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ABSTRACT

We revisit the problem of optimizing a �tness function of

unknown dimension; that is, we face a function de�ned over

bit-strings of large length N , but only n � N of them have

an in�uence on the �tness. Neither the position of these

relevant bits nor their number is known. In previous work,

variants of the (1 + 1) evolutionary algorithm (EA) have been

developed that solve, for arbitrary s ∈ N, such OneMax and

LeadingOnes instances, simultaneously for all n ∈ N, in expected

time O(n(log(n))2 log log(n) . . . log(s−1)(n)(log(s)(n))1+ε ) and

O(n2 log(n) log log(n) . . . log(s−1)(n)(log(s)(n))1+ε ), respectively;

that is, in almost the same time as if n and the relevant bit positions

were known.

In this work, we prove the �rst, almost matching, lower

bounds for this setting. For LeadingOnes, we show that, for

every s ∈ N, the (1 + 1) EA with any mutation operator

treating zeros and ones equally has an expected run time of

ω(n2 log(n) log log(n) . . . log(s)(n)) when facing problem size n.

Aiming at closing the small remaining gap, we realize that, quite

surprisingly, there is no asymptotically best performance. For any

algorithm solving, for all n, all instances of size n in expected time

at most T (n), there is an algorithm doing the same in time T ′(n)
with T ′ = o(T ). For OneMax we show results of similar �avor.
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1 INTRODUCTION

We regard how well one can optimize small problems that are

hidden in larger representations. Our aim is to design algorithms

that on each such small problem have a performance comparable

to the one that could be obtained with similar algorithms when

the location of the small problem would be known. This line of

research was started in [3] and extended in [4].

To model this kind of problem, we assume that we have a large

search space {0, 1}N consisting of all bit strings of length N . The

objective function f that we want to optimize, however, depends

only on a small subset of the bit positions; that is, there is a set

I ⊆ [1..N ] := {1, . . . ,N } such that f (x) = f (x |I ) for allx ∈ {0, 1}N ,

where we write x |I to denote the bit string composed of only those

positions i with i ∈ I . We call n := |I | the relevant size of our

optimization problem. We regard two models of uncertainty.

(1) Initial segment uncertainty model: We assume that I is

an initial segment of [1..N ], that is, that I = [1..n] for

some n ≤ N . This model was proposed and investigated

in [3]; it is motivated there by applications in the design

of testing sequences for �nite state machines [7]. For the

initial segment uncertainty model, evolutionary algorithms

employing position-dependent mutation rates have been

shown to give a good performance [3, 4].

(2) Unrestricted uncertainty model: In this model, we allow

I to be an arbitrary subset of [1..N ] having cardinality

n = |I | ≤ N . Since position-dependent mutation rates

cannot reasonably cope with such problems, it was posed

as open problem in [3] whether there are evolutionary

algorithms that can deal with this stronger type of uncer-

tainty. This was answered a�rmatively in [4], where it

was shown that choosing the mutation rate in each iteration

randomly according to a suitable distribution can give a

good performance.

The results obtained in [3, 4], roughly speaking, show the fol-

lowing. The (1 + 1) EA with suitable position-dependent mutation

rates or suitable random mutation rates �nds the optimum of any

OneMax or LeadingOnes problem of (unknown) length n in the

initial segment model in an expected optimization time (number

of �tness evaluations) of O(n(log(n))2+ε ) and O(n2(log(n))1+ε ), re-

spectively. This is only by a factor ofO((log(n))1+ε ) slower than the

performance of the (1 + 1) EA on OneMax or LeadingOnes when

the relevant bits are known to the algorithms. The same results

hold in the unrestricted uncertainty model when the (1+1) EA with

a suitable random mutation rate is used. Note that in the initial

segment model, we assume that the set of LeadingOnes instances

is not invariant under permutation, that is, for a �xed n there is just

the usual LeadingOnes instance measuring the largest segment
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[1..i] ⊆ [1..n] that contains only 1-bits. For the unrestricted model,

we assume that the LeadingOnes instance is implemented on the

set I of relevant bits in an arbitrary ordering of the bit positions.

These results show that the same performance can be achieved

in the initial segment uncertainty model (using either position-

dependent or random mutation rates) and the unrestricted model

(using random mutation rates). Since the unrestricted model con-

tains the initial segment model as a very small subcase (one One-

Max and LeadingOnes instance of size n instead of

(N
n
)
≥ (N /en)n

OneMax and n!
(N
n
)
LeadingOnes instances), these results raise

the question if one can obtain a superior performance from using

position-dependent mutation rates in the much more restricted

initial segment uncertainty model.

In this work, we show the �rst non-trivial lower bounds for

unknown solution length problems. With the exception of the

optimization of OneMax via position-dependent mutation rates in

the initial segment uncertainty model, our bounds show that the

run time analyses in [4] are very tight (e.g., up to an O(log(s)(n))
factor for arbitrary s ∈ N; here we denote by log

(s)
the s-fold

iterated logarithm of n). This in particular implies that for the

LeadingOnes problem, not much can be gained by using position-

dependent mutation rates in the heavily restricted initial segment

model. Much stronger than that, we show that the (1 + 1) EA with

any mutation operator that treats zeros and ones symmetrically,

that is, that uses an arbitrary distribution on the subsets of [1..N ],
selects a random subset according to this distribution, and then

�ips exactly the bits in this set, cannot obtain a better performance

in either the initial segment or the unrestricted model than the

(1 + 1) EA with position-dependent rates (in the initial segment

model) or the (1 + 1) EA with random mutation rates (in either

model). This shows in a very strong sense that the two uncertainty

models are equally di�cult when optimizing LeadingOnes.

