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The environment changes constantly at various time scales and, in order to survive, species need to keep adapting. Whether these

species succeed in avoiding extinction is a major evolutionary question. Using a multilocus evolutionary model of a mutation-

limited population adapting under strong selection, we investigate the effects of the frequency of environmental fluctuations on

adaptation. Our results rely on an “adaptive-walk” approximation and use mathematical methods from evolutionary computa-

tion theory to investigate the interplay between fluctuation frequency, the similarity of environments, and the number of loci

contributing to adaptation. First, we assume a linear additive fitness function, but later generalize our results to include several

types of epistasis. We show that frequent environmental changes prevent populations from reaching a fitness peak, but they may

also prevent the large fitness loss that occurs after a single environmental change. Thus, the population can survive, although not

thrive, in a wide range of conditions. Furthermore, we show that in a frequently changing environment, the similarity of threats

that a population faces affects the level of adaptation that it is able to achieve. We check and supplement our analytical results

with simulations.

KEY WORDS: adaptation, adaptive walk, changing environment, drift analysis, fitness landscape, strong selection weak

mutation.

Biological evolution has produced an extraordinary diversity of

living organisms, highly adapted to their environment. However,

the process of evolution is never-ending—the environment

changes constantly, and environmental change is often so

widespread and severe that individuals cannot migrate to more

suitable places nor physiologically accommodate to it (Bell

and Gonzalez 2009). Populations must keep adapting in order

to survive.

Environmental changes are inherent to nature, ubiquitous,

and occurring over various time scales, from seasonal changes

during the year to climatic changes over geological eras (Messer

et al. 2016). The environment may be biotic; for instance, para-

sites and their hosts are tied in a never-ending battle, with para-

sites fighting against the improving defense mechanisms of their

hosts (Vermeij 1982; Gilman et al. 2012). In many social species,

a significant part of the environment that individuals experience

is given by their social partners, resulting in an environment that

is itself evolving (Moore et al. 1997; Wolf et al. 1999). The dy-

namic nature of fitness landscapes has been pointed out already

by Fisher (i.e., in a series of letters to Sewal Wright (Provine

1989) and in Fisher 1930). However, the analysis of adaptations

in a changing environment has recently started to receive more

attention, sparked by growing interest in conservation biology as

well as in the evolution of drug resistance by various pathogens

(Gallagher et al. 2015). Understanding the effect of a changing

environment on the rate of adaptation is important from many

different perspectives and has many potential applications.

Three main scenarios of environmental change have been

studied from a theoretical perspective: (1) an abrupt change (e.g.,

addition of an antibiotic), (2) a gradually changing environment
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(e.g., progressive climate change), and (3) random fluctuations in

selection. The ability of organisms to survive a single drastic en-

vironmental change, adapt rapidly, and avoid extinction has been

investigated by the theory of evolutionary rescue. For instance, the

evolution of drug resistance by bacteria, or heavy metal tolerance

among plant populations growing on old mine tailings are classic

examples of rapid evolution (Gonzalez et al. 2013). A series of

theoretical studies have assessed the importance of genetic and

environmental factors for population survival, including avail-

able genetic variation, recombination rates, population structure,

and the severity and rate of environmental change (Pease et al.

1989; Lynch and Lande 1993; Bürger and Lynch 1995; Lande and

Shannon 1996; Bell and Collins 2008; Orr and Unckless 2008;

Polechová et al. 2009; Duputié et al. 2012; Schiffers et al. 2013;

Carlson et al. 2014; Uecker et al. 2014; Uecker and Hermisson

2016). However, studies of evolutionary rescue usually investi-

gate an effect of a single drastic environmental change and focus

only on a single adaptive trait (but see Gomulkiewicz and Shaw

2012; Uecker and Hermisson 2016 for two traits).

From a different perspective, several theoretical and exper-

imental studies have investigated adaptation across fitness land-

scapes with a moving optimum (Kopp and Hermisson 2009a, b;

Matuszewski et al. 2014, 2015). For instance, Chevin et al. (2010)

present an evolutionary model for the critical rate of environmen-

tal change beyond which a population must decline and go extinct.

The authors highlight the major determinants of extinction risk

in a changing environment but also identify additional research

needed for improved predictions based on environmental change.

This problem has also been investigated by several recent experi-

mental studies that explored the evolutionary potential of marine

organisms to adapt to rising levels of CO2 in the environment (Bell

and Collins 2008; Fussmann et al. 2014).

Another insight into adaptation to variable environments

comes from the studies of co-evolution of host–parasite systems.

These studies by definition assume that selection on a trait (e.g.,

a defense mechanism) changes with the adaptation of the corre-

sponding trait of the adversary. It has been shown that the number

of traits involved in adaptation seems to play a major role in

co-evolution of predator-and-prey systems, where often multiple

traits are affected by the predator–prey (or parasite–host) inter-

action (Vermeij 1982; Gilman et al. 2012). Gilman et al. (2012)

developed a model of a victim–exploiter system, in which the

probability of a successful attack by an exploiter on a victim

depends on several traits in each species. The authors investi-

gated the influence of the number of traits on co-evolutionary

trajectories, assuming that each trait is functionally paired with

a trait in the opposite species, and found out that multidimen-

sionality of trait space promotes escape from the parasites and

predators (Gilman et al. 2012). Furthermore, Doebeli and Ispola-

tov (2010) have shown that the number of traits under selection

can have qualitative effects on the outcome of evolution even in

single-species systems.

The last group of studies focuses on random fluctuations

in selection gradient, and the establishment of beneficial alle-

les subject to variable selection pressures (Uecker and Hermisson

2011; Waxman 2011; Peischl and Kirkpatrick 2012; Cvijovic et al.

2015a). For instance, Chevin (2013) derived the expected rate of

adaptation and investigated limits to adaptation in this context.

Cvijovic et al. (2015b) investigated the fate of a mutation in a

fluctuating environment and discovered that environmental vari-

ability reduces the efficiency of selection. Moreover, the authors

found that temporal fluctuations can dramatically increase fixa-

tion probabilities of deleterious mutations (Cvijovic et al. 2015b).

It has been further suggested that a changing environment can

change effects of new mutations from positive or negative to

neutral (Mustonen and Lässig 2009). Simulations carried out by

Kashtan et al. (2007) have shown that a varying environment can

speed up adaptation by removing the local optima in which pop-

ulations can get temporarily stuck. In another simulation study,

Vincenzi (2014) investigated an impact of climate change caus-

ing increased frequency of gradually more extreme events in the

context of anthropogenic environmental change. Vincenzi (2014)

showed that survival chances decrease strongly and linearly with

increasing strength of selection as well as with increasing cli-

mate trend and variability but are unaffected by the amplitude of

mutations.

Even though the interest in adaptation to a changing environ-

ment is rapidly growing, a rigorous analysis of dynamic fitness

landscapes—seascapes—has been hindered by technical difficul-

ties. Most of the recent studies rely on simulations (Kopp and

Hermisson 2007; Kashtan et al. 2007; Büchi and Vuilleumier

2014; Vincenzi 2014), offering only very limited analytical un-

derstanding of the problem. Furthermore, most of these studies

investigate either a single drastic environmental change, adapta-

tions with slowly moving optima, or in the randomly changing

environment. Most importantly, these studies usually focus on

a small number of adaptive loci. On the other hand, studies of

gradual adaptation involving multiple loci investigate adaptation

in the stable environment, assuming that the fitness landscape is

fixed (Orr 2000; Chatterjee et al. 2014; Paixão, Pérez Heredia,

et al. 2015). These studies have investigated the rate of adaptation

and the time required for populations to adapt. This time has been

shown to grow from polynomially to exponentially with the length

of the genome, according to the complexity of the fitness land-

scape, as measured by both the number of loci and epistasis (Orr

2000; Chatterjee et al. 2014; Paixão, Pérez Heredia, et al. 2015;

Pérez Heredia et al. 2016). However, as this time grows, it is likely

that the environment changes; thus, it is necessary to replace the

metaphor of a fixed, rigid fitness landscape by an idea of a dy-

namic “seascape” (Mustonen and Lässig 2009). Rigorous studies
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considering multiple adaptive loci in a changing environment are

still missing.

Here, we build on static landscape studies to develop a mul-

tilocus evolutionary model of evolving populations and investi-

gate adaptation in a changing environment in a strong-selection–

weak-mutation (SSWM) regime. The population is assumed to

be monomorphic, and in the absence of standing genetic variance

for fitness, the outcome of adaptive processes crucially depends

on new mutations. The environment changes between a defined

set of conditions (threats). For instance, the population may ex-

perience selection pressure from a type of predator or parasite for

a number of generations and evolve a defense mechanism. How-

ever, in time, selection pressure from the exploiter ceases, but a

different exploiter appears, threatening the population.

