
Run Time Bounds for Integer-Valued OneMax Functions
Jonathan Gadea Harder

jonathan.gadeaharder@hpi.de

Hasso Plattner Institute

University of Potsdam

Potsdam, Germany

Timo Kötzing

timo.koetzing@hpi.de

Hasso Plattner Institute

University of Potsdam

Potsdam, Germany

Xiaoyue Li

xiaoyue.li@hpi.de

Hasso Plattner Institute

University of Potsdam

Potsdam, Germany

Aishwarya Radhakrishnan

aishwarya.radhakrishnan@hpi.de

Hasso Plattner Institute

University of Potsdam

Potsdam, Germany

Janosch Ruff

janosch.ruff@hpi.de

Hasso Plattner Institute

University of Potsdam

Potsdam, Germany

ABSTRACT
While most theoretical run time analyses of discrete randomized

search heuristics focus on finite search spaces, we consider the

search space Z𝑛 . Understanding this search space is especially rele-

vant for developing better algorithms for mixed-integer black box

optimization (MI-BBO) problems.

We consider as a fitness functions the distance to the (unique)

non-zero optimum 𝑎 (based on the ℓ1-metric) and study the (1+1)

EA which mutates by applying a step-operator on each component

that is determined to be varied. For changing by ±1, we show

that the expected optimization time is Θ(𝑛 · (|𝑎 |∞ + log(|𝑎 |𝐻))). In
particular, the time is linear in |𝑎 |∞, a measure of distance between

starting point and target 𝑎. Employing a different step operator

which chooses a step size from a distribution so heavy-tailed that

the expectation is infinite, we get an optimization time of 𝑂 (𝑛 ·
log

2 (|𝑎 |1) · (log(log(|𝑎 |1)))1+Y).
Furthermore, we show that RLSwith step size adaptation achieves

an optimization time of Θ(𝑛 · log(|𝑎 |1)) and that ℓ1-symmetric op-

erators (as suggested by Rudolph’94) require a time at least linear

in |𝑎 |1.
We complement our findings with experimental results which

show that asymptotically sub-optimal algorithms can be faster for

smaller values of |𝑎 |∞.

CCS CONCEPTS
• Theory of computation→ Theory of randomized search
heuristics.

KEYWORDS
Evolutionary algorithms, integer optimization, run time analysis,

theory.

ACM Reference Format:
Jonathan Gadea Harder, Timo Kötzing, Xiaoyue Li, Aishwarya Radhakrish-

nan, and Janosch Ruff. 2024. Run Time Bounds for Integer-Valued OneMax

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0494-9/24/07.

https://doi.org/10.1145/3638529.3654091

Functions. In Genetic and Evolutionary Computation Conference (GECCO
’24), July 14–18, 2024, Melbourne, VIC, Australia. ACM, New York, NY, USA,

15 pages. https://doi.org/10.1145/3638529.3654091

1 INTRODUCTION
Optimization problems are formalized as finding the optimal ele-

ment 𝑥 from a fixed search space X given some quality measure

𝑓 : X → R. In the theory of evolutionary search heuristics, the

most commonly studied discrete search space is X = {0, 1}𝑛 , the
set of bit strings of fixed length. Other search spaces have been

considered, such as permutations [3, 6], or multi-valued decision

variables [5, 14] (X = {0, . . . , 𝑟 − 1}𝑛). Note that all these search
spaces are finite.

In this work we are interested in the infinite (but still discrete)

search space Z𝑛 . This models a set of 𝑛 decision variables with

an infinite (totally and discretely ordered) domain. While many

search problems can be usefully addressed by translating them

into optimization problems using X = {0, 1}𝑛 or another of the

before-mentioned search spaces, this is impossible in principle for

an infinite search space. Furthermore, understanding them in their

more natural formulation can lead to more efficient optimization

algorithms.

In order to analyze heuristic search in this domain, we gener-

alize fitness functions as well as heuristic search algorithms ac-

cordingly. Note that a generalization of the {0, 1}𝑛 search space

to {0, . . . , 𝑟 − 1}𝑛 was done in [5], and we follow a similar path in

the generalization, but now with the added difficulty of an infinite

search space.

As a first analysis, we consider the simple setting where, for a

given 𝑎 ∈ Z𝑛 , we have the fitness function

𝑓𝑎 : Z𝑛 → Z≥0, 𝑥 ↦→
𝑛∑︁
𝑖=1

|𝑥𝑖 − 𝑎𝑖 |.

Minimizing this function generalizes the well-known OneMax func-

tion (class), defined on the search space {0, 1}𝑛 , to the more general

space of Z𝑛 .
As algorithms, we consider the (1+1) EA and RLS (Random Local

Search), both suitably adjusted to deal with the search space Z𝑛 as

follows (see Section 2 for a detailed description of both algorithms).

First, for finite search spaces, it is common to start the search with

a uniformly random search point. For the infinite search space Z𝑛

we make the decision to start deterministically with the all-0 string.

https://doi.org/10.1145/3638529.3654091
https://doi.org/10.1145/3638529.3654091

GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia Gadea Harder, Kötzing, Li, Radhakrishnan, Ruff

Since for our fitness functions only the position-wise differences

of the starting point to the optimum matter, this choice does not

restrict the meaningfulness of our results.

Second, as a variation operator, we consider to change either

exactly one position (RLS) or each position independently with

probability 1/𝑛 ((1+1) EA), just as in the common definitions of

these algorithms. However, while changing a bit from {0, 1} leaves
only one possible choice for the new value, changing a variable

from Z leaves infinitely many choices for the new value. We con-

sider two possible step operators, defining how to change a value

from Z. The first step operator is the ±1 operator ; it either increases
or decreases the value by 1, decided uniformly at random. The sec-

ond step operator is the heavy-tailed operator ; it makes a uniform

decision to either increase or decrease, but instead of deterministi-

cally changing by 1, it changes by a random number. In particular,

we consider a distribution of the numbers that is unbounded and is

so heavy-tailed that it does not have a finite expectation.

Note that [5] considered a Harmonic operator as a step opera-

tor for variables on {0, . . . , 𝑟 − 1}, which gives a step of size 𝑖 a

weight proportional to 1/𝑖 . This cannot be directly extended to an

operator on Z, since the sequence (1/𝑖)𝑖 is not summable. Instead,

we take inspiration from [4], where very slowly decreasing yet

summable sequences were considered, to define our heavy-tailed

operator. In effect, a step size of 2
𝑖−2

has a probability proportional

to 1/(𝑖 log(𝑖)1+Y). The goal of this very heavy tail of the distribution
is to have as high as possible a chance to gain a constant fraction

of the distance to the optimum, independent of the distance to the

optimum. See Section 2 for details on the distribution.

Recently, heavy-tailed distributions were used to speed up opti-

mization in various settings. In [8], the authors proposed to apply

a heavy-tailed mutation operator for the first time. In particular,

the number of variables to change was chosen from a heavy-tailed

distribution (which for us still follows the traditional binomial

distribution). This more explorative mutation operator was then

shown to optimize so-called jump-functions faster. In contrast to

our work, the heavy-tailed distributions in [8] have finite expecta-

tion. Since the publication of [8], further analyses have shown the

use of such heavy-tailed distributions, for example for crossover

and the (1 + (_, _))-GA on OneMax [1] and jump-functions [2].

In our work, we consider the expected time of the given al-

gorithms to find the optimum of a fitness function 𝑓𝑎 . This time

naturally depends on 𝑎 (as well as 𝑛), specifically on its total weight

|𝑎 |1 =
∑𝑛
𝑖=1 |𝑎𝑖 |, its maximal weight |𝑎 |∞ = max {|𝑎𝑖 | | 𝑖 ≤ 𝑛 } or its

Hamming distance to the all-0 string |𝑎 |𝐻 = | {𝑖 | 𝑎𝑖 ≠ 0, 𝑖 ≤ 𝑛 } |.
Throughout our analyses we consider 𝑎 to be non-zero.

In Section 3, we formally analyze the (1+1) EA with the ±1
operator. Theorems 5 and 6 show that the expected optimization

time is Θ(𝑛 · (|𝑎 |∞ + log(|𝑎 |𝐻))) on any given fitness function 𝑓𝑎 .

While the linear dependence on the dimension 𝑛 constitutes a good

performance, the linear dependence on |𝑎 |∞ is rather slow. For

comparison, note that there are |𝑎 |Θ(𝑛)∞ target bit strings of roughly

that size. Since the (1+1) EA gains about one bit of information with

a comparison of two fitness values, a direct information-theoretic

lower bound for finding the optimum is at Ω(𝑛 · log(|𝑎 |∞)).
In Section 4 we turn to the (1+1) EA with the heavy-tailed oper-

ator. In Theorem 7 we show that the expected optimization time is

𝑂 (𝑛 · log2 (|𝑎 |1) · (log(log(|𝑎 |1)))1+Y) for a given 𝑓𝑎 . This is already

much closer to the information-theoretic lower bound mentioned

above.

We consider a version of RLS which adapts the step size during

the search. This strategy was proven to be very efficient in [5]

for the search space {0, . . . , 𝑟 − 1} and we show that also here the

algorithm achieves an expected optimization time ofΘ(𝑛 ·log(|𝑎 |1)).
Note that, for all three operators, we derive central parts of our

proofs by carefully adjusting analogous proofs from [5].

The only previous mention of the search space Z𝑛 was in [14]

where the authors suggest to use so-called ℓ1-symmetric operators,

which distribute the magnitude of change over all positions uni-

formly at random. We consider such operators in Section 6 and

characterize their sampling behavior in Theorem 12. In the remain-

der of that section we show, for specific instances of algorithmic

choices, that the optimization time of using any such operators is

linear in |𝑎 |∞. Thus, we believe that the property of ℓ1-symmetry

is not desirable.

With our analyses of the search space Z𝑛 , we also aim at bridging

the gap towards analyses of heuristic search on R𝑛 (continuous

optimization): If one is interested in approximating the optimum up

to a distance of Y, one can discretize the search space accordingly, ar-

riving at the search space Z𝑛 . In optimization problems on R𝑛 , one
is frequently interested only in approximating the optimum, since

finding it is typically impossible in principle. In Corollary ??, we
show a result about the (1+1) EA with the heavy-tailed operator ap-

proximating the optimum, showing that finding an approximation

ratio of 𝛼 scales with respect to 𝛼 as 𝑂 (log(1/𝛼)).
In Section 7 we experimentally compare four algorithms with

different mutation operators and show the scaling behavior of the

run times for different settings.

The remainder of this paper is structured as follows. In Section 2

we introduce algorithms and notation. In Sections 3 and 4 we give

our theoretical analyses of the (1+1) EA. Section 5 addresses the

self-adjusting RLS and Section 6 gives the details of our results for

distance symmetric operators. In Section 7 we present our experi-

ments before we conclude in Section 8. Note that some proofs have

been moved to the supplementary material due to space constraints.

2 PRELIMINARIES
In this section we define the (1+1) EA and random local search

algorithms, along with the different step operators. At the end of

this section we also state different drift theorems we use for our

analysis.

For any 𝑎 ∈ Z𝑛 , we let

|𝑎 |1 =
𝑛∑︁
𝑖=1

|𝑎𝑖 |;

|𝑎 |∞ = max {|𝑎𝑖 | | 𝑖 ≤ 𝑛 } ;
|𝑎 |𝐻 = | {𝑖 | 𝑎𝑖 ≠ 0, 𝑖 ≤ 𝑛 } |.

Also for 𝑎 ∈ Z𝑛 \ {0𝑛}, we define

𝑓𝑎 : Z𝑛 → R, 𝑥 ↦→ |𝑎 − 𝑥 |1 .

Our class of target fitness functions is ℱ = {𝑓𝑎 | 𝑎 ∈ Z𝑛 \ {0𝑛}}
to be minimized by evaluating the fitness function at any point as

chosen by the algorithm.

Run Time Bounds for Integer-Valued OneMax Functions GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia

We consider the following step operators which decide on the

update of a mutation in a given component.

Definition 1 (±1-operator). The ±1-operator takes an integer
𝑥 as input and makes the following changes: With probability 1/2
return 𝑥 + 1 and otherwise return 𝑥 − 1.

For the next operator we need a definition. For Y > 0, we denote

𝑐Y =
∑∞
𝑖=2

1

𝑖 · (log 𝑖)1+Y (note that this sum is finite [4]).

Definition 2 (Heavy-tailed-operator). For a given Y > 0, the
heavy-tailed operator takes an integer 𝑥 as input and makes the
following changes: First sample a step size of 2𝐼−2 using a random
variable 𝐼 which can take a value of any natural number 𝑖 ≥ 2 with
𝑃 (𝐼 = 𝑖) = 1

𝑐Y ·𝑖 · (log 𝑖)1+Y . Then, with probability 1

2
return 𝑥 + 2𝐼−2

and otherwise return 𝑥 − 2𝐼−2.

We then consider the RLS and the (1+1) EA as given by Algo-

rithm 1 and 2. Both start from the initial search point being the

all-0 string. They then proceed in rounds, each of which consists

of a mutation and a selection step. Throughout the whole optimiza-

tion process, the algorithms maintain a single individual, which

is always the most recently sampled best-so-far solution. The two

algorithms differ only in the mutation operator. While 𝑅𝐿𝑆 makes a

step in exactly one position (chosen uniformly at random), the (1+1)

EA makes, in each position, a step with probability 1/𝑛. We specify

the termination criterion as the point in time when the search point

has a fitness of 0.

