
Bounding Bloat in Genetic Programming
Benjamin Doerr

Laboratoire d’Informatique (LIX)

École Polytechnique

Palaiseau, France

Timo Kötzing

Hasso Plattner Institute

Potsdam, Germany

J. A. Gregor Lagodzinski

Hasso Plattner Institute

Potsdam, Germany

Johannes Lengler

ETH Zürich

Zürich, Switzerland

ABSTRACT
While many optimization problems work with a �xed number of

decision variables and thus a �xed-length representation of possi-

ble solutions, genetic programming (GP) works on variable-length

representations. A naturally occurring problem is that of bloat

(unnecessary growth of solutions) slowing down optimization. The-

oretical analyses could so far not bound bloat and required explicit

assumptions on the magnitude of bloat.

In this paper we analyze bloat in mutation-based genetic pro-

gramming for the two test functions ORDER and MAJORITY. We

overcome previous assumptions on the magnitude of bloat and give

matching or close-to-matching upper and lower bounds for the

expected optimization time.

In particular, we show that the (1+1) GP takes (i) Θ(Tinit +
n logn) iterations with bloat control on ORDER as well as MA-

JORITY; and (ii) O(Tinit logTinit + n(logn)3) and Ω(Tinit + n logn)
(and Ω(Tinit logTinit) for n = 1) iterations without bloat control on

MAJORITY.

CCS CONCEPTS
•Theory of computation →Optimization with randomized
search heuristics; Genetic programming; Theory of rando-
mized search heuristics;

KEYWORDS
Genetic Programming, Mutation, Theory, Run Time Analysis

1 INTRODUCTION
While much work on nature-inspired search heuristics focuses on

representing problems with strings of a �xed length (simulating

a genome), genetic programming considers trees of variable size.

One of the main problems when dealing with a variable-size repre-

sentation is the problem of bloat, meaning an unnecessary growth

of representations, exhibiting many redundant parts and slowing

down the search.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior speci�c permission

and/or a fee. Request permissions from permissions@acm.org.

GECCO ’17, Berlin, Germany
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

978-1-4503-4920-8/17/07. . . $15.00

DOI: http://dx.doi.org/10.1145/3071178.3071271

In this paper we study the problem of bloat from the perspective

of run time analysis. We want to know how optimization proceeds

when there is no explicit bloat control, which is a setting notoriously

di�cult to analyze formally: Previous works were only able to give

results conditional on strong assumptions on the bloat (such as

upper bounds on the total bloat), see [NUW13] for an overview.

We use recent advances from drift theory as well as other tools

from the analysis of random walks to bound the behavior and im-

pact of bloat, thus obtaining unconditional bounds on the expected

optimization time even when no bloat control is active.

Our focus is on mutation-based genetic programming (GP) algo-

rithms, which has been a fruitful area for deriving run time results

in GP. We will be concerned with the problems ORDER and MAJOR-

TIY as introduced in [GO98]. This is in contrast to other theoretical

work on GP algorithms which considered the PAC learning frame-

work [KNS11] or the Max-Problem [KSNO12] as well as Boolean

functions [MMM13, MM14, MO16].

Individuals for ORDER and MAJORTIY are binary trees, where

each inner node is labeled J (short for join, but without any associ-

ated semantics) and leaves are labeled with variable symbols; we

call such trees GP-trees. The set of variable symbols is {xi | i ≤
n} ∪ {x i | i ≤ n}, for some n. In particular, variable symbols are

paired (xi is paired with x i ). We say that in a GP-tree t a leaf u
comes before a leaf v if u comes before v in an in-order parse of the

tree.

For the ORDER problem �tness is assigned to GP-trees as follows:

we call a variable symbol xi expressed if there is a leaf labeled xi
and all leaves labeled x i do not come before that leaf. The �tness

of a GP-tree is the number of its expressed variable symbols xi .
For the MAJORITY problem, �tness is assigned to GP-trees as

follows. We call a variable symbol xi expressed if there is a leaf

labeled xi and there are at least as many leaves labeled xi as there

are leaves labeled x i (the positive instances are in the majority).

Again, the �tness of a GP-tree is the number of its expressed variable

symbols xi .
A �rst run time analysis of genetic programming on ORDER and

MAJORITY was conducted in [DNO11]. This work considered the

algorithm (1+1) GP proceeding as follows. A single operation on a

GP-tree t chooses a leaf u of t uniformly at random and randomly

either relabels this leaf (to a random variable symbol), deletes it

(i.e. replacing the parent of u with the sibling of u) or inserts a leaf

here (i.e., replaces u with an inner node with one randomly labeled

child and u as the other child, in random order). The (1+1) GP is

provided with a parameter k which determines how many such

operations make up an atomic mutation; in the simplest case with

921



GECCO ’17, July 15-19, 2017, Berlin, Germany Doerr et al.

Table 1: Summary of best known bounds. Note that Tmax denotes the maximal size of the best-so-far tree in the run until
optimization �nished (we consider bounds involving Tmax as conditional bounds).

Problem k Without Bloat Control With Bloat Control

ORDER

1 O(nTmax), [DNO11] Θ(Tinit + n logn), [Neu12]

1 + Pois(1) O(nTmax), [DNO11] Θ(Tinit + n logn), Theorem 4.1

MAJORITY

1

O(Tinit logTinit + n log3 n), Theorem 5.2

Θ(Tinit + n logn), [Neu12]Ω(Tinit logTinit), n = 1, Theorem 5.1

Ω(Tinit + n logn), Theorem 5.1

1 + Pois(1)
O(Tinit logTinit + n log3 n), Theorem 5.2

Θ(Tinit + n logn), Theorem 4.1Ω(Tinit logTinit), n = 1, Theorem 5.1

Ω(Tinit + n logn), Theorem 5.1

k = 1, but a random choice of k = 1+Pois(1) (where Pois(1) denotes

the Poisson distribution with parameter λ = 1) is also frequently

considered. The (1+1) GP then proceeds in generations with a

simple mutation/selection scheme (see Algorithm 1).

