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Abstract
We analyze the unbiased black-box complexities of jump functions with small, medium,
and large sizes of the fitness plateau surrounding the optimal solution. Among other
results, we show that when the jump size is (1/2 − ε)n, that is, when only a small con-
stant fraction of the fitness values is visible, then the unbiased black-box complexities
for arities 3 and higher are of the same order as those for the simple OneMax function.
Even for the extreme jump function, in which all but the two fitness values n/2 and
n are blanked out, polynomial time mutation-based (i.e., unary unbiased) black-box
optimization algorithms exist. This is quite surprising given that for the extreme jump
function almost the whole search space (all but a �(n−1/2) fraction) is a plateau of con-
stant fitness. To prove these results, we introduce new tools for the analysis of unbiased
black-box complexities, for example, selecting the new parent individual not only by
comparing the fitnesses of the competing search points but also by taking into account
the (empirical) expected fitnesses of their offspring.
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1 Introduction

The analysis of black-box complexities in evolutionary computation aims in several
complementary ways at supporting the development of superior evolutionary algo-
rithms. Comparing the runtime of currently used randomized search heuristics (RSH)
with that of an optimal black-box algorithm allows a fair evaluation of the quality of
today’s heuristics. With specific black-box complexity notions, we can understand how
algorithm components and parameters such as the population size, the selection rules,
or the sampling procedures influence the runtime of RSH. Finally, research in black-box
complexity proved to be a source of inspiration for developing new algorithmic ideas
leading to the design of better search heuristics.

In this work, we analyze the unbiased black-box complexities of jump functions,
which are observed as difficult for evolutionary approaches because of their large
plateaus of constant (and low) fitness. Our results show surprisingly that even extreme
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jump functions revealing only the three different fitness values 0, n/2, and n can be
optimized by a mutation-based unbiased black-box algorithm in polynomial time. We
introduce new methods that facilitate our analyses. Perhaps the most interesting one is
a routine that creates a number of samples from which it estimates the distance of the
current search point to the fitness layer n/2. Our algorithm thus benefits significantly
from analyzing some nonstandard statistics of the fitness landscape. We believe this to
be an interesting idea that should be investigated further. Our hope is that it can be
used to design new search heuristics.

1.1 Black-Box Complexity

Black-box complexity studies how many function evaluations are needed in expectation
by an optimal black-box algorithm until it queries for the first time an optimal solution
for the problem at hand. Randomized search heuristics, like evolutionary algorithms,
simulated annealing, and ant colony algorithms, are typical black-box optimizers. They
are typically problem-independent, and as such they learn about the problem to be
solved only by generating and evaluating search points. The black-box complexity of
a problem is thus a lower bound for the number of fitness evaluations needed by any
search heuristic to solve it.

Several black-box complexity notions covering different aspects of randomized
search heuristics exist, for example, the unrestricted model of Droste et al. (2006), which
does not restrict in any way the sampling or selection procedure of the algorithm; the
ranking-based model of Teytaud and Gelly (2006) and Doerr and Winzen (2014a), in
which the algorithms are required to base their selection only on relative and not on
absolute fitness values; the memory-restricted model of Droste et al. (2006) and Doerr
and Winzen (2012), in which the algorithm can store only a limited number of search
points and their corresponding fitness values; and the unbiased model of Lehre and
Witt (2012), which in addition to allowing the classification of algorithms according to
the arity of the variation operators, requires the algorithms to treat the representation
of the search points symmetrically. By comparing the respective black-box complexities
of a problem, one learns how the runtime of RSH is influenced by certain algorithmic
choices, such as the population size, the use of crossover, the selection rules, and so on.

For all existing black-box models, however, the typical optimal black-box algorithm
is a highly problem-tailored algorithm that is not necessarily nature-inspired. Still we
can learn from such artificial algorithms about RSH, as shown by Doerr et al. (2015). In
that work, a new genetic algorithm is presented that optimizes the OneMax function
in runtime o(n log n), thus showing that the o(n log n) bound for the binary unbiased
black-box complexity of OneMax found by Doerr et al. (2011a) is not as unnatural as it
might at first seem.

Here we consider unbiased black-box complexities. The unbiased black-box model
is one of the standard models for analyzing the influence of the arity on the performance
of optimal black-box algorithms. It was originally defined by Lehre and Witt (2012)
for bit string representations and was later generalized to domains different from bit
strings by Rowe and Vose (2011) and Doerr et al. (2013). For bit string representations,
the unbiased model requires the optimizing algorithms to treat different positions of
the bit strings equally, similarly with the two different possible bit contents (thus the
term unbiased). For example, unbiased algorithms are not allowed to explicitly write a
1 or a 0 at a specific position of a bit string to be evaluated; instead, such algorithms
can either sample a bit string uniformly at random, or generate one from previously
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Table 1: Unbiased black-box complexities of Jump
�

for different regimes of �. The
�(n log n) lower bound for arity k = 1 follows from Lehre and Witt (2012, Theorem
6). All other results are original to the present paper. The binary and ternary upper
bounds for long jump functions follow from the corresponding ones for extreme jump
functions.

Short Jump Long Jump Extreme Jump
Arity � = O(n1/2−ε) � = (1/2 − ε)n � = n/2 − 1

k = 1 �(n log n) O(n2) Thm. 14 O(n9/2) Thm. 20
k = 2 O(n) Thm. 4 O(n log n) O(n log n) Thm. 18
3 ≤ k ≤ log n O(n/k) O(n/k) Cor. 7 �(n) Thm. 16, Lem. 15

⎫⎬
⎭

evaluated solutions via operators that are unbiased (i.e., treat positions and bit contents
equally). Section 3 gives a detailed description of the model.

1.2 Jump Functions

In this paper, we are concerned with the optimization of functions mapping bit strings
of fixed length (i.e., elements of the hypercube {0, 1}n) to real numbers; such functions
are called pseudo-Boolean. A famous pseudo-Boolean function often considered as a
test function for optimization is the OneMax function, mapping any x ∈ {0, 1}n to the
number of 1s in x (the Hamming weight of x).

Other popular test functions are the jump functions. For a non-negative integer �,
we define the Jump

�
as derived from OneMax by blanking out any useful information

within the strict �-neighborhood of the optimum (and the minimum) by giving all these
search points a fitness value of 0. In other words, Jump

�
(x) = OneMax(x) if OneMax(x) ∈

{0} ∪ {� + 1, . . . , n − � − 1} ∪ {n}, and Jump
�
(x) = 0 otherwise. This definition is mostly

similar to the two, not fully agreeing, definitions used by Droste et al. (2002) and Lehre
and Witt (2010). See Section 2.

Jump functions are well-known test functions for randomized search heuristics.
Droste et al. (2002) analyzed the optimization time of the (1+1) evolutionary algorithm
on Jump functions. From their work, it is easy to see that for our definition of Jump
functions, a runtime of �(n�+1) for the (1+1) evolutionary algorithm on Jump

�
follows for

all � ∈ {1, . . . , �n/2� − 1}. We are not aware of any natural mutation-based randomized
search heuristic with significantly better performance (except for large �, where simple
random search with its �(2n) runtime becomes superior). For all �, Jansen and Wegener
(2002) present a crossover-based algorithm for Jump

�
. With an optimal choice for the

parameter involved, which in particular implies a very small crossover rate of O(1/n),
it has an optimization time1 of O(n log3

n) for constant � and an optimization time of
O(n2c+1 log n) for � = �c log n	, c a constant.

1.3 Results

We analyze the unbiased black-box complexity of Jump functions for a broad range of
jump sizes �. We distinguish between short, long, and extreme jump functions for � =
O(n1/2−ε), � = (1/2 − ε)n, and � = n/2 − 1, respectively. Our findings are summarized
in Table 1.

1This is stated as O(n log2
n log log n) in Jansen and Wegener (2002), but that is clearly an oversight.
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Contrasting the runtime results for classic evolutionary approaches on Jump, we
show that for jump functions with small jump sizes � = O(n1/2−ε), the k-ary unbiased
black-box complexities are of the same order as those of the easy OneMax test function
(which can be seen as a Jump function with parameter � = 0). As an intermediate result
we prove (Lemma 3) that a black-box algorithm having access to a jump function with
� = O(n1/2−ε) can retrieve (with high probability) the true OneMax value of a search
point using only a constant number of queries. This implies that we get the same runtime
bounds for short jump functions as are known for OneMax. For k = 1 this is �(n log n)
(Lehre and Witt, 2012); for k = 2 it is O(n) (Doerr et al., 2011a); and for 3 ≤ k ≤ log n it
is O(n/k) (Doerr and Winzen, 2014b).

A result like Lemma 3 is not to be expected to hold for larger values of �. Never-
theless, we show that also long jump functions, where � can be as large as (1/2 − ε)n,
have unbiased black-box complexities of the same asymptotic order as OneMax for
arities k ≥ 3. For k = 2 we get a bound of O(n log n), and for k = 1 we get O(n2), both
surprisingly low black-box complexities. Even for the case of extreme jump functions,
where � = n/2 − 1 and n even (a jump function revealing only the optimum and the
fitness n/2), we are able to show polynomial unbiased black-box complexities for all
arities k ≥ 1.

Note that already for long jump functions, the fitness plateau that the algorithms
have to cross has exponential size. For the extreme jump function, all but a �(n−1/2)
fraction of the search points form one single fitness plateau. This is the reason why
none of the popular randomized search algorithms will find the optimum of long and
extreme jump functions in subexponential time.

Our results indicate that even without the fitness function revealing useful infor-
mation for search points close to the optimum, efficient optimization is still possible in
the framework of unbiased black-box algorithms (provided there is enough knowledge
about the location of the optimum).

