
Destructiveness of Lexicographic Parsimony
Pressure and Alleviation by a Concatenation

Crossover in Genetic Programming

Timo Kötzing1, J. A. Gregor Lagodzinski1, Johannes Lengler2, and
Anna Melnichenko1

1 Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
2 ETH Zürich, Zürich, Switzerland

Abstract. For theoretical analyses there are two specifics distinguishing
GP from many other areas of evolutionary computation. First, the variable
size representations, in particular yielding a possible bloat (i.e. the growth
of individuals with redundant parts). Second, the role and realization
of crossover, which is particularly central in GP due to the tree-based
representation. Whereas some theoretical work on GP has studied the
effects of bloat, crossover had a surprisingly little share in this work.
We analyze a simple crossover operator in combination with local search,
where a preference for small solutions minimizes bloat (lexicographic
parsimony pressure); the resulting algorithm is denoted Concatenation
Crossover GP. For this purpose three variants of the well-studied Major-
ity test function with large plateaus are considered. We show that the
Concatenation Crossover GP can efficiently optimize these test functions,
while local search cannot be efficient for all three variants independent of
employing bloat control.

1 Introduction
Genetic Programming (GP) is a field of Evolutionary Computing (EC) where
the evolved objects encode programs. Usually a tree-based representation of a
program is iteratively improved by applying variation operators (mutation and
crossover) and selection of suitable offspring according to their quality (fitness).
Most other areas of EC deal with fixed-length representations, whereas the
tree-based representation distinguishes GP. This representation of variable size
leads to one of the main problems when applying GP: bloat, which describes
an unnecessary growth of representations. Solutions may have many redundant
parts, which could be removed without afflicting the quality, and search is slowed
down, wasted on uninteresting areas of the search space.

In this paper we study GP from the point of view of run time analysis. While
many previous theoretical works analyzed mutational GP with the offspring
produced by varying a single parent, we analyze a GP algorithm employing a
simple crossover with the offspring produced from two parents. Although our
crossover is far from practical applications of GP (it merely concatenates the two
parent trees), this simple setting aims at understanding the interplay between (our
variant of) crossover, the problem of bloat and lexicographic parsimony pressure,
a method for bloat control introduced in [14]. Other theoretical work in GP
has analyzed different problems and phenomena, in particular for the Probably

Table 1: Overview of the results of the paper. A check mark denotes optimization in
polynomial time with high probability, a cross denotes superpolynomial optimization
time. A check mark with a subscript e denotes the results obtained experimentally.

local search crossover

problem class w/ bloat control w/o bloat control w/ bloat control

+c-Majority × Theorem 1 e Figure 2 Theorem 10

2/3-Majority Theorem 2 e Figure 2 Theorem 10

2/3-SuperMajority Theorem 5 × Theorem 6 Theorem 13

Approximately Correct (PAC) learning framework [10], the Max-Problem [5,11,13]
as well as Boolean functions [15,16,18].

For the effects of bloat in the sense of redundant parts in the tree, we draw
on previous theoretical works that analyzed this phenomenon, especially [19]
and [2]. In these, the fitness function Majority as introduced in [6] was analyzed.
Individuals for Majority are binary trees, where each inner node is labeled
J (short for join, but without any associated semantics) and leaves are labeled
with variable symbols; we call such trees GP-trees. The set of variable symbols is
{x1, . . . , xn}∪{x1, . . . , xn}, for some n. In particular, variable symbols are paired:
xi is paired with xi. For Majority, we call a variable symbol xi expressed if
there is a leaf labeled xi and there are at least as many leaves labeled xi as there
are leaves labeled xi; the positive instances are in the majority. The fitness of a
GP-tree is the number of its expressed variable symbols xi. This setting captures
two important aspects of GP: variable length representations and that any given
functionality can be achieved by many different representations. However, the
tree-structure, typically crucial in GP problems, is completely unimportant for
the Majority function.

We know that Majority can be efficiently optimized by a mutational GP
called (1+1) GP (see Algorithm 1 for details, basically performing a randomized
local search). This holds in the case preferring shorter representations by lexi-
cographic parsimony pressure, as shown in [19], as well as in the case without
such preference [2]. Similar to recent literature on theory of GP, we will consider
lexicographic parsimony pressure as our method of bloat control and henceforth
only speak of bloat control to denote this method. We note, however, that the
GP literature knows many more methods for controlling bloat which is beyond
the scope of our theoretical analysis.