A straightforward version of bloat control for this algorithm

was introduced in [LP02] as lexicographic parsimony pressure. Here

the algorithm always prefers the smaller of two trees, given equal

�tness. For this [Neu12] was able to give tight bounds on the opti-

mization time in the case of k = 1: in this setting no new redundant

leaves can be introduced. The hard part is now to give an analysis

when k = 1 + Pois(1), where bloat can be reintroduced whenever

a �tness improvement is achieved (without �tness improvements,

only smaller trees are acceptable). With a careful drift analysis,

we show that in this case we get an (expected) optimization time

of Θ(Tinit + n logn) (see Theorem 4.1). Previously, no bound was

known for MAJORITY and the bound of O(n2 logn) for ORDER

required a condition on the initialization.

Without such bloat control it is much harder to derive de�-

nite bounds. From [DNO11] we have the conditional bounds of

O(nTmax) for ORDER using either k = 1 or k = 1 + Pois(1), where

Tmax is an upper bound on the maximal size of the best-so-far tree

in the run (thus, these bounds are conditional on these maxima

not being surpassed). For MAJORITY and k = 1 [DNO11] gives

the conditional bound of O(n2Tmax logn). We focus on improving

the bound for MAJORITY and obtain a bound of O(Tinit logTinit +
n log3 n) for both k = 1 and k = 1 + Pois(1) (see Theorem 5.2). The

proof of this theorem requires signi�cant machinery for bounding

the extent of bloat during the run of the optimization.

The paper is structured as follows. In Section 2 we will give

a short introduction to the studied algorithm. In Section 3 the

main tool for the analysis is explained, that is the analysis of drift.

Here we state a selection of known theorems as well as a new

one (Theorem 3.3), which gives a lower bound conditional on a

multiplicative drift with a bounded step size. In Section 4 we will

study the case of bloat control given k = 1 + Pois(1) operations in

each step. Subsequently we will study MAJORITY without bloat

control in Section 5. Section 6 concludes this paper. Due to space

restrictions we omit the proof of Theorem 3.3 and only sketch the

proofs in Section 4 and 5. In particular, we omit the proofs of all

technical lemmas.

2 PRELIMINARIES
We consider tree-based genetic programming, where a possible

solution to a given problem is given by a syntax tree. The inner

nodes of such a tree are labeled by function symbols from a set FS
and the leaves of the tree are labeled by terminals from a set T .

We analyze the problems ORDER and MAJORITY, whose only

function is the join operator (denoted by J ). The terminal set X
consists of 2n variables, where x i is the complement of xi :

• FS := {J }, J has arity 2,

• X := {x1,x1, . . . ,xn ,xn }.
For a given syntax tree t the value of the tree is computed by

parsing the tree in-order and generating the set S of expressed
literals in this way. For ORDER a literal i is expressed if a variable

xi is present in t and there is no x i that is visited in the in-order

parse before the �rst occurrence of xi . For MAJORITY a literal i is

expressed if a variable xi is present in t and the number of variables

xi is at least the number of variables x i .
In this paper we consider simple mutation-based genetic pro-

gramming algorithms which use a modi�ed version of the HIERAR-

CHICAL VARIABLE LENGTH (HVL) operator ([O’R95], [OO94])

called HVL-Prime as discussed in [DNO11]. HVL-Prime allows to

produce trees of variable length by applying three di�erent opera-

tions: insert, delete and substitute (see Figure 1). Each application

of HVL-Prime chooses one of these three operations uniformly at

random, whereas k denotes the number of applications of HVL-

Prime we allow for each mutation.

We associate with each tree t the complexity C , which denotes

the number of nodes t contains. Given a function F , we aim to

generate an instance t maximizing F .

We consider two problems. The �rst one is the single problem of

computing a tree t which maximizes F . During an optimization run

922



Bounding Bloat in Genetic Programming GECCO ’17, July 15-19, 2017, Berlin, Germany

Given a GP-tree t , mutate t by applying HVL-Prime k times. For each application, choose uniformly at random one of the following

three options.

substitute Choose a leaf uniformly at random and substitute it with a leaf in X selected uniformly at random.

insert Choose a node v ∈ X and a leaf u ∈ t uniformly at random. Substitute u with a join node J , whose children are u and

v , with the order of the children chosen uniformly at random.

delete Choose a leaf u ∈ t uniformly at random. Let v be the sibling of u. Delete u and v and substitute their parent J by v .

Figure 1: Mutation operator HVL-Prime

•
x1

•
x4

•
x2

•
x2

•
x1

J J •
x3

J J

J

•
x1

•
x1

•
x2

•
x2

J J

J

Figure 2: Two GP-trees with the same �tness. For ORDER
the �tness is 1 since only the �rst literal occurs with a non-
negated variable �rst. For MAJORITY the �tness is 2, since
the literal 1 and 2 have one variable xi and also one varia-
ble x i . However, the left one has complexity 11 whereas the
right one has complexity 7.

we can use the complexityC to generate an order for solutions with

the same �tness by preferring solutions with smaller complexity

(see Figure 2). This gives us a way of breaking ties between soluti-

ons with the same �tness. Hence, the second problem consists of

maximizing the multi-objective function given by F and C .