Algorithm 1: The (1+1) EA minimizing a function 𝑓 :

Z𝑛 ↦→ R with a given step operator step : Z→ Z
1 Initialization: 𝑥 ← 0

𝑛
;

2 Optimization: while 𝑓 (𝑥) ≠ 0 do
3 for i from 1 to n do
4 With probability

1

𝑛 set 𝑦𝑖 = step(𝑥𝑖) and set

5 𝑦𝑖 = 𝑥𝑖 otherwise;

6 if 𝑓 (𝑦) ≤ 𝑓 (𝑥) then
7 𝑥 ← 𝑦;

𝑅𝐿𝑆𝛼,𝛽 maintains a search point 𝑥 ∈ Z𝑛 as well as a real-valued

velocity vector 𝑣 ∈ [1,∞]𝑛 ; we use real values for the velocity to

circumvent rounding problems. The initial search point is the all-0s

string and the initial velocity is the all-1s string. In one iteration of

the algorithm a position 𝑖 ∈ [𝑛] is chosen uniformly at random. The

entry 𝑥𝑖 is replaced by 𝑥𝑖 − ⌊𝑣𝑖 ⌋ with probability 1/2 and by 𝑥𝑖 + ⌊𝑣𝑖 ⌋
otherwise. The entries in positions 𝑗 ≠ 𝑖 are not subject to mutation.

The resulting string 𝑦 replaces 𝑥 if its fitness is at least as good as

the one of 𝑥 , i.e. if 𝑓 (𝑦) ≤ 𝑓 (𝑥) holds. If the offspring 𝑦 is strictly

better than its parent 𝑥 , i.e. if 𝑓 (𝑦) < 𝑓 (𝑥), we increase the velocity
𝑣𝑖 in the 𝑖-th component by multiplying it with the constant 𝛼 > 1;

we decrease 𝑣𝑖 to 𝛽𝑣𝑖 (𝛽 < 1) otherwise. The algorithm proceeds

this way until we decide to stop it. To further lighten the notation,

we say that the algorithm “moves in the right direction” or “towards
the target value” if the distance to the target is actually decreased.

Analogously, we speak otherwise of a step “away from the target”
or “in the wrong direction”.

Algorithm 2: 𝑅𝐿𝑆𝛼,𝛽 with self-adjusting step sizes mini-

mizing a function 𝑓 : Z𝑛 ↦→ R
1 Initialization: 𝑥 ← 0

𝑛
, 𝑣 ← 1

𝑛
;

2 Optimization: while 𝑓 (𝑥) ≠ 0 do
3 𝑦 ← 𝑥 ;

4 Choose 𝑖 ∈ [𝑛] uniformly at random;

5 With probability
1

2
set 𝑦𝑖 = 𝑥𝑖 − ⌊𝑣𝑖 ⌋ and set

𝑦𝑖 = 𝑥𝑖 + ⌊𝑣𝑖 ⌋ otherwise;
6 if 𝑓 (𝑦) < 𝑓 (𝑥) then
7 𝑣𝑖 ← 𝛼𝑣𝑖 ;

8 else
9 𝑣𝑖 ← max{1, 𝛽𝑣𝑖 };

10 if 𝑓 (𝑦) ≤ 𝑓 (𝑥) then
11 𝑥 ← 𝑦;

A central tool in many of our proofs is drift analysis. This allows

us to derive bounds on hitting by using bounds on the expected

progress a process makes towards the target. We briefly collect here

the tools we use.

Additive drift is the situation that the progress is bounded by any

(constant) value. This quite common situation in run time analysis

was the first framed into a drift theorem, namely the following one

in [10].

Theorem 3 (Additive Drift Theorem [10]). Let 𝑆 ⊆ R be a
finite set of positive numbers and let (𝑋 𝑡)𝑡 ∈N be a sequence of random
variables over 𝑆 ∪ {0}. Let 𝑇 be the random variable that denotes the
first point in time 𝑡 ∈ N for which 𝑋 𝑡 = 0. Suppose that there exists a
constant 𝛿1 > 0 such that

𝐸 [𝑋 𝑡 − 𝑋 𝑡+1 | 𝑇 > 𝑡] ≥ 𝛿1

holds. Then

𝐸 [𝑇 | 𝑋 0] ≤ 𝑋 0

𝛿1
.

If there exists a constant 𝛿2 > 0 such that

𝐸 [𝑋 𝑡 − 𝑋 𝑡+1 | 𝑇 > 𝑡] ≤ 𝛿2

holds. Then

𝐸 [𝑇 | 𝑋 0] ≥ 𝑋 0

𝛿2
.

Multiplicative drift addresses the situation where progress is pro-

portional to the distance from the target. For this situation, which

is quite common in run time analysis we can use the following drift

theorem [7].

Theorem 4 (Multiplicative Drift Theorem [11]). Let (𝑋𝑡)𝑡 ∈N
be random variables over R, 𝑥min > 0, and let 𝑇 = min{𝑡 | 𝑋𝑡 <

𝑥min}. Furthermore, suppose that

(a) 𝑋0 ≥ 𝑥min and, for all 𝑡 ≤ 𝑇 , it holds that 𝑋𝑡 ≥ 0, and that
(b) there is some value 𝛿 > 0 such that, for all 𝑡 < 𝑇 , it holds that

𝑋𝑡 − 𝐸 [𝑋𝑡+1 | 𝑋0, . . . , 𝑋𝑡] ≥ 𝛿𝑋𝑡 .

GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia Gadea Harder, Kötzing, Li, Radhakrishnan, Ruff

Then

𝐸 [𝑇 | 𝑋0] ≤
1 + ln

(
𝑋0

𝑥min

)
𝛿

.

3 UNIT MUTATION STRENGTH
In this section, we regard the mutation operator that applies only±1
changes to each component. We give a tight bound on the expected

run time of the (1+1) EA with the ±1 operator. We start with a

theorem which gives an upper bound on the expected optimization

time of the (1 + 1)𝐸𝐴 optimizing any 𝑓𝑎 ∈ ℱ with the ±1 operator.
Our proof idea is similar to the proof idea in [5, Theorem 12]. More

details can be found in the supplementary material.

Theorem 5. Let 𝑓𝑎 ∈ ℱ. Then the expected optimization time of
the (1+1) EA with ±1 operator starting with all 0 integer string on 𝑓𝑎
is 𝑂 (𝑛 · (|𝑎 |∞ + log(|𝑎 |𝐻))).

We show in the following theorem that this upper bound on the

(1+1) EA is sharp by proving the same asymptotic lower bound.

Theorem 6. Let 𝑓𝑎 ∈ ℱ. Then the expected optimization time of
the (1+1) EA with ±1 operator starting with all 0 integer string on 𝑓𝑎
is Ω(𝑛 · (|𝑎 |∞ + log(|𝑎 |𝐻))).

Proof. The lower bound |𝑎 |∞ · 𝑛 follows from looking at the

position with a distance of |𝑎 |∞ to the target. The drift in the

right direction is at most
1

𝑛 , which is the probability of mutat-

ing the position. Therefore by the additive drift Theorem [3], we

have a run time of Ω(𝑛 · |𝑎 |∞). For the second part we prove that

𝑃 (𝑇 ≥ (𝑛−1) log(|𝑎 |𝐻)) is at least 1

2
. The probability that a particu-

lar index does not get modified in any of the 𝑡 iterations is

(
1 − 1

𝑛

)𝑡
.

The previous statement implies that the probability that it does

get modified at least once is 1 −
(
1 − 1

𝑛

)𝑡
. Therefore the probabil-

ity that |𝑎 |𝐻 indices gets modified at least once in 𝑡 iterations is(
1 −

(
1 − 1

𝑛

)𝑡) |𝑎 |𝐻
. This in turn implies that the probability that at

least one of the |𝑎 |𝐻 indices does not get modified in 𝑡 iterations is

1 −
(
1 −

(
1 − 1

𝑛

)𝑡) |𝑎 |𝐻
. If 𝑡 = (𝑛 − 1) ln(|𝑎 |𝐻), then

1 −
(
1 −

(
1 − 1

𝑛

)𝑡) |𝑎 |𝐻
= 1 −

(
1 −

(
1 − 1

𝑛

) (𝑛−1) ln |𝑎 |𝐻) |𝑎 |𝐻
≥ 1 −

(
1 −

(
1

𝑒

)
ln |𝑎 |𝐻

) |𝑎 |𝐻
= 1 −

(
1 − 1

|𝑎 |𝐻

) |𝑎 |𝐻
≥ 1 − 𝑒−1 ≥ 1

2

.

Now we have expected time

𝐸 [𝑇] =
∞∑︁
𝑡=1

𝑡 · 𝑃 (𝑇 = 𝑡)

=

∞∑︁
𝑡=1

𝑃 (𝑇 ≥ 𝑡)

≥ (𝑛 − 1) ln |𝑎 |𝐻 · 𝑃 (𝑇 ≥ (𝑛 − 1) ln |𝑎 |𝐻)

≥ (𝑛 − 1) ln |𝑎 |𝐻 ·
1

2

= Ω(𝑛 ln |𝑎 |𝐻) .
□

4 HEAVY-TAILED MUTATION STRENGTH
In this section we discuss the behavior of the (1+1) EA with the

heavy-tailed mutation operator on 𝑓𝑎 ∈ ℱ. First, in the following

theorem, we give an upper bound on the expected optimization

time.

Theorem 7. Let 𝑓𝑎 ∈ ℱ. Then the expected optimization time of
the (1+1) EA, starting with the all-0s integer string, with the heavy-
tailed operator (see Definition 2) with parameter Y > 0 on 𝑓𝑎 is
𝑂 (𝑛 · log2 |𝑎 |1 · (log(log |𝑎 |1))1+Y).

Proof. Our proof idea is similar to the proof idea in [5, Theorem

15]. We use multiplicative drift analysis in this proof.

Let 𝑥 and 𝑥 ′ be the integer strings at some arbitrary iteration 𝑡

and 𝑡 + 1 when the (1+1) EA with heavy-tailed operator is optimiz-

ing 𝑓𝑎 . Let the potential value 𝑋 at time 𝑡 be 𝑓𝑎 (𝑥) and 𝑋 ′ be the
potential at time 𝑡 + 1. Then the initial potential value is |𝑎 |1, since
we start with all 0 integer string. Let 𝑇 = min{𝑡 ≥ 0 | 𝑋 = 0}. For
any 𝑡 ≥ 0 and 𝑖 ∈ {1, . . . , 𝑛}, let 𝑑𝑖 = |𝑎𝑖 − 𝑥𝑖 | and 𝑑′𝑖 = |𝑎𝑖 − 𝑥

′
𝑖
|.

For any 𝑖 ∈ {1, . . . , 𝑛} and 𝑗 ∈ {0, 1, . . . , ⌊log𝑑𝑖 ⌋}, let 𝐴𝑖, 𝑗 be the

event that the mutation operator only modifies index 𝑖 such that

|𝑎𝑖 − 𝑥𝑖 | − |𝑎𝑖 − 𝑥 ′𝑖 | = 2
𝑗
and does not cause any other changes.

We define 𝑗∗ := 𝑗 + 2, then 𝑃 (𝐴𝑖, 𝑗) ≥ 1

2𝑒𝑐Y𝑛𝑗
∗ (log 𝑗∗)1+Y . We get the

previous bound on the probability because the probability to make

a change of size 2
𝑗
(when 𝑑 𝑗 > 2

𝑗
) to a particular index in the right

direction is
1

2𝑐Y𝑛𝑗
∗ (log 𝑗∗)1+Y and the probability to make exactly this

change and no other changes to any other indices is at least 1/𝑒 .
Also note that while calculating the probability 𝑃 (𝐴𝑖, 𝑗), we did not

consider the case that the mutation operator can overshoot, since

this will only increase the probability.

𝐸 [𝑋 − 𝑋 ′] ≥
𝑛∑︁
𝑖=1

⌊log𝑑𝑖 ⌋∑︁
𝑗=0

𝐸 [𝑋 − 𝑋 ′ | 𝐴𝑖, 𝑗] · 𝑃 (𝐴𝑖, 𝑗)

=

𝑛∑︁
𝑖=1

⌊log𝑑𝑖 ⌋∑︁
𝑗=0

2
𝑗 · 𝑃 (𝐴𝑖, 𝑗)

≥
𝑛∑︁
𝑖=1

⌊log𝑑𝑖 ⌋∑︁
𝑗=0

2
𝑗

2𝑒𝑐Y𝑛𝑗
∗ (log 𝑗∗)1+Y

≥ 1

4𝑒𝑐Y𝑛

𝑛∑︁
𝑖=1

𝑑𝑖

(⌊log𝑑𝑖 ⌋ + 2) (log(⌊log𝑑𝑖 ⌋ + 2))1+Y

≥
∑𝑛
𝑖=1 𝑑𝑖

4𝑒𝑐Y𝑛 · (log |𝑎 |1 + 2) · (log(log |𝑎 |1 + 2))1+Y

=
𝑋

4𝑒𝑐Y𝑛 · (log |𝑎 |1 + 2) · (log(log |𝑎 |1 + 2))1+Y
.

The third to fourth inequality is because, for any real number𝑦 >

0, 2
log(𝑦) ≥ 𝑦/2. Since we have an initial potential value |𝑎 |1 and a

multiplicative drift value of
1

4𝑒𝑐Y𝑛 · (log |𝑎 |1+2) · (log(log |𝑎 |1+2))1+Y
, by

the multiplicative drift Theorem (4),

𝐸 [𝑇] ≤ 4𝑒𝑐Y𝑛 · (log |𝑎 |1 + 2) · (log(log |𝑎 |1 + 2))1+Y · (1 + log |𝑎 |1)

Run Time Bounds for Integer-Valued OneMax Functions GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia

= 𝑂 (𝑛 · log2 |𝑎 |1 · (log(log |𝑎 |1))1+Y).