We start with a single multilocus trait experiencing periods

of strong selection alternating with periods of its absence and de-

rive the expected level of adaptation the population can achieve,

its minimum and maximum, as a function of the lengths of these

periods. We then use the same approach to derive results for mul-

titrait scenarios. Selection is directional, and the environments are

determined extrinsically, unaffected by the organisms (as opposed

to studies of co-evolution). We focus on three different multitrait

scenarios, according to the similarity of the fitness landscape at

different time points. For each of these scenarios, we investigate

the implication of the frequency of environmental fluctuations

and the number of adaptive loci for adaptability. We first analyze

simple additive fitness landscapes where all adaptive mutations

contribute with the same fitness effect, then generalize our anal-

ysis (to some extent) for monotonic fitness functions. We focus

on a saturating fitness function in detail and compare the results

with the linear fitness function.

We show that frequent change between environmental con-

ditions may prevent populations from adapting to a current threat

but also from a large fitness loss upon environmental change and

potential extinction. Thus, the population may survive, though not

thrive, in a wide range of conditions. Furthermore, we show the

effects of the number of loci on the time to adapt, and that in the

frequently changing environment, the similarity of threats that a

population faces affects the level of adaptation that it can achieve.

Analytic results are checked and supplemented with simulations.

Methods
VARIABLE ENVIRONMENT: SEASCAPES

In the analysis of a single trait scenario, we assume periods

of strong selection alternating with periods of no selection. In

the analysis of multitrait models, we assume that the popula-

tion evolves in an environment that changes every τ iterations

(note that we do not consider biological generations, but mutation

events). At each time point, the population is exposed to a set of

conditions (e.g., parasites, predators, prey defense mechanisms,

or abiotic conditions), described throughout as a “threat,” defining

the fitness landscape. Threats are defined by the optimal response

they require. We focus on three fitness seascapes that differ in the

similarity of threats (Fig. 1):

1. Scenario 1: There is a single optimal response to any threat;

adaptation to any given threat is independent of adaptation to

any other threat (Fig. S1A).

2. Scenario 2: Threats have different optimal responses, but adap-

tations to any two threats overlap in all except two traits

(Fig. S1B).

3. Scenario 3: Threats have conflicting optimal responses; better

adaptation to one threat implies worse adaptation to “all” other

threats.

All scenarios are described in detail in respective sections

and in Supporting Information S1.3.

GENOTYPE

We assume that our population is haploid and monomorphic,

thus, we do not consider linkage in this model. In the first two

scenarios, the phenotype consists of k traits controlled by k sets of

non-overlapping genes, each with � biallelic loci. The genotype

is represented by a bit string (i.e., a vector of zeros and ones) of

length n = k�. There are as many different threats (see below)

as traits. In the last multitrait scenario, each threat requires a

specific response; adaptations required in different environments

are completely orthogonal, which is modeled by k possible alleles

at each locus. Thus, this can be viewed as a single trait controlled

by a single gene encoded by n = k� loci, but there are k alleles

possible at each locus. The genotype is represented by a string

of length n consisting of k (different) characters. Note that while

the meaning of k is slightly different in each scenario, the main

underlying variable is “the number of different environments,” or

threats, affecting the population.

In the recent years, Fisher’s geometric model (FGM) has

been a popular choice for investigating adaptation in changing

environments (Matuszewski et al. 2014; Martin and Lenormand

2015; Harmand et al. 2017). Our model assumes that we have k

independent traits. Thus, similar to FGM, the phenotype can be

described as a vector in a k dimensional space, with de novo mu-

tations affecting the genotype. However, unlike in FGM, in which

continuity of traits is assumed, our traits are encoded by � biallelic

loci, and thus the phenotypic space is discrete. Furthermore, the

selection is not stabilizing but directional, so the phenotypes with

the maximum fitness always lie at the borders of the phenotypic

space. Finally, new mutations always affect only one trait and are

thus non-pleiotropic.

1 3 5 8 EVOLUTION JULY 2019



SURFING ON THE SEASCAPE

1 1 1 1 1 - - - - - - - - - -

Trait 1 Trait 2 Trait 3

Optimal response 1

Scenario 1 - - - - - 1 1 1 1 1 - - - - -

Trait 1 Trait 2 Trait 3

Optimal response 2

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

Trait 1 Trait 2 Trait 3

Scenario 2 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

Trait 1 Trait 2 Trait 3

A A A A A A A A A A A A A A AScenario 3 B B B B B B B B B B B B B B B

Figure 1. Optimal genotypes in different environments for all three scenarios. In the first scenario, only one trait is under selection at

each time, other traits do not contribute to fitness. In the second scenario, all traits are under selection at all times, but optimal responses

to all threats are similar to each other. In the third scenario, all loci are under selection at all times, but optimal responses are incompatible.

time

1

0

frequency

iteration

Figure 2. Illustration of the strong selection weak mutation

regime. The ordinate represents the frequency of genotypes that

carry a specific mutation. Most of the time, the population is com-

posed of a single genotype, as new mutations (represented by

different colors) are quickly either fixed (green, blue, red, solid) or

lost (cyan, dashed). Adapted from Paixão et al. (2017).

STRONG-SELECTION–WEAK-MUTATION

We further assume that the population is monomorphic most of

the time, and that if a new mutation appears, it quickly fixes or

is lost entirely, i.e., we assume a strong-selection–weak-mutation

(SSWM) regime. The SSWM model applies when mutations are

rare enough, and selection is sufficiently strong that the time be-

tween occurrences of new mutations is long compared to the time

it takes a new genotype to replace the parent genotype (Gillespie

1984). Upon occurrence, a new mutation represents relatively high

fitness advantage or fitness loss, and strong selection ensures that

it either promptly replaces the original genotype or is entirely

lost from the population (Fig. 2). Evolution thus occurs through

“jumps” between different genotypes.

FITNESS AND THE LEVEL OF ADAPTATION

In the main analysis, we assume fitness to be linearly dependent

on the number of loci adapted to the current environment. Then

we generalize our approach to any monotone fitness function.

We analyze a saturating fitness function in detail and compare

the results to those obtained for the linear fitness function. See

Supporting Information S1.1 and S3.2 for details.

In order to compare scenarios, we derive the minimum and

the maximum expected level of adaptation as a fraction of loci

adapted to the threat out of all loci that could be adapted (the total

number of loci under selection). In the linear-fitness scenario, this

fraction of adapted loci, denoted by f , is the same as the fraction

of achieved fitness (assuming the maximum possible fitness is

1), thus, we occasionally use the terms “fitness” and “fraction”

interchangeably. However, in a more general scenario, when fit-

ness does not depend linearly on the number of adapted alleles,

these terms are no longer interchangeable, and we always clearly

specify which one we are discussing.

TRANSITION PROBABILITIES

Note that in our model, one “iteration” does not correspond to

a biological generation. Rather, it represents one mutation event

that takes on the order of 1
NUP generations to occur, where U is

the genomic mutation rate (kept constant), N is the size of the

population (kept constant), and P is a probability of fixation of a

new mutation. In SSWM regime, we assume that NUP � 1. This

assumption sets the timescale for our model. Iteration time can

be converted to time in generations, if the parameters above are

known for a given population.

All loci are equally likely to mutate, with the probability of

a specific locus mutating is 1/n. Therefore, in expectation only

one mutation occurs in the whole haploid genome per iteration,

independent of the length of the genome. A new mutation is

fixed or lost with the probability of fixation given by the fitness

difference of the candidate mutation and the resident genotype. In

our analysis, we do not discuss selection strength s, but focus on

probability of fixation instead. We assume that selection is strong

and positive mutations are fixed with probability Pfix(+) = P =
2s, negative mutations cannot be fixed, while neutral mutations

are fixed with probability Pfix(0) = 1
N .

DRIFT ANALYSIS

To analyze the time necessary to climb the fitness peak or to lose

unused adaptation, we cast the SSWM regime described above

as an evolutionary algorithm (see Appendix A.1) and employ so-

called “drift analysis” (He and Yao 2001; Lehre and Witt 2013).

Drift analysis is traditionally used in the theory of evolutionary

computation (EC) to analyze the time required for an algorithm

to find the optimum (i.e., the time of adaptation), and the scaling
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of this time with the length of the input (i.e., the number of

loci). Note that “drift” here is terminus technicus of the field

of EC, representing a progress of the system in some particular

direction, not “genetic drift,” as traditionally used by evolutionary

biologists. Genetic drift (in biological sense) is partly subsumed

in the fact, that neutral mutations may be fixed in the population

(e.g., in traits that are not under selection in Scenario 1, or between

various maladaptive alleles in Scenario 3).