Consequently, we study the following problems:

• ORDER and MAJORITY without bloat control, which con-

sist of maximizing the given function without studying the

complexity.

• ORDER and MAJORITY with bloat control, which consist

of maximizing the given function and preferring solutions

with smaller complexity, if two solutions have the same

function value.

To solve these problems we study the (1+1) GP proceeding as

follows. It starts with a given initial tree with Tinit leaves and tries

to improve its �tness iteratively. In each iteration, the number

of mutation steps k is chosen according to a �xed distribution;

important options for this distribution is (i) constantly 1 and (ii)

1+ Pois(1), where Pois(λ) denotes the Poisson distribution with pa-

rameter λ. The choices for k in the di�erent iterations are i.i.d. The

(1+1) GP then produces an o�spring from the best-so-far individual

by applying mutation k times in a row; the o�spring is discarded

if its �tness is worse than the best-so-far, otherwise it is kept to

replace the previous best-so-far. Recall that the �tness in the case

with bloat control contains the complexity as a second order term.

Algorithm 1 states the (1+1) GP more formally.

Algorithm 1: (1+1) GP

1 Let t be the initial tree;

2 while optimum not reached do
3 t ′ ← t ;

4 Choose k ;

5 for i = 1 to k do
6 t ′ ← mutate(t ′);
7 if f (t ′) ≥ f (t) then t ← t ′;

3 DRIFT THEOREMS
We will use a variety of drift theorems to derive the theorems of

this paper. Drift, in this context, describes the expected change of

the best-so-far solution within one iteration with respect to some

potential. In later proofs we will de�ne potential functions on best-

so-far solutions and prove bounds on the drift; these bounds then

translate to expected run times with the use of the drift theorems

from this section. We start with a theorem for additive drift.

Theorem 3.1 (Additive Drift [HY04]). Let (Xt )t ≥0 be random
variables describing a Markov process over a �nite state space S ⊆ R.
Let T be the random variable that denotes the earliest point in time
t ≥ 0 such that Xt = 0. If there exist c > 0 such that

E[Xt − Xt+1 | T > t] ≤ c,

then

E[T | X0] ≥
X0

c
.

We will use the following variable drift theorem due to [RS12], a

extension of the variable drift theorem from [Joh10, Theorem 4.6].

Theorem 3.2 (Variable Drift [RS12]). Let (Xt )t ≥0 be random
variables describing a Markov process over a �nite state space S ⊆ R+

0

and let xmin := min{x ∈ S | x > 0}. Furthermore, let T be the
random variable that denotes the �rst point in time t ∈ N for which
Xt = 0. Suppose that there exists a monotone increasing function
h : R+ → R+ such that 1/h is integrable and

E[Xt − Xt+1 | Xt ] ≥ h(Xt )

holds for all t < T . Then,

E[T | X0] ≤
xmin

h(xmin)
+

∫ X0

xmin

1

h(x)dx .

923



GECCO ’17, July 15-19, 2017, Berlin, Germany Doerr et al.

For our lower bounds we need the following new drift theorem,

which allows for non-monotone processes (in contrast to, for exam-

ple, the lower bounding multiplicative drift theorem from [Wit13]),

but requires an absolute bound on the step size.

Theorem 3.3 (Multiplicative Drift, bounded step size). Let
(Xt )t ≥0 be random variables describing a Markov process over a �nite
state space S ⊆ R+. Let κ > 0, smin ≥

√
2κ and let T be the random

variable denoting the earliest point in time t ≥ 0 such that Xt ≤ smin.
If there exists a positive real δ > 0 such that, for all s > smin and
t ≥ 0 with Pr[Xt = s] > 0 it holds that

(1) |Xt − Xt+1 | ≤ κ , and
(2) E[Xt − Xt+1 | Xt = s] ≤ δs ,

then, for all s0 ∈ S with Pr[X0 = s0] > 0,

E[T | X0 = s0] ≥
1 + ln(s0) − ln(smin)

2δ + κ2

s2
min
−κ2

.

4 RESULTS WITH BLOAT CONTROL
In this section we show the following theorem.

Theorem 4.1. The (1+1) GP with bloat control choosing k =
1+Pois(1) on ORDER andMAJORITY takesΘ(Tinit+n logn) iterations
in expectation.

4.1 Lower Bound
Regarding the proof of the lower bound, letTinit and n be given. Let

t be a GP-tree which containsTinit leaves labeled x1. From a simple

coupon collector’s argument we get a lower bound of Ω(n logn) for

the run time to insert each xi . As an optimal tree cannot list any

of the leaves in t in addition to the expected number of deletions

performed by (1+1) GP being in O(1), we obtain a lower bound of

Tinit from the additive drift theorem (Theorem 3.1).

4.2 Upper Bound
The following subsection is dedicated to the proof of the upper

bound. Let Tinit, and n be given. We want to apply a theorem

concerning variable drift (Theorem 3.2). In order to construct a

suitable potential function we partition the leaves of a GP-tree t
into three pairwise disjoint sets:

R(t) Redundant leaves, i.e. leavesv , where the �tness of t is not

a�ected by deleting v .

C+(t) Critical positive leaves, i.e. leaves v , where the �tness of t
decreases by deleting v .

C−(t) Critical negative leaves, i.e. leaves v , where the �tness of t
increases by deleting v .