The results regarding short jump can be found in Section 4, the results on long
jump in Section 5, and the results on extreme jump in Section 6. Note that the bound
on the binary unbiased black-box complexity of long jump follows from the same
bound on extreme jump. The lower bounds partly follow from a more general result of
independent interest (Theorem 2), which implies that for all 0 ≤ �1 ≤ �2, for all k, the
k-ary unbiased black-box complexity of Jump

�1
is less than or equal to that of Jump

�2
.

1.4 Methods

In order to show the upper bounds on the black-box complexities, we give efficient
algorithms optimizing the different jump functions. For arity k = 1, these algorithms
are based on iteratively getting closer to the optimum. However we do not (and in fact
cannot) rely on fitness information about these closer search points; the fitness is 0 in
almost all cases. Instead, we rely on the empirical expected fitness of offspring. For this we
use mutation operators that have a good chance of sampling offspring with nonzero
fitness. We show that already a polynomial number of samples suffices to distinguish
search points whose fitness differs only minimally. In order to minimize the number
of samples required, we choose this number adaptively depending on the estimated
number of 1s in the search point to be evaluated; we also allow fairly frequent incorrect
decisions, as long as the overall progress to the optimum is guaranteed.

In one of our proofs we make use of an additive Chernoff bound for negatively
correlated variables. This bound is implicit in a paper by Panconesi and Srinivasan
(1997) and is of independent interest.
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2 Jump Functions

As mentioned, several definitions for jump functions exist. We use here the version
that is inspired by the idea of blanking out the full �-neighborhood of the optimum
and of its complement (the latter is needed because otherwise one could optimize the
function by simply searching for the unique search point x ′ with Jump

�
value zero and

complementing it). To be precise, for all � < n/2, Jump
�

is the function that assigns to
each x ∈ {0, 1}n fitness

Jump
�
(x) =

⎧⎪⎨
⎪⎩

n, if |x|1 = n,

|x|1, if � < |x|1 < n − �,

0, otherwise,

where |x|1 := OneMax(x) := ∑n
i=1 xi denotes the number of 1s in x (also known as the

Hamming weight of x).
The jump function f� analyzed by Droste et al. (2002, def. 24) assigns to x fitness

value

f�(x) :=

⎧⎪⎨
⎪⎩

� + n, if |x|1 = n,

� + |x|1, if |x|1 ≤ n − �,

n − |x|1, otherwise.

Not only can this function be optimized by searching for the complement of the op-
timum (as described), but it also provides more information for those x with n − � <

|x|1 < n. While for classic runtime analysis of randomized search heuristics this does not
pose any problems, these properties are not desirable for black-box complexity studies.
Lehre and Witt (2010) therefore designed a different jump function g�, assigning to each
x fitness value

g�(x) :=

⎧⎪⎨
⎪⎩

n, if |x|1 = n,

|x|1, if � < |x|1 ≤ n − �,

0, otherwise.

Our version is mostly similar to the latter, with the only difference being the function
values for bit strings x with |x|1 = n − �. In our version the sizes of the blanked out
areas around the optimum and its complement are equal, while for g� that area is larger
around the complement than around the optimum.

Jansen (2015) introduced yet another version of the jump function, inspired by
the idea that the spirit of jump functions is to “[locate] an unknown target string
that is hidden in some distance to points a search heuristic can find easily.” Jansen’s
definition also has black-box complexity analysis in mind. For some search point x∗

with |x∗|1 > n − �, his jump function h�,x∗ assigns to bit string x the fitness value

h�,x∗ (x) :=

⎧⎪⎨
⎪⎩

n + 1, if x = x∗,

n − |x|1, if n − � < |x|1 ≤ n,

� + |x|1, otherwise.

Since these functions do not reveal information about the optimum other than its �-
neighborhood, the (unrestricted) black-box complexity of the class {h�,x∗ | |x∗|1 > n − �}
is

( ∑�−1
i=0

(
n

i

) + 1
)
/2 (Jansen, 2015, Theorem 4). For constant � this expression is �(n�−1),

very different from the results on the unrestricted black-box complexity of Jump
�

in Buz-
dalov et al. (2015) or from our results.
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3 The Unbiased Black-Box Model

The unbiased black-box model introduced in Lehre and Witt (2012) is by now one of
the standard complexity models in evolutionary computation. In particular, the unary
unbiased model gives a more realistic complexity estimate for a number of functions
than the original unrestricted black-box model of Droste et al. (2006). An important
advantage of the unbiased model is that it allows us to analyze the influence of the arity
of the sampling operators in use. In addition, new search points can be sampled only
either uniformly at random or from distributions that depend on previously generated
search points in an unbiased way. In this section, we give a brief definition of the unbiased
black-box model, pointing to Lehre and Witt (2012) and Doerr and Winzen (2014b) for
a more detailed introduction.

For all non-negative integers k, a k-ary unbiased distribution
(
D(· | y(1), . . . ,

y(k))
)
y(1),...,y(k)∈{0,1}n is a family of probability distributions over {0, 1}n such that for all

inputs y(1), . . . , y(k) ∈ {0, 1}n the following two conditions hold:

1. [⊕-invariance] ∀x, z ∈ {0, 1}n : D(x | y(1), . . . , y(k)) = D(x ⊕ z | y(1) ⊕ z, . . . , y(k)

⊕ z),

2. [permutation-invariance] ∀x ∈ {0, 1}n ∀σ ∈ Sn :

D(x | y(1), . . . , y(k)) = D(σ (x) | σ (y(1)), . . . , σ (y(k))),

where ⊕ is the bitwise exclusive-OR, Sn the set of all permutations of the set
[n] := {1, 2, . . . , n}, and σ (x) := xσ (1) · · · xσ (n) for x = x1 · · · xn ∈ {0, 1}n.

An operator sampling from a k-ary unbiased distribution is called a k-ary unbiased
variation operator.

A k-ary unbiased black-box algorithm is one that follows the scheme of Algorithm 1
(here and in the following with [0 . .k] we abbreviate [k] ∪ {0}). The k-ary unbiased black-
box complexity, denoted UBBk(F), of some class of functions F is the minimum com-
plexity of F with respect to all k-ary unbiased black-box algorithms, where, naturally,
the complexity of an algorithm A for F is the maximum expected number of black-box
queries that A performs on a function f ∈ F until it queries for the first time a search
point of maximal fitness. We let ∗-ary unbiased black-box complexity be based on the model
in which operators of arbitrary arity are allowed.

The unbiased black-box model includes most of the commonly studied search
heuristics, such as many (μ + λ) and (μ, λ) evolutionary algorithms (EAs), simulated
annealing, the Metropolis algorithm, and the randomized local search algorithm.

We recall a simple remark from Doerr et al. (2014b) that helps us shorten some of
the proofs in the subsequent sections.
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REMARK 1: Suppose for a problem P there exists a black-box algorithm A that, with constant
success probability, solves P in s iterations (that is, queries an optimal solution within s queries).
Then the black-box complexity of P is at most O(s).

A useful tool for proving lower bounds is Theorem 2. It formalizes the intuition
that the black-box complexity of a function can only get harder if we “blank out” some
of the fitness values. This is exactly the situation of the Jump functions.

THEOREM 2: For all sets of pseudo-Boolean functions C, all k ∈ N, and all f : R → R such that for
all g ∈ C with {x | f (g(x)) optimal } = {x | g(x) optimal } we have UBBk(C) ≤ UBBk(f (C)).

PROOF: Let C, k, and f be as in the statement of the theorem. Let A be any k-ary unbiased
black-box algorithm for f (C). We derive from this a k-ary unbiased black-box algorithm
for C by using queries to g ∈ C and then mapping the resulting objective value with f.
Clearly, A′ finds an optimum of g ∈ C after no more expected queries than A for f ◦ g,
using the condition on the set of optimal points. Thus, the theorem follows. �

From Theorem 2 we immediately obtain a lower bound of �(n/ log n) for the unbi-
ased black-box complexities of jump functions. The theorem implies that the k-ary un-
biased black-box complexity of OneMax is a lower bound of that of any jump function.
In general, the k-ary unbiased black-box complexity of any pseudo-Boolean function f
is at least the unrestricted black-box complexity of the class of functions obtained from f
by first applying an automorphism of the hypercube {0, 1}n. That the latter for OneMax
is �(n/ log n) was shown independently by Droste et al. (2006) and Erdös and Rényi
(1963). A similar line of arguments proves the lower bound for extreme jump functions
(see Section 6).

The lower bound for the unary unbiased black-box complexity of Jump follows
immediately from the �(n log n) bound proven by Lehre and Witt (2012, Theorem 6) for
all pseudo-Boolean functions with unique global optimum.

4 Short Jump Functions

The key idea for obtaining the bounds on short jump functions, i.e., jump functions
with jump size � ∈ O(n1/2−ε), is the following lemma. It shows that one can compute,
with high probability, the OneMax value of any search point x with few black-box
calls to Jump

k
. With this, we can orient ourselves on the large plateau surrounding the

optimum and thus revert to the problem of optimizing OneMax.
We collect these computations in a subroutine, to be called by black-box algorithms.

LEMMA 3: For all constants ε, c > 0 and all � ∈ O(n1/2−ε), there is a unary unbiased subroutine
s using O(1) queries to Jump� such that, for all bit strings x, s(x) = OneMax(x) with probability
1 − O(n−c).

