
Unbiased Black-Box Complexities of Jump
Functions—How to Cross Large Plateaus

Benjamin Doerr
École Polytechnique,
Paris-Saclay, France

Carola Doerr
CNRS & Univ. Pierre et Marie Curie

Paris, France

Timo Kötzing
Friedrich-Schiller-Universität

Jena, Germany

ABSTRACT
We analyze the unbiased black-box complexity of jump func-
tions with large jump sizes.

Among other results, we show that when the jump size
is (1/2 − ε)n, that is, only a small constant fraction of the
fitness values is visible, then the unbiased black-box com-
plexities for arities 3 and higher are of the same order as
those for the simple OneMax function. Even for the ex-
treme jump function, in which all but the two fitness values
n/2 and n are blanked out, polynomial-time mutation-based
(i.e., unary unbiased) black-box optimization algorithms ex-
ist. This is quite surprising given that for the extreme jump
function almost the whole search space (all but a Θ(n−1/2)
fraction) is a plateau of constant fitness.

To prove these results, we introduce new tools for the
analysis of unbiased black-box complexities, for example,
selecting the new parent individual not by comparing the
fitnesses of the competing search points, but also by tak-
ing into account the (empirical) expected fitnesses of their
offspring.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity—Nonnumerical Algorithms and
Problems

Keywords
Black-Box Complexity; Theory; Run Time Analysis; Evolu-
tionary Computation

1. INTRODUCTION
The analysis of black-box complexities in evolutionary

computation aims in several complementary ways at sup-
porting the development of superior evolutionary algo-
rithms. By comparing the run time of currently used ran-
domized search heuristics (RSHs) with the one of an opti-
mal black-box algorithm, it allows a fair evaluation of how

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO’14, July 12–16, Vancouver, BC, Canada.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2662-9/14/07 ...$15.00.
http://dx.doi.org/10.1145/2576768.2598341.

good today’s RSH are. With specific black-box complex-
ity notions, we can understand how algorithm components
and parameters such as the population size, the selection
rules, or the sampling procedures influence the run time of
RSH. Finally, research in black-box complexity proved to be
a source of inspiration for developing new algorithmic ideas
that lead to the design of better search heuristics.

In this work, we analyze the unbiased black-box complex-
ity of jump functions, which are observed as difficult for
evolutionary approaches because of their large plateaus of
constant (and low) fitness. Our results show that, surpris-
ingly, even extreme jump functions that reveal only the three
different fitness values 0, n/2, and n can be optimized by
a mutation-based unbiased black-box algorithm in polyno-
mial time. We introduce new methods that facilitate our
analyses. The perhaps most interesting one is a routine
that creates a number of samples from which it estimates
the distance of the current search point to the fitness layer
n/2. Our algorithm thus benefits significantly from ana-
lyzing some non-standard statistics of the fitness landscape.
We believe this to be an interesting idea that should be in-
vestigated further. Our hope is that it can be used to design
new search heuristics.

1.1 Black-Box Complexity
Black-box complexity studies how many function evalu-

ations are needed in expectation by an optimal black-box
algorithm until it queries for the first time an optimal solu-
tion for the problem at hand. Randomized search heuristics,
like evolutionary algorithms, simulated annealing, and ant
colony algorithms, are typical black-box optimizers: they are
typically problem-independent and as such they learn about
the problem to be solved only by generating and evaluat-
ing search points. The black-box complexity of a problem
is thus a lower bound for the number of fitness evaluations
needed by any search heuristic to solve it.

Several black-box complexity notions covering different as-
pects of randomized search heuristics exist, for example the
unrestricted model [12], which does not restrict in any way
the sampling or selection procedure of the algorithm, the
ranking-based model [8,21], in which the algorithms are re-
quired to base their selection only on relative and not on
absolute fitness values, the memory-restricted model [9,12],
in which the algorithm can store only a limited number of
search points and their corresponding fitness values, and the
unbiased model [17], which requires the algorithms to treat
the representation of the search points symmetrically. By
comparing the respective black-box complexities of a prob-
lem, one learns how the run time of RSHs is influenced by

769

Constant Jump Short Jump Long Jump Extreme Jump

Arity ` = O(1) ` = O(n1/2−ε) ` = (1/2− ε)n ` = n/2− 1

k = 1 Θ(n logn) [7] Θ(n logn) [here] O(n2) [here] O(n9/2) [here]
k = 2 O(n) [5, 7] O(n) [here] O(n logn) [here] O(n logn) [here]

3 ≤ k ≤ logn O(n/k) [7, 10] O(n/k) [here] O(n/k) [here] Θ(n) [here]

Table 1: Known results for the unbiased black-box complexity of Jump`.

certain algorithmic choices such as the population size, the
use of crossover, the selection rules, etc.

For all existing black-box models, however, the typical
optimal black-box algorithm is a highly problem-tailored al-
gorithm that is not necessarily nature-inspired. Still we can
learn from such “artificial” algorithms about RSH, as has
been shown in [3]. In that work, a new genetic algorithm is
presented that optimizes the OneMax function in run time
o(n logn), thus showing that the o(n logn) bound for the 2-
ary unbiased black-box complexity of OneMax found in [5]
is not as unnatural as it might have seemed at first.

Here in this work we consider unbiased black-box complex-
ities. The unbiased black-box model is one of the standard
models for analyzing the influence of the arity on the per-
formance of optimal black-box algorithms. It was originally
defined by Lehre and Witt [17] for bit string representations
and has later been generalized to domains different from bit
strings [6, 19]. For bit string representations, the unbiased
model requires the optimizing algorithms to treat different
positions of the bit strings equally, similarly with the two
different possible bit contents (thus the term “unbiased”).
For example, unbiased algorithms are not allowed to explic-
itly write a 1 or a 0 at a specific position of a bit string to
be evaluated; instead, such algorithms can either sample a
bit string uniformly at random, or generate one from previ-
ously evaluated solutions via operators which are unbiased
(i.e., treat positions and bit contents equally). See Section 2
for a detailed description of the model.