In addition to weighted versions of Majority, another, similar fitness function
Order (see also [3,20]) has been considered, but neither of these provide us with
a strong differences in the optimization behavior of different GP algorithms. Thus,
we propose three variants of Majority, called +c-Majority, 2/3-Majority
and 2/3-SuperMajority, which negatively affect the optimization of certain
GP algorithms.

For +c-Majority a variable is expressed if its positive literals are not only
in the majority, but also there has to be at least c more positive than negative
literals. On the one hand, we show that a random GP-tree with a linear number of

2

leaves expresses any given variable with constant probability. On the other hand,
with constant probability such a tree has a majority of negative literals of any
given variable (indeed, there is a constant probability that the variable has neither
positive nor negative literals in the GP-tree). This yields a plateau of equal fitness
which can only be overcome by adding c positive literals, i.e., we need a rich set
of neutral mutations that allow genetic drift to happen. Bloat control suppresses
this genetic drift by biasing the search towards smaller solutions. Specifically, it
may not allow to add positive literals one by one, which results in an infinite
run time (see Lemma 1). Note that allowing the local search to add c leaves
at the same time still results only in a small chance of O(n−c) of jumping the
plateau. Hence, the +c-Majority fitness function serves as an example where
bloat control explicitly harms the search.

For 2/3-Majority, a variable is expressed if its positive literals hold a 2/3
majority, i.e., if 2/3 of all its literals are positive. The fitness associated with 2/3-
Majority is the number of expressed variables while for 2/3-SuperMajority
each expressed variable contributes a score between 1 and 2, where larger majori-
ties give larger scores (see Section 2 for details). The variant 2/3-SuperMajority
is utilized to aggravate the effect of bloat since it rewards large numbers of (posi-
tive) literals. We show that local search with bloat control is efficient for these
two problems (Theorems 2 and 5). However, without bloat control local search
fails on 2/3-SuperMajority due to bloat (see Theorem 6).

Regarding optimization without bloat control, we obtain experimental results
as depicted in Figure 2. They provide a strong indicator that, when no bloat
control is applied, optimization of +c-Majority is efficient, in contrast to the
case of bloat control. The trend for 2/3-Majority indicates that optimization
proceeds significantly more slowly without bloat control than with bloat control.
Nevertheless, optimization seems to be feasible in contrast to the case of 2/3-
SuperMajority.

Subsequently, we study a simple crossover which works as follows. The algo-
rithm maintains a population of λ individuals, which are initialized randomly
before a local search with bloat control is performed for a number of iterations.
As a local search we employ the (1+1) GP, a simple mutation-only GP which
iteratively either adds, deletes, or substitutes a vertex of the tree. We employ
this algorithm for a number of rounds large enough to ensure that each vertex
of the tree has been considered for deletion at least once with high probability,
which aims at controlling bloat. Afterwards, the optimization proceeds in rounds;
in each round, each individual t0 is mated with a random other individual t1 by
joining t0 and t1 to obtain a tree t′ which contains both t0 and t1; then local
search is performed on t′ as before yielding a tree t′′. If t′′ is at least as fit as t0,
we replace t0 in the population by t′′. The algorithm is called Concatenation since
it joins two individuals, which is basically a concatenation. It is different from
other approaches for memetic crossover GP as found, for example, in [4]. Note
that this crossover is very different from GP crossovers found in the literature
because of its almost complete disregard for the tree structure of the individuals.

3

However, this crossover already highlights some benefits which can be obtained
with crossover, and it has the great advantage of being analyzable.

We show that the Concatenation Crossover GP with bloat control efficiently
optimizes all three test functions +c-Majority, 2/3-Majority as well as 2/3-
SuperMajority, due to its ability to combine good solutions (see Theorem 10).
We summarize our findings in Table 1.

In Section 2 we state the formal definitions of algorithms and problems, as well
as the mathematical tools we use. Section 3 gives the results for local search with
bloat control, Section 4 for local search without bloat control and Section 5 for the
Concatenation Crossover GP. In Section 6 we show and discuss our experimental
results, before Section 7 concludes the paper.

Due to space restrictions, we only provide sketches for the proofs. A full
version of the paper can be found at https://arxiv.org/abs/1805.10169.

