learning L1. Let h∗ be such that, for each finite sequence γ , h∗(γ)

is the output of h after seeing γ (note that we cannot just write h(γ), as h is an iterative learner and expects a previous
conjecture and a new datum as input).

J. Case, T. Kötzing / Theoretical Computer Science 620 (2016) 33–45 41
Claim. For all j, h∗(α j) = h∗(σbk(0)z(0) . . . bk(j − 1)z(j−1)) = h∗(ρ j).

We show the claim by induction on j. The case of j = 0 is trivial, as α0 = σ = ρ0. Let now j > 0 be such that the claim
holds for j.

We have, for all i, h∗(στi) = h∗(σ), as σ is a locking sequence of h on L0; hence, as h is iterative, we get for all γ
h∗(στiγ) = h∗(σγ). In particular,

h∗(α j+1) = h∗(στ jbk(0)z(0) . . . bk(j)z(j)) = h∗(σbk(0)z(0) . . . bk(j)z(j)),

which gives the first claimed equation. From h iterative and h∗(α j) = h∗(ρ j) we know that h∗(α jbk(j)z(j)) = h∗(ρ jbk(j)z(j))

is an index for Lk, j . We have content(τ j) ⊆ Lk, j ; thus, as h learns Lk, j strongly non-U-shapedly, h cannot change its mind
on data from τ j when the current conjecture is for Lk, j , which shows

h∗(ρ jbk(j)z(j)) = h∗(ρ jbk(j)z(j)τ j) = h∗(ρ j+1)

as desired to finish the claim and thus the proof. �
Next we consider a strengthening of iterative learning by giving the learner access to the current iteration number; this

is modeled as a new sequence generating operator ItCtr (iterative-with-counter learning) and was introduced in [9]. Formally
we let, for all learners h, texts T and all i,

ItCtr(h, T)(i) =
{

h(∅), if i = 08;
h(It(h, T)(i − 1), T (i − 1), i − 1), otherwise.

It is known that TxtSdEx and TxtItCtrEx are incomparable and in between TxtItEx and TxtGEx [9], and, thus, TxtItCtrEx
separates from TxtItEx. With the next theorem we show that TxtItCtrEx separates topologically from TxtItEx.

Theorem 4.7. We have TxtItEx ⊂topo TxtItCtrEx.

Proof. For this proof, we again assume 〈·, ·〉 to be a linear time, linear time invertible pairing function. We use again the
following sequences as data.

∀i : a(i) = 2i + 1;
∀i, j,k : bk(j) = 2〈k, j〉 + 2.

Note that 0 is not listed by the functions above. Let L contain the following languages. For all k, j > 0,

L0 = content(a);
L1,k = content(a[k]) ∪ content(bk);

L2,k, j = content(a[k]) ∪ {a(k + 〈i, j〉) | i ≤ j} ∪ content(bk[j]) ∪ {0}.
Clearly, L is uniformly linear time decidable with the given numbering. We fix a (linear time computable) function f such
that, for any finite set D and any k,

f (k, D) = max({0} ∪ { j | ∃i : a(k + 〈i, j〉) ∈ D})
L is iteratively-with-counter learnable (in linear time) as shown by the learner given in Algorithm 1. This learner scans
through a given text T in a single pass and makes use of the counter (in line 8); otherwise it only stores some additional
information in variables, which is possible in iterative-with-counter learning, successful Ex-convergence requires that the
values of these variables stop changing at some point.

Clearly, this learner uses only linear time in each iteration. It is trivially successful on L0. For any k, it is successful on
L1,k as the variable j is updated at most c0 times, the variable D is updated at most k times, and the correct conjecture is
chosen.

Finally, for any k and j, the learner is successful on any text T for L2,k, j as follows. Let c be minimal such that T (c) ∈
({0} ∪ range(bk)).
Case 1: T (c) = 0. Then the learner will wait for an element bk(j′) to identify the correct k (and storing it). The correct j
is found no later than when bk(j − 1) ∈ L2,k, j is presented; from that point on the conjectures are correct, and D is only
updated finitely often.