1.2 Jump Functions
In this paper we are concerned with the optimization of

functions mapping bit strings of fixed length (i.e., elements
of the hypercube {0, 1}n) to real numbers; such functions are
called pseudo-Boolean. A famous pseudo-Boolean function
often considered as a test function for optimization is the
OneMax function, mapping any x ∈ {0, 1}n to the number
of 1s in x (the Hamming weight of x).

Other popular test functions are the jump functions. For a
non-negative integer `, we define the Jump` as derived from
OneMax by “blanking out” any useful information within
the strict `-neighborhood of the optimum (and the mini-
mum) by giving all these search points a fitness value of 0.
In other words, Jump`(x) = OneMax(x) if OneMax(x) ∈
{0} ∪ {`+ 1, . . . , n− `− 1} ∪ {n} and Jump`(x) = 0 other-
wise. This definition is mostly similar to the two, also not
fully agreeing, definitions used in [11] and [15].

Jump functions are well-known test functions for random-
ized search heuristics. Droste, Jansen, and Wegener [11]
analyzed the optimization time of the (1+1) evolutionary
algorithm on Jump functions. From their work, it is easy
to see that for our definition of Jump functions, a run time
of Θ(n`+1) for the (1+1) evolutionary algorithm on Jump`
follows for all ` ∈ {1, . . . , bn/2c − 1}. We are not aware

of any natural mutation-based randomized search heuris-
tic with significantly better performance (except for large
`, where simple random search with its Θ(2n) run time be-
comes superior). For all `, Jansen and Wegener [14] present
a crossover-based algorithm for Jump`. With an optimal
choice for the parameter involved, which in particular im-
plies a very small crossover rate of O(1/n), it has an opti-
mization time of O(n log3 n) for constant ` (this is mistak-
enly stated as O(n log2 n log logn) on the last line of p. 60
of the paper, but it is clear from the proof that this is
only a typo) and an optimization time of O(n2c+1 logn) for
` = dc logne, c a constant.

Contrasting these results, it has been shown in [7] that for
jump functions with constant `, the k-ary unbiased black-
box complexities are of the same order as those of the easy
OneMax test function (which can be seen as a Jump func-
tion with parameter ` = 0). The results in [7] are based
on an intermediate result (Lemma 3 in [7]) which shows
that a black-box algorithm having access to a jump func-
tion with constant ` can retrieve (with high probability) the
true OneMax value of a search point using only a constant
number of queries.

1.3 Our Results
In this work we greatly expand on the results obtained

in [7] and give a much more complete picture of the unbiased
black-box complexity of Jump functions.

In the regime of jump functions with super-constant jump
size, we distinguish between short, long, and extreme jump
functions. Short jump functions have ` values of O(n1/2−ε);
we show that the crucial Lemma 3 from [7], there only proven
for constant `, extends to all short jump functions. This
implies that we get the same run time bounds for short jump
functions as are known for OneMax.

A result like Lemma 3 in [7] is not to be expected to hold
for larger values of `. Nevertheless, we show that also long
jump functions, where ` can be as large as (1/2− ε)n, have
unbiased black-box complexities of the same asymptotic or-
der as OneMax for arities k ≥ 3. For k = 2 we get a bound
of O(n logn) and for k = 1 we get O(n2), both surprisingly
low black-box complexities. Even for the case of extreme
jump functions, where ` = n/2−1 and n even (a jump func-
tion revealing only the optimum and the fitness n/2), we are
able to show polynomial unbiased black-box complexities for
all arities k ≥ 1.

Note that already for long jump functions, the fitness
plateau that the algorithms have to cross has exponential
size. For the extreme jump function, even all but a Θ(n−1/2)
fraction of the search points form one single fitness plateau.
This is the reason why none of the popular randomized
search algorithms will find the optimum of long and extreme
jump functions in subexponential time.

770

Table 1 summarizes the known black-box complexities of
Jump` and our new results.

Note that, in Table 1, the bounds for the binary and k-ary
black-box complexity of the short Jump function differ from
the ones presented in [7]. The reason is that the respective
bounds for OneMax, to which the Jump complexities have
been reduced to in [7], have been improved recently in [10].

The table clearly indicates that even without the fitness
function revealing useful information for search points close
the optimum, efficient optimization is still possible in the
framework of unbiased black-box algorithms.

1.4 Methods
In order to show the upper bounds on the black-box com-

plexities we give efficient algorithms optimizing the differ-
ent jump functions. For arity k = 1, these algorithms are
based on iteratively getting closer to the optimum; however
we do not (and in fact cannot) rely on fitness information
about these closer search points: the fitness is 0 in almost
all cases. Instead, we rely on the empirical expected fitness
of offspring. For this we use mutation operators that have
a good chance of sampling offspring with non-zero fitness.
We show that already a polynomial number of samples suf-
fices to distinguish search points whose fitness differs only
minimally. In order to minimize the number of samples re-
quired, we choose this number adaptively depending on the
estimated number of 1s in the search point to be evaluated;
we also allow fairly frequent incorrect decisions, as long as
the overall progress to the optimum is guaranteed.

In one of our proofs we make use of an additive Chernoff
bound for negatively correlated variables. This bound is
implicit in a paper by Panconesi and Srivnivasan [18] and is
of independent interest.

Disclaimer: For reasons of space we can present only the
main proof ideas. The full version of Sections 4 and 5 along
with the claimed generalization of the bounds from [7] can
be found in [4].