2 Preliminaries

For a given n we let [n] = {1, . . . , n} be the set of variables. The only non-terminal
(function symbol) is J of arity 2; the terminal set X consists of 2n literals, where
xi is the complement of xi:

F := {J}, J has arity 2, X := {x1, x1, . . . , xn, xn}.
For a GP-tree t, we denote by S(t) the set of leaves in t. By S+

i (t) and S−i (t)
we denote the set of leaves that are xi-literals and xi-literals, respectively, and by
Si(t) := S+

i (t) ∪ S−i (t) we denote the set of all i-literals. By S+(t) :=
⋃n
i=1 S

+
i (t)

and S−(t) :=
⋃n
i=1 S

−
i (t) we denote the set of all positive and negative leaves,

respectively. We denote the sizes of all these sets by the corresponding lower case
letters, i.e., s(t) := |S(t)|, si(t) := |Si(t)|, etc.. In particular, we refer to s(t) as
the size of t.

On the syntax trees, we analyze the problems +c-Majority, 2/3-Majority,
and 2/3-SuperMajority, which are defined as

+c-Majority := |{i ∈ [n] | s+i ≥ s
−
i + c}| ;

2/3-Majority := |{i ∈ [n] | si ≥ 1 and s+i ≥ 2
3si}| ;

2/3-SuperMajority :=

n∑
i=1

fi, where fi :=

{
0 , if si = 0 or s+i <

2
3si,

2− 2s
−
i −s

+
i , otherwise.

We call a variable contributing to the fitness expressed. Since both +c-
Majority and 2/3-Majority count the number of expressed variables, they
take values between 0 and n. The function 2/3-SuperMajority is similar to
2/3-Majority, but if a 2/3 majority is reached 2/3-SuperMajority awards a
bonus for larger majorities: the term fi grows with the difference s+i − s

−
i . Since

fi ≤ 2, the function 2/3-SuperMajority takes values in [0, 2n]. Note that the
value 2n can never actually be reached, but can be arbitrarily well approximated.

In this paper we consider simple mutation-based genetic programming algo-
rithms which use a modified version of the Hierarchical Variable Length (HVL)
operator ([21], [22]) called HVL-Prime as discussed in [3]. HVL-Prime allows
trees of variable length to be produced by applying three different operations:

4

Given a GP-tree t, mutate t by applying HVL-Prime. For each application, choose
uniformly at random one of the following three options.

substitute Choose a leaf uniformly at random and substitute it with a leaf in X
selected uniformly at random.

insert Choose a node v ∈ X and a leaf u ∈ t uniformly at random. Substitute
u with a join node J , whose children are u and v, with the order of the
children chosen uniformly at random.

delete Choose a leaf u ∈ t uniformly at random. Let v be the sibling of u. Delete
u and v and substitute their parent J by v.

Fig. 1: Mutation operator HVL-Prime.

insert, delete and substitute (see Figure 1). Each application of HVL-Prime
chooses one of these three operations uniformly at random. We note that the
literature also contains variants of the mutation operator that apply several such
operations simultaneously (see [3, 20]).

The first algorithm we study is the (1+1) GP. The algorithm is initialized
with a tree generated by sinit random insertions. Afterwards, it maintains the
best-so-far individual t. In each round, it creates an offspring of t by mutation.
This offspring is discarded if its fitness is worse than t, otherwise it replaces t.
We recall that the fitness in the case with bloat control contains the size as a
second order term. Algorithm 1 states the (1+1) GP more formally.

Algorithm 1: (1+1) GP with mutations according to Figure 1

1 Let t be a random initial tree of size sinit;
2 while optimum not reached do
3 t′ ← mutate(t);
4 if f(t′) ≥ f(t) then t← t′;

2.1 Crossover

The second algorithm we consider is population-based. When introduced by
J. R. Koza [12], Genetic Programming used fitness-proportionate selection and a
genetic crossover, however mutation was hardly considered. In subsequent works
many different setups for the crossover operator were introduced and studied. For
instance, in [21] combinations of GP with local search in the form of mutation
operators were studied and yielded better performance than GP.

Usually, two parents (a current solution and a mate) are used to generate
a number of offspring. These offspring are a recombination of the alleles from
both parents derived in a probabilistic manner. By modeling each individual as
a GP-tree, a crossover-point in both parents is decided upon due to a heuristic
and the subtrees attached to these points are exchanged creating new GP-trees.