Thus we get the upper bound as claimed. □

5 SELF-ADJUSTING MUTATION RATES
In this section, we analyze self-adjusting mutation rates for the 𝑅𝐿𝑆

algorithm and show how these can outperform the (1+1) EA with

the static operators analyzed in the previous sections. The mutation

strength for 𝑅𝐿𝑆𝛼,𝛽 is adjusted using the constants 1 < 𝛼 ≤ 2 and

1/2 < 𝛽 < 1 (see Algorithm 2 for further details on the algorithm).

In Theorem 10, we give a tight bound on the expected run time of

𝑅𝐿𝑆𝛼,𝛽 for suitable 𝛼 and 𝛽 . We start by giving a lower bound on

the expected run time in Lemma 8.

Lemma 8 (RLS lower bound). Let 𝑓𝑎 ∈ ℱ. For constants 𝛼, 𝛽
the expected optimization time of 𝑅𝐿𝑆𝛼,𝛽 starting with all 0 integer
string on 𝑓𝑎 is Ω(𝑛 · log(|𝑎 |1)).

Proof. A bound of Ω(𝑛 log |𝑎 |𝐻) easily follows from a coupon

collector argument: Since we need to change |𝑎 |𝐻 many entries and

each one has a probability of
1

𝑛 of being changed in each iteration.

A bound of Ω(𝑛 log |𝑎 |∞) follows from analyzing the entry 𝑗

with the highest distance to the target. First observe that since the

velocity at most doubles each time that an entry is selected and we

start at 0, we need at least log(𝑎∞) − 1 changes for this entry. Let
𝑋𝑡 be the random variable counting the number of changes on 𝑗 .

Let 𝑌𝑡 be another random variable with 𝑌𝑡 B log(𝑎∞) − 1 − 𝑋𝑡 .

Since 𝑌0 = log(|𝑎 |∞) − 1 and we have an additive drift of at most
1

𝑛 ,

the expected run time is of order Ω(𝑛 · log(|𝑎 |∞)). We obtain this

drift because the probability of changing the entry 𝑗 is 1

𝑛 and we

can only change it or not change it.

The lower bound of Ω(𝑛 log |𝑎 |1) is obtained by adding both

lower bounds (this is asymptotically the same as taking the max)

to get

𝑛 log |𝑎 |∞ + 𝑛 log |𝑎 |𝐻 = 𝑛 log(|𝑎 |∞ |𝑎 |𝐻) ≥ 𝑛 log(|𝑎 |1) .

□

The proof of the upper bound in the following lemma is essen-

tially the same as in [5, Theorem 17], only omitting parts that are

not necessary for our setting. More details can be found in the

supplementary material.

Lemma 9 (RLS upper bound). Let 𝑓𝑎 ∈ ℱ. For constants 𝛼, 𝛽
satisfying 1 < 𝛼 ≤ 2, 1/2 < 𝛽 ≤ 0.9, 2𝛼𝛽 − 𝛽 − 𝛼 > 0, 𝛼 + 𝛽 > 2 and
𝛼2𝛽 > 1 the expected optimization time of 𝑅𝐿𝑆𝛼,𝛽 starting with all 0
integer string on 𝑓𝑎 is 𝑂 (𝑛 · log(|𝑎 |1)).

Combining both results we get a sharp run time result in the

following theorem.

Theorem 10. Let 𝑓𝑎 ∈ ℱ. For constants 𝛼, 𝛽 satisfying 1 < 𝛼 ≤
2, 1/2 < 𝛽 ≤ 0.9, 2𝛼𝛽−𝛽−𝛼 > 0, 𝛼 +𝛽 > 2 and 𝛼2𝛽 > 1 the expected
optimization time of 𝑅𝐿𝑆𝛼,𝛽 starting with all 0 integer string on 𝑓𝑎 is
Θ(𝑛 · log(|𝑎 |1)).

Example parameter values which satisfies the conditions in the

theorem statement are 𝛼 = 1.7 and 𝛽 = 0.9.

6 DISTANCE-SYMMETRIC OPERATOR
Symmetric random variables are of great significance in various

fields of probability theory and computational optimization due

to their remarkable properties and applications. For this paper, we

are interested in exploring ℓ1-symmetric random variables [9]. This

concept was used in the context of evolutionary algorithms by

Rudolph [14] who gave a specific ℓ1-symmetric operator based on

differences of geometric random variables.

Definition 11. A discrete multivariate distribution 𝑋 over Z𝑛 is
called ℓ1-symmetric if for the probability to generate a specific point
there exists a function g : N ↦→ [0, 1] such that

∀𝑥 ∈ Z𝑛 : 𝑃𝑟 (𝑋 = 𝑥) = 𝑔(|𝑥 |1).

Rudolph proposes an ℓ1-symmetric operator and suggests its

use for integer problems. The paper provides insights into how to

control the mean deviation during the search process and presents

empirical evaluations on five nonlinear integer problems, showcas-

ing the effectiveness of the ℓ1-symmetric operator. Here we will

prove some general characteristics common to all ℓ1-symmetric

operators and also give a lower bound on the run time of (1+1) EA

with any ℓ1-symmetric operator.

Theorem 12. Let𝑀 be a multivariate random variable over Z𝑛 .
Then 𝑀 is ℓ1-symmetric if and only if there exists a distribution 𝐷

over natural numbers such that the multivariate random variable
𝑀

𝐷
describing the result of the following procedure is identically

distributed to𝑀 :
(1) Draw 𝑘 ∼ 𝐷 .
(2) Uniformly place 𝑘 balls into 𝑛 bins, and let 𝑎𝑖 be the number

of balls in bin 𝑖 after that.
(3) Draw a sign 𝑥𝑖 ∈ {−1, 1} uniformly for each 𝑖 ≤ 𝑛.
(4) Return the result (𝑥1𝑎1, . . . , 𝑥𝑛𝑎𝑛).

Proof. To prove the theorem, we first establish two weaker

lower bounds and then combine these to achieve the stated lower

bound.

(⇒) First, we prove the left to right implication. Let g be given

as𝑀 is ℓ1-symmetric and define, for all 𝑘 ∈ N,𝐶𝑘 B
(𝑛+𝑘−1
𝑛−1

)
as the

number of ways to partition 𝑘 identical balls into 𝑛 distinguishable

bins. Let 𝐷 be such that

∀𝑘 : 𝑃𝑟 (𝐷 = 𝑘) B 𝑃𝑟 (|𝑀 |1 = 𝑘) = 𝐶𝑘 · 𝑔(𝑘)
Note that this is a valid probability distribution since 𝑔(𝑘) is, by
definition, the uniform probability for𝑀 to generate any specific

point with ℓ1-norm of 𝑘 and there are 𝐶𝑘 points satisfying this

criterion. This uniformity arises because each distribution of the

balls over the bins defines a unique vector𝑀𝐷 , ensuring that each

point is equally likely. We further see for all𝑚

𝑃𝑟 (𝑀𝐷
=𝑚) = 𝑃𝑟 (|𝑀𝐷 |1 = |𝑚 |1 ∧𝑀

𝐷
=𝑚)

= 𝑃𝑟 (|𝑀𝐷 |1 = |𝑚 |1) ·
𝑃𝑟 (|𝑀𝐷 |1 = |𝑚 |1 ∧𝑀

𝐷
=𝑚)

𝑃𝑟 (|𝑀𝐷 |1 = |𝑚 |1)

= 𝑃𝑟 (|𝑀𝐷 |1 = |𝑚 |1) · 𝑃𝑟 (𝑀
𝐷
=𝑚 | |𝑀𝐷 |1 = |𝑚 |1)

= 𝐶 |𝑚 |1 · g(|𝑚 |1) ·
1

𝐶 |𝑚 |1
= 𝑔(|𝑚 |1) = 𝑃𝑟 (𝑀 =𝑚).

GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia Gadea Harder, Kötzing, Li, Radhakrishnan, Ruff

(⇐) Now we prove the right to left implication. Let 𝐷 be given

such that𝑀 and𝑀
𝐷
are identically distributed. We fix, for all 𝑘 ∈ N,

an𝑚𝑘 with |𝑚𝑘 |1 = 𝑘 and define

𝑔(𝑘) B 𝑃𝑟 (𝑀𝐷
=𝑚𝑘) = 𝑃𝑟 (𝑀 =𝑚𝑘).

We will now show that, for all𝑚 with |𝑚 |1 = 𝑘 , 𝑃𝑟 (𝑀 =𝑚) = 𝑔(𝑘).
The probability 𝑃𝑟 (𝑀 =𝑚) can be decomposed as before into

𝑃𝑟 (|𝑀𝐷 |1 = 𝑘)𝑃𝑟 (𝑀𝐷
=𝑚 | |𝑀𝐷 |1 = 𝑘) .

By definition,

𝑃𝑟 (𝑀𝐷
=𝑚 | |𝑀𝐷 |1 = 𝑘)

is the uniform distribution on possible targets with ℓ1-norm 𝑘 , so

𝑃𝑟 (𝑀𝐷
= 𝑚 | |𝑀𝐷 |1 = 𝑘) = 𝑃𝑟 (𝑀𝐷

= 𝑚𝑘 | |𝑀
𝐷 |1 = 𝑘) which

concludes the proof. □

6.1 Unbiased Complexity
We now prove that, for certain worst case instances, the (1+1) EA

employing any ℓ1-symmetric operator in every iteration (potentially

a different operator each iteration) will require a time linear in

|𝑎 |1. Note that this is exponentially worse than the RLS with self-

adjusting mutation rates. This result has the very general flavor

of unbiased black-box complexity results [12], since it makes no

assumptions about the search other than that the operators are

unbiased.

Theorem 13. Let 𝑟 ∈ Z and 𝑎 = (𝑟, 0, . . . , 0) ∈ Z𝑛 . Then there is
a constant 𝑐 such that the (1+1) EA which, in each iteration, chooses
any ℓ1-symmetric operator to generate offspring, requires at least
Ω(min(𝑟/𝑛3, 2𝑐𝑛)) iterations to optimize 𝑓𝑎 .

6.2 Progress-Maximizing Strategies
For the rest of the section we focus on algorithms that adjust the

mutation strength with a certain success criterion in mind, such as

the 1/5th-rule. We show lower bounds for such criteria.

As we discussed in Theorem 12, the choice of operator of the

algorithm is equivalent to choosing a mutation strength 𝑘 . We first

consider choosing 𝑘 such that the probability for the offspring 𝑥 ′

to be accepted is maximal. Under this assumption, we choose a

specific target function as in Theorem 13, such that the mutation

strength is equal to 1 for the first step of the algorithm.

Lemma 14. Let 𝑛 ∈ N≥16, 𝑟 ∈ Z and 𝑎 ∈ Z𝑛 such that 𝑎1 = 𝑟 and
for any 𝑖 ∈ {2, . . . , 𝑛}, 𝑎𝑖 = 0. Let 𝑥 ′ be the integer string representing
the offspring at iteration 𝑡 = 1 of the (1+1) EA optimizing 𝑓𝑎 with an
ℓ1-symmetric operator. Moreover, let 𝑘 ∈ Z+ be the mutation strength.
Then, the probability that 𝑥 ′ is accepted gets maximized by 𝑘 = 1.

Proof. Here an outline of the proof. Let 𝑝𝑘 denote the proba-

bility of the event that the offspring 𝑥 ′ is accepted conditioned on

the event that the mutation strength 𝑘 for the (1+1) EA optimizing

𝑓𝑎 with ℓ1-symmetric operator. In other words, we have to show

that 𝑝1 > 𝑝𝑘 for 𝑘 ≥ 2. Based on this notation we outline the proof

of the statement in two steps. First, we show 𝑝1 to be larger than

smallish values for the mutation strength, namely 𝑝1 > 𝑝2, 𝑝3, 𝑝4.

To that end, we derive a general formula for the probability 𝑝𝑘 , i.e.,

the probability that the offspring is accepted for mutation strength

𝑘 . Then, in a second step, we obtain a general upper bound for 𝑝𝑘

and show that for 𝑘 ≥ 5 this upper bound to be smaller than 𝑝1
under the mild assumption that 𝑛 is large enough. Specifically, the

statement holds for 𝑛 ≥ 16 as given as a hypothesis in our lemma.

Recall that the initial string before any offspring gets accepted

is given by the all-0 integer string 0
𝑛
while the target function

only differs in the first coordinate with 𝑎1 = 𝑟 . By Theorem 12,

the ℓ1-symmetric operator can be split into four steps. Let us fix

the mutation 𝑘 in order to compute 𝑝𝑘 . Thus, the first step of the

algorithm in Theorem 12 that picks the mutation strength is omitted

and we assume the mutation strength to be 𝑘 . We observe that, in

the second step of the algorithm, adding a ball to the first bin

potentially improves the fitness and putting a ball to any other

bin makes it worse. Hence, a potential improvement towards the

target function 𝑎 is possible if and only if there are strictly more

than half of the available balls to be be placed in the first bin (the

number of balls are equal to 𝑘 representing the mutation strength).

Hence, if there are 𝑘 balls to choose from in total, then there must

be at least𝑚 ≥ ⌊𝑘/2⌋ + 1 balls chosen to be placed in the first bin.