2. THE UNBIASED BLACK-BOX MODEL
The unbiased black-box model introduced in [16] is by

now one of the standard complexity models in evolution-
ary computation. In particular the unary unbiased model
gives a more realistic complexity estimate for a number of
functions than the original unrestricted black-box model of
Droste, Jansen, and Wegener [12]. An important advan-
tage of the unbiased model is that it allows us to analyze
the influence of the arity of the sampling operators in use.
In addition, new search points can be sampled only either
uniformly at random or from distributions that depend on
previously generated search points in an unbiased way. In
this section we briefly give a brief definition of the unbi-
ased black-box model, pointing the interested reader to [16]
and [10] for a more detailed introduction.

For all non-negative integers k, a k-ary unbiased distri-
bution

(
D(· | y(1), . . . , y(k))

)
y(1),...,y(k)∈{0,1}n is a family of

probability distributions over {0, 1}n such that for all inputs

y(1), . . . , y(k) ∈ {0, 1}n the following two conditions hold.

1. [⊕-invariance] ∀x, z ∈ {0, 1}n :

D(x | y(1), . . . , y(k)) = D(x⊕ z | y(1)⊕ z, . . . , y(k)⊕ z);

2. [permutation-invariance] ∀x ∈ {0, 1}n ∀σ ∈ Sn :

D(x | y(1), . . . , y(k)) = D(σ(x) | σ(y(1)), . . . , σ(y(k))),

Algorithm 1: Scheme of a k-ary unbiased black-box
algorithm

1 Initialization: Sample x(0) ∈ {0, 1}n uniformly at

random and query f(x(0)).
2 Optimization: for t = 1, 2, 3, . . . until termination

condition met do

3 Depending on
(
f(x(0)), . . . , f(x(t−1))

)
choose up to

k indices i1, . . . , ik ∈ [0..t− 1] and a k-ary unbiased

distribution D(· | x(i1), . . . , x(ik)).
4 Sample x(t) according to D(· | x(i1), . . . , x(ik)) and

query f(x(t)).

where ⊕ is the bitwise exclusive-OR, Sn the set of all
permutations of the set [n] := {1, 2, . . . , n}, and σ(x) :=
xσ(1) · · ·xσ(n) for x = x1 · · ·xn ∈ {0, 1}n.

An operator sampling from a k-ary unbiased distribution
is called a k-ary unbiased variation operator.

A k-ary unbiased black-box algorithm is one that follows
the scheme of Algorithm 1 (here and in the following with
[0..k] we abbreviate [k]∪{0}). The k-ary unbiased black-box
complexity, denoted UBBk(F), of some class of functions F
is the minimum complexity of F with respect to all k-ary
unbiased black-box algorithms, where, naturally, the com-
plexity of an algorithm A for F is the maximum expected
number of black-box queries that A performs on a function
f ∈ F until it queries for the first time a search point of
maximal fitness. We let ∗-ary unbiased black-box complexity
be based on the model in which operators of arbitrary arity
are allowed.

The unbiased black-box model includes most of the com-
monly studied search heuristics, such as many (µ + λ) and
(µ, λ) evolutionary algorithms (EAs), Simulated Annealing,
the Metropolis algorithm, and the Randomized Local Search
algorithm.

We recall a simple remark from [7] which helps us short-
ening some of the proofs in the subsequent sections.

Remark 1. Suppose for a problem P there exists a black-
box algorithm A that, with constant success probability,
solves P in s iterations (that is, queries an optimal solu-
tion within s queries). Then the black-box complexity of P
is at most O(s).

A useful tool for proving lower bounds is Theorem 2. It
formalizes the intuition that the black-box complexity of a
function can only get harder if we “blank out” some of the
fitness values. This is exactly the situation of the Jump
functions, whose definition we repeat here for the sake of
completeness.

For all ` < n/2, Jump` is the function that assigns to each
x ∈ {0, 1}n fitness

Jump`(x) =


n, if |x|1 = n;

|x|1, if ` < |x|1 < n− `;
0, otherwise,

where |x|1 := OneMax(x) :=
∑n
i=1 xi denotes the number

of 1s in x (also known as the Hamming-weight of x).

Theorem 2. For all sets of pseudo-Boolean functions C,
all k ∈ N, and all f : R → R such that ∀g ∈ C :

771

{x | f(g(x)) optimal } ⊆ {x | g(x) optimal }, we have
UBBk(C) ≤ UBBk(f(C)).

Proof. Let C, k, and f be as in the statement of the
theorem. Let A be any k-ary unbiased black-box algorithm
for f(C). We derive from this a k-ary unbiased black-box
algorithm for C by using queries to g ∈ C and then mapping
the resulting objective value with f . Clearly, A′ finds an
optimum of g ∈ C after no more expected queries than A
for f ◦ g, using the condition on the set of optimal points.
Thus, the theorem follows.

From Theorem 2 we immediately obtain a lower bound of
Ω(n/ logn) for the unbiased black-box complexities of jump
functions. The theorem implies that the k-ary unbiased
black-box complexity of OneMax is a lower bound of that
of any jump function. In general, the k-ary unbiased black-
box complexity of any pseudo-Boolean function f is at least
the unrestricted black-box complexity of the class of func-
tions obtained from f by first applying an automorphism
of the hypercube {0, 1}n. That the latter for OneMax is
Ω(n/ logn) was shown independently in [12] and [13]. A
similar line of arguments will prove the lower bound for ex-
treme jump functions in Section 5.

3. SHORT JUMP FUNCTIONS
The key idea in [7] for dealing with jump functions of con-

stant gap is to revert the problem to optimizing a OneMax
function. The following lemma is a generalization of Lemma
3 in [7], extending it from constant ` to all ` ∈ O(n1/2−ε).