8 Recall that h(∅) is the initial hypothesis of h before any data was presented.

42 J. Case, T. Kötzing / Theoretical Computer Science 620 (2016) 33–45
Algorithm 1: ItCtr-learner for the proof of Theorem 4.7.

1 Given: Text T ;
2 k ← −1; j ← 0; D ← ∅;
3 phase ← A;
4 for c = 0 to ∞ do
5 if ∃k′, j′ : T (c) = bk′ (j′) and phase = A then
6 k ← k′;
7 j ← j′;
8 c0 ← c;
9 phase ← B;

10 if T (c) = 0 then phase ← C ;
11 if phase = A then conjecture L0;
12 else
13 if ∃x : T (c) = a(x) then D ← D ∪ {x};
14 if k �= −1 then j ← max(j, f (k, D));
15 if phase = B then
16 if j ≤ c0 and ∃ j′ : T (c) = bk(j′) then j ← max(j, j′ + 1);
17 conjecture L1,k ;
18 else
19 if ∃k′, j′ : T (c) = bk′ (j′) then
20 if k = −1 then k ← k′;
21 j ← max(j, j′ + 1);

22 if k �= −1 then conjecture L2,k, j

Case 2: For some j′ < j, T (c) = bk(j′). Then the algorithm knows the correct k and sets its variable c0 to c. The j is now
identified as follows. If there is ever an element a(k + 〈i, j〉) added to D , the correct j is identified directly from this. If else
never such an element is added to D , then all these elements must have been presented as part of the first c elements; this
implies j < c. The learner will update j in Phase B with each new datum bk(j′) as necessary, as j′ ≤ j < c = c0. Thus, we
now have that the learner updates j at each bk(j′) in the text and finds also in this case the correct value of j when seeing
bk(j − 1). Again, D is only updated finitely often.

This shows that L is TxtItCtrEx-learnable in linear time.
Intuitively, the learner which has a counter knows how many of the bk(j) to use to update its j-value, while an iterative

learner without a counter will necessarily fail to memorize sufficiently, as we will now prove formally.
Suppose, by way of contradiction, there is h ∈ R which TxtItEx-learns all of L. Let σ be a locking sequence of h on L0

and let k be minimal such that content(σ) ⊆ content(a[k]). Let τ be such that στ is a locking sequence for h on L1,k . Let
j0 > 0 be minimal such that content(τ) ⊆ content(a[k]) ∪ content(bk[j0]). For all j, let α j be a sequence of all elements in
L2,k, j ∩ content(a), and β j be a sequence of all elements in L2,k, j ∩ content(bk). Consider the following two texts.

σ α j0+2 τ β j0+2 0∞;
σ α j0+3 τ β j0+3 0∞.

These are texts for L2,k, j0+2 and L2,k, j0+3, respectively. However, from the chosen locking sequences and h being an iterative
learner, we have that h converges to the same conjecture on both of these texts, a contradiction. �

In [16] the authors investigate the interesting question of how much coding helps with iterative learning. Loosely speak-
ing, coding refers to an iterative learner exploiting the access to the current conjecture for storage purposes, by coding the
information to be stored into the conjecture. The authors defined and analyzed a very interesting collection of learning
criteria which aim at restricting the ability to exploit such coding. Here we just want to mention two of these learning
criteria. One of the most restricted criteria requires the learner to exclusively use hypotheses from a Friedberg numbering,
a complete and effective numbering of all computably enumerable sets, without repetitions. A much more relaxed learning
criterion called extensional TxtItEx allows using the W -system for conjectures; however, it is required that, when presented
with equivalent conjecture and identical input elements, the learner must produce equivalent conjectures.

It is easy to see that these two restrictions do not separate topologically, but that in fact they allow for learning the same
sets of languages by learners from R. However, the separation of TxtItEx and extensional TxtItEx shown in [16] makes use
only of topological arguments and a very simple set of languages, so that we get the following theorem.

Theorem 4.8. (See [16, Theorem 22].) TxtItEx and extensional TxtItEx separate topologically.

Furthermore, it is easy to see that the set from [16] witnessing the topological separation can be modified to contain
infinite languages only.