We said above that we have very good lower bounds. We would

have liked to claim that we have matching upper and lower perfor-

mance bounds. We cannot do so, as we observe a curiosity of this

optimization under uncertainty problem: There is no asymptoti-

cally best performance. More precisely, for any functionT : N→ N
such that there is an algorithm solving LeadingOnes instances

with unknown length n in expected time at most T (n), there is a

function T ′ : N → N such that T ′ = o(T ) and there is an algo-

rithm solving LeadingOnes instances with unknown length n in

expected time at most T ′(n).
For the case of OneMax we get an analogous result for the

unrestricted uncertainty model: any choice of distribution Q over

bit �ip probabilities can be improved with a distribution Q ′ so that

using bit �ip probabilities chosen fromQ ′ lead to an asymptotically

better run time than using those chosen from Q . For the case of the

initial segment uncertainty model it continues to be open whether

there is an optimal run time, or whether there are lower bounds

similar to those for LeadingOnes.

2 PROBLEM SETTING, ALGORITHMS, AND

SUMMABLE SEQUENCES

We use this section to �x the notation used in the remainder, to

make precise the models of uncertainty, to recall the de�nitions

of the algorithms regarded, and to recall a few basic facts about

summable sequences.

2.1 Basic Notation, Summability, OneMax, and

LeadingOnes

The basic notation we use is standard. We write N to denote the

positive integers. We write [a..b] to denote the set of integers not

less than a and not larger then b. We abbreviate [n] := [1..n].
For each b > 1, j ∈ N≥2, and r > 0 we set

log
(j)
b (r ) :=

{
logb (log

(j−1)
b (r )), if log

(j−1)(r ) ≥ b;

1, otherwise;

where log
(1)
b (r ) := logb (r ) if r ≥ b and log

(1)
b (r ) := 1 otherwise.

When the subscriptb indicating the base of the logarithm is omitted,

it can be assumed to be equal to two.

A sequence ®p is a mapping ®p : N→ R, which equivalently can be

written as ®p = (pn )n∈N. We alternate between these two notations.

A sequence ®p = (pn )n∈N is said to be monotonically decreasing

if for all n ∈ N it holds that pn ≥ pn+1. It is summable if the

sequence (Sn )n∈N of partial sums of absolute values Sn :=
∑n
i=1 |pi |

converges.

We are mostly interested in the asymptotic behavior of our algo-

rithms. We therefore use a lot Landau’s big- and small-Oh notation.

For convenience, we write ®p = o(®q) instead of p(n) = o(q(n)) when-

ever the variable n is clear from the context.

We regard in this work the two well-known �tness functions

OneMax and LeadingOnes, which, for given n, assign to each

bit string x ∈ {0, 1}n the number of ones in x and the number of

initial ones before the �rst zero entry, respectively; that is, Om(x) :=∑n
i=1 xi , and Lo(x) := max{i ∈ [0..n] | ∀j ≤ i : x j = 1}.

2.2 Models of Uncertainty

The focus of our work is on how evolutionary algorithms opti-

mize objective functions that only depend on a small subset of

the decision variables. Hence we assume that there is a large

search space {0, 1}N , but our objective function f can be writ-

ten as f (x) = ˜f (x |I ) for some subset I ⊂ [1..N ] with n := |I | � N

and some function
˜f : {0, 1}I → R.

It turns out that the dimension N of the large search space is

not very relevant for our results. For this reason, as in previous

works, we assume that the large search space is in fact {0, 1}N, that

is, the set of all in�nite binary sequences. Since the complexity

measure we regard is the number of �tness evaluations (and not

the number of elementary operations as in classic algorithmics),

this expansion of the outer search space has no in�uence on our

run time statements.

We then regard two models of uncertainty about the location of

the relevant part of the problem instance. To remain consistent

with previous works, we call both a model of unknown solution

length despite the fact that in the second model also the relevant

bit positions are unknown.

Initial segment uncertainty: We assume that the set I of rel-

evant bits is an initial segment [1..n] of the outer space {0, 1}N.

The number n is not known to the algorithm. When regarding

LeadingOnes as �tness function f , we assume that f respects the
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usual order of the bit-positions, that is, f (x) = max{i ∈ [0..n] |
∀j ≤ i : x j = 1}.

Unrestricted uncertainty: We assume that the set I of relevant

bits is any subset of N of cardinality |I | = n. Neither n nor I is

known to the algorithm. When regarding the LeadingOnes �tness

function, we do not assume that it respects the natural order of the

bits. Hence the problem instance is described by I and a bijective

mapping σ : [1..n] → I such that f (x) = max{i ∈ [0..n] | ∀j ≤ i :
xσ (j) = 1}.

2.3 Evolutionary Algorithms for Dealing With

Unknown Solution Lengths

We now present two ways how evolutionary algorithms can deal

with unknown solution length scenarios. Both are based on modify-

ing the mutation operator. Hence in principle, our ideas can be used

in conjunction with any evolutionary algorithm in which mutation

is used with signi�cant probability. Nevertheless, to keep things

simple and to not obscure the main ideas, we restrict ourselves to

the (1 + 1) EA.

The �rst idea, which makes sense only for the initial segment

uncertainty model, is to use position-dependent mutation rates [3].

For a given sequence ®p : N→ [0, 1], the (1+1) EA ®p (cf. Algorithm 1)

is a standard (1+1) EA except that in the mutation step the o�spring

is generated from �ipping each bit position i independently with

position-dependent probability pi .

Algorithm 1: The (1 + 1) EA ®p with position dependent mu-

tation rates (pi )i ∈N to maximize a pseudo-Boolean function

f : {0, 1}N → R with �nite number of relevant bits.

1 Initialization: Sample x ∈ {0, 1}N uniformly at random and

compute f (x);
2 Optimization: for t = 1, 2, 3, . . . do

3 y ← x ;

4 for i ∈ N do with probability pi set yi ← 1 − xi ;
5 compute f (y);
6 if f (y) ≥ f (x) then x ← y;

The second idea to overcome the challenges of an unknown so-

lution length scenario, in particular, in the unrestricted uncertainty

model, is to use a random mutation rate sampled independently in

each iteration from a suitable distribution [4]. More precisely, let Q
be a probability distribution over [0, 1]. For the ease of presentation,

we restrict ourselves to discrete distributions. Then the (1+ 1) EAQ
(see Algorithm 2 for the pseudocode) is again the classic (1 + 1) EA

with the sole exception that in each iteration t a mutation rate pt is

sampled fromQ and then the o�spring is generated from the parent

individual by �ipping each bit independently with probability pt ,

that is, by performing standard bit mutation with mutation rate pt .