Lemma 3. For all constants ε and c and all ` ∈
O(n1/2−ε), there is a unary unbiased subroutine s using
O(1) queries to Jump` such that, for all bit strings x,
s(x) = OneMax(x) with probability 1−O(n−c).

With Lemma 3 at hand, the results stated in Table 1
follow easily from the respective OneMax bounds proven
in [10,12,16], cf. [7] for a detailed proof.

4. LONG JUMP FUNCTIONS
In this section we give bounds on long jump functions; we

start with a bound on the ternary black-box complexity, fol-
lowed by a bound on the unary black-box complexity. Note
that the bound on the binary unbiased black-box complex-
ity of long jump follows from the same bound on extreme
jump.

4.1 Ternary Unbiased Optimization of Long
Jump Functions

We show that ternary operators allow for solving the prob-
lem independently in different parts of the bit string, and
then combining the partial solutions. This has the advan-
tage that, as done in [7], we can revert to optimizing One-
Max, and the missing fitness values will not show in any of
the partial problems.

We start with a lemma regarding the possibility of sim-
ulating unbiased algorithms for OneMax on subsets of the
bits.

Lemma 4. For all bit strings x, y ∈ {0, 1}n we let [x, y] =
{z ∈ {0, 1}n | ∀i ≤ n : xi = yi ⇒ xi = zi} (this set is
isomorphic to a hypercube). Let A be a k-ary unbiased black-
box algorithm optimizing OneMax with constant probability

in time at most t(n). Then there is a (k + 2)-ary unbiased
black-box subroutine simulateOnSubcube as follows.

• Inputs to simulateOnSubcube are x, y ∈ {0, 1}n and
the Hamming distance a of x and y; x and y are ac-
cessible as search points sampled previous to the call of
the subroutine.

• simulateOnSubcube has access to an oracle returning
OneMax(z) for all z ∈ [x, y].

• After at most t(a) queries simulateOnSubcube has
found the z ∈ [x, y] with maximal OneMax value with
constant probability.

This subroutine can be used to optimize Jump` blockwise.
Each block is optimized by itself while we have to make sure
that the correct OneMax value is available as long as only
bits within the block are modified. Afterwards, the different
optimized blocks are merged to obtain the optimum. As the
subroutine requires an increase of the arity by two, this idea
yields the following result.

Theorem 5. Let ` ≤ (1/2 − ε)n. For all k ≥
3, the k-ary unbiased black-box complexity of Jump` is
O(UBBk−2(OneMax)).

From Theorem 5 we immediately get the following corol-
lary, using the known run time bounds for OneMax
from [10].

Corollary 6. Let ` ≤ (1/2 − ε)n. Then the unbiased
black-box complexity of Jump` is

• O(n logn), for ternary variation operators;

• O(n/k), for k-ary variation operators with 4 ≤ k ≤
logn;

• Θ(n/ logn), for k-ary variation operators with k ≥
logn or unbounded arity.

Note the upper bound of O(n logn) for the ternary un-
biased black-box-complexity which we will improve in Sec-
tion 5 to O(n). For all higher arities, the theorem presented
in this section gives the best known bound.

4.2 Unary Unbiased Optimization of Long
Jump Functions

When optimizing a Jump` function via unary unbiased
operators, the only way to estimate the OneMax-value of a
search point x (equivalently, its Hamming distance H(x,1n)
from the optimum), is by sampling suitable offspring that
have a non-zero fitness. When ` is small, that is, many
OneMax-values can be derived straight from the fitness, we
can simply flip ` bits and hope that the retrieved fitness
value is by ` smaller than OneMax(x). This is the main
idea in [7].

When ` is larger, this does not work anymore, simply
because the chance that we only flip 1-bits to zero is too
small. Therefore, in this section, we resort to a sampling
approach that, via strong concentration results, learns the
expected fitness of the sampled offspring of x, and from this
the OneMax-value of the parent x. This will lead to a
unary unbiased black-box complexity of O(n2) for all jump
functions Jump` with ` ≤ n/2− εn.

Theorem 7. Let ` ≤ (1/2 − ε)n. The unary unbiased
black-box complexity of Jump` is O(n2).

772

Proof outline and methods.
Since we aim at an asymptotic statement, let us assume

that n is sufficiently large and even. Also, since we shall not
elaborate on the influence of the constant ε > 0, we may
assume (by replacing ε by a minimally smaller value) that ε
is such that εn is even.

A first idea to optimize Jump` with ` = n/2 − εn/2
could be to flip each bit of the parent x with probability
1/2 − ε/2. Such an offspring u has an expected fitness
of n/2 − εn/2 + εOneMax(x). If ε is constant, then by
Chernoff bounds O(n logn) samples are enough to ensure
that the average observed fitness n/2 − εn/2 + εv satisfies
v = OneMax(x) with probability 1 − n−c, c an arbitrary
constant. This is enough to build a unary unbiased algo-
rithm using O(n2 log2(n)) fitness evaluations.

We improve this first approach via two ideas. The more
important one is to not flip an expected number of n/2−εn/2
bits independently, but to flip exactly that many bits (ran-
domly chosen). By this, we avoid adding extra variation
via the mutation operator. This pays off when x already
has many ones—if OneMax(x) = n − a, then we will ob-
serve that only O(a logn) samples suffice to estimate the
OneMax-value of x precisely (allowing a failure probability
of n−c as before).

The price for not flipping bits independently (but flipping
a fixed number of bits) is that we have do deal with hyperge-
ometric distributions, and when sampling repeatedly, with
sums of these. The convenient way of handling such sums
is to rewrite them as sums of negatively correlated random
variables and then argue that Chernoff bounds also hold for
these. This has been stated explicitly in [2] for multiplica-
tive Chernoff bounds, but not for additive ones. Since for
our purposes an additive Chernoff bound is more convenient,
we extract such a bound from the original paper [18].