Since the bin for a single ball is chosen uniformly at random and

the number of bins is given by 𝑛, the probability of choosing the

first bin for the 𝑗-th ball is given by 𝑞 = 1/𝑛. On the flip side, the

probability for ball 𝑗 to be not placed into the first bin is given by

the complement rule with 𝑝 = 1−1/𝑛. Let𝑌 be the random variable

that counts the number of balls that are not placed in the first

bin. Note that 𝑌 ∼ 𝐵(𝑘, 𝑝) follows a binomial distribution. Thus,

𝑃𝑟 (𝑌 = 𝑖) =
(𝑘
𝑖

)
(1 − 1/𝑛)𝑖 (1/𝑛)𝑘−𝑖 . Recall that, given mutation

strength 𝑘 , at most 𝑘 −𝑚 ≤ ⌈𝑘/2⌉ − 1 balls can be placed in a bin

other than the first one in order to enable a possible improvement

via the offspring. Finally, in conjunction with with 𝑃𝑟 (𝑌 = 𝑖), this
gives

𝑝𝑘 =
1

2

⌈𝑘/2⌉−1∑︁
𝑖=0

𝑃𝑟 (𝑌 = 𝑖) = 1

2

⌈𝑘/2⌉−1∑︁
𝑖=0

(
𝑘

𝑖

)
(1 − 1/𝑛)𝑖 (1/𝑛)𝑘−𝑖 (1)

≤ 1

2

⌈𝑘/2⌉−1∑︁
𝑖=0

(
𝑘

𝑖

)
(1/𝑛)𝑘−𝑖 , (2)

whereby the 1/2 in front of the sum stems from the fact that

the sign 𝑥𝑖 ∈ {−1, 1} in the third step of the algorithm is chosen

again uniformly at random. Thus, the probability of choosing the

sign such that the offspring improves the parent string in the first

position is given by 1/2. In order to complete the first step of our

proof it is left to show that 𝑝1 > 𝑝2, 𝑝3, 𝑝4. Recall that 𝑛 ≥ 16

by the hypothesis of our statement. Then, by plugging 𝑘 = 2, 3, 4

into Equation 2 and applying Equation 1 to compute 𝑝1, we indeed

obtain

𝑝1 =
1

2𝑛
>

1

2𝑛2
= 𝑝2,

𝑝1 =
1

2𝑛
>

1

2𝑛3
+ 3

2𝑛2
≥ 𝑝3,

𝑝1 =
1

2𝑛
>

1

2𝑛4
+ 2

𝑛3
≥ 𝑝4,

assuming that 𝑛 ≥ 4, which is given by the hypothesis that 𝑛 ≥ 16.

Next, we turn to the second part of the proof, namely that for

any 𝑘 ≥ 5 it also holds 𝑝1 > 𝑝𝑘 , again under the hypothesis that

𝑛 ≥ 16. Recall that 𝑝𝑘 is the probability that the offspring is accepted

Run Time Bounds for Integer-Valued OneMax Functions GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia

conditioned on the event that the mutation strength is equal to 𝑘 .

Based on Equation 2 we deduce,

𝑝𝑘 ≤
1

2

⌈𝑘/2⌉−1∑︁
𝑖=0

(
𝑘

𝑖

)
(1/𝑛)𝑘−𝑖

≤ 1

2𝑛⌈𝑘/2⌉

⌈𝑘/2⌉−1∑︁
𝑖=0

(
𝑘

𝑖

)
≤ 2

𝑘

2𝑛⌈𝑘/2⌉
≤ 2

𝑘

2𝑛𝑘/2
,

(3)

where in the first step we invoke that 𝑛𝑖−𝑘 is a function that

is monotonically increasing in 𝑖 while the last line follows by the

identity of a binomial coefficient

∑𝑘
𝑖=0

(𝑘
𝑖

)
= 2

𝑘
. Recall that we

assume that 𝑘 ≥ 5 and 𝑛 ≥ 16. Moreover, by previous calculations,

we know that 𝑝1 = 1

2𝑛 and 𝑝𝑘 ≤ 2
𝑘

2𝑛𝑘/2
. Finally, combining these

facts and putting everything together now yields

𝑝𝑘 ≤
2
𝑘

2𝑛𝑘/2
=

2
𝑘

2𝑛𝑘/4𝑛𝑘/4
≤ 1

2𝑛𝑘/4
<

1

2𝑛
= 𝑝1,

where the second inequality follows since 𝑛 ≥ 16, while in the

final inequality we use 𝑘 ≥ 5. Based on the argumentation of the

outline of the proof, this finishes the second and final part of the

proof. □

Building on top of this statement, we can iterate the result and

find that, for our previous target function 𝑓𝑎 , the same statement is

true for any time step 𝑡 , i.e, the mutation strength is chosen to be

𝑘 = 1 in order to maximize the probability to accept the offspring.

Theorem 15. Let 𝑛 ∈ N≥16, 𝑟 ∈ Z and 𝑎 ∈ Z𝑛 such that 𝑎1 = 𝑟

and for any 𝑖 ∈ {2, . . . , 𝑛}, 𝑎𝑖 = 0. Moreover, for any 𝑡 ∈ Z+, let
𝑘𝑡 ∈ Z+ be the mutation strength maximizing the probability that
the offspring gets accepted, at any iteration step 𝑡 of the (1+1) EA
optimizing 𝑓𝑎 with ℓ1-symmetric operator. Then, at any iteration step
𝑡 ≥ 1, the mutation strength is given by 𝑘𝑡 = 1.

Proof. Intuitively, the statement holds since throughout all iter-

ations only the integer 𝑥1 can be modified, while all other integers

remain 0. Thus, at any time step 𝑡 , the problem is equivalent to

the same problem as at time step 𝑡 = 1 with the same respective

starting and target string, except for a potentially different integer

𝑎1. In order to formalize this idea for any 𝑡 ≥ 1, we proceed by

induction.

Let us start with base (𝑡 = 1). We notice that the statement for

𝑡 = 1 is immediately true by applying Lemma 14. For the induction

step, suppose that 𝑘1, 𝑘2, . . . , 𝑘𝑡−1 = 1, i.e., the mutation strength

before step 𝑡 has always been equal to 1. Moreover, let 𝑥 ′ ∈ Z𝑛 be

the integer string that is the accepted offspring after 𝑡 − 1 iterations.
Recall that the target function 𝑎 differs from the initial all zero

string 0
𝑛
only in the first coordinate. Thus, we observe that given

the mutation strength is 1, a fitness improvement in the offspring is

feasible if and only if the integer in the first position of the current

string gets mutated (in the right direction). Since previous mutation

strengths are all 1, we have for any 𝑖 ∈ {2, . . . , 𝑛}, 𝑥 ′
𝑖
= 0 and

−𝑡 + 1 ≤ 𝑥 ′
1
≤ 𝑡 − 1.

Now, assume that 𝑥 ′ ≠ 𝑎 as otherwise we are done. W.l.o.g. let

𝑟 ∈ Z+ (the other case follows by symmetry). It follows that |𝑥 ′
1
| < 𝑟

as 𝑥 ′
1
cannot be larger than 𝑟 , using the induction hypothesis of

the mutation strength 𝑘1, 𝑘2, . . . , 𝑘𝑡−1 = 1. Let 𝑎′ = 𝑎 − 𝑥 ′, i.e., the
target string 𝑎 except for the first position 𝑎1 (the integer in the

first position differs by the progress made in previous iterations).

Then, notice that the problem at time step 𝑡 is equivalent to target

string 𝑎′ with starting string 0𝑛 . Invoking Lemma 14 the probability

that the offspring gets accepted is maximized by 𝑘𝑡 = 1. Hence, this

equivalently holds for iteration 𝑡 on the original string 𝑥 ′. Therefore,
the (1+1) EA optimizing 𝑓𝑎 with ℓ1-symmetric operator picks 𝑘𝑡 = 1

in order to maximize the probability of acceptance. □

This directly implies the following statement regarding a lower

bound for the run time where we assume that the mutation strength

that maximizes the desired probability is picked by an oracle.

Corollary 16. Let 𝑛 ∈ N≥16, 𝑟 ∈ Z and 𝑎 ∈ Z𝑛 such that 𝑎1 = 𝑟

and for any 𝑖 ∈ {2, . . . , 𝑛}, 𝑎𝑖 = 0. Then the optimization time for the
(1+1) EA optimizing 𝑓𝑎 with ℓ1-symmetric operator with mutation
strength maximizing the probability of the offspring to be accepted is
Ω(|𝑎 |1).

Whilemost practical algorithms that adjust themutation strength

focus on success probability, it might be more desirable to adjust

and maximize the expected gain in fitness. However, we can simi-

larly show that this quantity is optimized by choosing a mutation

strength of 𝑘 = 1. The proof works analogously to the one given

previously for Lemma 14 and the details can be found in the sup-

plementary material.

Theorem 17. Let 𝑛 ∈ N≥64, 𝑟 ∈ Z and 𝑎 ∈ Z𝑛 such that 𝑎1 = 𝑟

and for any 𝑖 ∈ {2, . . . , 𝑛}, 𝑎𝑖 = 0. Let 𝑥𝑡 be the parent integer string at
iteration 𝑡 while the (1+1) EAwith ℓ1-symmetric operator is optimizing
𝑓𝑎 . Moreover, let 𝑘 ∈ Z+ be the mutation strength corresponding to
ℓ1-symmetric operator. Then, the expected gain, 𝐸 [𝑓𝑎 (𝑥𝑡−1) − 𝑓𝑎 (𝑥𝑡)]
at time step 𝑡 = 1 is maximized by 𝑘 = 1.

For completeness we spell out the straightforward results re-

garding a lower bound for the run time if the expected gain is to

be maximized. By an almost verbatim repeat of the proof of Theo-

rem 15 we now get the equivalent results for the mutation strength

that aims to maximize the expected gain.

Corollary 18. Let 𝑛 ∈ N≥64, 𝑟 ∈ Z and 𝑎 ∈ Z𝑛 such that 𝑎1 = 𝑟

and for any 𝑖 ∈ {2, . . . , 𝑛}, 𝑎𝑖 = 0. Moreover, for 𝑡 ∈ Z+, let 𝑘𝑡 ∈ Z+ be
the mutation strength maximizing the expected gain of the offspring,
at any iteration step 𝑡 of the (1+1) EA optimizing 𝑓𝑎 with ℓ1-symmetric
operator. Then, at any iteration step 𝑡 ≥ 1, the mutation strength is
given by 𝑘𝑡 = 1.

In similar fashion it now also follows the run time Ω(|𝑎1 |).
Corollary 19. Let 𝑛 ∈ N≥64, 𝑟 ∈ Z and 𝑎 ∈ Z𝑛 such that 𝑎1 = 𝑟

and for any 𝑖 ∈ {2, . . . , 𝑛}, 𝑎𝑖 = 0. Then the optimization time for the
(1+1) EA optimizing 𝑓𝑎 with ℓ1-symmetric operator with mutation
strength maximizing the expected gain of the offspring is Ω(|𝑎 |1).

7 EXPERIMENTAL ANALYSIS OF
PERFORMANCE

In this section we provide an empirical analyses among different

algorithms with different mutation operators. We compare the

performances of (1+1) EA with the ±1 operator, (1+1) EA with the

GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia Gadea Harder, Kötzing, Li, Radhakrishnan, Ruff

heavy-tailed operator, the RLS with the self-adjusting operator and

the (`, _) GA with ℓ1-symmetric operator.

All our theoretical analyses are concerned with the unbounded

integer search space, whereas, for practical reasons, we have to

restrict our search space to be bounded. We bound the maximum

value of the considered integer strings by a value 𝑟 .

We set the optimum as the all-𝑟 integer string and let the al-

gorithm run until it finds the optimum and record the run time

(number of function evaluations). For (1+1) EA with different mu-

tation operators and 𝑅𝐿𝑆𝛼,𝛽 , we start with the all-0 integer string.

As for the algorithm with ℓ1-symmetric operator, the author in

[14] proposes the algorithm which fundamentally operates as a

(`, _) genetic algorithm (GA). Subsequently, the authors of [15]

have developed code that builds upon this algorithm. For replica-

tion purposes, we utilize the code made publicly available by the

authors of [15] on GitHub.
1

We choose the step size of 𝑟 and the parameter setup for each

algorithm as follows:

(1) (1+1) EA with ±1 operator: 𝑟 from 10 till 150 with a step

size of 10. Then we consider 𝑟 ∈ {103, 104, 105} to analyze

the run time of the algorithm for exponentially increasing

values of 𝑟 .

(2) 𝑅𝐿𝑆𝛼,𝛽 with the self-adjusting operator and the (1+1) EA

with the heavy-tailed operator: we consider 𝑟 = 10
𝑘
, for

𝑘 ∈ {1, . . . , 9}. For RLS with the self-adjusting operator we

set the parameter 𝛼 = 2.0 and 𝛽 = 0.5. For the (1+1) EA with

the heavy-tailed operator we set 𝜖 = 0.001 and the step size

is generated according to Definition 2.

(3) (`, _) GA with ℓ1-symmetric operator: We set the ` = 4,

_ = 28, which is the same as [14]. Similar to the (1+1) EA

with ±1 operator, we consider 𝑟 = 10
𝑘
, for 𝑘 ∈ {1, . . . , 5}.

We present experimental results of all in Figure 1. All results are

averaged over 20 independent runs. We attach the results of the

statistical test for 𝑛 = 100 in the appendix.

In Figure 1 we can see that the scaling behavior with respect to 𝑟

is independent of the value of 𝑛.