In this work, as already in [4], we will mostly work with dis-

tributions Q that are concentrated on the values {1/i | i ∈ N}.
These are most conveniently described via a probability distribu-

tion (pn )n∈N on N, that is, via a sequence ®p in [0, 1] such that∑∞
n=1 pn = 1, and then taking PrQ ( ®p)(1/i) = pi . For convenience,

we shall allow arbitrary summable sequences ®p in [0, 1] and then

set PrQ ( ®p)(1/i) = pi/
∑
n∈N pn .

Algorithm 2: The (1+ 1) EAQ with mutation rate distribution

Q maximizing a pseudo-Boolean function f : {0, 1}N → R
depending only on a �nite number of bits.

1 Initialization: Sample x ∈ {0, 1}N uniformly at random and

compute f (x);
2 Optimization: for t = 1, 2, 3, . . . do

3 y ← x ;

4 Sample pt from Q ;

5 for i ∈ N do with probability pt set yi ← 1 − xi ;
6 compute f (y);
7 if f (y) ≥ f (x) then x ← y;

2.4 Previous Results

The research question how to deal with unknown solution lengths

was initiated in [3] and was motivated with the problem of �nding

unique input-output sequences. [3] only regards the initial segment

uncertainty model. In addition, it is assumed that the unknown

solution length n follows a truncated geometric distribution with

mean Θ(q). In this situation, it is shown that the (1 + 1) EA ®p with

pi = 1/(i + 1) gives an expected run time of O(q−2 logN ) for a

OneMax instance with unknown solution length and of O(q−3) for

such a LeadingOnes instance. Here N is again the dimension of the

outer search space and the expectation is taken in the product space

of random instance length and random decisions of the algorithm.

In [4], these expected run times were improved to O(q−1 log(q−1))
and O(q−2), respectively.

However, it was also noted that the truncated geometric distri-

bution is relatively strongly concentrated, so the assumption on the

unknown solution length to follow such a distribution might be too

strong in applications. Therefore, in [4] we adopted a worst-case

view, that is, we tried to �nd algorithms that for each possible length

n give a performance close to the performance that the (1 + 1) EA

on instances of this length has. Interestingly, this is possible.

In the initial segment uncertainty model, when taking a position

dependent mutation rate ®p with pi = Θ(1/(i(log(i))1+ε )) and the im-

plicit constant small enough, then the (1+1) EA ®p �nds the optimum

of a OneMax instance of length n in timeO(n(log(n))2+ε ) and solve

the LeadingOnes instance of length n in time O(n2(log(n))1+ε ).
Note that this is only a factor of O((log(n))1+ε ) slower than the run

times on instances of known length n.

These results can be improved by taking a sequence ®p that

is summable, but decreases slower. If for some s ∈ N we

have p
(s)
i = Θ(1/i log(i) log(2)(i) . . . (log(s)(i))1+ε ), again with

the implicit constant small enough, then these run times im-

prove to O(n(log(n))2 log(2)(n) . . . log(s−1)(n)(log(s)(n))1+ε ) and

O(n2 log(n) log(2)(n) . . . log(s−1)(n)(log(s)(n))1+ε ). For the most

general result of [4], see Theorem 2.1 below.

In [3], the question was raised whether one can also reasonably

well deal with problems in which not only the solution length, but

also the relevant bit positions are unknown. This was answered
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in [4] by proposing the (1+1) EAQ algorithm, which uses a random

mutation rate in each iteration. When using a mutation rate of 1/i
with probability Θ(1/(i log i)), here the implicit constant is deter-

mined by the normalization constraint that the probabilities have

to add up to one, then any OneMax instance hidden on any n bits

is optimized in time O(n(log(n))2+ε ). Similarly, any LeadingOnes

instance of length n, hidden on arbitrary n bits and in any permuted

way, is optimized in time O(n2(log(n))1+ε ). Note that this uses the

mutation rate distribution Q(®p) with ®p as above. If we use Q(®p(s))
as de�ned above, we obtain the improved run times given above,

now again for instances hidden on any n bits and in any permuta-

tion. These results raise the question to what extend the formally

much harder problem of unrestricted uncertainty is algorithmically

harder, a question we try to answer in the following.

The precise result shown in [4] is the following.

Theorem 2.1 ([4]). Let ®p = (pn )n∈N be a monotonically decreas-

ing summable sequence. Let Σ :=
∑∞
i=1 pi .

(1) Assume that Σ < 1. Then the expected run time of the (1+1) EA ®p
on theOneMax instance of length n in the initial segment uncertainty

model is at most logn/(pn (1− Σ)) = O(logn/pn ). For LeadingOnes,
the same run time is at most n/(pn (1 − Σ)) = O(n/pn ).

(2) Let Q := Q(®p) be the mutation rate distribution choosing the

uniform bit �ip probability 1/i with probability pi/Σ. Then the ex-

pected run time of the (1+ 1) EAQ on a OneMax instance of length n
in the unrestricted uncertainty model is O(logn/p2n ). For arbitrarily
permuted LeadingOnes instances, this run time is O(n/p2n ).

2.5 Our Results

The similar performance which the two discussed algorithms dis-

play in the two very di�erent uncertainty models raises the desire

for lower bounds, which ideally answer the question if the weaker

initial segment model allows for a better performance than the

unrestricted model or not.

For the LeadingOnes problem, we answer this question with

surprising precision: The (1 + 1) EA ®p and the (1 + 1) EAQ have

exactly the same performance in the initial segment model. For any

®p there is a Q such that the (1 + 1) EAQ for all n ∈ N solves the

length-n LeadingOnes instance with exactly the same run time

distribution as the (1+1) EA ®p , and vice versa. Since the (1+1) EAQ
treats all bit positions identically, it has the same performance on

the unique LeadingOnes instance in the initial segment model

as it has on all LeadingOnes instances in the unrestricted model.