In the Crossover hill climbing algorithm first described by T. Jones [7, 8]
only one GP-tree is created from the current solution and a random mate. This
offspring is evaluated and replaces the current solution if the fitness is not worse.

5

We consider the following simple crossover: the Concatenation Crossover GP
working as follows (see also Algorithm 2). For a fixed population of GP-trees,
each GP-tree is chosen to be the parent once. For each parent we choose a mate
uniformly at random from the population and create one offspring by joining the
two trees using a new join-node. Before evaluating the offspring, we employ a
local search in the form of the (1+1) GP with bloat control. This local search is
performed for a fixed amount of iterations before we discard the GP-tree with
worse fitness. The fixed amount depends on the size of the tree and ensures the
absence of redundant leaves with high probability (see Lemma 11). We note that
the amount of redundant leaves depends on the function to be optimized. The
functions we studied are variants of Majority, for other functions the amount
of iterations ensuring the absence of redundant leaves might be different.

The initial population is generated by creating λ random trees of size sinit
and employing the local search on each of them. We then proceed in rounds of
crossover as described above. We note that we assume all crossover operations
to be performed in parallel. Hence, the new population is based entirely on the
old population and not partially on previously generated individuals of the new
generation.

Algorithm 2: Concatenation Crossover-GP

1 Let LS(t) denote local search by the (1+1) GP with bloat control on tree t for
90s log s steps, where s is the number of leaves in t;

2 for i = 1 to λ do
3 Let ti be a random initial tree of size sinit;
4 ti ← LS(ti);

5 while optimum not reached do
6 for i = 1 to λ do
7 Choose m ∈ {1, . . . , λ} \ {i};
8 t′i ← join(ti, tm);
9 t′′i ← LS(t′i);

10 if f(t′′i) ≥ f(ti) then ti ← t′′i ;

2.2 Terminology

For the analysis, it will be helpful to partition the set of leaves into three classes
as follows. The set C+(t) ⊆ S+(t) of positive critical leaves is the set of leaves
u, whose deletion from the tree results in a decreased fitness. Similarly, the set
C−(t) ⊆ S−(t) of negative critical leaves is the set of leaves u, whose deletion
from t results in an increased fitness. Finally, the set R(t) := [n]\ (C+(t)∪C−(t))
of redundant leaves is the set of all leaves u, whose deletion from t does not affect
the fitness. Similar as before, we denote c−(t) = |C−(t)|, c+(t) = |C−(t)|, and
r(t) = |R(t)|.

Given a time τ ≥ 0, we denote by tτ the GP-tree after τ iterations of
the algorithm. Additionally, we use S(τ), s(τ), Si(τ), . . . in order to denote
S(tτ), s(tτ), Si(tτ), Moreover, we apply the standard Landau notation O(·),
o(·), Ω(·), ω(·), Θ(·) as detailed in [1].

6

3 (1+1) GP with Bloat Control

In this section we study how local search with bloat control performs on the given
fitness functions. Theorem 1 shows that for small initial trees +c-Majority
cannot be efficiently optimized, while Theorem 2 shows that this is possible for
2/3-Majority. Finally, Theorem 5 considers 2/3-SuperMajority.

Theorem 1. Consider the (1+1) GP on +c-Majority with bloat control on the
initial tree with size sinit < n. If c > 1, with probability equal to 1, the algorithm
will never reach the optimum.

The proof is based on an optimal GP-tree for +c-Majority needing cn
leaves, but bloat control does not allow to add leaves without fitness gain.

Next we state the upper bound for the performance on 2/3-Majority. The
proof of Theorem 2 is almost identical to the one of Theorem 4.1 in [2], the
bounds stated in Lemma 4.2 and Lemma 4.1 in [2] need to be suitably adjusted,
since these do not hold for 2/3-Majority.

Theorem 2. Consider the (1+1) GP on 2/3-Majority with bloat control on
the initial tree with size sinit. The expected time until the algorithm computes the
optimum is in O(n log n+ sinit).

Corollary 3. Consider the (1+1) GP on 2/3-Majority with bloat control on
the initial tree with size sinit < n. The expected time until the algorithm computes
the optimum is in O(n log n).

We turn to 2/3-SuperMajority with Theorem 5. The proof is based on the
following lemma showing that redundant leaves will be removed with sufficient
probability. Hence, insertions of positive literals can increase fitness.