Asymptotically, the results are as suggested by the theoretical

results given in the prior sections. However, for small values of 𝑟 ,

the scaling behavior is not yet the deciding factor. In particular,

the ±1 operator is competitive as long as the optimum is not much

more than 𝑟 = 10
2 = 100 away in each component. For higher

values of 𝑟 , the constantly small step size is very much detrimental

to efficient search.

An interesting finding is that the heavy-tailed operator can out-

perform the self-adjusting RLS, in spite of what the asymptotic

bounds given in this paper suggest. For small values of 𝑟 , a lot of

time is wasted on attempting larger jumps, but for middle-ranged

𝑟 these jumps start to pay off. In contrast, the self-adaptive RLS

needs a warm-up phase adjusting its velocity value, meanwhile

the heavy-tailed operator can make progress starting in the first

iteration.

1
https://github.com/jacobdenobel/algorithms/blob/main/algorithms/unbounded_

integer_ea.py

Figure 1: Comparison of all algorithms. We record the num-
ber of fitness evaluations as run time. Different colors to-
gether with markers stand for different mutation operators
and different line styles stand for different values of 𝑛. Note
that both axes are logarithmically scaled.

8 CONCLUSION
In this paper we addressed Z𝑛 as a search space and lifted results

for multi-valued decision variables to this search space. We further

introduced another operator which uses a very heavy-tailed distri-

bution to address the a priori unknown distance to the optimum

(for bounded search spaces, some bound is known). Still, asymp-

totically optimal is a self-adjusting strategy already known from

bounded search spaces. Furthermore, we gave good reasons why

ℓ1-symmetric operators are not competitive.

This work is one step towards tackling mixed-integer black box

optimization problems. Other test functions need to follow, par-

ticularly test functions which have both continuous and discrete

variables. A particular challenge is to give an interesting perfor-

mance measure: while for discrete problems the focus is on the

hitting time of finding the global optimum, continuous algorithms

are typically evaluated in their ability to quickly approximate local

optima.

REFERENCES
[1] Denis Antipov, Maxim Buzdalov, and Benjamin Doerr. 2022. Fast Mutation in

Crossover-Based Algorithms. Algorithmica (2022), 1724–1761. https://doi.org/

10.1007/s00453-022-00957-5

[2] Denis Antipov, Maxim Buzdalov, and Benjamin Doerr. 2023. Lazy Parameter

Tuning and Control: Choosing All Parameters Randomly from a Power-Law

Distribution. Algorithmica (2023), 442–484. https://doi.org/10.1007/s00453-023-

01098-z

[3] Anh Viet Do, Mingyu Guo, Aneta Neumann, and Frank Neumann. 2021. Analysis

of Evolutionary Diversity Optimisation for Permutation Problems (GECCO ’21).
574–582. https://doi.org/10.1145/3449639.3459313

[4] Benjamin Doerr, Carola Doerr, and Timo Kötzing. 2015. Solving Problems with

Unknown Solution Length at (Almost) No Extra Cost (GECCO ’15). 831–838.
https://doi.org/10.1145/2739480.2754681

[5] Benjamin Doerr, Carola Doerr, and Timo Kötzing. 2017. Static and Self-Adjusting

Mutation Strengths for Multi-valued Decision Variables. Algorithmica 80 (2017).
https://doi.org/10.1007/s00453-017-0341-1

[6] Benjamin Doerr, Yassine Ghannane, and Marouane Ibn Brahim. 2022. Towards a

Stronger Theory for Permutation-Based Evolutionary Algorithms (GECCO ’22).
1390–1398. https://doi.org/10.1145/3512290.3528720

https://github.com/jacobdenobel/algorithms/blob/main/algorithms/unbounded_integer_ea.py
https://github.com/jacobdenobel/algorithms/blob/main/algorithms/unbounded_integer_ea.py
https://doi.org/10.1007/s00453-022-00957-5
https://doi.org/10.1007/s00453-022-00957-5
https://doi.org/10.1007/s00453-023-01098-z
https://doi.org/10.1007/s00453-023-01098-z
https://doi.org/10.1145/3449639.3459313
https://doi.org/10.1145/2739480.2754681
https://doi.org/10.1007/s00453-017-0341-1
https://doi.org/10.1145/3512290.3528720

Run Time Bounds for Integer-Valued OneMax Functions GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia

[7] Benjamin Doerr, Daniel Johannsen, and Carola Winzen. 2012. Multiplicative Drift

Analysis. Algorithmica 64, 4 (2012), 673–697. https://doi.org/10.1007/s00453-012-

9622-x

[8] Benjamin Doerr, Huu Phuoc Le, Régis Makhmara, and Ta Duy Nguyen. 2017.

Fast Genetic Algorithms (GECCO ’17). 777–784. https://doi.org/10.1145/3071178.

3071301

[9] K. W. Fang. 1990. Symmetric Multivariate and Related Distributions (1st ed.).
Chapman and Hall/CRC. https://doi.org/10.1201/9781351077040

[10] Jun He and Xin Yao. 2004. A study of drift analysis for estimating computation

time of evolutionary algorithms. Natural Computing 3 (2004), 21–35. https:

//doi.org/10.1023/B:NACO.0000023417.31393.c7

[11] Timo Kötzing and Martin S. Krejca. 2019. First-hitting times under drift. Theoret-
ical Computer Science 796 (2019), 51–69.

[12] Per Kristian Lehre and Carsten Witt. 2012. Black-Box Search by Unbiased Vari-

ation. Algorithmica 64, 4 (2012), 623–642. https://doi.org/10.1007/S00453-012-

9616-8

[13] Michael Mitzenmacher and Eli Upfal. 2005. Probability and Computing: Random-
ized Algorithms and Probabilistic Analysis. Cambridge University Press.

[14] Günter Rudolph. 1994. An evolutionary algorithm for integer programming.

In Parallel Problem Solving from Nature — PPSN III, Yuval Davidor, Hans-Paul
Schwefel, and Reinhard Männer (Eds.). 139–148.

[15] André Thomaser, Jacob De Nobel, Diederick Vermetten, Furong Ye, Thomas

Bäck, and Anna Kononova. 2023. When to be Discrete: Analyzing Algorithm

Performance on Discretized Continuous Problems. In Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO ’23). 856–863. https://doi.

org/10.1145/3583131.3590410

https://doi.org/10.1007/s00453-012-9622-x
https://doi.org/10.1007/s00453-012-9622-x
https://doi.org/10.1145/3071178.3071301
https://doi.org/10.1145/3071178.3071301
https://doi.org/10.1201/9781351077040
https://doi.org/10.1023/B:NACO.0000023417.31393.c7
https://doi.org/10.1023/B:NACO.0000023417.31393.c7
https://doi.org/10.1007/S00453-012-9616-8
https://doi.org/10.1007/S00453-012-9616-8
https://doi.org/10.1145/3583131.3590410
https://doi.org/10.1145/3583131.3590410

GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia Gadea Harder, Kötzing, Li, Radhakrishnan, Ruff

A STATISTICAL TEST FOR RUN TIME
COMPARISON

In this section we present the results of the statistical test. For

each algorithm, we use one box plot to show the distribution of

independent runs for 𝑛 = 100. Each box is the first quartile (𝑄1) to

the third quartile (𝑄3) of the group. The whiskers extend the box

by 1.5 times the interquartile range (𝐼𝑄𝑅). Dots are outliers which

pass whiskers.

For the other set up 𝑛 = 20, we get a similar box plot.

Figure 2: (1+1) EA with ±1 operator

Figure 3: (1+1) EA with heavy-tailed operator.

Figure 4: RLS with the self-adjusting operator.

Figure 5: (`, _) GA with geometric step mutation operator.
The blue box is for 𝑛 = 20.

Lemma 20. [5, Lemma 13] Let 𝑛 ∈ N be fixed, let 𝑞 be a cost
function on elements of [𝑛] and let 𝑐 be a cost function on subsets of
[𝑛]. Furthermore, let a random variable 𝑆 ranging over subsets of [𝑛]
be given. Then we have

∀𝑇 ⊆ [𝑛] : 𝑐 (𝑇) ≤
∑︁
𝑖∈𝑇

𝑞(𝑖) =⇒ 𝐸 [𝑐 (𝑆)] ≤
𝑛∑︁
𝑖=1

𝑞(𝑖)𝑃 (𝑖 ∈ 𝑆) (4)

and

∀𝑇 ⊆ [𝑛] : 𝑐 (𝑇) ≥
∑︁
𝑖∈𝑇

𝑞(𝑖) =⇒ 𝐸 [𝑐 (𝑆)] ≥
𝑛∑︁
𝑖=1

𝑞(𝑖)𝑃 (𝑖 ∈ 𝑆) (5)

Theorem 21. Let 𝑓𝑎 ∈ ℱ. Then the expected optimization time of
the (1+1) EA with ±1 operator starting with all 0 integer string on 𝑓𝑎
is 𝑂 (𝑛 · (|𝑎 |∞ + log(|𝑎 |𝐻))).

Proof. Our proof idea is similar to the proof idea in [5, Theorem

12]. We will use the multiplicative drift analysis (see Theorem 4) to

Run Time Bounds for Integer-Valued OneMax Functions GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia

prove this theorem. For our analysis, we make use of two edge cases

that both have a fitness of 𝑛; which would be only one entry being

incorrect but 𝑛 away from its target and the case that every entry in

the target is 1. The former is hard to optimize since it takes long for

the algorithm to successively change the incorrect position, while

the latter can be solved very fast since there are multiple ways of

progressing in each step. We exploit this by giving each position a

weight exponential in the amount that is incorrect, and then sum

over those weights. With any search point 𝑥 ∈ Ω we associate a

vector 𝑑 ∈ R
𝑛
such that, for all 𝑖 ≤ 𝑛,𝑑𝑖 = |𝑎𝑖 − 𝑥𝑖 |. Given some

𝜔 > 1 we consider the potential

𝑔(𝑥) B
𝑛∑︁
𝑖=1

(𝜔𝑑𝑖 − 1) (6)

Let 𝑥𝑡 be the integer string at iteration 𝑡 when the (1+1) EA with

±1 operator is optimizing 𝑓𝑎 . Let 𝑋𝑡 = 𝑔(𝑥𝑡) and let 𝑇 = min{𝑡 ≥
0 | 𝑋𝑡 = 0}. Further let 𝐸1 be the event that 𝑋𝑡+1 is obtained by

mutating exactly one position and let 𝐸2 be the event that 𝑋𝑡+1 is
obtained by mutating at least two positions. Then𝑋0 ≤ |𝑎 |𝐻 ·𝜔 |𝑎 |∞ ,
since we start with all 0 integer string. We denote 𝑂 as the set

of already optimized positions and 𝐴(𝑆) as the set of accepted

offspring by only manipulating 𝑆 ⊆ [𝑛] positions. Now we bound

the expected drift. Since 𝑡 < 𝑇 , at least one of the position is at

least 1 distant far from the optimum and the probability to mutate

this position in the right direction is
1

2𝑛 and the probability to not

mutate any other positions is

(
1 − 1

𝑛

)𝑛−1
. Therefore,

𝐸 [𝑋𝑡 − 𝑋𝑡+1 | 𝑡 < 𝑇, 𝐸1] · 𝑃 (𝐸1)

≥
∑︁

𝑖∈[𝑛]\𝑂

1

2𝑛

(
1 − 1

𝑛

)𝑛−1
(𝜔𝑑𝑖 − 1) − (𝜔𝑑𝑖−1 − 1)

≥ 1

2𝑛𝑒

∑︁
𝑖∈[𝑛]\𝑂

(𝜔𝑑𝑖 − 1) − (𝜔𝑑𝑖−1 − 1)

=
1

2𝑛𝑒

𝑛∑︁
𝑖∈[𝑛]\𝑂

(
1 − 1

𝜔

)
· 𝜔𝑑𝑖

≥ 1

2𝑛𝑒

𝑛∑︁
𝑖=1

(
1 − 1

𝜔

)
·
(
𝜔𝑑𝑖 − 1

)
=
𝜔 − 1
2𝜔𝑛𝑒

𝑛∑︁
𝑖=1

(𝜔𝑑𝑖 − 1)

Let𝑈 be the set of all tuples (𝑦, 𝑖), 𝑦 ∈ 𝐴(𝑆) where the 𝑖-th positions
worsens. As we only consider accepted mutations, we have that,

for all 𝑦 ∈ 𝐴(𝑆),∑𝑖∈𝑆 𝑑 (𝑦𝑖 , 𝑎𝑖) − 𝑑𝑖 ≤ 0. This implies that there are

at least as many improving-pairs as there are worsening-pairs in

𝐴(𝑆)×𝑆 . For every (𝑦, 𝑖) with 𝑑𝑖 ≠ 0where bit position 𝑖 changes in

the wrong direction, there is a (𝑦′, 𝑖) ∈ 𝑈 with bit position 𝑖 chang-

ing in the right direction and the remaining positions behaving the

same. The change in potential for both pairs added is

𝜔𝑑𝑖+1 − 𝜔𝑑𝑖 + 𝜔𝑑𝑖−1 − 𝜔𝑑𝑖 = 𝜔𝑑𝑖
(𝜔 − 1)2

𝜔

Since there are in total at least asmany improving-pairs asworsening-

pairs, we can further map injectively each (𝑦, 𝑖) with a correct po-

sition (𝑑𝑖 = 0) that changes in the wrong direction to another tuple

(𝑦′, 𝑗) for 𝑦′ ∈ 𝐴(𝑆) with some improving position 𝑗 . We define a

function

𝑑 (𝑦, 𝑖) ≔ |𝑎 𝑗 − 𝑦′𝑗 |.
The change in potential for both pairs added is

𝜔 − 1 + 𝜔𝑑 (𝑦,𝑖)−1 − 𝜔𝑑 (𝑦,𝑖) =
(
1 − 𝜔𝑑 (𝑦,𝑖)−1

)
· (𝜔 − 1)

≤ 0 < 𝜔𝑑𝑖
(𝜔 − 1)2

𝜔
.