J. Case, T. Kötzing / Theoretical Computer Science 620 (2016) 33–45 43
4.4. Feedback learning

There are many extensions of iterative learning studied in the literature. In this section we are interested in feedback
learning, where a learner is allowed to query for past data [29,22]. In particular, we are interested in hierarchies spanned
by feedback learners [5].

We will model feedback learning with up to k ∈ N (parallel) feedback queries as a specific sequence generating operator
Fbk . The learner has the same information in each iteration as in iterative learning, but can first choose a set of up k
elements and then use the additional information of which of these elements have been presented before to compute the
next conjecture. Formally, the sequence generating operators are defined as follows. Let k ∈ N. For any finite set D we let
mink(D) denote the least k elements of D . For all learners h and texts T we define

f (h, T)(i) = content(T [i − 1]) ∩ min
k

(h(0,Fbk(h, T)(i − 1), T (i − 1)));

Fbk(h, T)(i) =
{

h(∅), if i = 0;
h(1,Fbk(h, T)(i − 1), T (i − 1), f (h, T)(i)), otherwise.

In this definition, h on any arguments starting with 0 returns a set of data items to be recalled; f returns the set of
successfully recalled data items. h on arguments starting with 1 returns the new conjecture.

The first theorem will show that, in general, the separations in the hierarchy of feedback learning are witnessed by
topological separations. However, unlike for computable learners (see [5]), when restricted to sets of infinite languages only,
the hierarchy collapses to its first layer (Theorem 4.11).

First we note that the hierarchy holds in general also topologically.

Theorem 4.9. For all k > 0, we have that TxtFbkEx and TxtFbk−1Ex∗ separate topologically. In particular, TxtFbk−1Ex ⊂topo
TxtFbkEx.

Proof. Let k ∈ N. For each i < k and each x, let ai(x) = 2(kx + i). Note that λi, x ai(x) is 1–1 with range 2N (with i ranging
over natural numbers < k). For each t, x let bt(x) = 2〈t, x〉 + 1. We have λt, x bt(x) is 1–1 with range 2N + 1.

Let L contain the following languages. For all j < k and all t, y ∈ N,

L̃ = 2N;
Lt =

⋃
i<k

{ai(x) | x < t} ∪ range(bt);

L j,t,y =
⋃
i<k

{ai(x) | x < t} ∪ {bt(x) | x ≤ y} ∪ {a j(t + y)}.

We have L ∈ TxtFbkEx by a learner h0 as follows. The initial conjecture is for L̃. When an element bt(x) is presented,
query for {ai(t + x) | i < k}. If none of the queries is positive, conjecture and index for Lt ; if a j(t + x) is positive, conjecture
an index for L j,t,x (no other results are consistent with L) and keep this conjecture henceforth. If the current conjecture is
for Lt and a j(x) is presented for some x ≥ t , output a conjecture for L j,t,x−t and never change. In all other cases, do not
change the conjecture. It is straightforward to verify that this learner will TxtFbkEx-learn L.

Suppose, by way of contradiction, L ∈ TxtFbk−1Ex∗ as witnessed by some learner h. Let σ be a locking sequence for h
on L̃ (the final conjecture will, thus, be for a finite variant of L̃). Let t be such that content(σ) ⊆ ⋃

i<k{ai(x) | x < t}. Let τ be
a sequence of all elements in

⋃
i<k{ai(x) | x < t}. Consider the text στbt for Lt . Then there are j < k and y ∈ N such that (i)

after στbt [y], the conjecture is for a finite variant of Lt ; (ii) h is converged on στbt after στbt [y]; and (iii) h, while being
presented the data στbt [y + 1], never queried a j(t + y). These j and y exist as only k − 1 queries are allowed per iteration,
but k more items a j(t + y) are possible after each iteration.

Now we have that h on the text

στa j(t + y)bt[y]bt(y)∞

for L j,t,y will converge to the same conjecture as on στbt , a contradiction (the two languages are not finite variants). �
The class witnessing the separation in the just prior proof employed finite as well as infinite languages. Already in [5]

it was noted that the hierarchy collapses to the first level when concerned with sets of infinite languages only, if the class
to be learned can be indexed such that membership is uniformly decidable. We will generalize this result by showing more
generally how, given any text for an infinite language from a countable set, one can extract a listing where each natural numbers
occurs infinitely often. Such a listing in learning was termed an onto counter in [19] (see also [9]) and, with the help of a
single feedback query, can be used to simulate fat text, a text where each datum is presented infinitely often (see [17,
Proposition 3.37]); the details can be found in the proof of Theorem 4.11.