Drift analysis is based on the estimation of the expected

progress of a population toward the fitness peak in one time step

�(x), called “drift” in EC, where x is the current state of the

system (e.g., the number of adapted loci). Drift theorems use

upper or lower bounds on the net expectation of a progress �(x)

to obtain bounds on the time to reach particular genotypes. The

tightness of the upper bound on the time required to find the

optimum depends on how tight the expression for the drift is.

If the estimate of the drift is accurate, the drift theorem gives

very accurate estimate of the time, or a very tight upper bound.

A detailed description of the methods used, together with the

complete derivations of the results, is provided in Appendix A.2.

ADDITIONAL INFORMATION

All supporting simulations were programmed in Python. The code

is available on GitHub under https://goo.gl/k7eqzX. See Support-

ing Information S3.8 for details. A summary of the model as-

sumptions is provided in Supporting Information S3.7.

Results
First, we analyze single-trait and multitrait scenarios assuming

that fitness is proportional to the fraction of adapted loci, all posi-

tive mutations are of the same size and have the same probability

of fixation P . Then we generalize our results by relaxing assump-

tions on the fitness function and define fitness as an arbitrary

monotone function growing with the number of loci adapted to

the current environment. Thus, several cases of epistasis can be

incorporated into the model.

SINGLE TRAIT UNDER PERIODIC SELECTION

We begin our analysis with a simple scenario of a single trait en-

coded by � loci, in a genome of length n. Each iteration, a single

mutation occurs in the whole genome, which may or may not fix

in the population. We assume that a trait sometimes experiences

strong selection pressure when alleles 1 are adaptive, while al-

leles 0 are not. During the strong selection phase, any mutation

occurring in the trait is either positive and fixes in the population

within a short time (one iteration) with probability P , or negative

and does not fix. Therefore, the number of adapted loci in the

trait, denoted x , is slowly increasing during this time. However,

during periods without selection, all mutations within the trait are

effectively neutral and fix with the probability 1/N , which may

lead to a loss of potentially adaptive alleles.

We estimate the expected increase in the number of adapted

loci by the probability of a positive mutation occurring and fixing

in the population during the selection phase:

�1(x) = P
� − x

n
, (1)

where �−x
n is the probability that a beneficial mutation occurs in a

given trait, and P is the probability that it fixes in the population.

The expected gain of adaptive alleles after t iterations is

�t (x) = (� − x0)
(

1 − e− P
n t

)
, (2)

where x0 is the initial number of loci adapted to the current threat.

We used the fact that P
n � 1 and replaced the discrete (iteration)

model by a continuous time approximation.

If no selection is present, the expected change in the number

of adapted loci within one iteration is

�1(x) = 1

N
·
(

� − x

n
− x

n

)
= � − 2x

Nn
, (3)

where 1/N is the probability that the neutral mutation fixes, �−x
n

is the probability that 0 allele mutates into 1, while x
n is the

probability that 1 mutates into 0. We can estimate the expected

change in the number of adapted loci in the trait in the absence of

selection after time t :

�t (x) =
(

�

2
− x0

) (
1 − e− 2

Nn t
)
, (4)

where x0 is the number of adapted alleles at the beginning. Note

that if x0 > �
2 , this expression is negative, meaning that the trait

loses adapted loci.

If periods of strong selection (t = τ1) alternate with periods

of no selection pressure (t = τ0), after a long enough time, the

population reaches a state when the adaptation gained during

the period of selection is lost during absence of selection. A

population adapting from an arbitrary state ends up fluctuating

between the maximum and the minimum fraction of adapted loci,

fmin and fmax, independent of the initial state

fmin =
1
2 + 1

2 B − AB

1 − AB
, (5)

fmax = 1 − 1
2 A − 1

2 AB

1 − AB
, (6)

with the magnitude of oscillations

f� = fmax − fmin =
1
2 (1 − A)(1 − B)

1 − AB
, (7)

1 3 6 0 EVOLUTION JULY 2019

https://goo.gl/k7eqzX


SURFING ON THE SEASCAPE

where A = e− Pτ1
n and B = e− 2τ0

Nn . Note that fmin, fmax, and f� are

expectations of the maximum (minimum) fractions of the adapted

loci from all adaptive loci at the given time.

COMPLETE ADAPTATION AND ITS LOSS
If the environment changes very rarely or periods of selection

pressure are very long, the population can climb the temporary

fitness peak by optimizing all loci in a trait under selection (x → �,

fmax → 1). On the other hand, if the selection is absent for a long

enough time, all mutations are effectively neutral, and the number

of potentially adapted loci converges to �/2 ( fmin → 0.5).

To get an idea of what “long enough time” means, we esti-

mate the time necessary for adaptation of all loci in a trait under

selection. We analyze this process as an adaptive walk in a static

fitness landscape. Following the approach by Pérez Heredia et al.

(2016), we apply the variable drift theorem to the decreasing num-

ber of non-adapted alleles y = � − x (thus h = y P
n ) and estimate

an upper bound on the expected time the population requires to

reach the fitness peak:

Topt ≤ n

P
+

∫ �
2

1

n

Pyi
dyi ≤ n

P
(log � − log 2 + 1)

= n

P

(
1 + log

�

2

)
, (8)

where we assumed that at the beginning, half of the alleles were

already adapted (x0 = �/2), and log refers to the natural loga-

rithm. As the estimate of the expected change in one step is very

accurate, this upper bound gives a very accurate estimate of the

time required to climb the fitness peak.

It is also possible to use the generalized version of the vari-

able drift theorem to estimate the time needed to achieve any

level of adaptation, in any distance from the optimum, by using

Equation (A2). Often, the population does not need to be fully

adapted in order to survive. If, for instance, only 90% of loci need

to be adapted for the population to do well in a given environ-

ment, the expected time is Topt ≤ n
P (10 + log 10) (see Supporting

Information S1.2).

Using the same approach, we can also estimate how long it

takes to lose the adaptation in the absence of selection (assuming

that adaptation is lost if half of the alleles are non-adaptive):

Tloss ≤ Nn

2

(
1 + log

�

2

)
. (9)

Note the similarity between Equations (8) and (9): the time to

climb the fitness peak or to lose adaptation grows with the length

of the genome n, as the total mutation rate is kept constant at 1

and the probability of mutation of any particular locus decreases

with n. Furthermore, both times increase with log �, as the num-

ber of available loci for mutations decreases with the population

approaching the optimum. Both times are dominated by waiting

for the last few mutations to appear and fix in the population.

The main difference between gaining and losing adaptation is

caused by the different probabilities of fixation of adaptive and

neutral mutations.

VARIABLE ENVIRONMENTS AND MULTIPLE TRAITS

UNDER SELECTION

While the single trait model under periodic selection acts as a

useful basic building block for more complicated scenarios, it is

more realistic to assume that multiple traits contribute to fitness

under different conditions. In such a case, the similarity of envi-

ronmental conditions (defined by the similarity between optimal

genotypes in different conditions) plays a major role in adaptation.

Here, we compare three scenarios with a variable similarity

of environments. In all scenarios, we have k different environ-

ments that alternate in a regular manner. In the first two scenarios,

different environments are matched with different traits, in the last

scenario, with different alleles. In the first scenario, only one of

k different, non-overlapping traits come under selection in each

environment. Adaptation against a pathogen is completely inde-

pendent on adaptation to a different threat, such as drought. In

the second scenario, all k traits are under selection at all times,

but one trait characteristic of the environment requires a specific

response in the opposite direction. For instance, zero alleles in

a given trait bring resistance to a particular virus, but are costly

in its absence. Thus, selection mostly favors one type of alleles

(ones) at all loci, except in the trait that brings the resistance to

the current virus, in which zero alleles are preferred. In the last

scenario, all traits are under selection at all times, but there are k

different alleles available for each locus and each type of environ-

ment requires a unique response. This happens if selection acts in

different directions in different environments: for instance, adap-

tation to cold climate may be harmful in hot climates. Thus, this

last scenario is somewhat similar to single traits scenario (with

one trait controlled by n = k� loci) but with multiple (k) alleles.

See Figures 1 and S1.

In each scenario, we analyze the rate of adaptation and the

time required to reach the fitness peak as well as the magnitude

of oscillations as a function of the frequency of environmental

change. Furthermore, we analyze frequent environmental change

and the dependence of the achieved level of adaptation (expected

fraction of adapted alleles) as a function of the number of different

environments k. Finally, we focus on a rarely changing environ-

ment and find timescales at which populations are expected to

climb the temporary fitness peak.