The second improvement stems from allowing a larger fail-
ure probability. This will occasionally lead to wrong esti-
mates of OneMax(x), and consequently to wrong decisions
on whether to accept x or not, but as long as this does
not happen too often, we will still expect to make progress
towards the optimum. To analyze this, we formulate the
progress of the distance to the optimum as a random walk
and use the gambler’s ruin theorem to show that the ex-
pected number of visits to each state is constant.

One key notion used in the proof of Theorem 7 is that of
a p-estimator. It is used to estimate the number of zeroes
in a bit string. Since the idea underlying this notion will be
re-used in Theorem 14, we briefly present its definition.

Definition 8. Let f be a pseudo-Boolean function and
let p be a function that maps non-negative integers to non-
negative integers. Let g be an algorithm which takes as
input a bit string x and a natural number α and uses
O(p(n)α log(2 + n/α)) unary unbiased queries to f . We
call g a p-estimator using f if, for all bit strings x, a =
n−OneMax(x), and for all α ∈ [a/2, 3a/2] we have

• P (g(x, α) 6= a) ≤ a
16n

;

• P (g(x, α) 6∈ [a/2, 3a/2]) ∈ O(1/(p(n)n3)).

To prove Theorem 7 we show that there exists a p-
estimator for Jumpn/2−εn with p(n) being a sufficiently large
constant. The result then follows from the following lemma.

Lemma 9. Let f be a pseudo-Boolean function such that,
for some p, there is a p-estimator using f . Then the unary
unbiased black-box complexity of f is O(p(n)n2).

5. EXTREME JUMP FUNCTIONS
In this section, we regard the most extreme case of jump

functions where all search points have fitness zero, except
for the optimum and search points having exactly n/2 ones.
Surprisingly, despite some additional difficulties, we still find
polynomial-time black-box algorithms.

Throughout this section, let n be even. We call a jump
function Jump` an extreme jump function if ` = n/2 − 1.
Consequently, this functions is zero except for the optimum
(where it has the value n) and for bit-string having n/2 ones
(where it has the value n/2).

The information-theoretic argument of [12] immediately
gives a lower bound of Ω(n) for the unbiased black-box com-
plexities of extreme jump functions. The intuitive argument
is that an unrestricted black-box algorithm needs to learn n
bits of information, but receives only a constant amount of
information per query.

Lemma 10. For all arities k, the k-ary unbiased black-box
complexity of an extreme jump function is Ω(n).

Proof. Since an extreme jump function takes only three
values, Theorem 2 in [12] gives a lower bound of Ω(n) for the
unrestricted black-box complexity of the set of all extreme
jump functions. The latter is a lower bound for the unbi-
ased black-box complexity of a single extreme jump function
(cf. the end of Section 2).

5.1 The Upper Bounds on Extreme Jump
Functions

In the following three subsections, we shall derive sev-
eral upper bounds for the black-box complexities of extreme
jump functions.

Notice that, for an extreme jump function, we cannot dis-
tinguish between having a OneMax value of n/2 + k and
n/2−k until we have encountered the optimum or its inverse.

More precisely, let x(1), x(2), ... be a finite sequence of search
points not containing the all-ones and all-zeroes string. De-
fine y(i) to be the inverse of x(i) for all i, i.e., y(i) = x(i)⊕1n
where 1n denotes the all-ones string of length n. Then both
these sequences of search points yield exactly the same fit-
ness values. Hence the only way we could find out on which
side of the symmetry point n/2 we are would be by query-
ing a search point having no or n ones. However, if we know
such a search point, we are done anyway.

Despite these difficulties, we will develop a linear time
ternary unbiased black-box algorithm in the following sec-
tion. In Section 5.3, we show that restricting ourselves to
binary variation operators increases the black-box complex-
ity by at most a logarithmic factor. For unary operators,
the good news derived in the final subsection of this section
is that polynomial-time optimization of extreme jump func-
tions is still possible, though the best complexity we find is
only O(n9/2).

To ease the language, let us denote by d(x) :=
|OneMax(x) − n/2| a symmetricized version of OneMax
taking into account this difficulty. Also, let us define the sign
sgn(x) of x to be −1, if OneMax(x) < n/2, sgn(x) := 0,
if OneMax(x) = n/2, and sgn(x) = +1, if OneMax(x) >
n/2. In other words, sgn(x) is the sign of OneMax(x)−n/2.

773

5.2 Ternary Unbiased Optimization of Ex-
treme Jump Functions

When ternary operators are allowed, we quite easily ob-
tain an unbiased black-box complexity of O(n), which is best
possible by Lemma 10. The reason for this fast optimization
progress is that, as explained next, we may test individual
bits. Assume that we have a search point u with OneMax-
value n/2 + 1. If we flip a certain bit in u, then from the
fitness of this offspring, we learn the value of this bit. If the
new fitness is n/2, then the OneMax-value is n/2 as well
and the bit originally had the value one. If the new fitness is
zero, then the new OneMax-value is n/2 + 2 and the orig-
inal bit was set to one. We can thus first learn the correct
bit values and then copy them one by one into a bit string,
creating the optimum (this is the only part of the algorithm
which requires a ternary operator).

One difficulty to overcome, as sketched in Section 5.1,
is that we will never have a search point where we know
that its OneMax-value is n/2 + 1. We overcome this by
generating a search point with fitness n/2 and flipping a
single bit. This yields a search point with OneMax-value
either n/2 + 1 or n/2− 1. Implementing the above strategy
in a sufficiently symmetric way, we end up with a search
point having OneMax-value either n or 0 and in the latter
case output its complement.

Theorem 11. For k ≥ 3, the k-ary unbiased black-box
complexity of extreme jump functions is Θ(n).