44 J. Case, T. Kötzing / Theoretical Computer Science 620 (2016) 33–45
Lemma 4.10. Let L be a countable set of infinite languages. Then there is a function f : N →N such that, for each L ∈L, f restricted to
L has infinitely many pre-images for each element of N. Furthermore, if L is uniformly computably enumerable,9 then f is computable.

Proof. Let (Li)i∈N be an enumeration of the elements of L. We define the function f inductively via a growing set D of
pairs 〈x, y〉; we will define f as mapping any such x to its associated y.

In the formal argument we will use a function g mapping any finite set of pairs D and an i to the minimum element
x ∈ Li which is not the left part of a pair in D (for the “furthermore” clause we will choose the first x ∈ Li found which is
larger than any left part of a pair in D). This always exists, as all Li are supposed infinite and there are only finitely many
pairs in D . We let

D0 = ∅;
D〈i,y,t〉+1 = D〈i,y,t〉 ∪ {〈g(D〈i,y,t〉, i), y〉}.

Let D = ⋃
i∈N Di . It is clear that for each x there is at most one y with 〈x, y〉 ∈ D . Thus, D is the graph of a (partial)

function; let f be an arbitrary extension of this function.
To show the correctness, let L ∈ L and let i be such that Li = L; let y ∈ N. For all t , from the definition of D〈i,y,t〉+1 we

see that there is an xt ∈ Li such that 〈xt , y〉 ∈ D . Thus, for all t , f (xt) = y as desired.
The “furthermore” clause is straightforward. �
The idea is now as follows. When trying to learn a set of infinite languages L, we can use an associated f to produce a

fat text as follows: if presented with a data from an L ∈ L, mapping all data with f will enumerate all of N infinitely often.
This effectively produces an onto counter. Using these numbers for the queries will allow for learning iteratively with fat
text, which is known to equal TxtGEx-learning [17, Proposition 3.37].

See also [5, Theorem 5] for a similar theorem, specialized to uniformly computable sets of infinite languages, but with
stronger conclusion, which can be concluded with the “furthermore” clause in Lemma 4.10 and Angluin’s original telltale
condition for uniformly decidable sets of languages [1].

Theorem 4.11. Let L be a set of infinite computably enumerable languages. Then

L ∈RTxtFb1Ex ⇔ L ∈RTxtGEx.

In particular, TxtGEx and TxtFb1Ex do not separate topologically on sets of infinite languages.

Proof. The implication “⇒” is trivial. For the converse, let L ∈ TxtGEx.
Let f be a function as given by Lemma 4.10 for L (or even all infinite computably enumerable sets). Let (Li)i∈N be an

enumeration of L. According to the characterization from Theorem 3.1, we know that L is learnable via telltale sets. We let
p be a 1–1 function such that p(D) is an index for Li with i minimal such that Li contains all of D and the telltale for Li
is contained in D (an index for ∅, if no such i exists).

Next we define a 1-feedback learner h ∈ R. For this we note that a 1-feedback learner can make arbitrarily many
feedback queries m at the cost of changing its conjecture for m iterations (ignoring the new input data). Thus, whenever a
learner makes a mind change anyway, arbitrarily much data can be queried.

The initial hypothesis of h is p(∅). When presented with datum z and previous hypothesis p(D), query for f (z). If the
query comes out negative or f (z) is already included in the language corresponding to the current hypothesis, h keeps
its old conjecture p(D). Otherwise, suppose the current conjecture of h is for some L j ; then h makes a mind change and,
using additional iterations as described above, h queries all the data of all the (finite) telltales of the languages (Li)i< j ,
gathering the positives in a set D ′ . The conjecture of h is now p(D ∪ D ′ ∪ { f (z)}). Using f , h effectively simulates iterative
learning from fat text, a text where each datum is presented infinitely often; this is known to equal RTxtGEx-learning [17,
Proposition 3.37].