Scenario 1: Selection acting at different traits in
different environments
First, we investigate adaptation in a variable environment when

selection acts on different traits at different times. For instance, a
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population is experiencing a long period of drought, then a long

period of cold weather followed by parasite infestation. While

only one trait is under selection at each time point, mutations

in other traits may occur and fix. Such cryptic mutations do not

affect an organism when they appear and are initially exempt

from selection pressure. However, upon environmental change,

they may act as a substrate upon which selection may operate

(Masel 2006; Draghi and Plotkin 2011; Rajon and Masel 2013;

Paaby and Rockman 2014).

As before, each trait is encoded by � biallelic loci, where the

adapted allele is represented by 1 and the maladapted allele is

represented by 0 (see Fig. S2). As we assume k different environ-

ments, each trait experiences a period of selection pressure lasting

τ iterations, during which it adapts to the given environment, and

a k − 1 times longer period with no selection pressure. Thus, this

scenario is similar to the previous one when only a single trait was

considered. We can use Equations (5), (6), and (7) to estimate os-

cillations in the fraction of adapted alleles by substituting τ1 = τ

and τ0 = (k − 1)τ (see Table 1 and Fig. 3A).

Table 1. Summary of the fraction of adapted alleles as a function

of τ. Summary of our results for the minimum and the maximum

fraction of adapted alleles as well as the magnitude of oscillations

as a function of τ in all three scenarios with the linear fitness

function. Comparison of these analytical results and simulations

are shown in Figure 3.

Scenario 1 Scenario 2 Scenario 3

fmin

1
2 (1−B) + (1−A)B

1−AB
k−1

k − Ak−2Ak−1+1
k(1−Ak )

(1−A)B
1−AB

fmax

1
2 A(1−B) + (1−A)

1−AB
k−1

k − 2A−Ak−1
k(1−Ak )

1−A
1−AB

� f
1
2 (1−A)(1−B)

1−AB
2(1−Ak−1)(1−A)

k(1−Ak )
(1−A)(1−B)

1−AB

Note A = e− P
n τ A = e− P

n τ A = e− P
n(k−1) τ

B = e− 2(k−1)
Nn τ B = e− P N+k−2

Nn τ

Frequent and rare environmental change.If the environment

changes every iteration, i.e., at the same time scale as new muta-

tions appear in the population (τ = 1), after reaching some level of

adaptation, potential beneficial mutations become rare and there

is not enough time for a trait to adapt further between environ-

mental changes. As the environment changes every iteration, all

traits are likely to be approximately equally adapted. While it is

likely that traits that have been recently under selection have more

loci adapted than those that were neutral for a long time, in a fre-

quently changing environment these differences are small and we

can assume that all adapted loci are uniformly distributed across

all traits. To simplify the analysis, we can focus on all traits at the

same time.

We estimate the expected change �(X ) in the number of

adapted alleles in the whole genome X . We find the equilibrium

between the rate at which new positive mutations are gained and

the rate at which they are lost, by finding the threshold value of

X allowing for positive drift. We can determine the number X of

adapted loci in the whole genome in every type of environment:

X ≈ n
(

k−1
N + P

)
2(k−1)

N + P

and from that, the fraction of adapted alleles f = X/n

f ≈
k−1

N + P
2(k−1)

N + P
. (10)

Note that this expression is an approximation and can also

be obtained from Equation (6) by replacing exponentials by the

first two terms of their Taylor expansions.

Equation (10) shows that the expected level of adaptation

that the population achieves in a frequently changing environ-

ment depends on the relative magnitude of k/N and P . In large

populations, neutral mutations have low probability of fixation

and the fraction of adapted loci is close to 1. On the other hand,

when P is small or the population is small, the fraction of adapted

Figure 3. The dependence of the level of adaptation on the period of environmental change. Green denotes the expected maximum,

red the expected minimum, and blue the size of oscillations. The lines depict analytical results, the dots simulation results. Mean and

standard deviation of 200 periods were taken after stable oscillations were achieved. k = 10, � = 20, N = 100, P = 0.9. For larger τ in

scenario 1, see Figure S4.
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Table 2. Summary of frequent environmental change with linear

fitness function. The table shows the dependence of the level

of adaptation in a frequently changing environment in all three

scenarios with the linear fitness function. While in the first and the

third scenario the expected level of adaptation decreases with k,

in the second scenario the level of adaptation increases. This is due

to the overlap in adaptation in the second scenario: all except two

traits are always under selection in the same direction, resulting

in a diminishing difference between the threats as k increases.

Scenario
1

Scenario
2

Scenario
3

Fraction of adapted alleles f ≈ k−1
N + P

2(k−1)
N + P

(k−1)2+1
k2

1
k

loci is close to 1/2. Note that τ is relative to the timescale de-

fined by the mutation rate. To derive these results, we assumed

that the mutation rate per locus (1/n) is very small. In biological

terms, these results are relevant when the environment changes

frequently compared to the expected time needed to mutate a

particular locus.

The level of adaptation that the population achieves is in-

dependent of its initial adaptation level. Using the multiplicative

drift theorem, we can also estimate the level of adaptation as a

function of time, taking into account that adaptation slows down

as the population reaches the optimum (see Supporting Infor-

mation, Theorem 5 for the derivation and proofs). Furthermore,

Equations (8) and (9) can be used to find the time necessary for a

trait to climb the fitness peak, or to lose the adaptation completely

(see Table 3 and Fig. 5A).

Scenario 2: Selection acting at all traits, with partial
overlap between different environments
In the previous scenario, we assumed that threats were completely

independent and adaptation to one threat did not hinder adapta-

tions to different threats. However, in many biological situations,

it is more realistic to assume that adaptations are not entirely

compatible but partly antagonistic. For instance, while several

(mainly loss of function) mutations can cause antibiotic resistance

to multiple types of drugs, in the absence of antibiotics, these mu-

tations are harmful, reducing the population growth (Breeze and

Obaseiki-Ebor 1983; Girgis et al. 2009).

To investigate such scenarios, we assume that while all traits

are under selection at all times, one trait is characteristic for

every environment and requires a specific response in the opposite

direction. The direction of selection that is common for all the

other k − 1 traits is denoted as “principal direction.”

As all traits are independent, we begin by looking at a single

trait. Similarly to the previous scenario, we estimate the expected

increase in number of ones x if this trait experiences selection in

the principal direction

�(x) = P
� − x

n
, (11)

and their decrease when the trait is experiencing selection pressure

in the opposite direction

�(x) = −P
x

n
. (12)

Following the same approach as in the single trait scenario,

we can find the minimum and the maximum number (and fraction)

of adapted loci that each trait is expected to reach. However, as all

traits are under selection, we are more interested in the minimum

and maximum fraction of all alleles that are contributing to the

fitness. To find these, we cannot simply compare the gain and the

loss of alleles in a single trait, as all the other traits experienced

a different number of iterations under selection in the current

direction. Furthermore, one trait is always under selection in the

opposite direction, and alleles 0 count as adaptive. Thus, for the

total fraction of the loci that are adapted, we have to sum them

up over the number of periods that passed since the change in the

selection direction, resulting in

fmax(τ) = 1 − 2

k
· A − Ak

1 − Ak
= k − 1

k
− 2A − Ak − 1

k(1 − Ak)
(13)

and

fmin(τ) = 1 − 2

k
· 1 − Ak−1

1 − Ak
= k − 1

k
− Ak − 2Ak−1 + 1

k(1 − Ak)

(14)

and the resulting oscillations in fitness are

� f (τ) = 2

k
· (1 − A)(1 − Ak−1)

1 − Ak
, (15)

Table 3. Summary of rare environmental change with linear fitness function. In all three scenarios, the time to reach the optimum (its

upper bound) depends on the probability of fixation of positive mutations P , the mutation rate 1/n, and the logarithm of the number

of loci encoding each trait. The logarithmic function comes from the fact that the adaptation is faster at the beginning, when many loci

still need to be adapted, but slows down as the population approaches the fitness peak, as positive mutations become rarer.

Scenario 1 Scenario 2 Scenario 3

Time to find the fitness peak Topt ≤ n
P (1 + log �

2 ) n
P (1 + log 2�) n

P (k − 1)(1 + log k�)
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where A = e− P
n τ. See Figure 3B for analytical results and simula-

tions, and Supporting Information S1.5 for a detailed derivation.

Frequent and rare environmental change.Similarly to the previous

case, if the environment changes frequently (i.e., every iteration),

the population does not experience regular fluctuations in the

fraction of adapted loci and stabilizes at approximately

f ≈ (k − 1)2 + 1

k2
. (16)

To analyze the time required to find the fitness peak in a

rarely changing environment, we denote with X the number of

alleles that are adapted to the current threat, regardless whether it

is 0 or 1 that is required at a given locus. The expected change in

X is

�X ≥ k� − X

n
P. (17)

If the population is allowed to climb the fitness peak, all

traits are adapted to the given threat and thus, upon environmental

change, change in the selection direction for two traits occurs.