Consequently, no (1 + 1) EA ®p can have a performance in the initial

segment model that is superior to a performance achievable with

an (1 + 1) EAQ in the unrestricted model.

We show further that this equivalence of the algorithms extends

to a very general class of algorithms, which is a superclass of the

previous two. Consider any probability distribution P on the subsets

of N. Let (1 + 1) EAP be the (1 + 1) EA which in each iteration

samples from P a set X ⊆ N of bit positions and then creates the

o�spring by �ipping exactly these bits. The class of (1 + 1) EAP

algorithms consists of all variants of the (1 + 1) EA which use a

static mutation operator choosing the bits to �ip without regarding

the parent individual. We show that for any of these algorithms

there is a (1 + 1) EA ®p and a (1 + 1) EAQ which have exactly the

same performance on LeadingOnes in the initial segment model.

Consequently, to obtain a better performing algorithm than the

three above, one would have to use a dynamic algorithm or one that

chooses the mutation operator depending on the parent individual

(this can obviously give an improvement, e.g., by using an operator

that prefers �ipping zeros to ones, but this seems very problem-

speci�c).

The equivalence of these algorithms classes allows us to

prove lower bounds for all of them simultaneously. We show

that for all s ∈ N, Ω(n2 log(n) log(2)(n) . . . log(s)(n)) is a lower

bound for the performance of any of these algorithms on

LeadingOnes instances of length n. This nearly matches the

O(n2 log(n) log(2)(n) . . . log(s−1)(n)(log(s)(n))1+ε ), s ∈ N, upper

bounds discussed in the previous subsection.

We have mildly tighter bounds that we will discuss in the fol-

lowing subsection, but we do not have asymptotically tight bounds.

However, we have a good excuse for this. To our surprise, we ob-

serve that for the LeadingOnes problem there is no choice of the

algorithm parameters giving an asymptotically best performance.

Even stronger, there is no asymptotically best performance at all

for these algorithms. For any (1 + 1) EA ®p solving the initial seg-

ment LeadingOnes problem of length n in expected time T (n),
there is another (1 + 1) EA ®p with run time bound T ′(n) such that

T ′ = o(T ). By the above equivalences, this holds analogously for

the (1 + 1) EAQ and (1 + 1) EAP algorithm classes.

For the OneMax problem all bit positions are treated symmetri-

cally. We were able to exploit this and the fact that the unrestricted

uncertainty model treats positions symmetrically in order to show a

lower bound for this model. However, this approach does not carry

over to the initial segment model, since here position dependent

mutation probabilities come into play; we have to leave open what

the exact bounds for this setting are. Our bound for the unrestricted

uncertainty model matches the upper bound in a similar manner as

for LeadingOnes, that is, no (1+ 1) EAQ can have an expected run

time ofO(n(log(n))2 log(2)(n) . . . log(s)(n)) on all length-n OneMax

instances.

2.6 Summable Sequences

Theorem 2.1 shows that the bounds for the (1 + 1) EA ®p and the

(1 + 1) EAQ proven in [4] all crucially depend on the underlying

summable sequence ®p. Such sequences will also play a crucial role

in the remainder of this work. We therefore use this section to

recall and prove a few basic facts about these sequences. We also

recall and extend particular sequences regarded in [4].

We �rst note that the run time guarantees in Theorem 2.1 all

decrease with increasing sequence ®p. In the hope of �nding best

possible parameters for the (1 + 1) EA ®p and the (1 + 1) EAQ it is

therefore natural to ask for a largest summable sequence p. The

following statement shows that such a sequence does not exist.

Such constructions are well known in the mathematics literature,

our construction follows that of [1].

Theorem 2.2 (Folklore). For every summable sequence ®p :=

(pn )n∈N of positive terms pn > 0 there exists a summable sequence

®q := (qn )n∈N such that ®q = ω(®p).

A corresponding statement for non-summable sequences ex-

ists, i.e., for every non-summable sequence ®p there exists another
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non-summable sequence ®q such that ®q = o(®p). In both cases the

sequence ®q can be chosen in a way that the expected run time of the

corresponding (1+ 1) EA ®p and (1+ 1) EA®q satisfy E[T ®q ] = o(E[T ®p ])
Since this result also follows from Theorem 3.8 below, we do not

prove these statements explicitly.

2.6.1 Sequences Based on Iterated Logarithms. In [4], sequences

of iterated logarithms were shown to yield good performance guar-

antees for the (1 + 1) EA ®p and the (1 + 1) EAQ on LeadingOnes

and OneMax. We present here a generalized version of these se-

quences, which will be used later on to derive lower bounds for the

performance of best-possible (1 + 1) EA- and RLS-type algorithms

in unknown solution length environments.

For every b > 1, ε ≥ 0, r > 0, and all positive integers s set

ps,εb (r ) := 1/
(
r (log(s)b (r ))

1+ε
s−1∏
j=1

log
(j)
b (r )

)
. (1)

It was noted in [4] and shown, for example, in Hardy [6, page 48]

that for every ε > 0 and every s ≥ 1 the sequence (ps,ε
2
(n))n∈N

is summable. Hardy also mentions that for all s the sequence

(ps,0
2
(n))n∈N is not summable; he attributes this result to De Morgan

and Bertrand. From this, we easily get the following result.

Lemma 2.3. Let b > 1 and let ®p be a summable sequence of positive

terms 0 < pn < 1. Then, for all s ∈ N, 1/pn = ω(1/ps,0b (n)); i.e.,
1/pn = ω(n logb (n) log

(2)
b (n) . . . log

(s)
b (n)).