Let 𝑌 be the random variable describing the search point af-

ter one cycle of mutation and selection. The random variable Y is

completely determined by choosing a set 𝑆 ⊆ [𝑛] of bit positions
to change in 𝑥 and then, for each such position 𝑖 ∈ 𝑆 , choosing

whether to change towards or away from the target. For each pos-

sible 𝑆 ⊆ [𝑛], let 𝑌 (𝑆) be the random variable 𝑌 conditional on

making changes exactly at the bit positions of S. Note that since we

increase/decrease each index by 1 with the same probability, 𝑌 (𝑆)
is the uniform distribution on 𝐴(𝑆). Further let

𝑐 (𝑆) ≔ 𝐸 [𝑔(𝑌 (𝑆)) − 𝑔(𝑥)]

=
1

|𝐴(𝑆) |
∑︁

𝑦∈𝐴(𝑆)
𝑔(𝑦) − 𝑔(𝑥)

=
1

|𝐴(𝑆) |
∑︁

𝑦∈𝐴(𝑆)

𝑛∑︁
𝑖=1

(
𝜔 |𝑦𝑖−𝑎𝑖 | − 𝜔𝑑𝑖

)
≤ 1

|𝐴(𝑆) |
∑︁
(𝑦,𝑖) ∈𝑈

(
𝜔𝑑𝑖+1 − 𝜔𝑑𝑖 + 𝜔𝑑 (𝑦,𝑖)−1 − 𝜔𝑑 (𝑦,𝑖)

)
≤ 1

2

∑︁
𝑖∈𝑆

𝜔𝑑𝑖
(𝜔 − 1)2

𝜔
.

Using Lemma 20, we get that

𝐸 [𝑔(𝑌) − 𝑔(𝑥) |𝐸2] ≤
𝑛∑︁
𝑖=1

1

𝑛
𝜔𝑑𝑖
(𝜔 − 1)2

2𝜔
=
(𝜔 − 1)2
2𝜔𝑛

𝑛∑︁
𝑖=1

𝜔𝑑𝑖

We can use any 𝜔 > 1 such that 𝜔 − 1 − 𝑒 (𝜔 − 1)2 > 0 and set

𝑐 = (𝜔 − 1−𝑒 (𝜔 − 1)2)/𝑒 . One can verify that for 𝜔 = 1.2 we obtain

0.0912687 > 0, so such 𝜔 exist. In total we get

𝐸 [𝑔(𝑥) − 𝑔(𝑌)] ≥ 𝜔 − 1
2𝜔𝑛𝑒

𝑛∑︁
𝑖=1

𝜔𝑑𝑖 − (𝜔 − 1)
2

2𝜔𝑛

𝑛∑︁
𝑖=1

𝜔𝑑𝑖

=
𝜔 − 1 − 𝑒 (𝜔 − 1)2

2𝜔𝑛𝑒

𝑛∑︁
𝑖=1

𝜔𝑑𝑖 =
𝑐

2𝜔𝑛

𝑛∑︁
𝑖=1

𝜔𝑑𝑖 ≥ 𝑐

2𝜔𝑛
𝑔(𝑥).

Therefore by the multiplicative drift theorem (Theorem 4), we have

𝐸 [𝑇] = 𝑂 ((|𝑎 |∞ + log(|𝑎 |𝐻)) · 𝑛) = 𝑂 (|𝑎 |∞ · 𝑛 + 𝑛 · log(|𝑎 |𝐻)) .
□

Lemma 22 (RLS upper bound). Let 𝑓𝑎 ∈ ℱ. For constants 𝛼, 𝛽
satisfying 1 < 𝛼 ≤ 2, 1/2 < 𝛽 ≤ 0.9, 2𝛼𝛽 − 𝛽 − 𝛼 > 0, 𝛼 + 𝛽 > 2 and
𝛼2𝛽 > 1 the expected optimization time of 𝑅𝐿𝑆𝛼,𝛽 starting with all 0
integer string on 𝑓𝑎 is 𝑂 (𝑛 · log(|𝑎 |1)).

Proof. To simplify the notation for a given search point 𝑥 and

the target integer string 𝑧 and the chosen metric 𝑑 , we let 𝑑𝑖 =

𝑑 (𝑥𝑖 , 𝑧𝑖) for all (𝑖 ≤ 𝑛) be the distance vector of 𝑥 to 𝑧. Thus, the

goal is to reach a state in which the distance vector is (0, ..., 0). We

GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia Gadea Harder, Kötzing, Li, Radhakrishnan, Ruff

now want to define a potential function in dependence on (𝑑, 𝑣)
(where of course 𝑑 is dependent on 𝑥) such that it is 0 when 𝑑 is

(0, ..., 0) and strictly positive for any 𝑥 ≠ (0, ..., 0).
We use as potential function the following map 𝑔 : Z𝑛 ↦→

R, (𝑥, 𝑣) ↦→ ∑𝑛
𝑖=1 𝑔𝑖 (𝑑𝑖 , 𝑣𝑖) where 𝑔𝑖 (𝑑𝑖 , 𝑣𝑖) B 0 for 𝑑𝑖 = 0 and

for 𝑑𝑖 ≥ 1

𝑔𝑖 (𝑑𝑖 , 𝑣𝑖) B 𝑑𝑖 +
{
𝑐𝑑𝑖 max{2𝑣𝑖/𝑑𝑖 , 𝑑𝑖/(2𝑣𝑖)}, if 𝑣𝑖 ≤ 2𝛽𝑑𝑖 ;

𝑐𝑑𝑖 max{2𝑣𝑖/𝑑𝑖 , 𝑑𝑖/(2𝑣𝑖)} + 𝑝𝑑𝑖 , otherwise.

and 𝑐, 𝑝 are (small) constants specified below. For further motivation

on the potential see [5, Theorem 17].

Summarizing all the conditions needed below, we require that the

constants 𝛼, 𝛽, 𝑐, 𝑝 satisfy 1 < 𝛼 ≤ 2, 1/2 < 𝛽 ≤ 0.9, 2𝛼𝛽 − 𝛽 − 𝛼 >

0, 𝛼 + 𝛽 > 2, 𝛼2𝛽 > 1, 8𝛼𝛽𝑐 + 2𝑝 + 4𝑐/𝛽 ≤ 1/16, 𝑝 > 8𝑐

(
𝛼+𝛽
2
− 1

)
,

and 𝑝 > 4(𝛼 − 1)𝑐 > 0.

We can thus choose, for example, 𝛼 = 1.7, 𝛽 = 0.9, 𝑝 = 0.01, and

𝑐 = 0.001.

Let 𝑑 ≠ (0, ..., 0) and 𝑣 ∈ N𝑛 . Let (𝑑′, 𝑣 ′) be the state of Algo-
rithm 2 started in (𝑑, 𝑣) after one iteration (i.e., after a possible

update of 𝑥 and 𝑣). First we show that the expected difference in

potential satisfies

𝐸 [𝑔(𝑑, 𝑣) − 𝑔(𝑑′, 𝑣 ′) |𝑑, 𝑣] ≥ 𝛿

𝑛
𝑔(𝑑, 𝑣)

for some positive constant 𝛿 . Any fixed index 𝑖 is chosen by Algo-

rithm 2 for mutation with probability 1/𝑛; for all 𝑖 , let 𝐴𝑖 be the

event that index 𝑖 was chosen. We show that there is a constant 𝛿

such that, for all indices 𝑖 with 𝑑𝑖 ≠ 0

𝐸 [𝑔(𝑑𝑖 , 𝑣𝑖) − 𝑔(𝑑′𝑖 , 𝑣
′
𝑖) | 𝑑, 𝑣] ≥ 𝛿𝑔𝑖 (𝑑𝑖 , 𝑣𝑖)

thus proving the claim using 𝑃 (𝐴𝑖) = 1/𝑛.
We regard several cases, depending on how 𝑑𝑖 and 𝑣𝑖 relate.

Case 1: 𝑣𝑖 ≤ 𝑑𝑖/8.
First we observe that max{2𝑣𝑖/𝑑𝑖 , 𝑑𝑖/(2𝑣𝑖)} = 𝑑𝑖/(2𝑣𝑖). The contri-
bution of the 𝑖-th position to the current potential is thus

𝑔𝑖 (𝑑𝑖 , 𝑣𝑖) = 𝑑𝑖 + 𝑐𝑑2𝑖 /(2𝑣𝑖).

With probability 1/2 the algorithm decides to move in the right

direction. In this case we make progress with respect to the fitness

function and the velocity. That is, after the iteration we have 𝑑′
𝑖
=

𝑑𝑖 − ⌊𝑣𝑖 ⌋ < 𝑑𝑖 and 𝑣
′
𝑖
= 𝛼𝑣𝑖 > 𝑣𝑖 .

To bound the progress in the second component of𝑔𝑖 ,we observe

that

𝑐𝑑′𝑖 max{2𝛼𝑣𝑖/𝑑′𝑖 , 𝑑
′
𝑖 /(2𝛼𝑣𝑖)} = max{2𝑐𝛼𝑣𝑖 , 𝑐𝑑′2𝑖 /(2𝛼𝑣𝑖)}

= 𝑐𝑑′2𝑖 /(2𝛼𝑣𝑖),

where the second equality follows from 2𝛼𝑣𝑖 ≤ 𝑑𝑖/2 < 𝑑′
𝑖
. We thus

obtain that for this case the difference in potential is at least

𝑔𝑖 (𝑑𝑖 , 𝑣𝑖) − 𝑔𝑖 (𝑑′𝑖 , 𝑣
′
𝑖) = 𝑑𝑖 + 𝑐𝑑2𝑖 /(2𝑣𝑖) − 𝑑

′
𝑖 − 𝑐𝑑

′2
𝑖 /(2𝛼𝑣𝑖) (7)

≥
𝑐𝑑2

𝑖

2𝑣𝑖
−

𝑐𝑑2
𝑖

2𝛼𝑣𝑖
. (8)

With probability 1/2 the algorithm decides to go in the wrong di-

rection, then𝑑′
𝑖
> 𝑑𝑖 holds and the new individual is discardedwhile

the velocity 𝑣𝑖 at position 𝑖 is further decreased to max{𝛽𝑣𝑖 , 1} ≥
𝛽𝑣𝑖 . Hence the difference in potential for this case is at least

𝑔𝑖 (𝑑𝑖 , 𝑣𝑖) − 𝑔𝑖 (𝑑𝑖 , 𝛽𝑣𝑖) =
𝑐𝑑2

𝑖

2𝑣𝑖
−

𝑐𝑑2
𝑖

2𝛽𝑣𝑖
. (9)

Combining (7) and (9), we thus obtain that the expected differ-

ence in potential is at least

1

2

(
𝑐𝑑2

𝑖

2𝑣𝑖
−

𝑐𝑑2
𝑖

2𝛼𝑣𝑖
+
𝑐𝑑2

𝑖

2𝑣𝑖
−

𝑐𝑑2
𝑖

2𝛽𝑣𝑖

)
=
𝑐𝑑2

𝑖

2𝑣𝑖

(
2𝛼𝛽 − 𝛽 − 𝛼

2𝛼𝛽

)
=

(
2𝛼𝛽 − 𝛽 − 𝛼

4𝛼𝛽

) (
𝑐𝑑2

𝑖

2𝑣𝑖
+
𝑐𝑑2

𝑖

2𝑣𝑖

)
≥

(
2𝛼𝛽 − 𝛽 − 𝛼

4𝛼𝛽

) (
4𝑐𝑑𝑖 +

𝑐𝑑2
𝑖

2𝑣𝑖

)
≥

(
2𝛼𝛽 − 𝛽 − 𝛼

4𝛼𝛽

)
min{4𝑐, 1}

(
𝑑𝑖 +

𝑐𝑑2
𝑖

2𝑣𝑖

)
=

(
2𝛼𝛽 − 𝛽 − 𝛼

4𝛼𝛽

)
min{4𝑐, 1}𝑔𝑖 (𝑑𝑖 , 𝑣𝑖)

where in the third step we have used the requirement that 𝑣𝑖 ≤ 𝑑𝑖/8.
Case 2: 𝑑𝑖/8 < 𝑣𝑖 ≤ 2𝛽𝑑𝑖 .

Now we are in a range of velocity which is well-suited to make

progress. In fact, every step towards the optimum decreases the

distance to the optimum by at least the minimum of ⌊𝑑𝑖 ⌋ /8 (if 𝑣𝑖
is close to 𝑑𝑖/8 and we hence do not overshoot the target) and

⌊(2 − 2𝛽)𝑑𝑖 ⌋ (if 𝑣𝑖 = 2𝛽𝑑𝑖 ≥ 𝑑𝑖 in which case we overshoot the

target and the distance to it from 𝑑𝑖 to at most ⌊2𝛽𝑑𝑖 ⌋ −𝑑𝑖). In case

of moving towards the target value, the change in the first term of

𝑔𝑖 is thus at least

min{⌊𝑑𝑖/8⌋ , ⌊(2 − 2𝛽)𝑑𝑖 ⌋} = ⌊𝑑𝑖/8⌋ ,

using 𝛽 ≤ 0.9. However, note that the decrease is at least 1 (since

𝑣𝑖 is at least 1). Furthermore, we have, for all 𝑧 ≥ 8, 𝑧/16 ≤ ⌊𝑧/8⌋ .
Thus, we always have a decrease of at least 𝑑𝑖/16.