Therefore, the population loses a fraction of 2/k of adaptive

alleles.

Using the multiplicative drift theorem, we find the (tight)

upper bound on the expected time T necessary to find the current

fitness peak:

Topt ≤ n

P
(1 + log 2�), (18)

where we assumed that two traits were completely maladapted.

See Figures 5B and 4B for analytical results and simulations, and

Supporting Information S1.5 for a detailed derivation.

Scenario 3: Adaptations in different environments are
completely antagonistic
In this last scenario, we assumed that all traits (and loci) are under

selection at all times but every environment requires a specific re-

sponse (allele) at each locus. There are as many alleles per locus

as there are threats (k), and threats are completely antagonistic,

which means that adaptation to one threat inherently leads to mal-

adaptation to different threats. Thus, there is no overlap between

adaptations, and selection can point in any of k directions. For

instance, while in some environments alleles for larger body size

can be selected for, in other environments smaller body size can

be beneficial.

As said before, this scenario can also be described as a single

trait scenario with multiple available alleles per locus, and we will

use similar approach as in the single trait scenario. The probability

of a positive mutation occurring is n−X
n(k−1) , where X is the total

number of alleles across the whole genome adapted to the current

threat, and the factor (k − 1) comes from the fact that only one

in (k − 1) possible mutations at each locus is positive at a given

time. Thus, the expected gain of adaptive alleles of a particular

type in each time step when this type is selected for is

�X = P(n − X )

n(k − 1)
, (19)

while their loss during time periods when different alleles are

adaptive is

�X = − P X

n(k − 1)
− X (k − 2)

Nn(k − 1)
. (20)

The first part of Equation (20) describes a loss due to positive

mutations occurring and fixing, while the second part of the equa-

tion captures the loss of alleles due to neutral mutations to other

possible alleles.

Following the same approach as before, we find the maxi-

mum and the minimum expected fraction of adapted loci in the

whole genome:

fmax = 1 − A

1 − AB
,

fmin = (1 − A)B

1 − AB
,

and the magnitude of oscillations is

f� = (1 − A)(1 − B)

1 − AB
,

where A = e− P
n(k−1) τ and B = e− P N+k−2

Nn τ. See Figure 3C for ana-

lytical results and simulations.

Frequent and rare environmental change. If the environment

changes every iteration, all loci are expected to be equally adapted

and, in expectation, 1/k of them will always be adapted to the

current environment.

If the environment changes rarely, we use the variable drift

theorem to find the maximum expected time to adapt all n

loci:

Topt ≤ n

P
(k − 1)(1 + log k�),

where we assumed the worst case scenario with no adapted loci

at the beginning. After this time, it is expected that all loci are

adapted to the current threat, and if the environment changes,

the population is completely maladapted to the new environment.

See Supporting Information S1.6 for a derivation and Figures 4C

and 5C for analytical results and simulations. As our simulations

suggest (see Supporting Information S3.9), if the population is

too small and unable to adapt fast enough, the pronounced fitness

loss can lead to its extinction.
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Figure 4. The dependence of the level of adaptation on the number of environments/traits k, when the environment changes every

iteration. The red lines depict the analytical results, the blue dots the simulation results. Mean and standard deviation of 100 independent

trials, taken after a stable level of adaptation was achieved.

Figure 5. Time to climb the fitness peak as a function of the number of loci � encoding each trait. The red lines depict analytical results,

blue dots the simulation results. Mean and standard deviation of 100 independent trials. For dependencies on other parameters, see

Figures S5, S7, and S9.

INTRODUCING STOCHASTICITY INTO

ENVIRONMENTAL CHANGE

To simplify the calculations above, we have assumed that vari-

ous environments change periodically and follow a defined or-

der that does not change. However, as our theoretical calcula-

tions deal with expectations, our results apply to more general

scenarios as well, where different threats occur in random or-

der (assuming that they are all equally likely and of the same

length).

Simulations of the environment changing between a set of

threats in a random order support our results (Fig. S10). However,

we observe that the variance in the minimum and the maximum

number (or fraction) of adapted loci is increased, arising from the

variance in time spent adapting to one type of threat. Furthermore,

the expected minimum fraction of adapted loci is increased, es-

pecially in the last scenario. This arises due to two reasons: first,

because the minimum level of adaptation is already close to 0

and cannot go lower, and second, because traits lose adaptation at

an uneven rate, which is fast at first but then slows down. Thus,

shortening the time when a trait is losing adaptation for environ-

ment i below the expected (k − 1)τ makes a larger difference than

extending this time.

GENERALIZING THE FITNESS FUNCTION

All scenarios investigated above assumed that the fitness is pro-

portional to the fraction of adapted loci, and all positive mutations

are of the same size and thus have the same probability of fixation.

We generalize our results by relaxing these assumptions on the fit-

ness function and define fitness as an arbitrary monotone function

growing with the number of loci adapted to the current environ-

ment. Thus, several cases of epistasis can be incorporated into

the model. In Supporting Information S3, we provide a general

approach to analyze such arbitrary monotone fitness functions.

Here, to investigate differences that may occur in contrast

to linear fitness analyzed above, we consider adaptation in an

epistatic fitness landscape where new adaptive mutations con-

tribute less to the trait value than the previous ones. This results in

fitness gain diminishing with the number of adapted loci in each

trait as the trait is approaching its optimum. This means that posi-

tive mutations that occur earlier have a larger effect and are more

likely to fix in the population. Note that in scenarios where the

fitness is given by multiple traits (Scenarios 2 and 3), the fitness

contributions across traits are additive. The formal definition of

the fitness contributed by each trait is

Fi (xi ) = 1 − 2−xi , (21)
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where xi is the number of loci adapted to the current threat in a

given trait i . The total fitness is then given as F(x) =
∑

i Fi (xi )∑
i Fi (�) ,

where x = ∑
i xi is the total number of loci adapted to the cur-

rent environment and
∑

i Fi (�) represents a fitness of an indi-

vidual with all loci adapted to the current environment. Thus,

an individual’s fitness F(x) is expressed relative to a perfectly

adapted individual.

We further assume that the probability of fixation for a posi-

tive mutation depends on the fitness contribution as P = 1−e−2s�F

1−e−2Ns�F

(Kimura 1962). The probability of fixation of the first posi-

tive mutation is the largest, denoted Pmax, and the probability

of the fixation of the last positive mutation is the smallest, de-

noted P1. Neutral mutations fix with probability P0 = 1/N , where

Pmax ≥ P1 > P0. We derive the expected fitness for the frequently

changing environment (τ = 1) as a function of k. While analytical

calculations only deal with this particular case, numerical simu-

lations provide insight into scenarios with an arbitrary frequency

of environmental change (Fig. 7).

The main difference between these and the linear fitness

scenarios is in the rate of adaptation. As large mutations are

more likely to be fixed than the small ones, the saturating fitness

function can lead to faster or slower adaptation compared to the

linear scenario where all loci contribute equally. This depends on

the fixation probability of such equal-sized mutations compared

to the fixation probabilities when a saturating fitness function

is assumed.

Figure 7 shows results of simulations for saturating fitness

in all three scenarios. Analytical results shown in this figure for

comparison were calculated using the formula for linear fitness

with the probability of fixation P = 0.9 (see Fig. 6A). The close

match between the simulated results of saturating fitness and the

analytical results of linear fitness is caused by the fact that, for the

parameters used (k = 5, � = 10, N = 100), even the last mutation

brings significant advantage and thus fixes with a probability

larger than 0.9.

Figure S12 illustrates results for more traits encoded by more

loci (k = 10, � = 20, N = 100), where the last mutation brings

only a small fitness advantage and thus fixes with probability

close to 1/N (see Figure 6B). The difference between the satu-

rating and linear fitness is more obvious: in the first scenario, the

minimum expected fraction of adapted alleles is the same as in the

linear scenario, while the maximum expected fraction is slightly

lower than would be expected in the linear-fitness case (analytical

results calculated for linear fitness assumed P = 0.15). This is

Figure 6. Probability of fixation of a new mutation depends on the number of loci that are already adapted.

Figure 7. Dependence of the level of adaptation (fraction of adapted alleles) on the period of environmental change. Green depicts

the expected maximum, red the expected minimum, and blue the size of oscillations. Dots depict simulation results. Mean and standard

deviation of 200 periods, taken after stable oscillations were achieved. k = 5; � = 10; N = 100. Lines depict analytical results for the linear

scenario assuming P = 0.9.
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Table 4. Summary of frequent environmental change, saturating fitness. For the saturating fitness function, we were unable to derive

a general dependence of the fraction of adapted alleles, nor fitness on arbitrary τ. However, figures provided in Supporting Information

S3.6 show simulation results for the saturating fitness for arbitrary τ in all three scenarios. For the fraction of adapted alleles, we were

able to derive the upper and the lower bound, however, those are relatively loose. This table shows the summary of the results for all

three scenarios with saturating fitness in a frequently changing environment.