A natural question arising from the construction in (1) is the

summability of those sequences in which the iterated logarithms

in the denominator are not interrupted; that is, of the sequences

(p∞b (n))n∈N with elements

p∞b (n) := 1/
(
n
∞∏
j=1

log
(j)
b (n)

)
. (2)

It is known in the mathematics literature that the summability of

the sequence (p∞b (n))n∈N crucially depends on the base b of the

logarithm. Indeed, using Cauchy’s condensation test, one can show

the following.

Lemma 2.4. The sequence (p∞b (n))n∈N is summable if and only if

b < e := exp(1).

Plugging these sequences (p∞b (n))n∈N—or, more precisely, in

case of the (1 + 1) EA ®p , the sequences (p∞b (n)/
∑
i ∈N p

∞
b (i))n∈N—

into Theorem 2.1, we obtain the following results.

Corollary 2.5. Let b < e . The expected run time of

the (1 + 1) EA ®p with ®p = (p∞b (n))n∈N on the OneMax in-

stance of length n in the initial segment uncertainty model

is O
(
log(n)/p∞b (n)

)
= O(n(logb (n))2 log

(2)
b (n) . . .) and it is

O
(
n/p∞b (n)

)
= O(n2 logb (n) log

(2)
b (n) . . .) on LeadingOnes.

Furthermore, for Q := Q(®p) as in Theorem 2.1, the ex-

pected run time of the (1 + 1) EAQ on a OneMax in-

stance of length n in the unrestricted uncertainty model

is O
(
log(n)/p∞b (2n)

)
= O(2n(logb (2n))2 log

(2)
b (2n) . . .) and

O
(
n/p∞b (2n)

)
= O(2n2 logb (2n) log

(2)
b (2n) . . .) on LeadingOnes.

From Lemma 2.4 we also get the following result.

Corollary 2.6. Let b ≥ e . For every summable sequence ®p it

holds that 1/pn = ω(1/p∞b (n)) = ω(n logb (n) log
(2)
b (n) . . .).

2.7 Other Useful Tools

We recall the following well-known lemma, which will be needed

several times in the subsequent sections.

Lemma 2.7. Let ®a = (an )n∈N and
®b = (bn )n∈N be sequences of

positive terms satisfying ®a = o(®b). Set A := (An )n∈N with An :=∑n
i=1 ai and B := (Bn )n∈N with Bn :=

∑n
i=1 bi . Assume that B =

ω(1). Then A = o(B).

3 LEADINGONES

In this section, we prove very sharp lower bounds for the optimiza-

tion of the LeadingOnes function in the two uncertainty models

via the two algorithms classes (1 + 1) EA ®p and (1 + 1) EAQ . Our

�rst result and the central step towards proving the lower bounds

is proposing a fairly general class of algorithms that extends both

previous algorithm classes. We then show that all three lead to

the same run time pro�les for the initial segment model. Since

the (1 + 1) EAQ algorithm class gives the same performance on

instances de�ned on any subset of the bit positions, this general

result connects the two uncertainty models and shows that none of

our algorithms can have a better performance in the weaker initial

segment model.

Given that all algorithm classes are equally powerful, we then

concentrate on the performance of the (1 + 1) EA ®p in the ini-

tial segment uncertainty model. We show that for all s ∈ N,

Ω(n2 log(n) log(2)(n) . . . log(s)(n)) is a lower bound for the expected

run time of the LeadingOnes instance of length n. By carefully

constructing for each ®p a ®q such that the asymptotic performance

of (1 + 1) EA®q is strictly better than the one of (1 + 1) EA ®p , we also

show that there is no best asymptotic performance on the initial

segment LeadingOnes problem in the (1+ 1) EA ®p algorithms class

(and likewise in the (1 + 1) EAQ class).

3.1 Four Algorithm Classes with Equal Power

in the Initial Segment Uncertainty Model

To conveniently prove lower bounds for the two algorithm classes

(1+1) EA ®p and (1+1) EAQ , we de�ne the following algorithm class

which generalizes both. Consequently, a lower bound for the new

algorithm class immediately is a lower bound for both previously

regarded ones.

ArbitraryMutation on In�nite Bit Strings: The (1+1) EAP.
In simple words, we consider all algorithms that can be de�ned

as follows. Let P be a probability measure on the set Ω = {0, 1}N
of in�nite bit strings. The (1 + 1) EAP, when run on the �nite

subset I ⊂ N of bit positions, is the classic (1+1) EA except that the

mutation operator (informally speaking) samples a random element

X from Ω and then �ips exactly those bits i ∈ I for which Xi = 1.

To make this formally correct, we need a mild excursion into

probability theory. For all n ∈ N and a1, . . . ,an ∈ {0, 1}, we call

the set C(a1, . . . ,an ) := {x ∈ Ω | ∀i ∈ [n] : xi = ai } a cylinder in

Ω. Let A be the σ -algebra generated by all cylinders. The precise
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structure ofA is not overly important in the remainder except that

it contains the following sets C(y).
For a �nite set I ⊂ N denote by {0, 1}I the set of all �nite binary

sequences with indices in I , formally, all y : I → {0, 1}. For y ∈
{0, 1}I , let C(y) := {x ∈ Ω | ∀i ∈ I : xi = yi }. Then A contains all

such sets C(y).
Formally speaking, {C(y) | y ∈ {0, 1}I } generates a sub-σ -

algebra of A, which is isomorphic to {0, 1}I . Consequently, any

probability measure P on the measurable space (Ω,A) gives rise to

a probability measure PI on {0, 1}I (with the power set asσ -algebra)

de�ned by PI (y) := P[C(y)] for all y ∈ {0, 1}I .
Building on these considerations, we can de�ne the mutation

operator of the (1 + 1) EAP when running on a �nite set I ⊂ N
of bit positions as follows. The o�spring stemming from a parent

x ∈ {0, 1}I is x ⊕ y, where y ∈ {0, 1}I is chosen randomly with

distribution PI . Here ⊕ denotes the bit-wise exclusive-or. In other

words, we �ip those bits i of x for which yi is one.