We now compute the change in the second term of 𝑔𝑖 . Regard

first the case that max{2𝑣 ′
𝑖
/𝑑′

𝑖
, 𝑑′

𝑖
/(2𝑣 ′

𝑖
)} = 2𝑣 ′

𝑖
/𝑑′

𝑖
. In this case, we

pessimistically assume that the previous contribution of the second

term in 𝑔𝑖 (𝑑𝑖 , 𝑣𝑖) was zero. This contribution increases to at most

2𝑐𝑣 ′𝑖 + 𝑝𝑑
′
𝑖 ≤ 2𝛼𝑐𝑣𝑖 + 𝑝𝑑′𝑖 ≤ 2𝛼𝑐𝑣𝑖 + 𝑝𝑑𝑖 ≤ (4𝛼𝛽𝑐 + 𝑝)𝑑𝑖 . (10)

On the other hand, max{2𝑣 ′
𝑖
/𝑑′

𝑖
, 𝑑′

𝑖
/(2𝑣 ′

𝑖
)} = 𝑑′

𝑖
/(2𝑣 ′

𝑖
) and the pre-

vious contribution of the second term in 𝑔𝑖 (𝑑𝑖 , 𝑣𝑖) was 𝑐𝑑2𝑖 /(2𝑣𝑖),
then the contribution of this second term has been decreased to

𝑐 (𝑑′
𝑖
)2/(2𝛼𝑣𝑖) ≤ 𝑐𝑑2

𝑖
/(2𝑣𝑖). The change in contribution is thus pos-

itive in this case, and therefore in particular strictly larger than

−(4𝛼𝛽𝑐 + 𝑝)𝑑𝑖 . We finally need to regard the case that

max{2𝑣 ′𝑖 /𝑑
′
𝑖 , 𝑑
′
𝑖 /(2𝑣

′
𝑖)} = 𝑑′𝑖 /(2𝑣

′
𝑖)

and

max{2𝑣𝑖/𝑑𝑖 , 𝑑𝑖/(2𝑣𝑖)} = 2𝑣𝑖/𝑑𝑖 .
In this case the contribution in the second term of 𝑔𝑖 increases by

at most

𝑐𝑑′2
𝑖

2𝛼𝑣𝑖
≤

𝑐𝑑2
𝑖

2𝛼 (𝑑𝑖/8)
≤ 4𝑐𝑑𝑖

𝛼
≤ 4𝛼𝛽𝑐𝑑𝑖 ,

where the last step follows from 𝛼2𝛽 ≥ 1.

Run Time Bounds for Integer-Valued OneMax Functions GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia

Summarizing this discussion, we see that in case of stepping

towards the target the change in progress satisfies

𝑔𝑖 (𝑑𝑖 , 𝑣𝑖) − 𝑔𝑖 (𝑑′𝑖 , 𝑣
′
𝑖) ≥ 𝑑𝑖 (1/16 − (4𝛼𝛽𝑐 + 𝑝)), (11)

which is positive by our conditions on 𝑐 and 𝑝 .

Let us now regard the case of stepping away from the optimum,

which happens with probability 1/2 and the velocity is decreased

to max{𝛽𝑣𝑖 , 1}. Assume first that max{𝛽𝑣𝑖 , 1} = 𝛽𝑣𝑖 . Then,

𝑔𝑖 (𝑑𝑖 , 𝑣𝑖) − 𝑔𝑖 (𝑑′𝑖 , 𝑣
′
𝑖) = max{2𝑐𝑣𝑖 ,

𝑐𝑑2
𝑖

2𝑣𝑖
} −max{2𝑐𝛽𝑣𝑖 ,

𝑐𝑑2
𝑖

2𝛽𝑣𝑖
}. (12)

If max{2𝑐𝛽𝑣𝑖 , 𝑐𝑑2𝑖 /(2𝛽𝑣𝑖)} = 𝑐𝑑2
𝑖
/(2𝛽𝑣𝑖), then the term in (12) is

at least −𝑐𝑑2
𝑖
/(2𝛽𝑣𝑖) ≥ −4𝑐𝑑𝑖/𝛽 by our condition 𝑑𝑖/8 ≤ 𝑣𝑖 . Fur-

thermore, if max{2𝑐𝛽𝑣𝑖 , 𝑐𝑑2𝑖 /(2𝛽𝑣𝑖)} = 2𝑐𝛽𝑣𝑖 , then (12) is strictly

positive as can be seen by the following observation

max{2𝑐𝑣𝑖 ,
𝑐𝑑2

𝑖

2𝑣𝑖
} − 2𝑐𝛽𝑣𝑖 ≥ 2𝑐𝑣𝑖 − 2𝑐𝛽𝑣𝑖 > 0. (13)

Putting everything together we thus obtain that for 𝑑𝑖/8 ≤ 𝑣𝑖 ≤
2𝛽𝑑𝑖

𝐸 [𝑔𝑖 (𝑑𝑖 , 𝑣𝑖) − 𝑔𝑖 (𝑑′𝑖 , 𝑣
′
𝑖)] ≤

𝑑𝑖

2

(1/16 − 2(4𝛼𝛽𝑐 + 𝑝) − 4𝑐/𝛽) (14)

which is positive if 8𝛼𝛽𝑐 + 2𝑝 + 4𝑐/𝛽 ≤ 1/16. Since 𝑣𝑖 = Θ(𝑑𝑖) this
also shows that there is a positive constant 𝛿 such that 𝐸 [𝑔𝑖 (𝑑𝑖 , 𝑣𝑖)−
𝑔𝑖 (𝑑′𝑖 , 𝑣

′
𝑖
)] ≥ 𝛿𝑔𝑖 (𝑑𝑖 , 𝑣𝑖).

We finally need to regard the case that max{𝛽𝑣𝑖 , 1} = 1. Intu-

itively, the cap can only make our situation better. This is formalized

by the following computations. We need to bound

𝑔𝑖 (𝑑𝑖 , 𝑣𝑖) − 𝑔𝑖 (𝑑′𝑖 , 𝑣
′
𝑖) = max{2𝑐𝑣𝑖 ,

𝑐𝑑2
𝑖

2𝑣𝑖
} −max{2𝑐,

𝑐𝑑2
𝑖

2

}. (15)

As above we obtain positive drift for the case max{2𝑐, 𝑐𝑑2
𝑖
} = 2𝑐

by observing that max{2𝑐𝑣𝑖 ,
𝑐𝑑2

𝑖

2𝑣𝑖
} − 2𝑐 ≥ 2𝑐𝑣𝑖 − 2𝑐 ≥ 0 (using that

𝑣𝑖 ≥ 1). For the case max{2𝑐, 𝑐𝑑2
𝑖
} = 𝑐𝑑2

𝑖
the term in (15) is at least

−𝑐𝑑2
𝑖
≥ −𝑐𝑑2

𝑖
/(2𝛽𝑣𝑖) ≥ −4𝑐𝑑𝑖/𝛽 as above. The same computation

as above thus shows a positive multiplicative gain in 𝑔𝑖 .

Case 3: 2𝛽𝑑𝑖 < 𝑣𝑖 < 2𝑑𝑖 .

Under these conditions 𝑔𝑖 (𝑑𝑖 , 𝑣𝑖) = 𝑑𝑖 + 2𝑐𝑣𝑖 + 𝑝𝑑𝑖 holds.
As before, we first regard the case that the algorithm moves

towards the target value. Since 𝛽 ≥ 1/2 it holds that 𝑑𝑖 ≤ 2𝛽𝑑𝑖 <

𝑣𝑖 and the target value is thus overstepped. However, due to the

requirement 𝑣𝑖 < 2𝑑𝑖 , the distance of the offspring is strictly smaller

than the previous distance. The velocity is hence increased to 𝛼𝑣𝑖 .

With probability 1/2 the algorithm does a step away from the

goal and thus the velocity is reduced to 𝑣 ′
𝑖
= max{𝛽𝑣𝑖 , 1}. Regard

first the case that 𝑣 ′
𝑖
= 𝛽𝑣𝑖 . Then, due to 𝛽𝑣𝑖 < 2𝛽𝑑𝑖 , the penalty term

𝑝𝑑𝑖 is no longer applied and the resulting potential at component 𝑖

is thus 𝑔𝑖 (𝑑′𝑖 , 𝑣
′
𝑖
) = 𝑑𝑖 + 2𝑐𝛽𝑣𝑖 .

Ignoring any possible gains in 𝑑𝑖 , we therefore obtain that the

expected difference in the potential is at least

2𝑐𝑣𝑖

(
1 − 𝛼 + 𝛽

2

)
+ 𝑝

2

𝑑𝑖

Note that 1 − (𝛼 + 𝛽)/2 is negative, since we require 𝛼 + 𝛽 > 2.

Using 𝑣𝑖 ≤ 2𝑑𝑖 we see that the drift is at least

4𝑐𝑑𝑖

(
1 − 𝛼 + 𝛽

2

)
+ 𝑝

2

𝑑𝑖 = 𝑑𝑖

(
𝑝

2

− 4𝑐
(
𝛼 + 𝛽
2

− 1
))

.

Since 𝑝 > 8𝑐 (𝛼+𝛽
2
− 1) this expression is positive. Furthermore, we

have 𝑔𝑖 (𝑑𝑖 , 𝑣𝑖) = Θ(𝑑𝑖), yielding the desired multiplicative drift.

For 𝑣 ′
𝑖
= 1 we first observe that 𝑣 ′

𝑖
= 1 ≤ 𝑑𝑖 ≤ 2𝛽𝑑𝑖 and the

penalty term 𝑝𝑑𝑖 is thus not in force. Furthermore, we have 𝛽𝑑𝑖 <

𝛽𝑣𝑖 ≤ 1 and thus 𝑑𝑖 ≤ 1/𝛽 ≤ 2, showing that max{2/𝑑𝑖 , 𝑑𝑖/2} ≤
max{2, 1} = 2. We obtain

𝐸 [𝑔𝑖 (𝑑𝑖 , 𝑣𝑖) − 𝑔(𝑑′𝑖 , 𝑣
′
𝑖) ≥

𝑝

2

𝑑𝑖 − 𝑐𝑣𝑖 (𝛼 − 1) ≥
𝑝

2

𝑑𝑖 − 2(𝛼 − 1)𝑐𝑑𝑖 ,

which is positive for 𝑝/2 − 2(𝛼 − 1)𝑐 > 0.

Case 4: 𝑣𝑖 = 2𝑑𝑖 .

Steps away from the target are not accepted, thus regardless of

whether or not we move towards or away from the target, the

fitness does not decrease; therefore, the velocity is decreased to 𝛽𝑣𝑖
(note that 𝑣𝑖 ≥ 2 and hence 𝛽𝑣𝑖 ≥ 1). The previous contribution of

the 𝑖-th component to 𝑔(𝑥) being 𝑑𝑖 + 2𝑐𝑣𝑖 + 𝑝𝑑𝑖 = 𝑑𝑖 (1 + 4𝑐 + 𝑝),
and the new potential at the 𝑖-th component being 𝑑𝑖 (1 + 4𝛽𝑐), we
obtain

𝐸 [𝑔𝑖 (𝑑𝑖 , 𝑣𝑖) − 𝑔𝑖 (𝑑′𝑖 , 𝑣
′
𝑖)] = 𝑑𝑖 (4𝑐 + 𝑝 − 4𝛽𝑐),

which is strictly positive and linear in 𝑔𝑖 (𝑑𝑖 , 𝑣𝑖).
Case 5: 2𝑑𝑖 < 𝑣𝑖 .

Steps towards the optimum are now also not accepted, since they

overstep the optimum by too much. Therefore, we always decrease

the velocity tomax{𝛽𝑣𝑖 , 1} = 𝛽𝑣𝑖 (note that 𝑣𝑖 > 2 and thus 𝛽𝑣𝑖 > 1)

and the gain in potential is

2𝑐𝑣𝑖 + 𝑝𝑑𝑖 − (2𝑐𝛽𝑣𝑖 + 𝑝𝑑𝑖) = 2𝑐𝑣𝑖 (1 − 𝛽) > 4(1 − 𝛽)𝑐𝑑𝑖
showing that we have the multiplicative drift as desired.

Together with the observation that the initial potential is of order

at most

𝑛∑︁
𝑖=1

𝑑2𝑖 ≤
(
𝑛∑︁
𝑖=1

𝑑𝑖

)
2

= |𝑎 |2
1

plugged into the multiplicative drift theorem (Theorem 4) proves

the desired overall expected run time of 𝑂 (𝑛 log(|𝑎 |1)). □

Theorem 23. Let 𝑛 ∈ N≥64, 𝑟 ∈ Z and 𝑎 ∈ Z𝑛 such that 𝑎1 = 𝑟

and for any 𝑖 ∈ {2, · · · , 𝑛}, 𝑎𝑖 = 0. Let 𝑥𝑡 be the parent integer string
at iteration 𝑡 while (1+1) EA with ℓ1-symmetric operator is optimizing
𝑓𝑎 . Moreover, let 𝑘 ∈ Z+ be the mutation strength corresponding to
ℓ1-symmetric operator. Then, the expected gain, 𝐸 [𝑓𝑎 (𝑥𝑡−1) − 𝑓𝑎 (𝑥𝑡)]
at time step 𝑡 = 1 is maximized by 𝑘 = 1.