Regarding correctness, let L ∈ L and let T be a text for L. From the choice of f we know that h queries each item
infinitely often. In particular, every L′ with L \ L′ �= ∅ previous in the order of (Li)i∈N will be discarded eventually. As soon
as all the elements from the telltale of L have been presented, these will be queried at the next mind change, after which the
conjecture will stay correct. It follows from the telltale condition that no incorrect conjecture can be kept indefinitely. �
5. Conclusion

In this paper we have seen that separation proofs in inductive inference can have computational components, or are
completely topological. We gave a number of examples for both from diverse areas of inductive inference and also showed
instances where no topological separations exist. We hope that this line of research contributes to our understanding of (a)

9 A set of languages L is uniformly computably enumerable iff there is r ∈ R such that L = {Wr(i) | i ∈N}.

J. Case, T. Kötzing / Theoretical Computer Science 620 (2016) 33–45 45
the structure of learning and (b) the proofs employed for showing separations. Future publications could use the concepts
introduced in this paper to help readers understand a proof by mentioning whether it is computational or topological.

For topological restrictions, we have required decision procedures for witnessing classes to be computable in linear time,
the same for the learners of these classes. It is an interesting open question whether, for reasonable learning criteria, we
get the same learning criteria separating topologically if we only required, for example, total computability—our examples
do not give a counterexample to such a claim.

Finally, we only gave a glimpse of how the topology of learnable classes is restricted. To go deeper, it might be worth
investigating Baire category theory [14] in more explicit detail.

Acknowledgements

The authors would like to thank the anonymous reviewers both of the conference version and of the journal version,
which helped improve the current version.

References

[1] Dana Angluin, Inductive inference of formal languages from positive data, Inform. Control 45 (2) (May 1980) 117–135.
[2] Leonore Blum, Manuel Blum, Toward a mathematical theory of inductive inference, Inform. Control 28 (2) (June 1975) 125–155.
[3] Ganesh Baliga, John Case, Learnability: admissible, co-finite, and hypersimple languages, J. Comput. System Sci. 53 (1) (1996) 26–32, first appeared in

ICALP ’93.
[4] John Case, The power of vacillation in language learning, SIAM J. Comput. 28 (6) (1999) 1941–1969.
[5] John Case, Sanjay Jain, Steffen Lange, Thomas Zeugmann, Incremental concept learning for bounded data mining, Inform. and Comput. 152 (1) (1999)

74–110.
[6] John Case, Timo Kötzing, Strongly non-U-shaped learning results by general techniques, in: Adam Tauman Kalai, Mehryar Mohri (Eds.), Proceedings of

the Learning Theory, 23rd Conference on Learning Theory, COLT 2010, Haifa, Israel, June 27–29, 2010, Omnipress, 2010, pp. 181–193.
[7] John Case, Timo Kötzing, Topological separations in inductive inference, in: Sanjay Jain, Rémi Munos, Frank Stephan, Thomas Zeugmann (Eds.), Pro-

ceedings of the Algorithmic Learning Theory, 24th International Conference, ALT 2013, Singapore, October 6–9, 2013, in: Lecture Notes in Artificial
Intelligence, vol. 8139, Springer, Berlin, Heidelberg, New York, 2013, pp. 128–142.

[8] John Case, Christopher Lynes, Machine inductive inference and language identification, in: Automata, Languages and Programming, 9th Colloquium,
Proceedings, vol. 140, Springer-Verlag, 1982, pp. 107–115.

[9] John Case, Samuel E. Moelius III, U -shaped, iterative, and iterative-with-counter learning, in: Proceedings of the Learning Theory, 20th Annual Confer-
ence on Learning Theory, COLT 2007, San Diego, CA, USA, June 13–15, 2007, in: Lecture Notes in Artificial Intelligence, vol. 4539, Springer, Berlin, 2007,
pp. 172–186.

[10] John Case, Samuel E. Moelius III, Optimal language learning, in: Proceedings of the Algorithmic Learning Theory, 19th International Conference, ALT
2008, Budapest, Hungary, October 2008, in: Lecture Notes in Artificial Intelligence, vol. 5254, Springer, Berlin, October 2008, pp. 419–433.