Next we argue that the (1 + 1) EA ®p and (1 + 1) EAQ classes are

subclasses of the class of all algorithms (1 + 1) EAP.

• Let ®p = (pi )i ∈N be any sequence in [0, 1]. Then the (1 +
1) EA ®p , when run on a �nite bit set I , performs mutation

by �ipping each bit i ∈ I independently with probability

pi . When de�ning a probability measure P on Ω by setting

P[C(a1, . . . ,an )] =
∏

i ∈[n];ai=1
pi

∏
i ∈[n];ai=0

(1 − pi )

for all cylinders, then the (1 + 1) EA ®p and the (1 + 1) EAP

are the same algorithm.

• Let Q be a discrete distribution on [0, 1]. Then the (1 +
1) EAQ , when run on a �nite bit set I , performs mutation

by �rst sampling a number q fromQ and then �ipping each

bit i ∈ I independently with probability q. When de�ning

a probability measure P on Ω by setting

P[C(a1, . . . ,an )] =
∑
q

Q(q)
∏

i ∈[n];ai=1
q

∏
i ∈[n];ai=0

(1 − q),

then the (1 + 1) EAQ and the (1 + 1) EAP are the same

algorithm.

For this reason, any lower bound for the best performance achiev-

able with an algorithm from the class (1 + 1) EAP immediately

carries over to the subclasses (1 + 1) EA ®p and (1 + 1) EAQ . Now

that we regard the same class (1 + 1) EAP of algorithms for the

two uncertainty models of an unknown initial segment [n] and an

unknown set I of relevant bits, it is clear that a lower bound for

the �rst case carries over to the second. Since our lower bound

for the �rst case will essentially match our upper bounds for both

models (as they are equal), it su�ces in the following to regard the

model of an unknown initial segment I = [n] of bits on which the

LeadingOnes function to be optimized is de�ned.

The next step towards the solution of our problem is the follow-

ing surprising result that for any algorithm (1 + 1) EAP there is

a randomized local search algorithm (�ipping a single randomly

chosen bit as mutation operation) that has exactly the same perfor-

mance on all initial segments.

Generalized Randomized Local Search on In�nite Bit

Strings: RLS ®p . Let p1,p2, . . . be non-negative numbers with

∑
n∈N pn ≤ 1. Then the algorithm RLS ®p is a special case of the

(1+ 1) EAP that �ips exactly the ith bit with probability pi and �ips

no bit with probability 1 −∑
n∈N pn . More formally, RLS ®p equals

(1 + 1) EAP for the measure P de�ned by P[C(a1, . . . ,an )] :=
pi , if ai = 1 and aj = 0 for j ∈ [n] \ {i},
0, if there are i, j ∈ [n] with i , j and ai = 1 = aj ,

1 −∑
n∈N pn , aj = 0 for j ∈ [n].

Lemma 3.1. Let P be any probability measure on Ω = {0, 1}N.
Then there is a sequence of non-negative numbers ®p = (p1,p2, . . . )
with

∑
n∈N pn ≤ 1 such that, for LeadingOnes, the randomized

local search algorithm RLS ®p and (1 + 1) EAP when run on any initial

segment of bits have exactly the same run time distribution.

To prove this lemma, we need the auxiliary result that in any run

of an (1+1) EAP algorithm at any time t the random individualX (t )

is identically distributed within each �tness level. This elementary

observation has been used previously in [2, 5, 8] to analyze the

optimization of �xed length LeadingOnes instances.

Lemma 3.2. Consider a run of an (1 + 1) EAP algorithm on the

LeadingOnes function de�ned on the initial segment [n]. Denote by
X (0) the random initial individual and by X (t ), t ∈ N, the random
individual forming the one-element population of the (1 + 1) EAP
after the t-th iteration. Then, for any two search points x ,y ∈ {0, 1}n
with Lo(x) = Lo(y), we have Pr[X (t ) = x] = Pr[X (t ) = y].

To prove Lemma 3.1, for all n ∈ N, let Cn := C(a1, . . . ,an ) with

a1 = · · · = an−1 = 0 and an = 1. Let pn := P[Cn ]. Since the sets

Cn are disjoint, we have

∑
n∈N pn ≤ 1. Using Lemma 3.2 one can

show, via an inductive proof, that the (1 + 1) EAP and RLS ®p have

an identical optimization behavior.

We note in the following lemma that, for LeadingOnes, the

class of algorithms (1 + 1) EA ®p regarded in [4] is equally powerful

as the class of algorithms RLS ®p . Together with Lemma 3.1, this

shows that all three classes of algorithms are equally powerful, and

in particular, that the subclass (1 + 1) EA ®p regarded in [4] was of

maximal power.

Lemma 3.3. For any sequence of non-negative numbers ®p =
(p1,p2, . . . ) with

∑
n∈N pn ≤ 1 there is a sequence ®q = (q1,q2, . . . )

of numbers in [0, 1] such that RLS ®p and (1 + 1) EA®q for each initial

segment of bits have the same run time distribution on LeadingOnes.

Proof. Let us assume that we have pn < 1 for all n ∈ N, as

otherwise trivially ®q := ®p su�ces. Let q1 := p1 and recursively

qn := pn/
∏n−1

j=1 (1 − qj ). Using induction, it is not di�cult to see

that qn = pn/(1 −
∑
j<n pj ). Furthermore, since 1 − ∑

j<n pj ≤
pn , this also shows that qn ≤ 1. As discussed earlier, this (1 +
1) EA®q is a special case of the (1 + 1) EAP with P[C(a1, . . . ,an )] =∏

i ∈[n];ai=1 qi
∏

i ∈[n];ai=0(1 − qi ). In particular, for a1 = · · · =
an−1 = 0 and an = 1, we have P[C(a1, . . . ,an )] = qn

∏n−1
i=1 (1 − qi ),

which by construction equals pn . Consequently, if we redo the

construction of the proof of Lemma 3.1 with this (1 + 1) EAP, we

obtain our original RLS ®p algorithm. Consequently, the (1 + 1) EA®q
just constructed has an identical performance with RLS ®p . �
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An advantage of the class RLS ®p is that the expected run times are

easy to compute. The following result will be used in Lemma 3.6 to

bound the run time of the (1 + 1) EA ®p .