PROOF: We assume n to be large enough so that � ≤ n/4. We use a unary unbiased
variation operator flip�, which samples uniformly an �-neighbor (a bit string that
differs in exactly � positions) of the argument. Next we give the subroutine s, which uses
Jump

�
to approximate OneMax as desired (see Algorithm 2). Intuitively, the subroutine

samples t = �c/(2ε)	 ∈ O(1) bit strings in the �-neighborhood of x; if |x|1 ≥ n − �, then
it is likely that at least once only 1s of x have been flipped, leading to a Jump

�
value of

|x|1 − �; as no sample will have a lower Jump
�

value, adding � to the minimum non-zero
fitness of one of the sampled bit strings gives the desired output. The case of x with
|x|1 ≤ � is analogous.
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Clearly, the subroutine is correct with certainty on all x with � < |x|1 < n − �. The
other two cases are nearly symmetric, so we only analyze x with |x|1 ≥ n − �. Clearly, the
return value of the subroutine is correct if and only if at least one of the t samples flips
only 1s in x (note that max(M) > n/2 holds due to � ≤ n/4). We denote the probability
of this event with p. We start by bounding the probability that a single sample flips only
1s. We choose which k bits to flip iteratively so that after i iterations, there are at least
n − � − i bit positions with a 1 out of n−i unchosen bit positions left to choose. This
gives the bound of(

n − �

n

)
·
(

n − � − 1
n − 1

)
· · ·

(
n − � − (� − 1)

n − (� − 1)

)

=
�−1∏
i=0

(
1 − �

n − i

)
≥

(
1 − �

n − �

)�

≥
(

1 − �2

n − �

)
,

using Bernoulli’s inequality. Let c′ be such that � ≤ c′n1/2−ε. We have

p ≥ 1 −
(

�2

n − �

)t

≥ 1 −
(

2�2

n

)t

≥ 1 − (
2c′n−2ε

)t ≥ 1 − (2c′)t n−c.

�

With Lemma 3 at hand, the results stated in Table 1 follow easily from the respective
OneMax bounds proven by Doerr et al. (2011a), Doerr and Winzen (2012), and Droste
et al. (2006).

THEOREM 4: For ε > 0 and � ∈ O(n1/2−ε), the unbiased black-box complexity of Jump� is
O(n log n) for unary variation operators, and it is O(n/k) for k-ary variation operators with
2 ≤ k ≤ log n.

PROOF: First note that the black-box complexities claimed for Jump
�

are shown for
OneMax in Droste et al. (2006) for k = 1, in Doerr et al. (2011a) for k = 2, and in Doerr
and Winzen (2014b) for 3 ≤ k ≤ log n.

We use Lemma 3 with c = 4 and run the unbiased black-box algorithms of the
appropriate arity for OneMax; all sampled bit strings are evaluated using the subroutine
s. Thus, this algorithm samples as if working on OneMax and finds the bit string with all
1s after the desired number of iterations. Note that for up to n log n uses of s, we expect
no more than n log(n) · O(n−4) = O(n−2) incorrect evaluations of s. Therefore, there is a
small chance of failing, and the claim follows from Remark 1. �

5 Long Jump Functions

In this section, we give bounds on long jump functions; we start with a bound on the
ternary black-box complexity, followed by a bound on the unary black-box complexity.
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Note that the bound on the binary unbiased black-box complexity of long jump follows
from the same bound on extreme jump.

5.1 Ternary Unbiased Optimization of Long Jump Functions

We show that ternary operators allow for solving the problem independently in different
parts of the bit string and then combining the partial solutions. This has the advantage
that, as in Section 4, we can revert to optimizing OneMax, and the missing fitness values
will not show in any partial problems.

We start with a lemma regarding the possibility of simulating unbiased algorithms
for OneMax on subsets of the bits.

LEMMA 5: For all bit strings x, y ∈ {0, 1}n we let [x, y] = {z ∈ {0, 1}n | ∀i ≤ n : xi = yi ⇒
xi = zi} (this set is isomorphic to a hypercube). Let A be a k-ary unbiased black-box algorithm
optimizing OneMax with constant probability in time at most t(n). Then there is a (k + 2)-ary
unbiased black-box subroutine simulateOnSubcube as follows.

• Inputs to simulateOnSubcube are x, y ∈ {0, 1}n and the Hamming distance a of
x and y; x and y are accessible as search points sampled previous to the call of the
subroutine.

• simulateOnSubcube has access to an oracle returning OneMax(z) for all z ∈
[x, y].

• After at most t(a) queries simulateOnSubcube has found the z ∈ [x, y] with
maximal OneMax value with constant probability.

PROOF: Let x and y with Hamming distance a be given as detailed in the statement of
the theorem. Note that [x, y] is isomorphic to {0, 1}a . Without loss of generality, assume
that x and y differ on the first a bits, and let x̃ be the last n−a bits of x (which equal the
last n−a bits of y). Thus, [x, y] = {zx̃ | z ∈ {0, 1}a}.

We employ A optimizing {0, 1}a . Sampling a uniformly random point zx̃ in [x, y] is
clearly unbiased in x and y. However, the resulting OneMax value is not the value that
A requires, unless x̃ is the all-0s string. In order to correct for this, we need to know the
number of 1s |x̃|1 in x̃. This we can compute from |x|1, |y|1 and a as follows. Let zx and
zy be such that x = zxx̃ and y = zyx̃. We have

|x|1 + |y|1 − a

2
= |zx |1 + |zy |1 + 2|x̃|1 − a

2
= |zx |1 + a − |zx |1 + 2|x̃|1 − a

2
= |x̃|1.

Thus, for any bit string zx̃ sampled by simulateOnSubcube we can pass the OneMax
value of z to A. In iteration t, when A uses a k-ary unbiased operator that samples accord-
ing to the distribution D(· | x(i1), . . . , x(ik )), simulateOnSubcube uses the (k + 2)-ary
unbiased operator that samples according to the distribution D′(· | x(i1)x̃, . . . , x(ik )x̃, x, y)
such that

∀u ∈ {0, 1}n : D′(u | x(i1)x̃, . . . , x(ik )x̃, x, y) =
{

D(z | x(i1), . . . , x(ik )), if u = zx̃,

0, otherwise.

For any v(1), . . . , v(k+2) such that D′(· | v(1), . . . , v(k+2)) is not defined by this equation,
we let this distribution be the uniform distribution over {0, 1}n. From the additional
conditioning on x and y we see that D′ is indeed unbiased. Note that D′ samples only
points from [x, y]. As described, simulateOnSubcube can now use the OneMax value
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of the resulting zx̃ to compute the OneMax value of z and pass that on to A as the answer
to the query. This shows that the simulation is successful as desired. �

THEOREM 6: Let � ≤ (1/2 − ε)n. For all k ≥ 3, the k-ary unbiased black-box complexity of Jump�

is O(UBBk−2(OneMax)).

PROOF: We optimize Jump
�

blockwise, where each block is optimized by itself and the
correct OneMax value is available as long as only bits within the block are modified.
Then the different optimized blocks are merged to obtain the optimum.

Let a := �n/2� − �, and assume for the moment that a divides n. Algorithm 3 gives
a formal description of the intuitive idea. This algorithm uses the following unbiased
operators:

• uniform (). The operator uniform is a 0-ary operator that samples a bit
string uniformly at random.

• flipWhereEqualk(x, y). For two search points x and y and an integer k, the
operator flipWhereEqualk generates a search point by randomly flipping k
bits in x among those bits where x and y agree. If x and y agree in fewer than k
bits, then all bits where x and y agree are flipped.

• selectBits(x, y, z). For three search points x, y, and z, the operator se-
lectBits returns a bit string identical to the first argument, except where the
second and third differ; there the bits of x are flipped. Note that this operator
is deterministic.

• copySecondIntoFirstWhereDifferentFromThird(x, y, z). For three
search points x, y, and z, the operator copySecondIntoFirstWhereDif-
ferentFromThird copies x, except where the second differs from the third;
there it copies y. This is also a deterministic operator. �

Furthermore, we use the subroutine simulateOnSubcube from Lemma 5 with a
fixed time budget that guarantees constant success at each call, returning the best bit
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string found (note that if a does not divide n, the last call to simulateOnSubcube has
to be with respect to a different Hamming distance).

5.1.1 Expected Number of Queries
A uniformly sampled bit string has exactly n/2 1s with probability �(1/

√
n), which

shows that the first line takes an expected number of �(
√

n) queries. Since a ∈ �(n),
all loops have a constant number of iterations. The body of the second loop takes as
long as a single optimization of OneMax with arity k, which is in �(n/ log n), so that
initial sampling in line 1 makes no difference in the asymptotic runtime. Thus, the total
number of queries is O(UBBk−2(OneMax)).

5.1.2 Correctness
The algorithm first generates a reference string x with f (x) = �n/2	. The first loop
generates bit strings y(i), which have a Hamming distance of a to the reference string
x; in this way the different y(i) partition the bit positions into �n/a	 sets of at most a
positions each. The next loop optimizes (copies of) x on each of the selected sets of a
bits independently as if optimizing OneMax. For the bit strings encountered during this
optimization we always observe the correct OneMax value, as their Hamming distance
to x is at most a, and x has exactly �n/2	 1s. The last loop copies the optimized bit
positions into b by copying the bits in which u(i) and x differ (those are the incorrect
ones). This selects the correct bits in each segment with constant probability according
to Lemma 5. As all segments have a constant independent failure probability, we get
a constant overall failure probability (since a is constant), and Remark 1 concludes the
proof. The proof trivially carries over to the case of n not divisible by a.

Thus, we immediately get the following corollary, using the known run time bounds
for OneMax from Doerr and Winzen (2014b).

COROLLARY 7: Let � ≤ (1/2 − ε)n. Then the unbiased black-box complexity of Jump� is

• O(n log n), for ternary variation operators;

• O(n/k), for k-ary variation operators with 4 ≤ k ≤ log n;

• �(n/ log n), for k-ary variation operators with k ≥ log n or unbounded arity.