[11] E. Mark Gold, Language identification in the limit, Inform. Control 10 (5) (1967) 447–474.
[12] Jeffrey Heinz, Anna Kasprzik, Timo Kötzing, Learning in the limit with lattice-structured hypothesis spaces, Theoret. Comput. Sci. 457 (1) (2012)

111–127.
[13] Klaus P. Jantke, Monotonic and non-monotonic inductive inference, New Gener. Comput. 8 (4) (1991) 349–360.
[14] Thomas Jech, Set Theory, Academic Press, NY, 1978.
[15] Dick De Jongh, Makoto Kanazawa, Angluin’s theorem for indexed families of r.e. sets and applications, in: Proceedings of the Computational Learning

Theory, Proceedings of the Ninth Annual Conference, COLT 1996, Desenzano del Garda, Italy, June 28–July 1, 1996, ACM, 1996, pp. 193–204.
[16] Sanjay Jain, Samuel E. Moelius III, Sandra Zilles, Learning without coding, in: Special Issue on Learning Theory, Theoret. Comput. Sci. 473 (2013)

124–148.
[17] Sanjay Jain, Daniel Osherson, James S. Royer, Arun Sharma, Systems that Learn: An Introduction to Learning Theory, second edition, MIT Press, Cam-

bridge, Massachusetts, 1999.
[18] Timo Kötzing, Abstraction and complexity in computational learning in the limit, PhD thesis, University of Delaware, 2009, available online at

http://pqdtopen.proquest.com/#viewpdf?dispub=3373055.
[19] Timo Kötzing, Iterative learning from positive data and counters, in: Jyrki Kivinen, Csaba Szepesvári, Esko Ukkonen, Thomas Zeugmann (Eds.), Pro-

ceedings of the Algorithmic Learning Theory, 22nd International Conference, ALT 2011, Aalto University, Espoo, Finland, October 5–7, 2011, in: Lecture
Notes in Artificial Intelligence, vol. 6925, Springer, Berlin, Heidelberg, New York, 2011, pp. 40–54.

[20] Efim Kinber, Frank Stephan, Language learning from texts: mindchanges, limited memory, and monotonicity, Inform. and Comput. 123 (2) (1995)
224–241.

[21] Steffen Lange, Thomas Zeugmann, Monotonic versus non-monotonic language learning, in: Nonmonotonic and Inductive Logic, Second International
Workshop, Reinhardsbrunn Castle, Germany, December 1991, in: Lecture Notes in Artificial Intelligence, vol. 659, Springer-Verlag, 1993, pp. 254–269.

[22] Steffen Lange, Thomas Zeugmann, Incremental learning from positive data, J. Comput. System Sci. 53 (1) (1996) 88–103.
[23] Daniel N. Osherson, Michael Stob, Scott Weinstein, Note on a central lemma of learning theory, J. Math. Psych. 27 (1983) 86–92.
[24] Daniel N. Osherson, Michael Stob, Scott Weinstein, Systems that Learn: An Introduction to Learning Theory for Cognitive and Computer Scientists, MIT

Press, Cambridge, Massachusetts, 1986.
[25] Daniel N. Osherson, Scott Weinstein, Criteria of language learning, Inform. Control 52 (2) (1982) 123–138.
[26] James Royer, John Case, Subrecursive Programming Systems: Complexity and Succinctness, Research Monograph in Progress in Theoretical Computer

Science, Birkhäuser, Boston, 1994.
[27] Hartley Rogers, Theory of Recursive Functions and Effective Computability, McGraw Hill, New York, 1967. Reprinted by MIT Press, Cambridge, Mas-

sachusetts, 1987.
[28] Kenneth Wexler, Peter W. Culicover, Formal Principles of Language Acquisition, MIT Press, Cambridge, Massachusetts, 1980.
[29] Rolf Wiehagen, Limes-Erkennung rekursiver Funktionen durch spezielle Strategien, Elektron. Inf.verarb. Kybern. 12 (1/2) (1976) 93–99.
[30] Rolf Wiehagen, A thesis in inductive inference, in: Proceedings of the Nonmonotonic and Inductive Logic, 1st International Workshop, Karlsruhe,