Lemma 3.4. Let ®p = (p1,p2, . . . ) be a sequence of non-negative

numbers with

∑
n∈N pn ≤ 1. Then the expected run time of RLS ®p

optimizing the LeadingOnes function on the initial segment [n] is
1

2

∑n
i=1

1

pi .

The above insight allows us to completely describe the possible

performances of (1 + 1) EAP, (1 + 1) EA ®p , and RLS ®p algorithms on

LeadingOnes de�ned on an initial segment of unknown length

of an in�nite sequence of bits. To make things precise, we call the

function E : N→ R the initial segment run time pro�le of such an

algorithm if its expected run time on the LeadingOnes function

de�ned on the bits with indices in [n] equals E(n).

Theorem 3.5 (characterization of initial segment run time

profiles). Let E : N→ R. The following four properties are equiva-
lent.

(i) There is a sequence q : N→ [0, 1] with ∑∞
n=1 qn ≤ 1 such

that for all n ∈ N, we have E(n) = 1

2

∑n
i=1

1

qi .

(ii) E is the initial segment run time pro�le of the (1 + 1) EAP
for some distribution P.

(iii) E is the initial segment run time pro�le of the (1 + 1) EA ®p
for some ®p : N→ [0, 1].

(iv) E is the initial segment run time pro�le of RLS ®p for some

®p : N→ [0, 1] with ∑∞
n=1 pn ≤ 1.

If these properties are ful�lled, then q in (i) equals ®p in (iv).

3.2 Computing Concrete Lower Bounds for

LeadingOnes

In the remainder of this section, we use Theorem 3.5 to compute

concrete run time bounds for the (1 + 1) EA ®p . These bounds then

immediately yield performance bounds for all the other settings

covered by Theorem 3.5. We note that some (but not all) of the

subsequent run time results can alternatively be obtained by ana-

lyzing the summable sequences described in Theorem 3.5.(i). Such

an approach would, however, not give any additional insights into

the sequences ®p underlying the (1+1) EA ®p with initial segment run

time pro�le E, thus motivating us to study this algorithm directly.

3.2.1 Initial Segment Run Time Profile of the (1 + 1) EA ®p .
Lemma 3.1 can be used to precisely determine the initial segment

run time pro�le of the (1+1) EA ®p . From this we can easily compute

the following upper and lower bounds. This result extends Theo-

rem 15 of [4] where the upper bound mentioned in Theorem 2.1 is

given for the case that ®p is monotonically decreasing and summable.

Lemma 3.6. Let ®p = (pn )n∈N be a sequence of positive terms pn >
0. The expected optimization time E[T ®p (n)] of the (1 + 1) EA ®p on the

LeadingOnes instance of length n in the initial segment uncertainty

model can be bounded by

1

2

n∑
i=1

exp(Si−1)
pi

≤ E[T ®p (n)] ≤
1

2

n∑
i=1

exp(2Si−1)
pi

,

where, for all n, Sn :=
∑n
i=1 pi denotes the n-th partial sum of ®p and

S0 := 0.

When, in addition, ®p is monotonically decreasing and there exists

a constant c such that, for all n, pn/pn/2 ≥ c , then E[T ®p (n)] =
n exp(Θ(Sn ))/pn . For summable sequences satisfying these additional

requirements, we thus have E[T ®p (n)] = Θ(n/pn ).

From Lemma 3.6 it is not di�cult to get, via simple algebraic

operations, the following result, which allows us to multiply a

summable sequence with constant factors without harming the

asymptotic run time pro�le.

Lemma 3.7. Let ®p : N → [0, 1], 0 < c , and ®q = (qi )i ∈N with

qi := c · pi ∈ [0, 1/2]. Then there exists a constant C > 0 such that,

for all n ∈ N, E[T ®q (n)] ≤ C E[T ®p (n)]. When c < 1, C can be chosen

as 1/c while for c > 1 we may chose C := exp(2cp)/c .

3.2.2 No Separation Between Summable and Non-Summable Se-
quence. Given the bounds proven so far, one may be tempted to

believe the best performing (1 + 1) EA ®p is based on a summable

sequence ®p. Furthermore, one may ask whether between summable

and non-summable sequences there is a strict separation in the per-

formance of the (1 + 1) EA ®p on LeadingOnes in the sense that, for

example, there exists a bound B such that for every non-summable

sequence ®q the expected optimization time of the (1 + 1) EA®q on

LeadingOnes is greater than B while for some summable sequence

®p the expected run time of the (1 + 1) EA ®p is at most B. Regardless

of how one makes such a claim precise, the following observations

show that it cannot hold. More precisely, we show that for every

summable sequence ®p there exists a non-summable sequence ®q
such that the expected performance of the (1+ 1) EA®q on Leading-

Ones is of strictly smaller order than that of the (1 + 1) EA ®p . Less

surprisingly, the converse also holds.

Theorem 3.8. (A) For every summable sequence ®p of positive terms

0 < pn < 1 there exists a non-summable sequence ®q of terms 0 <

qn < 1 such that the expected optimization times T ®p and T ®q of the

(1 + 1) EA ®p and (1 + 1) EA®q , respectively, on the LeadingOnes

instance of length n in the initial segment uncertainty model satisfy

E[T ®q ] = o(E[T ®p ]).
(B) Likewise, for every non-summable sequence ®q of positive terms

0 < qn < 1 there exists a summable sequence ®p of elements 0 < pn <
1 such that E[T ®p ] = o(E[T ®q ]) for T ®p and T ®q de�ned as above.

To prove Theorem 3.8.(A), we �rst argue that, without loss of

generality, we can assume that

∑
i ∈N pi = exp(−1) and that, for all

n ∈ N, pn ≤
∑
j>n pj . The sequence ®q of the statement is de�ned

by setting, for every i ∈ N, ri :=
∑
j≥i pj and

qi :=
pi

ri+1 ln(1/ri+1)
= − pi

ri+1 ln(ri+1)
.