Note the upper bound of O(n log n) for the ternary unbiased black-box-complexity,
which we improve in Section 6 to O(n). For all higher arities, the theorem presented in
this section gives the best known bound.

5.2 Unary Unbiased Optimization of Long Jump Functions

When optimizing a Jump
�

function via unary unbiased operators, the only way to
estimate the OneMax value of a search point x (equivalently, its Hamming distance
H (x, 1n) from the optimum) is by sampling suitable offspring that have a nonzero
fitness. When � is small, that is, when many OneMax values can be derived straight
from the fitness, we can simply flip � bits and hope that the retrieved fitness value is by �

smaller than OneMax(x). This was the main idea for dealing with short jump functions
(see Section 4).

When � is larger, this does not work anymore, simply because the chance that we
only flip 1-bits to zero is too small. Therefore, in this section, we resort to a sampling ap-
proach that, via strong concentration results, learns the expected fitness of the sampled
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offspring of x, and from this the OneMax value of the parent x. This leads to a unary
unbiased black-box complexity of O(n2) for all jump functions Jump

�
with � ≤ n/2 − εn.

5.2.1 Proof Outline and Methods
Since we aim at an asymptotic statement, let us assume that n is sufficiently large and
even. Also, since we do not elaborate on the influence of the constant ε > 0, we may
assume (by replacing ε by a minimally smaller value) that ε is such that εn is even.

A first idea to optimize Jump
�

with � = n/2 − εn/2 could be to flip each bit of the
parent x with probability 1/2 − ε/2. Such an offspring u has an expected fitness of
n/2 − εn/2 + εOneMax(x). If ε is constant, then by Chernoff bounds O(n log n) samples
u are enough to ensure that the average observed fitness n/2 − εn/2 + εv satisfies v =
OneMax(x) with probability 1 − n−c, c an arbitrary constant. This is enough to build a
unary unbiased algorithm using O(n2 log2(n)) fitness evaluations.

We improve this first approach via two ideas. The more important one is to not flip
an expected number of n/2 − εn/2 bits independently, but to flip exactly that many bits
(randomly chosen). By this, we avoid adding extra variation via the mutation operator.
This pays off when x already has many 1s—if OneMax(x) = n − a, then we observe that
only O(a log n) samples suffice to estimate the OneMax value of x precisely (allowing a
failure probability of n−c as before).

The price for not flipping bits independently (but flipping a fixed number of bits) is
that we have to deal with hypergeometric distributions, and when sampling repeatedly,
with sums of these. The convenient way of handling such sums is to rewrite them as
sums of negatively correlated random variables and then to argue that Chernoff bounds
also hold for these. This was stated explicitly by Doerr (2011) for multiplicative Chernoff
bounds, but not for additive ones. Since for our purposes an additive Chernoff bound
is more convenient, we extract such a bound from the original paper Panconesi and
Srinivasan (1997).

The second improvement stems from allowing a larger failure probability. This oc-
casionally leads to wrong estimates of OneMax(x) and consequently to wrong decisions
on whether to accept x or not, but as long as this does not happen too often, we still ex-
pect to make progress toward the optimum. To analyze this, we formulate the progress
of the distance to the optimum as random walk and use the gambler’s ruin theorem to
show that the expected number of visits to each state is constant.

5.2.2 Estimating the Distance to the Optimum
We start with some preliminary considerations that might be helpful for similar prob-
lems as well. Let x ∈ {0, 1}n. Let a := a(x) := n − OneMax(x) = H (x, 1n) be its Hamming
distance from the all-1s string. Fix some enumeration 1, . . . , a of the zero-bits of x. Let u
be an offspring of x obtained from flipping exactly n/2 − εn/2 bits. For i ∈ [a], define a
{−1,+1}-valued random variable Xi by Xi = 1 if and only if the ith zero of x is flipped
in u. We first argue that

OneMax(u) = n/2 + εn/2 +
∑
i∈[a]

Xi. (1)

Suppose first x has exactly n/2 + εn/2 many 1-bits, so the number of bits flipped equals
the number of 0-bits. Any bit that was 0 in x increases the OneMax value by 1 when
flipped, while not flipping such a bit means that instead some 1-bit is flipped, leading to
a decrease in the OneMax value; this gives (1). If x has k more 1-bits than n/2 + εn/2, then
certainly k 1-bits have to flip, and for the 0-bits the same argument as in the previous
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case holds, leading to (1). If x has k fewer 1-bits than n/2 + εn/2, then certainly k 0-bits
cannot flip; counting them with a value of −1 in (1) needs to be offset by adding k,
leading again to (1).

By construction, Pr(Xi = 1) = (1 − ε)/2 and Pr(Xi = −1) = (1 + ε)/2. Consequently,
E(OneMax(u)) = n/2 + εn/2 − εa, which is in [n/2 − εn/2, n/2 + εn/2] for all a.

Let X = ∑
i∈[a] Xi . Note that the Xi are not independent. However, they are nega-

tively correlated and for this reason still satisfy the usual Chernoff bounds. This was
made precise by Doerr (2011, Theorems 1.16, 1.17) but only giving multiplicative Cher-
noff bounds (Doerr, 2011, Theorem 1.9). Since for our purposes an additive Chernoff
bound (sometimes called Hoeffding bound) is more suitable, we look at the paper
by Panconesi and Srinivasan (1997). There, Theorem 3.2 applied with correlations pa-
rameter λ = 1 and the X̂i simply being independent copies of the Xi together with
Equation (2) give the first part of the following lemma. By setting the random variables
Yi := 1 − Xi , the second claim of the lemma follows from the first.

LEMMA 8: Let X1, . . . , Xn be binary random variables. Let X = ∑
i∈[n] Xi .

(1) Assume that for all S ⊆ [n], we have Pr(∀i ∈ S : Xi = 1) ≤ ∏
i∈S Pr(Xi = 1). Then

Pr(X ≥ E(X) + d) ≤ exp(−2d2/n).

(2) Assume that for all S ⊆ [n], we have Pr(∀i ∈ S : Xi = 0) ≤ ∏
i∈S Pr(Xi = 0). Then

Pr(X ≤ E(X) + d) ≤ exp(−2d2/n).

Note that our {−1,+1}-valued Xi are derived from a hypergeometric distribution
(which leads to random variables fulfilling the assumptions of both parts of the lemma)
via a simple affine transformation. Consequently, the following corollary directly im-
plied by the lemma applies to these Xi.

COROLLARY 9: Let X1, . . . , Xn be {−1,+1}-valued random variables. Assume that for all S ⊆ [n]
and both b ∈ {−1,+1}, we have Pr(∀i ∈ S : Xi = b) ≤ ∏

i∈S Pr(Xi = b). Let X = ∑
i∈[n] Xi .

Then Pr(|X − E(X)| ≥ d) ≤ 2 exp(−d2/(2n)).

From this, we observe that Pr(OneMax(u) /∈ [n/2 − εn, n/2 + εn]) ≤ Pr(|OneMax(u)
− E(OneMax(u))| > εn/2) = Pr(|X − E(X)| > εn/2) ≤ 2 exp(−ε2n/8). In particular,

Pr(f (u) = 0) ≤ 2 exp(−ε2n/8). (2)

Independent copies of sets of negatively correlated random variables again are
negatively correlated. Let Y be the sum of T independent copies of X. Then the corollary
again yields

Pr(Y /∈ [−(a + 1/2)εT ,−(a − 1/2)εT ]) = Pr(|Y − E(Y )| > εT/2) ≤ 2 exp(−ε2T/(8a)).

Similarly, Pr(Y /∈ [(3/2)E(X), E(Y )/2]) ≤ 2 exp(−|E(Y )|2/(8aT )) = 2 exp(−aε2T/8).
We summarize these findings in the following lemma.

LEMMA 10: Let x ∈ {0, 1}n. Let u1, . . . , uT be obtained independently from x, each by flip-
ping exactly n/2 − εn/2 random bits. Let s = ∑

i∈[T ] OneMax(ui) and â := −(s − T (n/2 −
εn/2))/(T ε). The probability that �â +1/2� does not equal a :=a(x) is at most 2 exp(−ε2T/(8a)).
The probability that â is not in [a/2, (3/2)a] is at most 2 exp(−ε2T a/8).

PROOF: By construction, y = s − T (n/2 − εn/2) has the same distribution as Y above.
The probability that y/(T ε) deviates from its expectation −a, or equivalently, that
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−y/(T ε) deviates from its expectation a, by at least an additive term of 1/2, is at most
2 exp(−ε2T/(8a)). �

Building on the previous analysis, we now easily derive an estimator for a OneMax
value not revealed by a jump function. It overcomes the possible problem of sam-
pling an offspring with fitness zero by restarting the procedure using the command
breakandgoto1.

We analyze the function estimate for the case that q := T/(1 − 2T exp(−ε2n/8))
is positive, which is the only situation in which we use this function in the following.

COROLLARY 11: The function estimate given in Algorithm 4 takes as inputs a search point
x and an integer T; if q := T/(1 − 2T exp(−ε2n/8)) is positive, then the algorithm terminates
using an expected number of at most q fitness evaluations, returning an integer â.

Assume that εn ≥ 5
√

n log n and T ∈ O(n). Then the expected number of fitness evalua-
tions is q = T + O(1/n2). Let a = a(x) = H (x, 1n) denote the unknown Hamming distance
of x to the optimum. The probabilities for the events �â + 1/2� �= a and â /∈ [a/2, (3/2)a]
are at most 2 exp(−ε2T/(8a)) + O(1/n3) and 2 exp(−ε2T a/8) + O(1/n3), respectively. If T ≥
24a ln(6n/a)/ε2, these probabilities become 2/(6n/a)3 + O(1/n3) and O(1/n3).