Fraction Fitness

Scenario 1 P1 + (k−1)P0
2(k−1)P0+Pmax

≤ f ≤ Pmax + (k−1)P0
2(k−1)P0+P1

2� − 2�/2 ≤ F ≤ 2�

Scenario 2 1
k2 · ( P1

Pmax
+ (k−1)2 Pmax

P1
) ≤ f ≤ 1

k2 · ( Pmax
P1

+ (k−1)2 P1
Pmax

) ≈ (k − 1)2�

Scenario 3 1
k · P1 + (k−2)P0

Pmax + (k−2)P0
≤ f ≤ 1

k · Pmax + (k−2)P0
P1 + (k−2)P0

≈ k(1 − o(1))2�

caused by the very low probability of fixation of the last few alle-

les in the trait, so there is simply not enough time for them to fix

(Fig. 6B). In the second scenario, this difference is even more

extreme: despite the similarity between the environments, only

a relatively low level of adaptation is achieved, not necessarily

above k−2
k as in the linear case. This is caused by the higher

probability of some alleles to mutate and get fixed from 1 to 0

in one period than from 0 to 1 in (k − 1) periods, due to the

higher fitness contribution that such a mutation can bring (i.e.,

(k − 1)Pfix(x) < Pfix(� − x)). With longer periods, both the min-

imum and the maximum fraction of adapted alleles increase. In

the third scenario, we did not observe any difference between this

and the linear scenario for τ < 1000, because only a small frac-

tion of loci was adapted and thus new mutations fixed with high

probability. However, for τ ≥ 2000, when the fraction of adapted

alleles reached at the end of the period should be larger than 0.6,

we observed that the fraction of adapted loci that was actually

reached was much lower than it would be in the linear case, as the

probability of fixation is very low and thus more time is required

for new beneficial mutations to fix.

Frequent and rare environmental change.In the saturating-fitness

scenario, not only the fraction but also the distribution of adapted

loci among traits at any given time plays an important role. There-

fore, in Table 4, we provide results for both the expected fraction

of adapted loci and the expected fitness. We derive analytical ex-

pressions for both the lower and upper bounds for the expected

fraction of adapted loci as a function of k, for the frequently

changing environment (τ = 1).

Figure S13 shows results of simulations as well as the de-

rived bounds, assuming Pmax = 1, P1 = P0 = 1/N . The bounds

are very loose and do not provide much information in this case.

However, for smaller �, when P1 � P0, these bounds are tighter.

Furthermore, a nice fit (green solid line) of the expected fraction

of adapted alleles could be obtained by using the lower bound

expression but substituting P1 by ‘the lowest effective probability

of fixation’ P1eff . The lowest effective probability of fixation is

the probability of fixation of the smallest mutation that actually

gets fixed in the given conditions. In Scenarios 1 and 2 shown in

Figure S13, the maximum fraction of adapted alleles is around

0.6, corresponding to 12 loci being adapted. Thus, the smallest

mutation fixes with a probability of around 0.7 (see Fig. 6). Sub-

stituting this value into the lower bound, we obtained a close fit to

the observed values. In the third scenario, the fraction of adapted

alleles is much lower, leading to P1eff ≈ 1.

When considering a rarely changing environment, the min-

imum and the maximum fraction of adapted loci is not affected

by the fitness function. Note here that we assume that “chang-

ing rarely” means that all loci have time to adapt/lose adaptation.

This time depends heavily on the shape of the fitness function

and the probability of fixation of the smallest mutation (see Sup-

porting Information S3). In all cases, the maximum fraction of

adapted loci is f = 1, while the minimum is f = 0.5 in the first

scenario, f = k−2
k in the second, and f = 0 in the third sce-

nario. The minimum expected fitness also remains the same in

the second scenario (F = k−2
k ), because exactly two traits are

maladapted upon environmental change, and the third scenario

(F = 0), because all traits are completely maladapted. However,

the minimum expected fitness changes in the first scenario to

F = 1 − 2−�/2. The maximum fitness is 1 in all scenarios (all loci

adapted).

Discussion
Environmental fluctuations are expected to increase in frequency

and severity within the near future. If these environmental changes

are too widespread and severe for individuals to be able to migrate

to more suitable areas or acclimatize physiologically, they can

prove fatal.

We used multilocus models of evolving populations to in-

vestigate the role that the frequency of change and the similarity

of fitness landscapes play in evolution. We showed that even

though frequent environmental changes are in general consid-

ered to be harmful to the organisms, under some circumstances,

a frequent environmental change can prevent the population

from climbing a temporary fitness peak and losing fitness when

an environmental change occurs. Thus, by staying maladapted,
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populations may survive, although not thrive, in a wide range of

conditions.

BUILDING UP THE MODEL

Despite the fact that evolutionary algorithms were originally in-

spired by natural evolution, the theory of evolutionary computa-

tions developed in complete isolation from the theory of popula-

tion genetics and natural evolution. However, it has been recently

shown that many evolutionary models could be translated into

a common framework with the theory of evolutionary computa-

tions, allowing methods from the field of computer science to be

easily used in biological context (Paixão, Badkobeh, et al. 2015;

Paixão, Pérez Heredia, et al. 2015). For instance, “drift analysis”

employed here has been successfully used to study the length of

adaptive walks in various classes of fitness landscapes, especially

focusing on the scaling of these landscapes with the length of the

genome (Pérez Heredia et al. 2016). Building on this approach,

we extend this framework to variable fitness seascapes.

To define and analyze our models, we had to employ several

strict assumptions and simplifications (summarized in Supporting

Information S3.7). For instance, we assumed monomorphic pop-

ulations, a regime of strong selection and weak mutation, and en-

vironmental changes occurring at the timescale comparable with

the fixation of a new mutation within the population, or slower.

While this is an unlikely timescale for most organisms with long

generation times, we believe that our model is applicable to mi-

crobial settings and can be used to study the evolution of adapta-

tion of microorganisms to diverse conditions, and provide insight

into their evolution. Furthermore, it could be used in the analysis

of other populations with large size and short generation times,

for instance, phytoplankton. While phytoplankton populations are

not monomorphic, our model could be used to provide some esti-

mates for timescales necessary for adaptation, for instance in the

study of adaptation to increasing acidification of the oceans and

increasing temperature. To compare our results to those gained

by observing natural populations, for instance by Bergland et al.

(2014) investigating seasonal selection in Drosophila, it would be

necessary to extend the model to polymorphic populations and

allow for adaptation from the standing genetic variation. Further-

more, when discussing the probability of extinction, it is necessary

to allow for a variable population size, as a decreasing population

size may lead to a higher probability of mutation acceptance. We

addressed this issue only briefly in simulations; more extensive

analysis and simulations are still needed.

While matching different environments/threats with corre-

sponding traits in our model may also seem rather artificial

(and certainly is to a degree), similar scenarios have been docu-

mented in real organisms. For instance, the flowering phenology

of Heuchera grossulariifolia and the emergence time of its seed-

parasitic moth Greya politella represent such a matching trait pair

(Nuismer and Ridenhour 2008). A similar approach was also used

in a study by Gilman et al. (2012). The authors investigated a sce-

nario of a victim–exploiter system with multiple traits, where the

exploiter has to overcome all defence mechanisms developed by

the victim in order to succeed. The authors showed the importance

of the correlation between the traits and demonstrated the advan-

tage of the victim in this evolutionary race. While our models

are somewhat similar (for instance, by assuming traits function-

ally paired with threats), in our study, environments were given

extrinsically (were unaffected by the evolving population).

In the third multitrait scenario, we assumed that adaptations

to different threats are contradicting each other, with adaptation

gain in one environment implying the loss of adaptive alleles

to a different threat. This situation is similar to a recent study

by Toor and Best (2016). The authors examined theoretically

the evolutionary behavior of a host population that must allocate

defenses between two enemy populations, parasites and predators,

with defense against one enemy constraining defense against the

other. Our study presented here dealt with a similar scenario but

assumed that the threats were changing in time.

ADAPTATION GAIN AND ITS LOSS

In the single trait scenario and the first multitrait scenario, a trait

experiences alternating periods of selection pressure and periods

of its absence. In both scenarios, mutations that are neutral in

some conditions may have a selective advantage or disadvantage

in a different environment. Such cryptic mutations have been

shown to play an important role in evolution, by creating cryptic

variation hidden from selective forces at some point, but serving

as a substrate of substantial phenotypic (and fitness) variation

later (Draghi and Plotkin 2011).