5.3 Binary Unbiased Optimization of the Ex-
treme Jump Function

In this section, we prove that the unbiased 2-ary black-box
complexity of extreme jump functions is O(n logn). With
2-ary operators only, it seems impossible to copy bits one by
one, which was crucial to the strategy used in the previous
subsection.

To overcome this difficulty, we follow a hill-climbing ap-
proach. We first find a search point m with d-value 0 by
repeated sampling. We copy this into our “current-best”
search point x and try to improve x to a new search point
x′ by flipping a random bit in which x and m are equal (this
needs a 2-ary operation), hoping to gain a search point with
d-value equal to d(x) + 1. The main difficulty is to estimate
the d-value of x′, which is necessary to decide whether we
keep this solution as new current-best or whether we try
again.

Using binary operators, we can exploit the fact that
H(x,m) = d(x). For example, we can flip d(x) − 1 of the
d(x) + 1 bits in which x′ and m differ. If this yields an indi-
vidual with fitness n/2, then clearly x′ has not the targeted
d-value of d(x) + 1. Unfortunately, we detect this shortcom-
ing only when the bit that marks the difference of x and
x′ is not among the d(x) − 1 bits flipped. This happens
only with probability 2/(d(x) + 1). Consequently, this ap-
proach may take Θ(n) iterations to decide between the cases
d(x′) = d(x) + 1 and d(x′) = d(x)− 1.

We can reduce this time to logarithmic using the following
trick. Recall that the main reason for the slow decision
procedure above is that the probability of not flipping the
newly created bit is so small. This is due to the fact that the
only way to gain information about x′ is by flipping almost
all bits so as to possibly reach a fitness of n/2. We overcome
this difficulty by in parallel keeping a second search point y

Algorithm 2: A 2-ary unbiased black-box algorithm
that for any extreme jump function f with high prob-
ability finds the optimum in O(n logn) iterations.

1 repeat
2 m← uniform();
3 until f(m) = n/2;
4 status ← failure;
5 while status = failure do
6 x← flipWhereEqual1(m,m);
7 y ← flipWhereEqual1(m,x);
8 status ← success;
9 i← 0;

10 while (status 6= failure) and (i ≤
√
n) do

11 i← i+ 1;
12 u← mix(x, y);
13 if f(u) 6= n/2 then status ← failure;

14 for k = 1 to n/2− 1 do
15 x′ ← movefirstk(x, y);
16 y′ ← movefirstk(y, x);
17 (x, y)← (x′, y′);

18 if f(x) = n then
19 return x;
20 else
21 return y;

that has the same d-value as x, but is “on the other side” of
m. To ease the language in this overview, let us assume that
OneMax(x) > n/2. Let k := d(x) and H(m,x) = k. Then
we aim at keeping a y such that d(y) = k, H(m, y) = k,
H(x, y) = 2k, and OneMax(y) = n/2 − k. With this at
hand, we can easily evaluate the d-value of x′. Assume that
x′ was created by flipping exactly one of the bits in which x
and y agree. Let u be created by flipping in x′ exactly k− 1
of the bits in which x′ and y differ. If d(x′) = k + 1, then
surely d(u) = 2, and thus f(u) = 0. If d(x′) = k − 1, then
with probability (k + 2)/(2k + 1) ≥ 1/2 the bit in which x′

and x differ is not flipped, leading to OneMax(u) = n/2,
visible from a fitness equal to n/2. Hence, with probability
at least 1/2, we detect the undesired outcome d(x′) = k −
1. Unfortunately, there is no comparably simple certificate
for “d(x′) = k + 1”, so we have to repeat the previous test
2 logn times to be sufficiently sure (in the case no failure is
detected) that d(x′) = k+1. Overall, this leads to an almost
linear complexity of O(n logn).

This finishes a rough outline of the proof for Theo-
rem 12. The algorithm verifying Theorem 12 is given in
Algorithm 2. It uses the following unbiased operators.
The first, uniform(), is the (0-ary unbiased) operator that
samples a bit string x ∈ {0, 1}n uniformly at random.
flipWhereEqual1(·, ·), takes two arguments and returns a
bit string which is like the first argument, except that ex-
actly one of the bits in which the first argument agrees with
the second one is flipped, this bit is chosen uniformly at
random; if the two strings are complements of each other,
then no bits are flipped and the operator returns the first
argument. The operator mix(·, ·) also takes two arguments;
if these two arguments differ at exactly two positions, the
output is exactly like the input strings where the two inputs
are equal, and inherits one bit from each argument on the
two positions where they differ, but if the two arguments

774

do not differ at exactly two positions, a uniformly random
bit string is returned. Finally, the algorithm also uses an
unbiased subroutine movefirstk(·, ·) which takes two argu-
ments x and y and assumes d(x) = k = d(y) as well as
H(x, y) = 2d. The subroutine returns (with sufficient prob-
ability and only using unbiased operators) a bit string x′

with d(x′) = k + 1 and d(x′, y) = 2k + 1.

Theorem 12. There is a 2-ary unbiased black-box algo-
rithm solving the “extreme jump functions” problem in an
expected number of O(n logn) queries.

5.4 Unary Unbiased Optimization of Extreme
Jump Functions

With the next theorem we show that, surprisingly, even
the unary unbiased black-box complexity of extreme jump
functions is still polynomially bounded. Note that now we
cannot learn the OneMax-value of a search point x by re-
peatedly flipping a certain number of bits and observing the
average objective value. Since n/2 is the only non-trivial
objective value, any such average will necessarily be n/2
(except in the unlikely event that we encountered the opti-
mum). The solution is to flip, depending on parity reason-
ings, exactly n/2−1 or n/2 bits in x and note that the prob-
ability pa of receiving a search point with (visible) fitness
n/2 depends on the distance a := a(x) = min{|x|1, |x|0 :=
n − |x|1} of x to the optimum or its opposite. We roughly

have pa ∈ Θ(a−1/2) and pa−2 − pa ∈ Θ(a−3/2n−1(n− 2a)).
These small numbers lead to the fact that for a ∈ n/2−Θ(1),

we will need Θ(n9/2) samples to estimate the a-value of x
with constant probability. Since estimating becomes eas-
ier for smaller a, we are able to construct a unary unbi-
ased black-box algorithm finding the optimum of an extreme
jump function in O(n9/2) expected fitness evaluations.