PROOF: A run of estimate in which the breakandgoto1 statement is not executed
uses exactly T fitness evaluations. The probability that one execution of the for-loop
leads to the execution of the breakandgoto1 statement is at most 2T exp(−ε2n/8) by
a simple union bound argument and (2). If this number is less than 1, then an expected
total number of (1 − 2T exp(−ε2n/8))−1 times the for-loop is started, given an expected
total number of at most T (1 − 2T exp(−ε2n/8))−1 fitness evaluations.

When ε ≥ 5
√

n log n and T ∈ O(n), the probability for a restart is 2T exp(−ε2n/8) ∈
O(1/n3), the expected number of fitness evaluations becomes T + O(1/n2). Conse-
quently, conditioning on none of the ui in Lemma 10 having a OneMax value outside
[n/2 − εn, n/2 + εn] changes the probabilities computed there by at most an additive
O(1/n3) term. �

The main argument of how such an estimator for the number of 0s in a bit string can
be used to derive a good black-box algorithm is reused in a later section in Theorem 20.
Thus, we make the following definition.

DEFINITION 12: Let f be a pseudo-Boolean function, and let p be a function that maps non-
negative integers to non-negative integers. Let g be an algorithm that takes as input a bit string
x and a natural number α and uses O(p(n)α log(2 + n/α)) unary unbiased queries to f. We call
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g a p-estimator using f if, for all bit strings x, a := n − OneMax(x), and for all α ∈ [a/2, 3a/2]
we have

• P (g(x, α) �= a) ≤ a
16n

;

• P (g(x, α) �∈ [a/2, 3a/2]) ∈ O(1/(p(n)n3)).

LEMMA 13: Let f be a pseudo-Boolean function such that, for some p, there is a p-estimator using
f. Then the unary unbiased black-box complexity of f is O(p(n)n2).

PROOF: Let us consider a run of Algorithm 5.
We first assume that all calls of the p estimator g return a value that lies in [1/2, 3/2]

times the a-value of the first argument.
During a run of the algorithm, a(x) performs a biased random walk on the state

space [0 . .n]. The walk ends when the state 0 is reached. From the definition of a p-
estimator we derive the following bounds on the transition probabilities. From state a,
with probability at least (a/n)(1 − 2(a/(16n))) ≥ (a/n)(7/8), we move to state a − 1. This
is the probability that a 1-bit flip reduces the Hamming distance to the optimum times
a lower bound on the probability that we correctly identify both the resulting a-value
and the a-value of our current solution x. With probability at most ((n − a)/n)(a/(16n) +
(a + 1)/(16n)), we move from state a to state a + 1. If we neither move to a − 1 or a + 1,
we stay in a. Observe that when conditioning on not staying in a, then with probability
at least 3/4 we go to a − 1 and with probability at most 1/4, we go to a + 1 (these are
coarse estimates).

Our first goal is to show that the expected number of different visits to each par-
ticular state a is constant. To this aim, we may regard a speedy version of the random
walk ignoring transitions from a to itself. In other words, we may condition on actually
moving in each step to a different state. For any state i ∈ [0 . .n], let ei denote the expected
number of visits to a starting the walk from i. To be more precise, we count the number
of times we leave state a in the walk starting at i. We easily observe the following. For
i > a, we have ei = ea , simply because we know that the walk at some time will reach
a (because 0 is the only absorbing state). Hence we can split the walk started in i into
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two parts, one from the start until the first visit to a (this contributes zero to ei) and the
other from the first visit to a until reaching the one absorbing state (this contributes ea

to ei). For i < a, we have ei = (1 − qi)ea , where qi denotes the probability that a walk
started in i visits 0 prior to a. This implies that ea−1 ≤ ea+1. Consequently, for the state
a itself, we may use the pessimistic estimates on the transition probabilities and derive
ea ≤ 1 + (1/4)ea+1 + (3/4)ea−1 = 1 + (1/4 + (3/4)(1 − qa−1))ea . To prove that ea ∈ O(1), it
thus suffices to show that qa−1 is bounded from below by an absolute constant greater
than zero. This follows easily from the gambler’s ruin theorem (see, e.g., Jansen, 2013,
Theorem A.4). Consider a game in which the first player starts with r = a − 1 dollars,
the second with s = 1 dollar. In each round of the game, the first player wins with prob-
ability P = 1/4, the second with probability Q = 3/4. The winner of the round receives
one dollar from the other player. The games ends when one player has no money left.
In this game, the probability that the second player runs out of money before the first,
is exactly

(Q/P )r − 1
(Q/P )r+s − 1

,

which in our game is (3a−1 − 1)/(3a − 1). Using the pessimistic estimates of the transition
probabilities, we hence see that 1 − qa−1 ≤ (3a−1 − 1)/(3a − 1) ≤ 1/3 as desired.

We have just shown that the expected number of times the algorithm has to leave
a state “a(x) = a” is constant. Since the probability of leaving this state in one iteration
of the while-loop is at least a/(2n), and by the definition of an estimator one iteration
takes an expected number of O(p(n)a log(2 + n/a)) fitness evaluations, we see that the
expected total number of fitness evaluations spent in state “f (x) = a” is O(p(n)n log(2 +
n/a)), with all constants hidden in the O-notation being absolute constants independent
of a and n. Consequently, the expected total number of fitness evaluations in one run of
the algorithm is at most

∑
a∈[n] O(p(n)n log(2 + n/a)) = O(p(n)n2).

So far we assumed that all g(y,T) calls return a value that is in [a(y)/2, (3/2)a(y)],
and conditional on this, proved an expected optimization time of O(p(n)n2). By the
definition of an estimator, the probability that we receive a value outside this interval is
O(1/p(n)n3). Consequently, the probability that this happens within the first O(p(n)n2)
fitness evaluations is at most O(1/n). A simple Markov bound shows that Algorithm 5
after O(p(n)n2) fitness evaluations (assuming the implicit constant high enough), with
probability at least 1/2, has found the optimum. Hence Remark 1 proves the claim. �

THEOREM 14: Let � ≤ (1/2 − ε)n. The unary unbiased black-box complexity of Jump� is O(n2).

PROOF: By Corollary 11, g(x, α) := estimate(x, �24(2α + 1) ln(6n/(2α + 1))/ε2	) is a
p-estimator for Jump

n/2−εn
with p(n) a sufficiently large constant. To see this, note that

a �→ a ln(6n/a) is increasing for all a ∈ [2n]. Consequently, Lemma 13 shows the
claim. �

6 Extreme Jump Functions

In this section, we regard the most extreme case of jump functions where all search
points have fitness zero, except for the optimum and search points having exactly
n/2 1s. Surprisingly, despite some additional difficulties, we still find polynomial time
black-box algorithms.

Throughout this section, let n be even (we comment on the case of odd n in
Section 6.5). We call a jump function Jump

�
an extreme jump function if � = n/2 − 1.

656 Evolutionary Computation Volume 23, Number 4



Unbiased Black-Box Complexities of Jump Functions

Consequently, this function is zero except for the optimum (where it has the value n)
and for bit strings having n/2 1s (where it has the value n/2).

The information-theoretic argument of Droste et al. (2006) immediately gives a
lower bound of �(n) for the unbiased black-box complexities of extreme jump functions.
The intuitive argument is that an unrestricted black-box algorithm needs to learn n bits
of information but receives only a constant amount of information per query.

LEMMA 15: For all arities k, the k-ary unbiased black-box complexity of an extreme jump function
is �(n).

PROOF: Since an extreme jump function takes only three values, Theorem 2 in Droste
et al. (2006) gives a lower bound of �(n) for the unrestricted black-box complexity of the
set of all extreme jump functions. The latter is a lower bound for the unbiased black-box
complexity of a single extreme jump function (see end of Section 3). �

6.1 Upper Bounds on Extreme Jump Functions

In the following three sections, we derive several upper bounds for the black-box
complexities of extreme jump functions.

For an extreme jump function, we cannot distinguish between having OneMax
values of n/2 + k and n/2 − k until we have encountered the optimum or its inverse.
More precisely, let x(1), x(2), . . . be a finite sequence of search points not containing the
all-1s and all-0s strings. Define y(i) = x(i) ⊕ 1n to be the inverse of x(i) for all i. Then both
these sequences of search points yield exactly the same fitness values. Hence the only
way we could find out on which side of the symmetry point n/2 we are would be by
querying a search point having no or n 1s. However, if we know such a search point,
we are done anyway.

Despite these difficulties, we develop a linear time ternary unbiased black-box
algorithm. Then we show that restricting ourselves to binary variation operators at
most increases the black-box complexity to O(n log n). For unary operators, the good
news is that polynomial time optimization of extreme jump functions is still possible,
though the best complexity we find is only O(n9/2).

To ease the language, let us denote by d(x) := |OneMax(x) − n/2| a symmetricized
version of OneMax taking into account this difficulty. Also, let us define the sign sgn(x)
of x to be −1 if OneMax(x) < n/2, sgn(x) := 0, if OneMax(x) = n/2, and sgn(x) = +1 if
OneMax(x) > n/2. In other words, sgn(x) is the sign of OneMax(x) − n/2.

6.2 Ternary Unbiased Optimization of Extreme Jump Functions

When ternary operators are allowed, we easily obtain an unbiased black-box complexity
of O(n), which is best possible by Lemma 15. The reason for this fast optimization
progress is that we may test individual bits. Assume that we have a search point u with
OneMax value n/2 + 1. If we flip a certain bit in u, then from the fitness of this offspring,
we learn the value of this bit. If the new fitness is n/2, then the OneMax value is n/2
as well, and the bit originally had the value 1. If the new fitness is zero, then the new
OneMax value is n/2 + 2, and the original bit was set to zero. We thus can learn all bit
values and flip those bits that do not have the desired value.