Both theoretical (Hermisson and Wagner 2004; Masel 2006;

Rajon and Masel 2013) and empirical (Hayden et al. 2011) studies

have shown the importance of cryptic genetic mutations for adap-

tation after environmental change. For instance, Rajon and Masel

(2013) found that cryptic sequences may accelerate adaptation

and facilitate large phenotypic changes, even in the absence

of genetic diversity. Hayden et al. (2011) experimented with

two evolving populations of a ribozyme (RNA enzyme) under

selection for activity with its native substrate in different condi-

tions (weak and strong selection). Both populations accumulated

cryptic genetic variation that was revealed upon environmental

change when the populations were tested on a different substrate.

The authors found cryptic genetic variation that had accumulated

in one environment facilitated adaptation to a new environment.

While we did not focus on genetic variation in our study

(as we assumed monomorphic populations), we investigated and

compared the time necessary to climb the fitness peak during the

selection period, and time to lose the adaptation due to cryptic mu-

tations when selection is absent. Our results show that both times
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grow as logarithms of the number of loci � encoding each trait,

as well as with the number of loci that control all traits that come

under selection in the fluctuating environment, in our model de-

fined as the size of the genome n. The total number of loci n plays

a role mainly because we defined the mutation rate as 1/n, so

mutations at each locus are less likely as the length of the genome

increases. The main difference arises due to the different proba-

bilities of mutation fixation, as neutral mutations (causing loss of

adaptation) are fixed with probability 1/N , while positive muta-

tions are fixed with higher probability. The logarithmic function

comes from the fact that the adaptation is faster at the beginning,

when many loci still need to be adapted, but slows down as the

population approaches the fitness peak, as the positive mutations

become rarer. Especially in the process of climbing the fitness

peak, the time is dominated by waiting for the last maladapted

locus to mutate and this mutation to fix in the population.

However, populations often do not need to be fully adapted in

order to survive, or even thrive in the given environment; often, it

is enough to be in the proximity of the fitness peak. This brings us

to another interesting result: if the full adaptation is not required,

but only some fraction of loci needs to be adapted in order for

population to survive, the logarithmic function of � disappears

from the results. The expected time that population needs to get

to the proximity of the fitness peak scales indirectly with the

mutation rate and the probability of fixation of a new mutation as

T ∝ n
P .

In our model, we assume that the selection is always strong

enough that negative mutations cannot fix. However, in the more

general scenario investigated by Pérez Heredia et al. (2016), the

authors derived a condition on the selection strength enabling

full adaptation. The authors showed that if the selection is not

strong enough, the population reaches a mutation–selection bal-

ance when negative mutations fix at the same rate as positive

mutations (the fixation probability is less, but the mutations are

much more frequent), and it is unlikely for the population to

adapt fully.

During the absence of selection we assumed that all mu-

tations were truly neutral, leading to the loss of adaptation by

cryptic mutations. However, the loss of function in the absence of

selection is often driven by the advantage that such loss can bring.

For instance, Moran et al. (2015) investigated the loss of vision

in Mexican cavefish Astyanax mexicanus and found that eyesight

represents a significant energetic cost. The authors showed that

the loss of the visual system in the cave phenotype substantially

lowered the amount of energy expended on expensive neural tis-

sue, in particular for juvenile fish. Thus, mutations leading to

the loss of function were actually positive in the cave environ-

ment, more reminiscent of the second scenario we investigated,

with adaptations partially antagonistic in different environments,

discussed below.

Optimal frequency of environmental change depends
on the similarity of environments
We investigated three multitrait scenarios that differ in the simi-

larity of environments, or, rather, adaptations that they require. In

each case, we derived the minimum and the maximum fraction of

loci that is expected to be adapted as a function of the frequency

of the environmental change.

In the first case, different traits are under selection at different

times. There is no direct cost of adaptation to one type of envi-

ronment; however, deleterious mutations occur in neutral traits

and get fixed by drift. Thus, the population experiences fitness

loss when the environment changes, suddenly requiring the lost

adaptation. As explained above, in such a case, the difference in

the rate of adaptation and the rate of its loss is given mainly by

the different probabilities of accepting adaptive and neutral muta-

tions. As adaptation gain is faster, frequent environmental change

will lead to all traits being well adapted (though not completely).

Decreasing the frequency of environmental change will increase

the maximum achieved fraction of adapted alleles only slightly,

but it will significantly decrease the minimum, leading to large

fitness loss upon environmental change.

In the second scenario, all traits are permanently under se-

lection, with partial overlap and partial conflict in the direction of

selection. Biological scenarios where a specific trait is adaptive in

one but maladaptive in another environment have been observed

in nature multiple times (Hottes et al. 2013; Moran et al. 2015).

For instance, Hottes et al. (2013) discussed adaptations in bacteria

occurring through the loss of function, when a loss of functional

protein can lead to “rewiring” of a metabolic or signaling path-

way more suitable in new conditions. Here, we observed that the

overlap between different environments leads to most traits be-

ing highly adapted at all times, regardless the frequency of the

environmental change. High frequency of environmental change

leads to adaptation that is slightly higher than the minimum, but

much lower then the maximum of the expected level of adapta-

tion at lower frequencies of environmental change. In the other

words, contrary to the previous case, with decreasing frequency

(increasing time spent in one type of environment), the expected

maximum is quickly increasing, while the minimum is decreasing

only slightly.

Similar results of significant increase of the expected maxi-

mum and only a slight decrease of the minimum were observed

in the third scenario. However, it is important to note that the

minimum is quickly approaching 0 with the increasing time pe-

riod, meaning that environmental change after a long time leads

to complete maladaptation.

Comparing these three scenarios, we observed that if there

is no overlap between the adaptations required in a different en-

vironment (no similarity of threats, Scenarios 1 and 3), frequent

changes alternating between a given set of environments are better
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for the evolving population than rare changes, which may lead to

significant fitness loss, and, under certain circumstances, threaten

the persistence of the population. On the other hand, if the adap-

tation to one type of environment carries over if the environment

changes due to the similarity between the threats, longer periods

of a stable environment are more beneficial for the populations.

Furthermore, there is a qualitative difference between the three

scenarios: while in the first scenario, adaptation is lost only due to

neutral mutations in the absence of selection, in the other two sce-

narios, there is a selection in different directions. Thus, in the first

scenario population size N plays a role in the rate of degeneration,

while in the second scenario it disappears from the results (see

Table 1). The third scenario is a mix of the first two: adaptation

is lost due to a selection in different direction, however, there is a

possibility of neutral mutations.

A recent study by Matuszewski et al. (2014) also considered

dynamics of a changing environment. The authors investigated

adaptive walks using Fisher’s geometric model with a moving

optimum and found that in the environmentally limited regime

(slow environmental change), the population followed the opti-

mum closely, adaptive steps were small, and their multivariate

distribution mirrored the shape of the fitness landscape. On the

other hand, in the genetically limited regime, the population fol-

lowed the optimum with a large gap, adaptive steps were large,

and their distribution was determined primarily by the distribu-

tion of new mutations. This means that populations were better

adapted in an environment that was changing slowly. However,

the geometric model the authors used is somewhat similar (i.e.,

assumptions of an SSWM regime), it differs in some crucial as-

sumptions. For instance, the authors assumed universal pleiotropy,

while in our model, each locus contributed strictly to one trait.

Furthermore, in our model, the optimum “jumps” repeatedly be-

tween a set of conditions, while in the study of Matuszewski et al.

(2014), the optimum was moving linearly at a steady pace. This

suggests that the nature of the environmental changes plays an im-

portant role in determining the importance of the environmental

change.

Rare environmental changes lead to higher fitness loss
Our results suggest that in some situations, rare environmental

changes may lead to overspecialization of the population, that

is unable to cope with the environmental change. In all scenar-

ios, extending the period of a constant threat lead to a higher

expected maximum fraction of adapted alleles and a lower min-

imum. Thus, longer periods result in higher fitness loss upon

environmental change. This effect is the largest in the third sce-

nario, when adaptation to one threat contradicts adaptation to all

the other threats, leading to the complete maladaptation if the

environmental change occurs after a long time. Note that the defi-

nition of the “long time” depends on the number of loci encoding

each trait, the number of traits, and several other parameters, for

instance, mutation rate, as discussed above.

An extensive fitness loss can lead to shrinking of the popula-

tion, or, if the individuals of a particular generation are unable to

cope with the new conditions (absolute fitness � 1), even to the

population’s extinction. These populations could, however, sur-

vive in a frequently changing environment. While in our analytical

model we assumed constant population size, we ran several simu-

lations explicitly considering demography and population growth

rates in different environment. These simulations prove that under

some conditions, increasing the frequency of the environmental

change indeed prevented the population from extinction (see

Supporting Information S3.9). However, to properly investigate

the parameter space and the conditions upon which extinction is

likely or inevitable, extensions of the model considering standing

genetic variation and more extensive simulations are necessary.