Key to proving Theorem 14 is Lemma 13, formalizing that
it is possible to distinguish, in a unary unbiased manner,
whether a search point x has distance a(x) = a−1 or a(x) =
a+ 1 to the optimum (or its complement).

Lemma 13. There exists a unary unbiased procedure
estimate that has the following properties. On arbitrary
inputs y ∈ {0, 1}n and a ∈ [1 .. n/2 − 1], it performs

Θ(a5/2n2(n − 2a)−3/2) fitness evaluations. If a(y) ∈ {a −
1, a + 1}, then with probability at least 1 − exp(−Θ((n −
2a)1/2)) the true value of a(y) is returned. By choosing the
implicit constant in the first statement sufficiently large, this
success probability can be made arbitrary close to one.

The algorithm certifying the desired black-box complexity
stated in Table 1 is given by Algorithm 3. In this pseudo-
code, uniform() is as before, flip1(.) is the unary unbi-
ased operator that, given an argument x flips in x exactly
one bit, and complement(.) is the unary unbiased operator
which outputs the bitwise complement of its argument, i.e.,
complement(x) := x⊕ 1n for all x.

Theorem 14. Let n be even and ` = n/2 − 1. Then the

unary unbiased black-box complexity of Jump` is O(n9/2).
This is witnessed by Algorithm 3, which with constant prob-
ability finds the optimum of an extreme jump function using
O(n9/2) fitness evaluations.

Proof. The first sentence of the theorem follows from
the second and Remark 1.

Algorithm 3: A unary unbiased black-box algorithm
that for any extreme jump function f with constant prob-
ability finds the optimum in O(n9/2) fitness evaluations.

1 repeat
2 m← uniform();
3 until f(m) = n/2;
4 x← flip1(m);
5 for a = n/2− 1 DownTo 1 do
6 status ← failure;
7 while status = failure do
8 y ← flip1(x);
9 if estimate(y, a) = a− 1 then

10 x← y;
11 status ← success;

12 Sample complement(x);

In the analysis of Algorithm 3, let us first assume that all
estimate(y, a) calls with a(y) ∈ {a − 1, a + 1} return a(y)
correctly.

Assume that we start the while-loop in Algorithm 3 with
an x such that a is equal to a(x). Since y is a Hamming
neighbor of x, we have a(y) ∈ {a−1, a+ 1}. If a(y) = a+ 1,
nothing changes. If a(y) = a − 1, this is again correctly
detected in the if-clause, and the while-loop is left with x←
y. Consequently, we start the following iteration of the for-
loop again with a(x) = a. The probability of generating a
y with a(y) = a− 1 is a/n. Consequently, the while-loop is
left after an expected number of n/a iterations.

The expected total number of fitness evaluations in the
for-loop is now easily computed as

n/2−1∑
a=1

(n/a)O(a5/2n2/(n− 2a)3/2)

∈ O(n9/2)

n/2−1∑
a=1

(n− 2a)−3/2 = O(n9/2).

The above is true if we assume that none of the excep-
tional events (“failures”) of Lemma 13 occurs. We now argue
that in fact with constant probability, none of them occurs.
To this aim, we estimate the expected number of first fail-
ures in a typical run of the algorithm (a first failure is one
where all previous calls of the estimate procedure did not
fail). Consider one iteration of the while loop. If a 6= a(x),
then a failure must have occurred before, hence the prob-
ability now for a first failure is zero. If a = a(x), we can
invoke Lemma 13 and deduce that this iteration has a fail-
ure probability of at most exp(−k(n− 2a)1/2), where k is a
sufficiently large absolute constant.

We may further assume, for the sake of this argument,
that a failure is immediately corrected by some external au-
thority. Note that this only changes the run of the algo-
rithm after the occurrence of the first failure. So in par-
ticular, it does not change the expected number of first
failures. By this, however, we may assume that the ex-
pected number of iterations done with x having a certain
a-value is exactly n/a. Consequently, the expected number

of first failures is at most
∑n/2−1
a=1 (n/a) exp(−k(n−2a)1/2) =∑n/2−1

b=1 n(n/2− b)−1 exp(−k
√
b) ∈ O(1), where the implicit

constant can be made arbitrarily small by the appropriate

775

choice of k. Hence, with constant probability there is no
first failure, and thus, also no failure at all.

6. SUMMARY AND OUTLOOK
We have analyzed the unbiased black-box complexity of

short, long, and extreme jump functions. Along the way,
we have introduced new tools for such analyses. Our work
raises a number of interesting questions for future research.

Since our focus was on deriving new ideas for the design
of new search heuristics, we did not undertake in this work
a complete investigation of all possible combinations of arity
and jump size, but rather highlighted prominent complexity
behaviors and prototypical algorithmic ideas. Still, it would
be interesting to have a more complete picture than Table 1,
in particular, making clear how far certain algorithmic ideas
take and where certain regimes change.

Another interesting line of research would be results that
are more precise than just the asymptotic order. For ex-
ample, it seems reasonable that for ` small enough, the
unary unbiased black-box complexity of Jump` is not only
of the same order as the one of OneMax, but equal apart
from lower order terms (which might actually be surpris-
ingly small). Note that such precise analyses for run times
of given algorithms recently attracted quite some interest,
see [1, 17,20,22] and the references therein.