We denote the number of expressed literals of t byv(t). Additionally,

we denote by r (t), c+(t) and c−(t) the cardinality of R(t),C+(t) and

C−(t), respectively. Let s(t) be the number of leaves of t (we call it

the size of t ). Due to the above de�ned sets we obtain

s(t) = r (t) + c+(t) + c−(t). (1)

Before proving the upper bound on the expected optimization time

we are going to prove upper bounds on the number of critical leaves.

Lemma 4.2. Let t be a GP-tree, then for ORDER and MAJORITY
we have

c+(t) ≤ r (t) +v(t).

Lemma 4.3. Let t be a GP-tree, then for ORDER and MAJORITY
we have

c−(t) ≤ 2r (t).

Given the best-so-far GP-tree t we are going to construct a po-

tential function in order to apply drift analysis. Here we want to

reward strongly an increase of �tness given by a decrease of the

unexpressed variables. Furthermore, we want to reward a decre-

ase of size but without punishing an increase of �tness. Thus, we

associate with t the potential function

д(t) = 10(n −v(t)) + s(t) −v(t).

This potential is 0 if and only if t contains no redundant leaves and

for each i ≤ n there is an expressed xi . Furthermore, by Lemma 4.2

and Lemma 4.3 s(t) −v(t) is also 0 since r (t) is 0.

Let t be a GP-tree, the best-so-far tree in a run of the (1+1) GP.

Let t ′ be the random variable describing the best-so-far solution in

the next iteration. We are going to derive a bound on the drift, i.e.

the expected change д(t) − д(t ′), which we denote by ∆(t).
For this purpose we will distinguish between the case D1, where

the algorithm chooses to do exactly one operation in the observed

mutation step, and D2, where the algorithm chooses to do at least

two operations in the observed mutation step. Since the algorithm

chooses in each step at least one operation, we observe

Pr[D1] = Pr[Pois(1) = 0] = 1

e
,

Pr[D2] = 1 − 1

e
.

Furthermore, let E be the event that v(t ′) = v(t). Note that,

conditional on E, the potential cannot increase since the number of

leaves can only decrease. However, conditional on E, the potential

can increase since every addition of a leaf is accepted as long as

the �tness increases. Therefore, we are going to derive conditional

bounds on the drift and apply the law of total probability in order

to obtain the general drift.

Lemma 4.4. For the expected negative drift measured by д(t) con-
ditional on D2 holds

E[∆(t) | D2] ≥ −
1

e

(
4 · 10−7

)
.

In addition, if s(t) > n/2 holds, this bound is enhanced to

E[∆(t) | D2] > −
7д(t)
10en

(
4 · 10−6

)
Proof. First we note that the drift conditional on D1 is always

positive as with one operation the algorithm cannot increase the

size by more than 1. However, for an o�spring with increased

number of redundant leaves we need to increase the size by more

than 1.

Concerning the drift conditional on D2 we observe

E[∆(t) | D2] ≥ −E[−∆(t) | E] Pr[E],

since the drift can be negative only in this case. In particular, we

observe a drift of at least 10 for the increase of �tness counteracted

by the possible increase of the size. The latter is at most the number

of operations the algorithm does in the observed step, since every

operation can increase the size by at most 1.

924



Bounding Bloat in Genetic Programming GECCO ’17, July 15-19, 2017, Berlin, Germany

LetY ∼ Pois(1)+1 be the random variable describing the number

of operations in a round. Note that, for all i ≥ 1,

Pr[Y = i] = 1

e(i − 1)! .

By this probability we obtain for the expected negative drift condi-

tional on E

E[−∆(t) | E] =
∞∑
i=0
E[−∆(t) | Y = i,E] Pr[Y = i | E]

≤
∞∑
i=0
(i − 10) Pr[Y = i | E]

≤
∞∑

i=11
(i − 10) Pr[Y = i | E].

Due to Bayes’ theorem we derive

E[−∆(t) | E] ≤
∞∑

i=11
(i − 10) Pr[E | Y = i] Pr[Y = i]

Pr[E]
,

which yields the �rst bound by pessimistically assuming Pr[E | Y =
i] = 1

E[∆(t) | D2] ≥ −
∞∑

i=11
(i − 10) Pr[Y = i]

= −1
e

(
2e − 10e +

10∑
i=1

10 − i
(i − 1)!

)
≥ −1

e

(
4 · 10−7

)
. (2)

In order to obtain a better bound on the negative drift, we are

going to bound the probability Pr[E | Y = i] by a better bound than

the previously applied bound of 1.

The event E requires a non-expressed variable in t to become

expressed in t ′. There are n − v(t) non-expressed variables in t .
These can become expressed by either adding a corresponding

positive literal or deleting a corresponding negative literal. There

are 2n literals in total and due to n −v(t) ≤ д(t)/10 adding such a

positive literal has a probability of at most

n −v(t)
6n

≤ д(t)
60n

per operation. Regarding the deletion of negative literals, there are

at most s(t) −v(t) negative literals. Hence, due to s(t) ≤ д(t) and

s(t) > n/2 the probability of deleting a negative literal is at most

s(t) −v(t)
3s(t) ≤ 2д(t)

3n

per operation. Let ql be the probability that the l-th mutation leads

an unexpressed variable to become expressed. We can bound the

probability that i operations lead to the expression of a previously

unexpressed bound by pessimistically assuming that the mutation

is going to be accepted. This yields by the union bound

Pr[E | Y = i] ≤
i⋃

l=1

ql ≤
i∑

l=1

qi =
iд(t)
n

(
1

60

+
2

3

)
<

iд(t)
n

7

10

.

Therefore, we obtain an expected drift conditional on D2 of

E[∆(t) | D2] ≥ −E[−∆ | E] Pr[E] > −
7д(t)
10en

∞∑
i=11

i(i − 10) 1

(i − 1)!