Our results are in agreement with predictions by Lynch and

Gabriel (1987) and Kassen (2002), stating that frequent environ-

mental fluctuations lead to generalism, selecting for genotypes

that perform well across a range of different environments. These

predictions have been already supported by experimental observa-

tions in microbes. For instance, Ketola et al. (2013) observed that

strains of bacterial pathogen Serratia marcescens that evolved in

fluctuating temperature outperformed in novel environment the

strains that evolved in constant temperature. In a recent study of

multiple species of bacteria, Saarinen et al. (2018) found that the

clones evolved in the fluctuating environment were more toler-

ant to environmental fluctuations than the clones evolved in the

constant environment. Studies of antibiotic resistance also sug-

gest that less frequent, but stronger antibiotic treatments are more

likely to cause the local extinction of the bacterial population (Wu

et al. 2014)

In a frequently changing environment, similarity of
threats affects the level of adaptation
When the environment changes frequently relative to the time

scale defined by the mutation rate (comparably to the expected

time needed to get mutation at a particular locus), there is no time

for populations to adapt to the current threat. However, popula-

tions also experience (almost) no fitness loss when the environ-

ment changes. The achieved fitness of the population is given as

a mean fitness across all environments and depends on the vari-

ability of the environments modulated by the number of traits k

in our model. In the first scenario, there is no similarity between

threats, and the expected fitness (fraction of adapted alleles) that

the population achieves decreases as more threats can affect the

population, and individual traits are under selection less often.

The expected level of adaptation depends on the relative mag-

nitude of k/N and P . The larger populations tend to be more

adapted then small ones: in large populations, neutral mutations
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have lower probability of fixation and the fraction of adapted loci

is close to 1. On the other hand, when P is small or the population

is small, the fraction of adapted loci is close to 1/2 due to random

genetic drift (see Table 2).

Similarly, in the third scenario the expected fitness that the

population achieves decreases with k even steeper. On the other

hand, in the second scenario, we assumed that adaptations of all

traits except two are always shared between the threats, so that

the fraction of loci in conflict is decreasing with increasing k. The

expected fitness therefore increases with the number of threats.

It would be interesting to fix the fraction of traits in conflict,

rather than their absolute number. However, we leave this for

future studies.

GENERALIZATIONS

We generalized our models in two ways: by adding stochasticity

to the order of threats affecting the population, and by generaliz-

ing the fitness function. Both generalizations did not drastically

affect the results. The results were qualitatively similar to those

obtained for the linear fitness and deterministic environmental

change, suggesting their generality and robustness. However,

there are several other useful possibilities to extend our study.

For instance, adaptation by new mutation is only one way that

population can survive, mostly applicable at long timescales. In

shorter timescales, the role of standing genetic variation, ignored

in our model, is more pronounced. Releasing the assumption of

monomorphic populations would loosen the assumption on long

timescales of environmental change and short generation times.

Such an extension would enable to apply the model to many more

species and come up with more concrete predictions. Further-

more, in order to answer the crucial questions about the persis-

tence or extinction of the populations, it is necessary to consider

demography explicitly. Modeling variably sized populations that

are expanding if adapted to the environment, but shrinking if mal-

adapted, would shed more light onto the complex problem of

population extinction. We only briefly addressed this issue in our

simulations, but our results suggest that although the frequency

of environmental change undoubtedly plays a vital role in pre-

venting population extinction, several other aspects are crucial as

well (see Supporting Information S3.9 for preliminary results and

further discussion). More studies are needed to investigate the pa-

rameter space and the important factors leading to the extinction

of populations.

Our study is just one of the first steps toward the analysis of

the complex problem of adaptation in a changing environment.

However, this topic is becoming central to many areas of biol-

ogy. We hope that extensions of our study will lead to practical

outcomes, for instance, in the field of conservation biology, or

evolution of antibiotic or herbicide resistance.
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Appendix A: Definitions
In the following sections of the Appendix and mainly in

the Supporting Information, we provide detailed definitions and

derivations of the results. As many of the methods used were bor-

rowed from the theory of evolutionary computations, the language

is more technical than biological. The main concept is based on

casting the SSWM regime as an evolutionary algorithm, applied to

specific optimization problems (fitness landscapes). Many results

are shown in the form of theorems and proofs, which were then

translated into biological terminology and interpretation, shown

in the main manuscript.

SSWM as an algorithm

Algorithm 1: SSWM as seen in .lateoãxiaP (2015), β ∈ (0, 1]

1 Choose x ∈ {0, 1}n uniformly at random;
2 repeat

3 y ← x;
4 Mutate one bit in y chosen uniformly at random;
5 Δf = f(y) − f(x);
6 Choose r ∈ [0, 1] uniformly at random;
7 if r < pfix(Δf) then

8 x ← y;

9 until Termination criterion met;

“Mutate one bit” means that a bit is flipped from 1 to 0 or the

other way round in scenarios 1 and 2, while in scenario 3 it

means that the bit value i ∈ {0, . . . , k} is changed to any other

j ∈ {0, . . . , k}, j �= i .

“Termination criterion” is either reaching a complete adapta-

tion (fitness peak) or other defined state, e.g., some distance from

the optimum.

Drift theorems
In our analysis, we use the so-called “variable drift theorem” (Jo-

hannsen 2010), which can be applied when for any state of the

system x the expected change between two consecutive states
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(E[�(x)]) is at least some positive function h(x) of the current

state:

E[�(x)] ≥ h(x) > 0. (A1)

In such a case, the (modified) variable drift theorem (Jo-

hannsen 2010; Pérez Heredia et al. 2016) states that the expected

time to reach some distance a from the optimum, starting at an

initial distance of X0, is bounded by

E[Ta] ≤ a

h(a)
+

∫ X0

a

1

h(x)
dx . (A2)

By defining a = 1, we can calculate the upper limit on the ex-

pected time to reach the optimum (fitness peak).

Special cases of the variable drift theorem that we also occa-

sionally used in our analysis are the “Multiplicative drift theorem”

(Doerr et al. 2012) and the Additive drift theorem (Lehre and Witt

2013).

Theorem A1 (Generalized variable drift theorem (Pérez Heredia

et al. 2016)). Consider a stochastic process Xt on N0. Suppose

there is a monotonic increasing function h : R+ → R+ such that

the function 1/h(x) is integrable on [1, m], and with expected

progress towards the optimum �k such that

�k ≥ h(k)

for all k ∈ {a, . . . , m}. Then the expected first hitting time of any

state from {0, . . . , a − 1} for a ∈ N is at most

a

h(a)
+

∫ m

a

1

h(x)
dx .

The proof of the theorem is provided in (Pérez Heredia et al.

2016).

Theorem A2 (Additive drift theorem (Lehre and Witt 2013)). Let

(Xt )t≥0 be a stochastic process over some bounded state space

S ⊆ R+
0 , and T0 := min{t | Xt ≤ 0} the first hitting time of state

0. Assume that E[T0 | X0] < ∞. Then:

(i) If E[Xt − Xt+1 | X0, . . . , Xt ; Xt > 0] ≥ δu, then E[T0 | X0]

≤ X0/δu.

(ii) If E[Xt − Xt+1 | X0, . . . , Xt ] ≤ δ�, then E[T0 | X0] ≥ X0/δ�.

Both results are conditioned on a starting point X0, but by

applying the law of total expectation, we can avoid the starting

condition obtaining E[T0] ≤ E[X0]/δu and E[T0] ≥ E[X0]/δ� for

the first and second result respectively. The proof can be found

in (Lehre and Witt 2013).

Theorem A3 (Multiplicative drift theorem (Doerr et al. 2012)).
Let (Xt )t∈N be nonnegative random variables over R, each with

finite expectation, and let T = min{t | Xt < 1}.

Suppose there exists an ε > 0 such that, for all t ,

E[Xt − Xt+1 | Xt , t < T ] ≥ εXt .

Then

E[T | X0] ≤ 1 + ln X0

ε
.

Theorem A4 (Tail bounds for multiplicative drift (Doerr and

Goldberg 2013; Lehre and Witt 2014)). Let (Xt )t∈N be nonnegative

random variables over R, each with finite expectation, and let

T = min{t | Xt < 1}.
Suppose there exists an ε > 0 such that, for all t ,

E[Xt − Xt+1 | Xt , t < T ] ≥ εXt .

Then, for all c > 0,

Pr

[
T >

c + ln X0

ε

∣∣∣∣∣ X0

]
≤ e−c.
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