Germany, December 1990, in: Lecture Notes in Artificial Intelligence, vol. 543, Springer-Verlag, 1990, pp. 184–207.
[31] Thomas Zeugmann, Steffen Lange, Shyam Kapur, Characterizations of monotonic and dual monotonic language learning, Inform. and Comput. 120 (2)

(1995) 155–173.

http://refhub.elsevier.com/S0304-3975(15)00942-1/bib416E673A6A3A38303A6C616E672D706F732D64617461s1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib426C752D426C753A6A3A3735s1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib42616C2D4361733A6A3A39363A687970657273696D706C65s1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib42616C2D4361733A6A3A39363A687970657273696D706C65s1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib4361733A6A3A39393A766163696C6C6174696F6Es1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib4361732D4A61692D4C616E2D5A65753A6A3A39393A666565646261636Bs1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib4361732D4A61692D4C616E2D5A65753A6A3A39393A666565646261636Bs1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib4361732D4B6F653A633A31303A636F6C74s1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib4361732D4B6F653A633A31303A636F6C74s1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib4361732D4B6F653A633A3133s1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib4361732D4B6F653A633A3133s1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib4361732D4B6F653A633A3133s1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib4361732D4C796E3A633A3832s1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib4361732D4C796E3A633A3832s1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib4361732D4D6F653A6A3A30383A4E554974s1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib4361732D4D6F653A6A3A30383A4E554974s1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib4361732D4D6F653A6A3A30383A4E554974s1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib4361732D4D6F653A6A3A31313A6F70744C616Es1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib4361732D4D6F653A6A3A31313A6F70744C616Es1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib476F6C3A6A3A3637s1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib4865692D4B61732D4B6F653A6A3A31323A4C6174746963654C6561726E696E67s1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib4865692D4B61732D4B6F653A6A3A31323A4C6174746963654C6561726E696E67s1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib4A616E3A6A3A3931s1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib6A656368s1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib64654A2D4B616E3A633A3936s1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib64654A2D4B616E3A633A3936s1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib4A61692D4D6F652D5A696C3A6A3A3133s1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib4A61692D4D6F652D5A696C3A6A3A3133s1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib4A61692D4F73682D526F792D5368613A623A39393A73746C32s1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib4A61692D4F73682D526F792D5368613A623A39393A73746C32s1
http://pqdtopen.proquest.com/#viewpdf?dispub=3373055
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib4B6F653A633A31313A616C743131s1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib4B6F653A633A31313A616C743131s1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib4B6F653A633A31313A616C743131s1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib4B696E2D5374653A6A3A39353A6D6F6Es1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib4B696E2D5374653A6A3A39353A6D6F6Es1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib4C616E2D5A65753A633A3933s1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib4C616E2D5A65753A633A3933s1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib4C616E2D5A65753A6A3A3936s1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib4F73682D53746F2D5765693A6A3A38333A63656E7472616C2D6C656D6D61s1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib4F73682D53746F2D5765693A623A38363A73746Cs1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib4F73682D53746F2D5765693A623A38363A73746Cs1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib4F73682D5765693A6A3A38323A6372697465726961s1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib526F792D4361733A623A3934s1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib526F792D4361733A623A3934s1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib526F673A623A3837s1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib526F673A623A3837s1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib5765782D43756C3A623A3830s1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib5769653A6A3A3736s1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib5769653A633A3931s1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib5769653A633A3931s1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib4C616E2D5A65753A6A3A39353A636861726163746572697A6174696F6E73s1
http://refhub.elsevier.com/S0304-3975(15)00942-1/bib4C616E2D5A65753A6A3A39353A636861726163746572697A6174696F6E73s1

	Topological separations in inductive inference
	1 Introduction
	2 Mathematical preliminaries
	2.1 Learning criteria

	3 Topological constraints
	4 Topological separations
	4.1 Fex learning
	4.2 Monotone learning
	4.3 Iterative learning
	4.4 Feedback learning

	5 Conclusion
	Acknowledgements
	References