> −7д(t)
10en

(
4 · 10−6

)
.

�

We are now going to prove the upper bound by deriving the

expected positive drift outweighing the negative drift given by

Lemma 4.4. To do so, we observe that starting with a very big initial

tree the algorithm will delete redundant leaves with a constant

probability until most of the occurring literals are expressed. In

this second stage the size of the tree is at most linear in n and

the algorithm will insert literals, which do not occur in the tree at

all, with a probability of at least linear in 1/n until all literals are

expressed. In order to apply the second bound given by Lemma 4.4,

we will split the second stage in two cases.

Case 1: We �rst consider the case r (t) ≥ v(t). Due to Lemma 4.2,

Lemma 4.3 and Equation (1) we obtain

s(t) = r (t) + c+(t) + c−(t) ≤ 4r (t) +v(t) ≤ 5r (t),

thus the algorithm has a probability of at least 1/5 for choosing a

redundant leaf followed by choosing a deletion with probability

1/3. Since the deletion of a redundant leaf without any additional

operations does not change the �tness this contributes to the event

E. Hence, we obtain for the event D1

E[∆(t) | D1, E] Pr[E] ≥
1

15

.

Additionally, the drift conditional on D1 is always positive, which

yields

E[∆(t) | D1] ≥ E[∆(t) | D1, E] Pr[E] ≥
1

15

.

The drift conditional on D2 is given by Lemma 4.4. Overall, we

get a constant drift in the case of r (t) ≥ v(t) due to the law of total

expectation

E[∆(t)] ≥ E[∆(t) | D1] Pr[D1] + E[∆(t) | D2] Pr[D2]

≥ 1

15e
− 1

e

(
1 − 1

e

) (
4 · 10−7

)
≥ 1

e

(
1

15

− 4 · 10−7
)
≥ 3

50e
. (3)

Case 2: Suppose r (t) < v(t) and s(t) ≤ n/2. In particular, we

have for at least n/2 many i ≤ n that there is neither xi nor x i
present in t . The probability to choose xi is at least n/4 and the

probability that the algorithm chooses an insertion is 1/3. Since

the location of the newly inserted literal is unimportant we obtain

E[∆(t) | D1] Pr[D1] ≥
10

12e
.

For the expected drift in the caseD2 holds we apply again the bound

given by Lemma 4.4, which yields a constant drift analogously to

Case 1

E[∆(t)] ≥ 1

e

(
10

12

− 4 · 10−7
)
>

8

10e
.

925



GECCO ’17, July 15-19, 2017, Berlin, Germany Doerr et al.

Case 3: Consider now the case that r (t) < v(t) and s(t) > n/2.

In particular, the tree can contain at most 5n leaves due to

s(t) ≤ 4r (t) +v(t) < 5v(t) ≤ 5n,

which enables us to bound the probability that an operation chooses

a speci�c leaf v as

1

5n
≤ Pr[choose leaf v] ≤ 2

n
.

Let A be the set of i , such that there is neither xi nor x i in t , and

let B be the set of i , such that there is exactly one xi and no x i in

t . Recall that R(t) is the set of redundant leaves in t . For every i
in A let Ai be the event that the algorithm adds xi somewhere in t .
For every j in R(t) let Rj (t) be the event, that the algorithm deletes

j. Finally, let A′ be the event that one of the Ai holds, and R′ the

event that one of the Rj (t) holds.

Conditional on D1 we observe for every event Ai a drift of 10.

For each event Rj (t) conditional on D1 we observe a drift of 1 since

the amount of redundant leaves decreases by exactly 1. Hence,

E[∆(t) | Ai , D1] = 10,

E[∆(t) | Rj (t), D1] = 1.

Regarding the probability for these events we observe that forAi
the algorithm chooses with probability 1/3 to add a leaf and with

probability 1/(2n) it chooses xi for this. Furthermore, the position

of the new leaf xi is unimportant, hence

Pr[Ai | D1] ≥
1

6n
.

Regarding the probability of Rj (t), with probability at least 1/(5n)
the algorithm chooses the leaf j and with probability 1/3 the algo-

rithm deletes j. This yields

Pr[Rj (t) | D1] ≥
1

15n
.

In order to sum the events in A′ and R′, we need to bound the

cardinality of the two setsA and R(t). For this purpose we will need

the above de�ned set B. First we note that the cardinality of B is at

most v(t). In addition

|A| + |R(t)| ≥ r (t)

holds since R(t) is the set of all redundant leaves. Furthermore, we

observe that for any literal j, which is not in B or A, there has to

exist at least one redundant leaf x j or x j . Since every redundant leaf

is included in R(t) we obtain |A|+ |R(t)|+ |B | ≥ n and subsequently

|A| + |R(t)| ≥ n −v(t). (4)

Furthermore, due to (4) we deduce

s(t) −v(t) ≤ r (t) + c+(t) + c−(t) −v(t) (5)

≤ 4r (t) ≤ 4(|A| + |R(t)|).

This inequality (5) in conjunction with (4) yields

(10 + 4)(|A| + |R(t)|) ≥ 10(n −v(t)) + s(t) −v(t) = д(t).

We obtain the expected drift conditional on the event D1 as

E[∆(t) | D1] ≥ E[∆(t) | (A′ ∨ R′), D1] Pr[A′ ∨ R′ | D1]

=
∑
i ∈A
E[∆(t) | Ai , D1] Pr[Ai , D1]

+
∑

j ∈R(t )
E[∆(t) | Rj (t), D1] Pr[Rj (t) | D1]

≥ |A| 10
6n
+ |R(t)| 1

15n
≥ (|A| + |R(t)|) 1

15n

≥ д(t)
15(10 + 4)n .