Lemma 4. Consider the (1+1) GP on 2/3-SuperMajority with bloat control
with n ≥ 55 on the initial tree with size sinit < n. With probability at least
1− (τ/(n log2 n))−1/(1+4/

√
logn) the algorithm will delete any given negative leaf

of the initial tree within τ ≥ n log2 n rounds. For a positive redundant leaf, with
the same probability it will either be deleted or turned into a positive critical leaf.

Theorem 5. Consider the (1+1) GP on 2/3-SuperMajority with bloat control
on an initial tree with size sinit < n, and let ε > 0. Then, the algorithm will
express every literal after n2+ε iterations with probability 1− o(1).

4 (1+1) GP without Bloat Control
In this section we study the fitness function 2/3-SuperMajority, which facili-
tates bloat of the string.

Theorem 6. For any constant ν > 0, consider the (1+1) GP without bloat
control on 2/3-SuperMajority on the initial tree with size sinit = νn. There is
ε = ε(ν) > 0 such that, with probability 1− o(1), an ε−fraction of the indices will
never be expressed. In particular, the algorithm will never reach a fitness larger
than (2− 2ε)n.

We commence with some preparatory lemmas before proving the theorem.
First, we analyze how the size of the GP-tree evolves over time. We recall that
s(τ) is the number of leaves of the GP-tree at time τ .

7

Lemma 7. There is a constant 0 < η ≤ 1 such that, with probability 1− o(1),
for all τ ≥ 0 we have s(τ) ≥ ητ .

In order to continue we need some more terminology. For an index i ∈ [n], we
recall that s+i (τ) and s−i (τ) denote the number of xi- and xi-literals at time τ ,
respectively, and si(τ) := s+i (τ) + s−i (τ). We call index i touched in round τ , if
a literal xi or xi is deleted, inserted or substituted, or if a literal is substituted
by xi or xi. We call the touch increasing if it is either an insertion or if a literal
is substituted by xi or xi. We call the touch decreasing if it is a deletion or
substitution of a xi or xi literal. We note that in exceptional cases a substitution
may be both increasing and decreasing. Let ρi(τ) be the number of increasing
touches of i up to time τ . We call a decreasing step critical if it happens at time
τ with si(τ) ≤ ητ/(4n), and we call γi(τ) the number of critical steps up to time
τ . Finally, we call a round accepting if the offspring is accepted in this round.

The approach for the remainder of the proof is as follows. First, we will show
that in the regime, where critical steps may happen (i.e, si(τ) ≤ ητ/(4n)), it is
more likely to observe increasing than decreasing steps. The reason is that a step
is only critical if there are relatively few i-literals, in which case it is unlikely to
delete or substitute one of them, whereas the probability to insert an i-literal
is not affected. It will follow that si(τ) grows with τ , since otherwise we would
need many critical steps. Finally, if si(τ) keeps growing it becomes increasingly
unlikely to obtain a 2/3 majority. In order to state the first points more precisely
we fix a j0 ∈ N and call an index i bad (or more precisely, j0-bad) if the following
conditions hold: for all τ ≥ j0n and τ0 := j0n

(A) s+i (τ0) ≤ s−i (τ0) ≤ j0 (B) τ/(2n) ≤ ρi(τ) ≤ 2τ/n
(C) γi(τ) ≤ 2τ/n (D) si(τ) ≥ ητ/(8n).

In particular, in (A) xi is not expressed at time τ0.

Lemma 8. For every fixed i0 > 0, with probability 1− o(1) there are Ω(n) bad
indices.

Lemma 9. Every bad index has probability Ω(1) that it is never expressed,
independent of the other bad indices.

We note that Lemmas 8 and 9 imply Theorem 6 by a straightforward application
of the Chernoff bound.

5 Concatenation Crossover GP

In the following we will study the performance of the Concatenation Crossover
GP (Algorithm 2) on +c-Majority and 2/3-Majority with bloat control.
As observed in Theorem 1 the (1+1) GP with bloat control may never reach
the optimum when optimizing an initial tree of size sinit < n. We will deduce
that crossover solves this issue and the algorithm reaches the optimum fast.
We commence this section by stating the exact formulation of the mentioned
result in Theorem 10 followed by an outline of its proof. Finally, we show the
corresponding result for 2/3-SuperMajority in Theorem 13.