Proof. This proof works analogously to the one given previ-

ously for Lemma 14. Throughout the proof, let 𝑋 ∈ R≥0 be the

random variable that is the potential gain at time step 𝑡 = 1 (nega-

tive gains are discarded by the algorithm). We wish to compute the

expected gain conditioned on the event that the mutation strength

is given by𝑀 = 𝑘 . More formally, by the conditional expectation of

𝑋 , E[𝑋 |𝑀 = 𝑘] = ∑
𝑥∈N 𝑥 · 𝑃𝑟 (𝑋 = 𝑥 |𝑀 = 𝑘). Then, the statement

of the lemma is equivalent to E[𝑋 |𝑀 = 1] > E[𝑋 |𝑀 = 𝑘] for 𝑘 ≥ 2.

Recall that 𝑝𝑘 is the probability that the offspring is accepted,

given the mutation strength 𝑘 . In a first step we use 𝑝𝑘 as stated in

Equation (1) in order to derive the expected gain if the mutation

GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia Gadea Harder, Kötzing, Li, Radhakrishnan, Ruff

strength is equal to 𝑘 . Then, for small values of 𝑘 (for 𝑘 ≤ 6), we

show that the expectation is largest if 𝑘 = 1. The second step uses

a rough upper bound to estimate E[𝑋 |𝑀 = 𝑘] which is strong

enough to show that for 𝑘 ≥ 7, the upper bound is smaller than the

expected gain given mutation strength 𝑘 = 1.

Now, as previously pointed out, let us start by deriving an upper

bound on E[𝑋 |𝑀 = 𝑘] via 𝑝𝑘 . Notice that the maximal support of

the random variable 𝑋 is given by 𝑘 if conditioned on the event

that the mutation strength is 𝑀 = 𝑘 . Thus, with this observation

in conjunction with 𝑝𝑘 being the sum over probability mass where

the gain is positive, we get by applying Equation (2),

E[𝑋 |𝑀 = 𝑘] ≤ 𝑘 · 𝑝𝑘 ≤
𝑘

2

⌈𝑘/2⌉−1∑︁
𝑖=0

(
𝑘

𝑖

)
(1/𝑛)𝑘−𝑖 . (16)

On the flip side, since the gain 𝑋 is a non-negative random vari-

able (as negative gains are discarded), the support of 𝑋 conditioned

on𝑀 = 1 is {0, 1} and consequently E[𝑋 |𝑀 = 1] = 𝑝𝑘 = 1

2𝑛 . Thus,

recalling 𝑛 ≥ 64, elementary calculations via Equation (16) now

reveal,

E[𝑋 |𝑀 = 2] ≤ 2𝑝2 =
1

𝑛2
<

1

2𝑛
= 𝑝1 = E[𝑋 |𝑀 = 1],

E[𝑋 |𝑀 = 3] ≤ 3𝑝3 =
3

2𝑛3
+ 9

2𝑛2
<

1

2𝑛
= 𝑝1 = E[𝑋 |𝑀 = 1],

E[𝑋 |𝑀 = 4] ≤ 4𝑝4 =
2

𝑛4
+ 8

𝑛3
<

1

2𝑛
= 𝑝1 = E[𝑋 |𝑀 = 1],

E[𝑋 |𝑀 = 5] ≤ 5𝑝5 =
5

2𝑛5
+ 25

2𝑛4
+ 25

𝑛3
<

1

2𝑛
= 𝑝1 = E[𝑋 |𝑀 = 1],

E[𝑋 |𝑀 = 6] ≤ 6𝑝6 =
3

𝑛6
+ 18

𝑛5
+ 45

𝑛4
<

1

2𝑛
= 𝑝1 = E[𝑋 |𝑀 = 1] .

Finally, it is left to show that similar inequalities also hold for

larger 𝑘 . Again, using the upper bound E[𝑋 |𝑀 = 𝑘] ≤ 𝑘 · 𝑝𝑘 , in
conjunction with calculations as carried out in Equation (3), yields,

E[𝑋 |𝑀 = 𝑘] ≤ 𝑘 · 𝑝𝑘 ≤
𝑘2𝑘

2𝑛𝑘/2
<

2
2𝑘

2𝑛𝑘/2
.

To wrap things up, we get for 𝑘 ≥ 7 and using 𝑛 ≥ 64 (which

entails 𝑛𝑘/6 ≥ 2
𝑘
),

E[𝑋 |𝑀 = 𝑘] < 2
2𝑘

2𝑛𝑘/6𝑛𝑘/3
≤ 2

𝑘

2𝑛𝑘/3
≤ 1

2𝑛𝑘/6
<

1

2𝑛
= E[𝑋 |𝑀 = 1] .

Thus, the expected gain is indeedmaximized bymutation strength

𝑀 = 1. □

Theorem 24. Let 𝑟 ∈ Z and 𝑎 = (𝑟, 0, . . . , 0) ∈ Z𝑛 . Then there is
a constant 𝑐 such that the (1+1) EA which, in each iteration, chooses
any ℓ1-symmetric operator to generate offspring, requires at least
Ω(min(𝑟/𝑛3, 2𝑐𝑛)) iterations to optimize 𝑓𝑎 .

Proof. We use the following version of a Chernoff bound [13,

Theorem 4.4]. Let𝑋 be the sum of𝑛 identically distributed Bernoulli

random variables and let ` be the expectation of 𝑋 . Then we have,

for 𝛿 > 0,

𝑃𝑟 (|𝑋 − ` | ≥ 𝛿`) ≤ 2 exp

(
−𝛿2`/3

)
. (CB)

In order to prove the theorem, for all 𝑡 ∈ N, let 𝑥𝑡 be the current
individual of the (1+1) EA after 𝑡 iterations and let

𝑋𝑡 = |𝑟 − 𝑥1 | − 3
𝑛∑︁
𝑖=2

|𝑥𝑖 |.

We see that 𝑋0 = 𝑟 and the algorithm has found the optimum if and

only if 𝑋𝑡 = 0; furthermore, negative values of 𝑋𝑡 are not possible.

We set up to prove a bound on the expected hitting time of 0 by

using an additive drift theorem (Theorem 3).

By Theorem 12, the choice of the algorithm is equivalent to

choosing a mutation strength 𝑘 in any given iteration (potentially

dependent on the current search point) and then deterministically

drawing uniformly from the set of all offspring at ℓ1-distance of 𝑘 .

Let 𝑡 be given and suppose 𝑋𝑡 ≠ 0. We reason conditional on 𝑋𝑡 .

Let 𝑘 ∈ Z+ be the mutation strength as chosen by the algorithm in

iteration 𝑡 + 1.
Case 1: 𝑘 ≤ 𝑛3.

Since the maximum potential gain when changing by at most 𝑘 is

4𝑘 , the total gain is at most 4𝑛3.

Case 2: 𝑘 > 𝑛3.

In expectation, the mutation strength for any specific position is

𝑘/𝑛. Using the Chernoff bound (CB), we see that the probability

for a specific position to have a mutation strength outside of 𝑘/𝑛 ±√︁
6𝑘 ln(𝑛𝑘)/𝑛, using 𝛿 =

√︁
6 ln(𝑛𝑘)/𝑘 , is at most

2 exp(−2 ln(𝑛𝑘)) = 2/(𝑛𝑘)2 .
Let𝐴 be the event that all of the positions have a mutation strength

inside of 𝑘/𝑛 ±
√︁
6𝑘 ln(𝑛𝑘)/𝑛. We get

𝐸 ((𝑋𝑡 − 𝑋𝑡+1)1[𝐴]) ≤ 𝐸Δ Pr

{
𝐴

}
≤ 4𝑘 · 2/(𝑛𝑘)2 = 𝑂 (1) .

Thus, we now want to estimate 𝐸 (𝑋𝑡 − 𝑋𝑡+1)1[𝐴]. Let now 𝑗 be the

number of positions orienting away from the optimum. Then, for

the offspring, the loss in fitness is at least 𝑗 (𝑘/𝑛 −
√︁
6𝑘 ln(𝑛𝑘)/𝑛)

and the gain is at most (𝑛 − 𝑗) (𝑘/𝑛 +
√︁
6𝑘 ln(𝑛𝑘)/𝑛). Thus, the

overall loss in fitness is at least

𝑗 (𝑘/𝑛 −
√︁
6𝑘 ln(𝑛𝑘)/𝑛) − (𝑛 − 𝑗) (𝑘/𝑛 +

√︁
6𝑘 ln(𝑛𝑘)/𝑛)

= (2 𝑗 − 𝑛)𝑘/𝑛 −
√︁
6𝑘 ln(𝑛𝑘) .

If 2 𝑗 −𝑛 ≥ 1, this is positive (using 𝑘 > 𝑛3), the offspring is thus not

viable. This shows that at most half the bit positions orient away

from the target.

Case 2.1:At least𝑛/100 of the bit positions are atmost 99𝑘/(100𝑛)
away from the target.

Thus, moving any of these positions a distance of𝑘/𝑛±
√︁
6𝑘 ln(𝑛𝑘)/𝑛

towards the target gains at most

98𝑘/(100𝑛) +
√︁
6𝑘 ln(𝑛𝑘)/𝑛.

Since moving away from the target still looses the full amount, a

straightforward application of a Chernoff bound shows that the

offspring is not viable with probability 1 −𝑂 (2𝑐𝑛) , for some 𝑐 . In

case of accepted offspring, we pessimistically assume a full potential

gain of Θ(𝑟).
Case 2.2: Less than𝑛/100 of the bit positions are atmost 99𝑘/(100𝑛)

away from the target.

We call positions that are at least 99𝑘/(100𝑛) away from the target

large.

Run Time Bounds for Integer-Valued OneMax Functions GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia

We let 𝑍 be the set of all mutation-strings which, when added to

the current bit string, will lead to an accepted offspring. Let 𝑍0 ⊆ 𝑍

be that subset of mutation-strings which lower the potential (and

are accepted). Note that the total increase in distance from the

optimum in the bits 2 to 𝑛 has to be offset by the gain in bit 1, which

is at most 𝑘/𝑛 +
√︁
6𝑘 ln(𝑛𝑘)/𝑛. Thus, the maximum loss in potential

is 4(𝑘/𝑛 +
√︁
6𝑘 ln(𝑛𝑘)/𝑛).

Fix any 𝑧 ∈ 𝑍0. Then, in 𝑧, at most 𝑛/2 positions of the 99𝑛/100
large positions are moving towards the target (otherwise there is no

loss in potential). Thus, in 𝑧, at least 49𝑛/100 large positions move

away from the target. We let 𝑁 (𝑧) be the set of all those elements

from 𝑍 which can be obtained from 𝑧 by orienting exactly 3 large

positions, which orient away from the target in 𝑧, towards the

target. Using an element of 𝑁 (𝑧) for mutation leads to an increase

in potential of at least

9(𝑘/𝑛 −
√︁
6𝑘 ln(𝑛𝑘)/𝑛) − 4(𝑘/𝑛 +

√︁
6𝑘 ln(𝑛𝑘)/𝑛)

= 5𝑘/𝑛 − 13
√︁
6𝑘 ln(𝑛𝑘)/𝑛 ≥ 0.

For each 𝑧 ∈ 𝑍0, there are at least (49𝑛/100) · (49𝑛/100 − 1) ·
(49𝑛/100− 2)/6many elements in 𝑁 (𝑧). Let 𝑍1 =

⋃
𝑧∈𝑍0

𝑁 (𝑧). We

consider an element 𝑦 ∈ 𝑍1 and estimate the number of 𝑧 ∈ 𝑍0
such that 𝑦 ∈ 𝑁 (𝑧). In 𝑦, there are at most 𝑛/2 + 3 large positions
oriented towards the target (otherwise, any originating 𝑧 would

not decrease the potential and thus not be in 𝑍0). Hence, there are

at most (𝑛/2 + 3) · (𝑛/2 + 2) · (𝑛/2 + 1)/6 many 𝑧 ∈ 𝑍0 such that

𝑦 ∈ 𝑁 (𝑧). This shows that, in this case, the potential gain is at most

0: Only elements from 𝑍0 decrease the potential, by 4𝑘/𝑛(1 + 𝑜 (1)).
Each 𝑧 ∈ 𝑍0 has (49/(100𝑛))3 (1 ± 𝑜 (1)) many other elements that

increases the potential by 5𝑘/𝑛(1 + 𝑜 (1)); these other elements are

shared between at most (50/(100𝑛))3 (1 ± 𝑜 (1)) many elements

from 𝑍0. Thus, the weighted share is

(49/(100𝑛))3 (1 ± 𝑜 (1))
(50/(100𝑛))3 (1 ± 𝑜 (1))

> 0.9.

Since 4 < 5 · 0.9, we get an average decrease of the potential of at

most 0 in this case.

Overall, the potential decreases by 𝑂 (max(𝑛3, 𝑟/2−𝑐𝑛)). Thus,
an application of the additive drift theorem (Theorem 3) finishes

the proof. □

	Abstract
	1 Introduction
	2 Preliminaries
	3 Unit Mutation Strength
	4 Heavy-Tailed Mutation Strength
	5 Self-Adjusting Mutation Rates
	6 Distance-Symmetric Operator
	6.1 Unbiased Complexity
	6.2 Progress-Maximizing Strategies

	7 Experimental analysis of performance
	8 Conclusion
	References
	A Statistical test for run time comparison