One difficulty to overcome is that we never have a search point where we know
that its OneMax value is n/2 + 1. We overcome this by generating a search point with
fitness n/2 and flipping a single bit. This yields a search point with OneMax value either
n/2 + 1 or n/2 − 1. Implementing this strategy in a sufficiently symmetric way, we end
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up with a search point having OneMax value either n or 0 and in the latter case output
its complement.

THEOREM 16: For k ≥ 3, the k-ary unbiased black-box complexity of extreme jump functions is
�(n).

PROOF: We show that Algorithm 6 optimizes any extreme jump function with O(n)
black-box queries using only operators of arity at most 3. This algorithm uses the three
operators uniform, selectBits and flipWhereEqual, introduced in the proof of
Theorem 6, as well as the following unbiased operator.

• complement(x): Given a bit string x, complement flips all bits in x. This is a
deterministic operator.

Note that a uniformly sampled bit string has exactly n/2 1s with probability
�(1/

√
n). Consequently, the expected total number of queries is at most 4n + O(

√
n) =

�(n).
Let us now analyze the correctness of our algorithm. Let x be the initial bit string

with fitness different from 0. This is either the optimal bit string, in which case nothing
is left to be done, or a bit string with fitness n/2. In the latter case, consider the first
for-loop. For each i ≤ n, z(i) has a Hamming distance of i to x; in fact, the sequence
(z(i))0≤i≤n is a path in the hypercube flipping each bit exactly once. Thus, for each i, y(i)

differs from x in exactly one position, and for each position there is exactly one i such
that y(i) differs from x in that position. We can thus use the y(i) to address the individual
bits, and we will call the bit where x and y(i) differ the ith bit.

We use y(1) now as a baseline and check which other bits in x contribute to the
OneMax value of x in the same way (both are 0 or both are 1), as follows. The bit string
a(i) = selectBits(x, y(1), y(i)) is obtained from x by flipping the first and ith bit. Thus,
the fitness of a(i) is 0 if and only if the first and the ith bit contribute to the OneMax
value of x in the same way; otherwise it is n/2.

Thus, b is the bit string with either all bits set to 0 or all bits set to 1. This means that
we are either done after the last loop or after taking the complement of b. �
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6.3 Binary Unbiased Optimization of Extreme Jump Functions

In this section, we prove that the unbiased 2-ary black-box complexity of extreme jump
functions is O(n log n). With 2-ary operators only, it seems impossible to implement the
strategy used in the previous section, which relies on being able to copy particular bit
values into the best-so-far solution.

To overcome this difficulty, we follow a hill-climbing approach. We first find a
search point m with d-value 0 by repeated sampling. We copy this into our current-best
search point x and try to improve x to a new search point x ′ by flipping a random bit
in which x and m are equal (this needs a 2-ary operation), hoping to gain a search point
with d-value equal to d(x) + 1. The main difficulty is to estimate the d-value of x ′, which
is necessary to decide whether we keep this solution as new current-best or whether
we try again.

Using binary operators, we can exploit the fact that H (x,m) = d(x). For example,
we can flip d(x) − 1 of the d(x) + 1 bits in which x ′ and m differ. If this yields an
individual with fitness n/2, then clearly x ′ has not the targeted d-value of d(x) + 1.
Unfortunately, we detect this shortcoming only when the bit that marks the difference
of x and x ′ is not among the d(x) − 1 bits flipped. This happens only with probability
2/(d(x) + 1). Consequently, this approach may take �(n) iterations to decide between
the cases d(x ′) = d(x) + 1 and d(x ′) = d(x) − 1.

We can reduce this time to logarithmic using the following trick. Recall that the
main reason for the slow decision procedure is that the probability of not flipping the
newly created bit is so small. This is due to the fact that the only way to gain information
about x ′ is by flipping almost all bits so as to possibly reach a fitness of n/2. We overcome
this difficulty by in parallel keeping a second search point y that has the same d-value
as x but is on the other side of m. To ease the language in this overview, let us assume
that OneMax(x) > n/2. Let k := d(x) and H (m, x) = k. Then we aim at keeping a y such
that d(y) = k, H (m, y) = k, H (x, y) = 2k, and OneMax(y) = n/2 − k. With this at hand,
we can easily evaluate the d-value of x ′. Assume that x ′ was created by flipping exactly
one of the bits in which x and y agree. Let u be created by flipping in x ′ exactly k − 1 of
the bits in which x ′ and y differ. If d(x ′) = k + 1, then surely d(u) = 2, and thus f (u) = 0.
If d(x ′) = k − 1, then with probability (k + 2)/(2k + 1) ≥ 1/2 the bit in which x ′ and x
differ is not flipped, leading to OneMax(u) = n/2, visible from a fitness equal to n/2.
Hence, with probability at least 1/2, we detect the undesired outcome d(x ′) = k − 1.
Unfortunately, there is no comparably simple certificate for d(x ′) = k + 1, so we have
to repeat the previous test 2 log n times to be sufficiently sure (in the case no failure
is detected) that d(x ′) = k + 1. Overall, this leads to an almost linear complexity of
O(n log n).

To make this idea precise, let us call a pair (x, y) of search points opposing if they
have opposite signs, that is, if sgn(x)sgn(y) = −1. We call (x, y) an opposing k-pair for
some integer k if x and y are opposing, d(x) = d(y) = k, and H (x, y) = 2k. Clearly, in this
case, one of x and y has a OneMax value of n/2 − k, while the other has one of n/2 + k.
To further ease the language, let us call bits having the value 1 good, those having the
value 0 bad. Then the definition of an opposing k-pair implies that in one of x or y all
the bit positions in which x and y differ are good, whereas in the other, they are all bad.
The remaining positions contain the same number of good and bad bits.

There are some additional technicalities to overcome. For example, since we cannot
decide the sign of a search point, it is nontrivial to generate a first opposing pair. Our
solution is to generate different x and y in Hamming distance 1 from m and create
offspring of x and y via a mixing crossover mix that inherits from x exactly one of the
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two bits in which x and y differ, and the other from y. If x and y are opposing, then
this offspring with probability 1 has a fitness of n/2. Otherwise, it has a fitness of n/2
only with probability 1/2. Consequently, a polylogarithmic number of such tests with
sufficiently high probability distinguishes the two cases.

Before giving the precise algorithms, let us define the operators used. We use the
operator flipWhereEqualk , introduced in the proof of Theorem 6, as well as the
following operators.

• flipWhereDifferentk(x, y). For two search points x and y and an integer k,
the operator flipWhereDifferentk generates a search point by randomly
flipping k bits in x among those bits where x and y disagree. If x and y disagree
in fewer than k bits, a random bit string is returned.

• mix(x, y). If x and y disagree in exactly two bits, then a bit string is returned
that inherits exactly one of these bits from x and one from y and that is equal
to both x and y in all other bit positions. If x and y do not disagree in exactly
two bits, a random bit string is returned.

We are now in a position to formally state the algorithms. We start with the key
routine movefirstk (Algorithm 7), which, from an opposing k-pair (x, y) computes a
Hamming neighbor x ′ of x with d(x ′) = d(x) + 1. Applying this function to both (x, y)
and (y, x), we obtain an opposing (k + 1)-pair in the main algorithm (Algorithm 8).

LEMMA 17: Let k ∈ [1 . .n/2 − 1]. The function movefirstk is binary unbiased. Assume that
it is called with an opposing k-pair (x, y). Let X be a geometrically distributed random variable
with success probability 1/2 and denote by T the random variable counting the number of fitness
evaluations in one run of movefirstk . Then the following holds.

(1) T is stochastically dominated by (1 + 2 log n)X, also if we condition on the output
satisfying d(x ′) = k + 1.

(2) With probability at least 1 − (2 log n)/n2, the output x ′ ∈ {0, 1}n satisfies d(x ′) = k +
1, H (x, x ′) = 1, and H (x ′, y) = 2k + 1.
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PROOF: Since the operators flipWhereEqual and flipWhereDifferent are 2-ary
and unbiased, movefirstk is a 2-ary unbiased algorithm. Also note that any x ′ gen-
erated in line 3 necessarily has H (x, x ′) = 1 and H (x ′, y) = 2k + 1, the latter because
H (x, y) = 2k and x ′ is obtained from x by flipping a bit in which x and y agree.
Hence the main challenge is to distinguish between the two cases that d(x ′) = k + 1
and d(x ′) = k − 1.

We first argue that the inner while-loop terminates surely with status = success if
d(x ′) = k + 1, and with probability 1 − 1/n2 terminates with status = failure if d(x ′) =
k − 1. Assume first that d(x ′) = k + 1. Since x ′ and y then are opposing and d(y) = k, the
2k + 1 bits x ′ and y differ in are all good bits in x ′ (and thus bad bits in y) or vice versa.
Consequently, flipping any k − 1 of them in x ′ surely reduces its d-value to 2, leading
to f (u) = 0. Hence “status = success” is never changed to “status = failure.” Assume
now that d(x ′) = k − 1. Then x ′ and y differ in 2k good bits and one bad bit, or in 2k bad
bits and one good bit. Therefore, with probability (k + 2)/(2k + 1) ≥ 1/2, all k − 1 bits
flipped in the creation of u are of the same type. In this case, the OneMax values of u and
x ′ differ by k − 1, implying f (u) = n/2. Thus, a single iteration of the while-loop sets
the status variable to failure with probability at least 1/2, as desired when d(x ′) = k − 1.
The probability that this does not happen in one of the up to 2 log n iterations is at most
1/n2.