Concerning the expected drift conditional on D2, the condition

for the second bound given by Lemma 4.4 is satis�ed in this case.

Summarizing the events D1 and D2 we obtain the expected drift

E[∆(t)] ≥ E[∆(t) | D1] Pr[D1] + E[∆(t) | D2] Pr[D2]

≥ д(t)
en

(
1

210

−
(
1 − 1

e

)
7

10

· 4 · 10−6
)

>
д(t)
250en

. (6)

Summarizing the derived expected drifts (3) and (6), we observe

a multiplicative drift in the case of

д(t)
250en

≤ 3

50e
,

which simpli�es to д(t) ≤ 15n. If д(t) > 15n, we observe a constant

drift. This constant drift is at least 3/50e since the expected drift

for Case 2 is always bigger than the one for Case 1.

We now apply the variable drift theorem (Theorem 3.2) with

h(x) = min{3/(50e), 1x/(250en)}, X0 = Tinit + 10n and xmin = 1,

which yields

E[T | д(t) = 0] ≤ 1

h(1) +
∫ Tinit+10n

1

1

h(x) dx

= 250en + 250en

∫
15n

1

1

x
dx +

50e

3

∫ Tinit+10n

15n+1
1 dx

= 250en (1 + log(15n)) + 50e

3

(Tinit − 5n − 1)

< 250en log(15en) + 50e

3

Tinit.

This establishes the theorem.

5 RESULTS MAJORITY
In this section we show the following theorems.

Theorem 5.1. The (1+1) GP without bloat control (choosing k = 1

or k = 1 + Pois(1)) on MAJORITY takes Ω(Tinit + n logn) iterations
in expectation.

Theorem 5.2. The (1+1) GP without bloat control (choosing k = 1

or k = 1 + Pois(1)) on (weighted) MAJORITY takes O(Tinit logTinit +
n log3 n) iterations in expectation.

5.1 Lower Bound
We are going to give a rough proof for the lower bound, which

will leave out in-depth analysis of standard arguments but gives

non-standard details.

926



Bounding Bloat in Genetic Programming GECCO ’17, July 15-19, 2017, Berlin, Germany

Let Tinit be large and t0 be a GP-tree which contains Tinit leaves

labeled x1 and no other leaves. From a simple coupon collector’s

argument we get a lower bound of Ω(n logn) for the run time to

insert each xi .
It remains to bound the time that the algorithm needs to express

the literal x1. To derive the second bound we observe, that the

algorithm does in expectation 2 operations in each iteration. Hence,

the algorithm needs in expectation Ω(Tinit) iterations to express

the �rst literal, which yields the desired result for general n ≥ 1.

Regarding the bound for the case n = 1 let t be a GP-tree, let

I1(t) be the number of variables x1 in t and I ′
1
(t) be the number of

variables x1 in t . We associate with t the potential function д(t) by

д(t) = I ′
1
(t) − I1(t).

In order to express the literal x1, the potential д(t) has to get non-

positive at one point. In particular, starting with д(t0) = Tinit, the

potential has to reach a value of at most T
2/3
init

. Let τ denote the

number of iterations until the algorithm encounters for the �rst

time a GP-tree t with д(t) ≤ T
2/3
init

. We are going to bound the

expected value of τ starting with t0, since this will yield a lower

bound for the expected number of iterations until the literal x1 is

expressed.

Let A be the event that in T 2

init
iterations the algorithm performs

at least once more than 15 ln(Tinit) operations in a single round.

With high probability the algorithm will not encounter the event A.

This yields

E[τ ] = E[τ | A] Pr[A] + E[τ | A] Pr[A] ≥ E[τ | A] 1
2

.

It remains to bound the expected value of τ under the constraint of

A.

Let t ′ be the random variable describing the best-so-far solution

in the iteration after t . We are going to bound the drift, i.e. the

expected change д(t) − д(t ′), which we denote by ∆(t). Let д(t) =
k − j, where k is the number of variables x1 and j is the number

of variables x1. We observe that the variables introduced by an

insertion or substitution only yield a drift of 0.

Let B be the event, that the algorithm chooses at least once

a variable x1 for a substitution or deletion in this iteration. The

probability of B is at least the probability for the algorithm to do

exactly one operation: a deletion or substitution of a variable x1.

Let s(t) be the amount of leaves of t . We deduce

Pr[B] ≥ 1

e
· 2
3

· j

s(t) .

Furthermore, the expected negative drift of д(t) can be bounded by

this event B, which yields E[∆ | B] = −1.
Regarding the positive drift, let Ci be the event, that in this ite-

ration the algorithm chooses to do i operations, which are either

substitutions or deletions of variables x1. We observe that each de-

letion of a variable x1 reduces s(t) and I ′
1
(t) by 1. Each substitution

of a variable x1 reduces only s(t) by 1. Therefore, we can bound

the probability for a substitution by at most the probability of a

deletion. Let pi be the probability, that a Pois(1) distributed random

variable is equal to i . This yields for k < s(t)

Pr[Ci ] ≤
2

3
i · pi−1 ·

k!(s(t) − i)!
s(t)!(k − i)! ≤

2

3
i · pi−1 ·

k

2s(t) .

Hence, we obtain the expected drift for B

E[∆(t) | B] Pr[B] ≤ k

es(t)

∞∑
i=1

i

3
i (i − 1)!

=
4k

9e2/3s(t)
.