8

Theorem 10. Consider the Concatenation Crossover GP on +c-Majority or
2/3-Majority with bloat control on the initial tree with size 2 ≤ n/2 ≤ sinit ≤
b n (for constant b > 0). Then there is a constant cλ > 0 such that for all
cλ log n ≤ λ ≤ n2, with probability in (1 − O(n−1)), the algorithm reaches the
optimum after at most O(n log3(n)) steps.

The following two auxiliary lemmas are used to proof the theorem. Here,
they serve towards an outline of the proof. First, Lemma 11 states the absence
of redundant leaves in a GP-tree t after the local search with a probability of
1−n−5. This will be applied after every local search. We observe for two GP-trees
t1 and t2 without redundant leaves: if t′ is the tree resulting from joining t1 and
t2, then a variable i ∈ [n] is expressed in t′ if and only if it is expressed in t1 or
t2.

Second, Lemma 12 states that, with a probability of 1− n−5, each variable
i ∈ [n] is expressed in at least one of λ/2 trees before the first crossover. Combining
both lemmas, for a fixed GP-tree t it will suffice to observe the time until t has
been joined with at least λ/2 different trees.

Lemma 11. Consider the (1+1) GP with bloat control on either +c-Majority
or 2/3-Majority. For an initial tree with size 2 ≤ n/2 ≤ sinit ≤ bn (for constant
b > 0) after 90sinit log(sinit) iterations, with probability at least 1 − n−5, the
current solution will have no redundant leaves.

Lemma 12. Consider the Concatenation Crossover GP on +c-Majority or
2/3-Majority with bloat control on initial trees with size 2 ≤ n/2 ≤ sinit ≤ b n
(for constant b > 0). Then there is a constant cλ > 0 such that for all λ ≥ cλ log n,
with probability at least 1− n−5, each variable will be expressed in at least one of
λ/2 trees before the first crossover.

Finally, we turn to 2/3-SuperMajority. For the proof we use a result from
the area of rumor spreading relating to the pull protocol [9, 17] in order to study
the time until every individual of the population has every variable expressed.
The idea here is similar to previous proofs with crossover: expressed variables
can be collected with crossover. For this purpose we show that the number of xi
in individuals, which have a variable i expressed, is asymptotically larger than
the number of xi in individuals, which do not have i expressed.

Theorem 13. Consider the Concatenation Crossover GP without substitutions
with bloat control with initial tree size sinit = n/2 on 2/3-SuperMajority.
Then there is a constant cλ > 0 such that, for λ = cλ log n, each GP-tree in
the population has all variables expressed after at most O(n1+o(1)) steps with
probability at least 1−O(n−4).

6 Experiments
This section is dedicated to complementing our theoretical results with experi-
mental justification for the otherwise open cells of Table 1, i.e. for the (1+1) GP
without bloat control on +c-Majority and 2/3-Majority.

All experimental results shown in Figure 2 are box-and-whiskers plots, where
lower and upper whiskers are the minimal and maximal number of fitness evalua-
tions the algorithm required over 100 runs until all variables are expressed or the

9

100 200 300 400 500 600 700 800 9001000

0

0.2

0.4

0.6

0.8

1

·106

n, number of variables

n
u

m
b

er
o
f

ev
a
lu

a
ti

o
n

s

(1+1) GP with bloat control

(1+1) GP without bloat control

100 200 300 400 500 600 700 800 9001000

0

1

2

3

·105

n, number of variables

n
u
m

b
er

o
f

ev
a
lu

a
ti

o
n
s

(1+1) GP without bloat control

(1+1) GP with bloat control

Fig. 2: Number of evaluations required by the (1+1) GP over 100 runs for each n with
the initial tree size sinit = 10n until all variables are expressed or the time limit, equal
to 1000000 evaluations, is reached. The left figure shows the experimental results for
+c−Majority with c = 2; the solid line is 28n logn. On the right figure is shown
2/3−Majority; the blue solid line is 9n logn, the green solid line is 32n logn.

time limit of 1000000 evaluations is reached. The middle lines in each box are the
median values (the second quartile), the bottom and top of the boxes are the first
and third quartiles. Note that all experiments are platform independent since we
count number of fitness evaluations independently of real time. The solid lines in
the plots allow to estimate the asymptotic run time of the (1+1) GP.