We now analyze the flipWhereEqual statement in line 3. If (x, y) is an opposing
k-pair, then exactly half of the bits in which x and y agree are good and the other half are
bad. In either case, flipping one of the agreeing bits in x has a chance of exactly 1/2 of
increasing the d-value (and the same chance of 1/2 of decreasing it). By what we proved
about the inner while-loop, we see that the random variable describing the number of
iterations of the outer while-loop is stochastically dominated by a geometric random
variable with success probability 1/2 (it would be equal to such a geometric random
variable if the inner while-loop would not with small probability accept a failure as
success). Since each execution of the inner while-loop leads to at most 2 log n fitness
evaluations, this proves the first part of (1). If we condition on the output satisfying
d(x ′) = k + 1, then indeed the inner while-loop does not misclassify an x ′. Consequently,
the number of iterations in the outer while-loop has distribution X, and again T is
dominated by (1 + 2 log n)X.

For the failure probability estimate, we use the following blunt estimate. Since
the flipWhereEqual statement with probability 1/2 produces an x ′ that we view
as success (and that will become the output of the function finally), with probability
at least 1 − 1/n2 there will be at most 2 log n iterations of the outer while-loop each
generating a failure-x ′. Each of them has a chance of at most 1/n2 of being misclassified
as success. Consequently, the probability that movefirstk returns a failure-x ′ is at most
1 − (2 log n)/n2. �

THEOREM 18: Algorithm 8 is a 2-ary unbiased black-box algorithm for extreme jump functions.
It finds the optimum of an unknown extreme jump function with probability 1 − o(1) within
O(n log n) fitness evaluations.

PROOF: As in the previous section, line 1 of Algorithm 8 found a search point m having
fitness n/2 after O(n) fitness evaluations with probability 1 − exp(�(

√
n)).

Lines 2–11 are devoted to generating an opposing 1-pair (x, y). Since m has exactly
n/2 good and bad bits, x has a OneMax value of n/2 − 1 or n/2 + 1, each with probability
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exactly 1/2. Independent of this outcome, y in line 7 has a chance of (n/2)/(n − 1) > 1/2
of having the opposite value, which means that (x, y) is an opposing 1-pair.

Observe that if x and y are opposing, then mix(x, y) with probability 1 has a fitness
of n/2, simply because both possible outcomes of mix(x, y) have this fitness. If x and
y are not opposing, then x and y have both one good bit more than m or both have
one more bad bit. Consequently, the one outcome of mix(x, y) that is different from
m has a d-value of 2, visible from a fitness different from n/2. We conclude that the
inner while-loop using at most

√
n fitness evaluations surely ends with status = success

if (x, y) is an opposing 1-pair, and with probability 1 − 2−n ends with status = failure
if not. A coarse estimate thus shows that after O(n) fitness evaluations spent in lines
2–11, which involves at least �(

√
n) executions of the outer while-loop, with probability

1 − exp(�(
√

n)) we exit the outer while-loop with an opposing 1-pair (x, y).
We now argue that if (x, y) is an opposing k-pair right before line 13 is executed,

then with probability at least 1 − (4 log n)/n2, the new (x, y) created in line 15 is an
opposing (k + 1)-pair. This follows from twice applying Lemma 17 and noting that the
condition H (x, x ′) = 1 in the statement of Lemma 17 implies that H (x, y) = 2(k + 1)
after executing line 15. Consequently, a simple induction shows that with probability
at least 1 − O(log(n)/n), the pair (x, y) when leaving the for-loop is an opposing 1-pair,
and thus exactly one of x and y is the optimum.

For the runtime statement, let us again assume that all opposing k-pairs are indeed
created as discussed. We already argued that up to before line 12, with probability
1 − exp(�(

√
n)), we spent at most O(n) fitness evaluations. We then perform n − 2 calls

to movefirstk functions, each leading to a number of fitness evaluations that are,
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independent from what happened in the other calls, dominated by (1 + 2 log n) times a
geometric random variable with success probability 1/2. By Lemma 1.20 of Doerr (2011),
we may assume in the following runtime estimate that the number of fitness evaluations
in each such call is indeed (1 + 2 log n) times such an (independent) geometric random
variable. By Theorem 1.14 of Doerr (2011), the probability that a sum of �(n) such
geometric random variables deviates from its �(n) expectation by more than a factor
of 2 is exp(−�(n)). Consequently, with high probability the total number of fitness
evaluations is O(n log n). �

Note that by using different constants in the movefirstk algorithm we can easily
improve the success probability from the stated 1 − o(1) to any 1 − O(n−c), c a constant.
We do not care that much about this because black-box complexity usually deals with
expected number of fitness evaluations. To obtain now such a result, our claim in
Theorem 18 is sufficient.

COROLLARY 19: There is a 2-ary unbiased black-box algorithm solving the extreme jump func-
tions problem in an expected number of O(n log n) queries.

PROOF: By Theorem 18, a single run of this budgeted version of Algorithm 8 with
probability 1 − o(1) finds the optimum. Thus, with Remark 1, we can conclude that we
have an overall expected number of O(n log n) black-box queries. �

6.4 Unary Unbiased Optimization of Extreme Jump Functions

With the next theorem we show that, surprisingly, even the unary unbiased black-
box complexity of extreme jump functions is still polynomially bounded. Note that
now we cannot learn the OneMax value of a search point x by repeatedly flipping
a certain number of bits and observing the average objective value. Since n/2 is the
only nontrivial objective value, any such average will necessarily be n/2 (except in the
unlikely event that we encountered the optimum). The solution is to flip, depending
on parity reasonings, exactly n/2 − 1 or n/2 bits in x and note that the probability pa of
receiving a search point with (visible) fitness n/2 depends on the distance a := a(x) =
min{|x|1, |x|0} of x to optimum or its opposite. Here, and henceforth, let |x|0 := n − |x|1.

We roughly have pa ∈ �(a−1/2) and pa−2 − pa ∈ �(a−3/2n−1(n − 2a)). These small
numbers lead to the fact that for a ∈ n/2 − �(1), we need �(n9/2) samples to estimate
the a-value of x with constant probability. Since estimating becomes easier for smaller
a, we are able to construct a unary unbiased black-box algorithm finding the optimum
of an extreme jump function in an expected total of O(n9/2) fitness evaluations.

THEOREM 20: Let n be even and � = n/2 − 1. Then the unary unbiased black-box complexity of
Jump� is O(n9/2).

We start by analyzing the probability of receiving a bit string y with fitness n/2 when
flipping a certain number λ of bits in a fixed bit string x. When λ has a parity different
from the one of OneMax(x), offspring y will never have a fitness of n/2. Consequently,
we need to treat the cases of OneMax(x) even or odd separately. Since n is even, the
parities of OneMax(x) and a(x) are equal.

In the following, we frequently need the following estimate, due to Robbins (1955).

∀n ≥ 1 :
4n

√
2πn

≤
(

2n

n

)
≤ 4n

√
πn

. (3)

Let us first assume that a := a(x) is even. Let y be obtained from x by flipping exactly
n/2 random bits. Note that Pr(f (y) = n/2) depends on a, but not more specifically on x
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or OneMax(x). We may thus write pa := Pr(f (y) = n/2). Note that f (y) = n/2 holds if
and only if we flipped half the 1-bits and half the 0-bits in x. Hence,

pa =
(

n−a

(n−a)/2

)(
a

a/2

)
(

n

n/2

) , (4)

which for a ≥ 1 implies

pa = �

(
1√
a

)
(5)

by Equation (3).
Let a ≥ 2. We are interested in the difference pa−2 − pa in order to estimate the

number of samples that are necessary to discriminate between the cases a(x) = a and
a(x) = a − 2. By Equation (4) we have

pa−2 − pa =
(

n−a+2
(n−a+2)/2

)(
a−2

(a−2)/2

)
(

n

n/2

) −
(

n−a

(n−a)/2

)(
a

a/2

)
(

n

n/2

)

=
(

n−a+2
(n−a+2)/2

)(
a

a/2

)
(

n

n/2

)
[(

a−2
(a−2)/2

)
(

a

a/2

) −
(

n−a−2
(n−a−2)/2

)
(

n−a+2
(n−a+2)/2

)
]

=
(

n−a+2
(n−a+2)/2

)(
a

a/2

)
(

n

n/2

) [
(a − 2)!

((a − 2)/2)!2
(a/2)!2

a!
− (n − a)!

((n − a)/2)!2
((n − a + 2)/2)!2

(n − a + 2)!

]

=
(

n−a+2
(n−a+2)/2

)(
a

a/2

)
(

n

n/2

) [
(a/2)2

a(a − 1)
− ((n − a + 2)/2)2

(n − a + 2)(n − a + 1)

]

=
(

n−a+2
(n−a+2)/2

)(
a

a/2

)
(

n

n/2

) 1
4

[
a

a − 1
− n − a + 2

n − a + 1

]

=
(

n−a+2
(n−a+2)/2

)(
a

a/2

)
(

n

n/2

) 1
4

[
(n − a + 1)a − (n − a + 2)(a − 1)

(n − a + 1)(a − 1)

]

=
(

n−a+2
(n−a+2)/2

)(
a

a/2

)
(

n

n/2

) 1
4

[
n − 2a + 2

(n − a + 1)(a − 1)

]
. (6)

LEMMA 21: For any constant k, there is a constant K such that the following holds. Let a be even.
Let y ∈ {0, 1}n such that its distance from the optimum or its opposite a(y) := min{|y|1, |y|0}
equals a. Consider the following random experiment. Let N ≥ Na := Ka5/2n2/(n − 2a)3/2.
Exactly N times we independently sample an offspring of y by flipping exactly n/2 bits. Let Y
denote the number of times we observed an offspring with fitness exactly n/2. Then, if a ≥ 2,

Pr(Y ≥ N (pa + pa−2)/2) ≤ exp(−k(n − 2a)1/2).