Summarizing, we obtain by the law of total expectation

E[∆(t)] ≤ 4k

9e2/3s(t)
− 2j

3es(t) ≤
2д(t)
3es(t) .

To bound the size s(t) we observe that following a standard

gambler’s ruin argument within o(T 1.5
init
) iterations the size will not

shrink by a factor bigger than 1/2. Therefore, we obtain s(t) ≥
1/2 Tinit . Due to the step size bound of 15 ln(Tinit) < T 2/3

init
we can

apply Theorem 3.3. and derive

E[τ | A, X0 = Tinit] ≥
1 + ln(Tinit) − ln(T 1/2

init
)

2

3eTinit +
(15 ln(Tinit))2

T 4/3
init
−(15 ln(Tinit))2

.

Therefore, we obtain the desired result

E[τ ] ≥ 3e Tinit ln(Tinit)
8 + 12e

= Ω(Tinit logTinit).

5.2 Upper Bound
We only give a very rough sketch of the proof since the proof is

long and involved. The key ingredient is a bound on the bloat,

i.e., on the speed with which the tree grows. More precisely, we

will show that if Tinit ≥ n log2 n, then in O(Tinit logTinit) rounds,

the size of the tree grows at most by a constant factor. Before we

elaborate on the bloat, let us �rst sketch how this implies the upper

bound. Consider any xi that is not expressed, and let V ′(tr , i) :=
#{x i -literals} − #{xi -literals} ≥ 1. (For this outline we neglect

the case that there are neither x i nor xi in the string.) Then the

probability of deleting or relabelling a x i is larger than deleting or

relabelling a xi , while they have the same probability to be inserted.

Computing precisely, denoting tr the GP-tree in round r , we get a

drift

E[V ′(tr+1, i) −V ′(tr , i) | V (tr , i) = v] ≤ −
v

3eTmax

(7)

for the V ′(tr , i), where Tmax = O(Tinit) is the maximal length

of the string. Using a multiplicative drift theorem [DG13], after

O(Tinit logTinit) rounds we have V ′(tr , i) = 0 with very high proba-

bility. By a union bound over all i , with high probability there is

no i left after O(Tinit logTinit) rounds for which V ′(tr , i) < 0. This

proves the theorem modulo the statement on the bloat.

In order to control the bloat, note that in expectation the o�spring

has the same size as the parent and the size of the tree does not

change signi�cantly by such unbiased �uctuations. However, in

some situations longer o�springs are more likely to be accepted or

shorter o�springs are more likely to be rejected. This results in a

positive drift for the length, which we need to bound. Note that

the biased drift is caused purely by the selection process. We will

show that o�springs are rarely rejected and bound the drift of |tr |
by (essentially) the probability that the o�spring is rejected.

For an index i ∈ [n] we say that i is touched by some mutation,

if the mutation inserts, delete or changes a xi or x i variable or if

it changes a variable into xi or x i . We call a round an i-round if

at least one of the mutations in this round touches i . First we give

(without proof) some elementary properties of rounds that touch i .

927



GECCO ’17, July 15-19, 2017, Berlin, Germany Doerr et al.

Lemma 5.3. There are constants C,δ > 0 and n0 ∈ N such that
the following is true for every n ≥ n0, every GP-tree t , and every
κ ≥ 2. Let i ∈ [n] and let k denote the number of mutations in the
next round. Then:

(1) Pr[k ≥ κ] ≤ e−δκ .
(2) Pr[k = 1 | i touched] ≥ δ .
(3) Pr[k ≥ κ | i touched] ≤ e−δκ .
(4) E[k | i touched] ≤ C .

Similar as before, for an expressed variable xi we let V (tr , i) :=
#{xi -literals} − #{x i -literals} ≥ 0. An important insight is that the

o�spring can only be rejected if there is some expressed xi such

that i is touched by at least V (tr , i) + 1 mutations.
1

So we want to

show that this does not happen frequently. The probability to touch

i at least k times falls geometrically in k by Lemma 5.3, so in the

following we will restrict to the most dominant case V (tr , i) = 0.

Similar as before, we may bound the drift of V (tr , i) in rounds

that touch i by

E[V (tr+1, i) −V (tr , i) | V (tr , i) = v, r is i-round] ≥ −Cvn
Tinit

(8)

for a suitable constant C > 0. The factor n appears because we

condition on r being an i-round, which happens with probability

Θ(1/n).
Equation (8) tells us that the drift is negative, but relatively weak.

We prove that under such circumstances, the expected return time

to 0 is large. More precisely, it can be shown with martingale theory

that the expected number of i-rounds to reachV (tr , i) = 0 from any

starting con�guration is at least Ω(
√
Tinit/n). In particular, after

V (tr , i) becomes positive for the �rst time, it needs in expectation

Ω(
√
Tinit/n) i-rounds to return to 0. On the other hand, it only

needs O(1) i-rounds to leave 0 again. Hence, it is only in 0 in an

expected O(
√
n/Tinit)-fraction of all i-rounds. Thus the drift of |tr |

is also O(
√
n/Tinit).

In particular, if Tinit ≥ n log2 n then in r0 = O(Tinit logTinit)
rounds the drift increases the size of the GP-tree in expectation by

at most r0
√
n/Tinit = O(Tinit). Hence we expect the size to grow

by at most a constant factor. With Markov’s inequality the exact

(rather technical) statement is the following.

Theorem 5.4. Let f = ω(1) and assume Tinit ≥ f (n) · n log2 n.
Then there is ε > 0 such that, with probability at least 1−1/(2

√
f (n)),

within the next r0 := ε f (n)Tinit logTinit rounds the tree has never
more than Tmax := 1

4

√
f (n)Tinit leaves.