Furthermore, we are optimistic that some of the algorith-
mic ideas developed in the previous sections can be used to
design new search heuristics.

Acknowledgments
Parts of this work have been done during the Dagstuhl sem-
inar 10361 “Theory of Evolutionary Algorithms”.

7. REFERENCES
[1] S. Böttcher, B. Doerr, and F. Neumann. Optimal fixed

and adaptive mutation rates for the LeadingOnes
problem. In Proc. of the 11th International Conference
on Parallel Problem Solving from Nature (PPSN’10),
pages 1–10. Springer, 2010.

[2] B. Doerr. Analyzing randomized search heuristics:
Tools from probability theory. In A. Auger and
B. Doerr, editors, Theory of Randomized Search
Heuristics, pages 1–20. World Scientific Publishing,
2011.

[3] B. Doerr, C. Doerr, and F. Ebel. Lessons from the
black-box: Fast crossover-based genetic algorithms. In
Proc. of the 15th Annual Genetic and Evolutionary
Computation Conference (GECCO’13), pages
781–788. ACM, 2013.

[4] B. Doerr, C. Doerr, and T. Kötzing. Unbiased
black-box complexities of jump functions—how to
cross large plateaus. CoRR, abs/1403.7806, 2014.
Available online at http://arxiv.org/abs/1403.7806.

[5] B. Doerr, D. Johannsen, T. Kötzing, P. K. Lehre,
M. Wagner, and C. Winzen. Faster black-box
algorithms through higher arity operators. In Proc. of
the 11th ACM Workshop on Foundations of Genetic
Algorithms (FOGA’11), pages 163–172. ACM, 2011.

[6] B. Doerr, T. Kötzing, J. Lengler, and C. Winzen.
Black-box complexities of combinatorial problems.
Theoretical Computer Science, 471:84–106, 2013.

[7] B. Doerr, T. Kötzing, and C. Winzen. Too fast
unbiased black-box algorithms. In Proc. of the 13th
Annual Genetic and Evolutionary Computation
Conference (GECCO’11), pages 2043–2050. ACM,
2011.

[8] B. Doerr and C. Winzen. Ranking-based black-box
complexity. Algorithmica. To appear. DOI:
10.1007/s00453-012-9684-9.

[9] B. Doerr and C. Winzen. Playing Mastermind with
constant-size memory. In Proc. of the Symposium on
Theoretical Aspects of Computer Science (STACS’12),
pages 441–452. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2012.

[10] B. Doerr and C. Winzen. Reducing the arity in
unbiased black-box complexity. In Proc. of the 14th
Annual Genetic and Evolutionary Computation
Conference (GECCO’12), pages 1309–1316. ACM,
2012.

[11] S. Droste, T. Jansen, and I. Wegener. On the analysis
of the (1+1) evolutionary algorithm. Theoretical
Computer Science, 276:51–81, 2002.

[12] S. Droste, T. Jansen, and I. Wegener. Upper and
lower bounds for randomized search heuristics in
black-box optimization. Theory of Computing
Systems, 39:525–544, 2006.

[13] P. Erdős and A. Rényi. On two problems of
information theory. Magyar Tudományos Akadémia
Matematikai Kutató Intézet Közleményei, 8:229–243,
1963.

[14] T. Jansen and I. Wegener. The analysis of
evolutionary algorithms - a proof that crossover really
can help. Algorithmica, 34:47–66, 2002.

[15] P. K. Lehre and C. Witt. Black-box search by
unbiased variation. In Proc. of the 12th Annual
Genetic and Evolutionary Computation Conference
(GECCO’10), pages 1441–1448. ACM, 2010.

[16] P. K. Lehre and C. Witt. Black-box search by
unbiased variation. Algorithmica, 64:623–642, 2012.

[17] P. K. Lehre and C. Witt. General drift analysis with
tail bounds. CoRR, abs/1307.2559, 2013. Available
online at http://arxiv.org/abs/1307.2559.

[18] A. Panconesi and A. Srinivasan. Randomized
distributed edge coloring via an extension of the
Chernoff-Hoeffding bounds. SIAM Journal on
Computing, 26:350–368, 1997.

[19] J. Rowe and M. Vose. Unbiased black box search
algorithms. In Proc. of the 13th Annual Genetic and
Evolutionary Computation Conference (GECCO’11),
pages 2035–2042. ACM, 2011.

[20] D. Sudholt. A new method for lower bounds on the
running time of evolutionary algorithms. IEEE Trans.
Evolutionary Computation, 17:418–435, 2013.

[21] O. Teytaud and S. Gelly. General lower bounds for
evolutionary algorithms. In Proc. of the 9th
International Conference on Parallel Problem Solving
from Nature - PPSN IX (PPSN’06), pages 21–31.
Springer, 2006.

[22] C. Witt. Tight bounds on the optimization time of a
randomized search heuristic on linear functions.
Combinatorics, Probability & Computing, 22:294–318,
2013.

776

http://arxiv.org/abs/1403.7806
http://arxiv.org/abs/1307.2559

	Introduction
	Black-Box Complexity
	Jump Functions
	Our Results
	Methods

	The Unbiased Black-Box Model
	Short Jump Functions
	Long Jump Functions
	Ternary Unbiased Optimization of Long Jump Functions
	Unary Unbiased Optimization of Long Jump Functions

	Extreme Jump Functions
	The Upper Bounds on Extreme Jump Functions
	Ternary Unbiased Optimization of Extreme Jump Functions
	Binary Unbiased Optimization of the Extreme Jump Function
	Unary Unbiased Optimization of Extreme Jump Functions

	Summary and Outlook
	References