By bounding qi ≥
∫ ri
ri+1

1

x ln(1/x )dx , one can show that ®q is not sum-

mable. The run time statement follows from applying Lemma 3.6

and Lemma 2.7 to ®p and ®q and the bounds on the run times, respec-

tively.

Theorem 3.8.(B) can be veri�ed by setting p1 := q1 and, for all

n ≥ 2, pn := qn/S2n , where Sn :=
∑n
i=1 qi . It is then not di�cult

to show that

∑n
i=1 pi ≤ q1 +

∫ Sn
S1

1

x 2
dx , proving that ®p is indeed
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summable. Again we apply Lemma 3.6 and Lemma 2.7 to obtain

the claimed run time statement.

3.2.3 Limiting Behavior. The previous results show, in partic-

ular, that there is no best possible (1 + 1) EA ®p for LeadingOnes:

whatever the sequence underlying the (1 + 1) EA ®p looks like, there

exists another one giving strictly better performance. It is nev-

ertheless interesting to understand which absolute performance

guarantees can be achieved. This is the aim of the following state-

ment.

Theorem 3.9. Let b > 1. For every sequence ®p of positive

terms 0 < pn < 1 and for all s ∈ N the run time T ®p of the

(1 + 1) EA ®p on the LeadingOnes instance of length n in the ini-

tial segment uncertainty model satis�es E[T ®p (n)] = ω(n/p
s,0
b (n)) =

ω(n2 logb (n) log
(2)
b (n) . . . log

(s)
b (n)).

For b ≥ e it also holds that E[T ®p (n)] = ω(n/p∞b (n)) =
ω(n2 logb (n) log

(2)
b (n) . . .).

This theorem can be proven by �rst using Theorem 3.8 to argue

that one can assume ®p to be summable and then using Lemma 3.6 to

see that E[T ®p (n)] = Ω(∑n
i=1

1

pi ). By Lemma 2.3 it holds that 1/pi =
ω(1/ps,0b (i)) = ω(i logb (i) log

(2)
b (i) . . . log

(s)
b (i)). An application of

Lemma 2.7 then concludes the proof. The second statement follow

similarly; using Corollary 2.6 instead of Lemma 2.3.

4 ONEMAX

The main theorem of this section is our lower bound for optimizing

OneMax in the unrestricted uncertainty model.

Theorem 4.1. Let Q be a discrete distribution over mutation prob-

abilities from (0, 1). Let (di )i ∈N ∈ (0, 1)N be any non-summable

sequence.

For in�nitely many n ∈ N, the expected run time of the (1+1) EAQ
onOneMax instance of length n in the unrestricted uncertainty model

is at least c log(n)/dn for some constant c .

The idea behind the proof is to assign a quality q(n) of how suit-

able a distributionQ is for optimizing a OneMax instance of length

n. Clearly, whenever Q chooses a bit �ip probability of around 1/n,

optimization can proceed well; smaller probabilities are slower in

optimizing OneMax, higher probabilities are even disruptive. We

show that (a) the sequence q(n) is summable, showing that it is

in�nitely often smaller than any given non-summable sequence;

and (b) the expected progress (i.e., the drift) is at most kq(n) when

still k bits are missing. Together this gives the claimed lower bound.

From Theorem 4.1, Lemma 2.3, and Corollary 2.6 we obtain the

following result.

Corollary 4.2. For all b ≥ e and all distributions Q over (0, 1)
there exists a constant c > 0 such that for in�nitely many n ∈ N the

expected run time of the (1+ 1) EAQ on a OneMax instance of length

n in the unrestricted uncertainty model is at least c log(n)/p∞b (n) =
Ω(n(logb (n))2 log

(2)
b (n) log

(3)
b (n) . . .).

Likewise, for all s ∈ N and all distributions Q over (0, 1), there
exists a constant c > 0 such that, for in�nitely many n ∈ N, the
expected run time of the (1+ 1) EAQ on a OneMax instance of length

n in the unrestricted uncertainty model is at least c log(n)/p(s,0)b (n) =
Ω(n(log(n))2 log(2)(n) . . . log(s)(n)).

In contrast to the case of LeadingOnes, our results for OneMax

only pertain to the unrestricted uncertainty model, but not the

initial segment uncertainty model. This latter model turns out to

be harder to give good lower bounds for because of the following

phenomenon. While for LeadingOnes early bits must not �ip for

making progress, for OneMax early bits may �ip in exchange of

later �ips. If these later bits �ip more rarely (and are thus more

costly to optimize), such an exchange may actually be bene�cial. It

remains open how this e�ect can be analyzed.

5 SUMMARY AND OUTLOOK

In this work, we proved the �rst non-trivial lower bounds for the

(1+ 1) EA ®p and (1+ 1) EAQ algorithm classes that were previously

found useful to cope with unknown solution length scenarios. One

particularly noteworthy result is that both classes have the same

performance when optimizing LeadingOnes in the initial segment

uncertainty model. If this is not a particularity of the LeadingOnes

function but rather a general phenomenon, then this would suggest

to rather use the easier to understand (1 + 1) EAQ class. Note that

for a (1 + 1) EAQ algorithm, for many problems the run time on

a subinstance of length n can be upper bounded by the reciprocal

of the probability that the mutation rate is in [1/2n, 2n] times the

worst-case run time of the (1 + 1) EA with mutation rate in the

interval [1/2n, 2n] on this instance (without uncertainty). This

estimate is valid if additional iterations with other mutation rates

cannot be harmful. This is the case, e.g., for run time analyses

using the �tness level method. The next step towards increasing

our understanding on the relation of these algorithm classes would

be to prove tight bounds for the (1 + 1) EA ®p class on the OneMax

function in the initial segment uncertainty model, a problem that

we unfortunately could not solve.
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