Note that if f (n) grows very slowly, Theorem 5.4 says roughly

that after ≈ Tinit logTinit rounds the size of the tree is still ≈ Tinit. It

is still technical to derive the upper bound in Theorem 5.2 from The-

orem 5.4, but it is possible with the ideas sketched at the beginning

of this section. This concludes the proof outline.

6 CONCLUSION
We considered a simple mutational genetic programming algorithm,

the (1+1) GP. We saw that, for the two simple problems ORDER

and MAJORITY, optimization is e�cient in spite of the possibility

of bloat: except for logarithmic factors, all run times are linear. Ho-

wever, bloat and the variable length representations were not easily

1
Some borders cases are neglected in this statement.

analyzed, but required rather deep insights into the optimization

process and the growth of the GP-trees.

For optimization preferring smaller GP-trees we observed a very

e�cient optimization behavior: whenever there is a signi�cant

number of redundant leaves, these leaves are being pruned. Whe-

never only few redundant leaves are present, the algorithm easily

increases the �tness of the GP-tree.

For optimization without consideration of the size of the GP-

trees, we were able to show that the extent of bloat is not too

excessive during the optimization process, meaning that the tree

is only larger by multiplicative polylogarithmic factors. While

such factors are not a major obstacle for a theoretical analysis, a

solution which is not even linear in the optimal solution might not

be desirable from a practical point of view. For actually getting

small solutions, some kind bloat control should be used.

From our analysis we witnessed an interesting option for bloat

control: by changing the probabilities such that deletions are more

likely than insertions we would observe in the presented drift equa-

tions a bias towards shorter solutions. Overall, this would lead to

faster optimization.

REFERENCES
[DG13] Benjamin Doerr and Leslie Ann Goldberg. Adaptive drift analysis. Algo-

rithmica, 65(1):224–250, 2013.

[DNO11] Greg Durrett, Frank Neumann, and Una-May O’Reilly. Computational

complexity analysis of simple genetic programming on two problems

modeling isolated program semantics. In Proc. of FOGA’11, pages 69–80,

2011.

[GO98] David E. Goldberg and Una-May O’Reilly. Where does the good stu�

go, and why? How contextual semantics in�uences program structure in

simple genetic programming. In Proc. of EuroGP’98, pages 16–36, 1998.

[HY04] Jun He and Xin Yao. A study of drift analysis for estimating computation

time of evolutionary algorithms. Natural Computing, 3(1):21–35, 2004.

[Joh10] Daniel Johannsen. Random Combinatorial Structures and Randomized
Search Heuristics. PhD thesis, Universität des Saarlandes, 2010. Available

online at http://scidok.sulb.uni-saarland.de/volltexte/2011/

3529/pdf/Dissertation_3166_Joha_Dani_2010.pdf.

[KNS11] Timo Kötzing, Frank Neumann, and Reto Spöhel. PAC learning and genetic

programming. In Proc. of GECCO’11, pages 2091–2096, 2011.

[KSNO12] Timo Kötzing, Andrew M. Sutton, Frank Neumann, and Una-May O’Reilly.

The Max problem revisited: the importance of mutation in genetic pro-

gramming. In Proc. of GECCO’12, pages 1333–1340, 2012.

[LP02] Sean Luke and Liviu Panait. Lexicographic parsimony pressure. In Proc.
of GECCO’02, pages 829–836, 2002.

[MM14] Andrea Mambrini and Luca Manzoni. A comparison between geometric

semantic GP and cartesian GP for Boolean functions learning. In Proc. of
GECCO’14, pages 143–144, 2014.

[MMM13] Alberto Moraglio, Andrea Mambrini, and Luca Manzoni. Runtime analysis

of mutation-based geometric semantic genetic programming on Boolean

functions. In Proc. of FOGA’13, pages 119–132, 2013.

[MO16] Andrea Mambrini and Pietro Simone Oliveto. On the analysis of simple

genetic programming for evolving Boolean functions. In Proc. of EuroGP’16,

pages 99–114, 2016.

[Neu12] Frank Neumann. Computational complexity analysis of multi-objective

genetic programming. In Proc. of GECCO’12, pages 799–806, 2012.

[NUW13] Anh Nguyen, Tommaso Urli, and Markus Wagner. Single- and multi-

objective genetic programming: new bounds for weighted ORDER and

MAJORITY. In Proc. of FOGA’13, pages 161–172, 2013.

[OO94] Una-May O’Reilly and Franz Oppacher. Program search with a hierarchical

variable length representation: Genetic programming, simulated annealing

and hill climbing. In Proc. of PPSN’94, pages 397–406. Springer-Verlag,

1994.

[O’R95] Una-May O’Reilly. An Analysis of Genetic Programming. PhD thesis,

Carleton University, Ottawa, Canada, 1995.

[RS12] Jonathan E. Rowe and Dirk Sudholt. The choice of the o�spring population

size in the (1, λ) EA. In Proc. of GECCO’12, pages 1349–1356, 2012.

[Wit13] Carsten Witt. Tight bounds on the optimization time of a randomized

search heuristic on linear functions. Combinatorics, Probability and Com-
puting, 22(2):294–318, 2013.

928


	Abstract
	1 Introduction
	2 Preliminaries
	3 Drift Theorems
	4 Results with Bloat Control
	4.1 Lower Bound
	4.2 Upper Bound

	5 Results MAJORITY
	5.1 Lower Bound
	5.2 Upper Bound

	6 Conclusion
	References