If a ≤ n/2 − 2, then

Pr(Y ≤ N (pa + pa+2)/2) ≤ exp(−k(n − 2a)1/2).

PROOF: To prove the first part, observe that by definition, Y is the sum of N ≥ Na indepen-
dent indicator random variables, each of which is 1 with probability pa. Consequently,
Y ≥ N (pa + pa−2)/2 is equivalent to

Y ≥ E(Y )
(

1 + pa−2 − pa

2pa

)
.
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Writing δ = (pa−2 − pa)/(2pa), we compute from Equations (5) and (6) that δ ≥ c(n −
2a)n−1a−1 for some absolute constant c. By a standard Chernoff bound, Pr(Y ≥ N (pa +
pa−2)/2) ≤ exp(−δ2E(Y )/2) ∈ exp(−�(K)(n − 2a)1/2). By choosing K large enough, the
first claim follows. The second claim can be proven with analogous arguments. �

For a := a(x) odd, things are not much different, so we only sketch some details.
If a(x) is odd, x has an odd number both of 1s and 0s, and these numbers are a and
n−a in some order. If �|x|1/2� of the 1-bits and �|x|0/2� of the 0-bits flip, we obtain a
bit string with |x|1 − �|x|1/2� + �|x|0/2� = n/2 1s, that is, with fitness n/2. Also, there is
no other way of obtaining a fitness of n/2 by flipping n/2 − 1 = �|x|0/2� + �|x|1/2� bits.
Consequently, the probability that flipping exactly n/2 − 1 bits in x gives a bit string y
with fitness n/2 is, independent of the particular x,

pa :=
(

n−a

(n−a−1)/2

)(
a

(a−1)/2

)
(

n

n/2−1

) = �

(
1√
a

)
, (7)

where the asymptotic statement follows, among others, from noting that
(2k+1

k

) =
(1/2)

(2(k+1)
k+1

)
and

( 2k

k−1

) = k
k+1

(2k

k

)
valid for all k and Equation (3).

Analogous to the case of even a, we compute for all odd a ≥ 3 that

pa−2 − pa = 1
4

(
n−a+2

(n−a+1)/2

)(
a

(a−1)/2

)
(

n

n/2−1

) n − 2a + 2
a(n − a + 2)

.

From this, we derive the following analogue of Lemma 21.

LEMMA 22: For any constant k, there is a constant K such that the following holds. Let a be odd.
Let y ∈ {0, 1}n such that its distance from the optimum or its opposite a(y) := min{|y|1, |y|0}
equals a. Consider the following random experiment. Let N ≥ Na := Ka5/2n2/(n − 2a)3/2.
Exactly N times we independently sample an offspring of y by flipping exactly n/2 − 1 bits. Let
Y denote the number of times we observed an offspring with fitness exactly n/2. Then, if a ≥ 3,

Pr(Y ≥ N (pa + pa−2)/2) ≤ exp(−k(n − 2a)1/2).

If a ≤ n/2 − 2, then

Pr(Y ≤ N (pa+2 + pa)/2) ≤ exp(−k(n − 2a)1/2).

These observations immediately yield an estimator for an invisible a-value of a bit
string y. Since we only need it to distinguish between two possible values a(y) = a − 1
and a(y) = a + 1, we formulate the estimator and the following lemma tailored for this
purpose. It is clear that stronger statements, relying less on a preknowledge of a(y),
could be derived as well.

LEMMA 23: The procedure estimate, described in Algorithm 9, has the following properties.
On arbitrary inputs y ∈ {0, 1}n and a ∈ [1 . .n/2 − 1], it performs �(a5/2n2(n − 2a)−3/2) fitness
evaluations. If a(y) ∈ {a − 1, a + 1}, then with probability at least 1 − exp(−�((n − 2a)1/2))
the true value of a(y) is returned. By choosing the implicit constant in the first statement
sufficiently large, this success probability can be made arbitrarily close to 1.

PROOF: The claim is trivial for a = 1 and a = n/2 − 1, hence let a ∈ [2 . .n/2 − 2]. Assume
first that a is odd, consequently, a(y) is even. If a(y) = a + 1, then by Lemma 21, with
probability at least 1 − exp(−�((n − 2a)1/2)) we have Y < N(pa+1 + pa−1)/2, leading to
the correct return value of a + 1. If a(y) = a − 1, the second part of the lemma yields that
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we have Y > N (pa+1 + pa−1)/2 with probability at least 1 − exp(−�((n − 2a)1/2)), which
again leads to the correct return value of a − 1. The case of even a is done analogously
by invoking Lemma 22. �

THEOREM 24: The unary unbiased black-box complexity of extreme jump functions is O(n9/2).
This is witnessed by Algorithm 10, which with constant probability finds the optimum of an
extreme jump function using O(n9/2) fitness evaluations.

PROOF: The first sentence of the theorem follows from the second and Remark 1.
In the analysis of Algorithm 10, let us first assume that all estimate(y, a) calls

with a(y) ∈ {a − 1, a + 1} return a(y) correctly.
Assume that we start the while-loop in Algorithm 10 with an x such that a is equal to

a(x). Since y is a Hamming neighbor of x, we have a(y) ∈ {a − 1, a + 1}. If a(y) = a + 1,
nothing changes. If a(y) = a − 1, this is again correctly detected in the if-clause, and
the while-loop is left with x ← y. Consequently, we start the following iteration of the
for-loop again with a(x) = a. The probability of generating a y with a(y) = a − 1 is a/n.
Consequently, the while-loop is left after an expected number of n/a iterations.
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The expected total number of fitness evaluations in the for-loop is now easily
computed as

n/2−1∑
a=1

(n/a)O(a5/2n2/(n − 2a)3/2) = O(n9/2)
n/2−1∑
a=1

(n − 2a)−3/2 = O(n9/2).

This is true if we assume that none of the exceptional events (failures) of Lemma 23
occur. We now argue that in fact with constant probability, none of them occur. To this
aim, we estimate the expected number of first failures in a typical run of the algorithm
(a first failure is one where all previous calls of the estimate procedure did not
fail). Consider one iteration of the while-loop. If a �= a(x), then a failure must have
occurred before, hence the probability now for a first failure is zero. If a = a(x), we can
invoke Lemma 23 and deduce that this iteration has a failure probability of at most
exp(−k(n − 2a)1/2), where k is a sufficiently large absolute constant.

We may further assume, for the sake of this argument, that a failure is imme-
diately corrected by some external authority. Note that this only changes the run of
the algorithm after the occurrence of the first failure. So, in particular, it does not
change the expected number of first failures. By this, however, we may assume that
the expected number of iterations done with x having a certain a-value is exactly n/a.
Consequently, the expected number of first failures is at most

∑n/2−1
a=1 (n/a) exp(−k(n −

2a)1/2) = ∑n/2−1
b=1 n(n/2 − b)−1 exp(−k

√
b) = O(1), where the implicit constant can be

made arbitrarily small by the appropriate choice of k. Hence, with constant probability
there is no first failure, and thus no failure at all. �

6.5 Extreme Jump Functions for Odd n

So far we restricted ourselves to extreme jump functions for even n. The reason is that
we belive the case of odd n does not contain interesting new aspects but only adds
notational difficulties. Since a reviewer explicitly asked for a discussion of the odd case,
we briefly do this now.

It is not immediately clear what is a good definition for extreme jump functions
when n is odd. Most likely, the most natural candidate is the function f : {0, 1}n → R

defined by f (x) = OneMax(x) when OneMax(x) ∈ {n, �n/2�} and f (x) = 0 for all other x.
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However, the not-blanked-out fitness layer now is not invariant under inversion of the
bit string (that is, the unbiased operator that flips all bits). So we do not have here
the difficulty with the symmetry described in Section 6.1. Hence this definition of an
extreme jump function does not serve our aim of investigating the most difficult jump
setting.

Note that the alternative definition of taking f : {0, 1}n → R as f (x) = OneMax(x)
when OneMax(x) ∈ {n, �n/2	, �n/2�} and f (x) = 0 for all other x does not reinstall the
symmetry, simply because the fitness values break the symmetry.

These reasons limit our motivation to study extreme jump functions for odd n. At
the same time, an inspection of the proofs of Section 6 reveals that all algorithms and
arguments can easily be extended to cope with either definition of the extreme jump
function for odd n.

7 Summary and Outlook

We have analyzed the unbiased black-box complexity of short, long, and extreme jump
functions. Along the way, we have introduced new tools for such analyses. Our work
raises a number of interesting questions for future research.

Since our focus was on deriving new ideas for the design of new search heuristics,
we did not undertake in this work a complete investigation of all possible combina-
tions of arity and jump size, but rather highlighted prominent complexity behaviors
and prototypical algorithmic ideas. Still, it would be interesting to have a more com-
plete picture than Table 1, in particular, making clear how far certain algorithmic ideas
take us and where certain regimes change. This would also require studying lower
bounds, a problem that is likely to require completely new analytical tools (recall that
apart from information-theoretic lower bounds, even for simple functions such as One-
Max the unbiased black-box complexities are not known for arities strictly greater
than 1).

Another interesting line of research would be results that are more precise than
just the asymptotic order. For example, it seems reasonable that for � small enough,
the unary unbiased black-box complexity of Jump

�
is not only of the same order as

the one of OneMax, but equal apart from lower-order terms (which might actually
be surprisingly small). Such precise analyses for runtimes of given algorithms have
attracted interest; see Böttcher et al. (2010); Witt (2013); Sudholt (2013); Doerr and Doerr
(2014); and Hwang et al. (2014).

Furthermore, we are optimistic that some of the algorithmic ideas developed here
can be used to design new search heuristics.
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