The left hand side of Figure 2 concerns +c-Majority and shows that the
(1+1) GP with bloat control always fails (corresponding to Theorem 1). We used
the (1+1) GP with sinit = 10n, c = 2 and n as indicated along the x-axis. It is
easy to see that bloat control leads the algorithm to local optima and does not
allow to leave it, whereas the (1+1) GP without bloat control finds an optimum in
a reasonable number of evaluations. Due to time and computational restrictions
the constant c was chosen equal to 2. For larger c the run time of the algorithm
goes up significantly, but a similar pattern is visible.

The right hand side of Figure 2 shows the results of (1+1) GP on 2/3-
Majority, using sinit = 10n. One can see that bloat control is more efficient in
comparison with the (1+1) GP without bloat control. The set of median values is
well-approximated by w ·n log n for a constant w, which leads us to the conjecture
that the algorithm’s run time is O(n log n). We did not analyze the influence
of sinit, but it might be significant especially for 2/3-Majority without bloat
control.

7 Conclusion

We defined three variants of the Majority problem in order to introduce
some fitness plateaus that are difficult to cross. The +c-Majority allows for
progress at the end of the plateau with large representation; in this sense, bloat
is necessary for progress. On the other hand, for 2/3-Majority, progress can be
made at the end of the plateau with small representation, so that bloat control

10

guides the search to the fruitful part of the search space. We also considered
2/3-SuperMajority which exemplifies fitness functions where bloat is inherent
due to the possibility of small improvements by adding an increasing amount of
nodes to the GP-tree. In this case we showed that not employing bloat control
leads to inefficient optimization.

In order to obtain results somewhat closer to practically relevant GP we
turned to crossover and showed how a Concatenation Crossover GP can efficiently
optimize all three considered test functions.

For future work it might be interesting to analyze the effect of other crossover
operators. In order to obtain a better understanding of such other operators,
other test functions might be necessary making essential use of the tree structure
(all our test functions might as well use lists or even multisets of the leaves as
representations). Such test functions should not be too complex, which would
hinder a theoretical analysis, but still embody a structure frequently found in
GP, so as to inform about relevant application areas. The search for such test
functions remains a central open problem of the theory of GP.

References

1. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press, 2. edn. (2001)

2. Doerr, B., Kötzing, T., Lagodzinski, J.A.G., Lengler, J.: Bounding bloat in genetic
programming. In: Proc. of GECCO’17. pp. 921–928. ACM (2017)

3. Durrett, G., Neumann, F., O’Reilly, U.M.: Computational complexity analysis of
simple genetic programming on two problems modeling isolated program semantics.
In: Proc. of FOGA’11. pp. 69–80 (2011)

4. Eskridge, B.E., Hougen, D.F.: Memetic crossover for genetic programming: Evolution
through imitation. In: Proc. of GECCO’04. pp. 459–470 (2004)

5. Gathercole, C., Ross, P.: An adverse interaction between the crossover operator
and a restriction on tree depth. In: Proc. of GP’96. pp. 291–296 (1996)

6. Goldberg, D.E., O’Reilly, U.M.: Where does the good stuff go, and why? How
contextual semantics influences program structure in simple genetic programming.
In: Proc. of EuroGP’98. pp. 16–36 (1998)

7. Jones, T.: Crossover, macromutation, and population-based search. In: Proc. of
ICGA’95. pp. 73–80. Morgan Kaufmann Publishers Inc. (1995)

8. Jones, T.: Evolutionary Algorithms, Fitness Landscape and Search. Ph.D. thesis,
University of New Mexico (1995)

9. Karp, R.M., Schindelhauer, C., Shenker, S., Vöcking, B.: Randomized rumor
spreading. In: Proc. of FOCS’00. pp. 565–574 (2000)

10. Kötzing, T., Neumann, F., Spöhel, R.: PAC learning and genetic programming. In:
Proc. of GECCO’11. pp. 2091–2096 (2011)

11. Kötzing, T., Sutton, A.M., Neumann, F., O’Reilly, U.M.: The Max problem revisited:
the importance of mutation in genetic programming. In: Proc. of GECCO’12. pp.
1333–1340 (2012)

12. Koza, J.R.: Genetic programming: A paradigm for genetically breeding populations
of computer programs to solve problems. Tech. rep., Stanford, CA, USA (1990)

13. Langdon, W.B., Poli, R.: An analysis of the MAX problem in genetic programming.
In: Proc. of GP’97. pp. 222–230 (1997)

11

14. Luke, S., Panait, L.: Lexicographic parsimony pressure. In: Proc. of GECCO’02.
pp. 829–836 (2002)

15. Mambrini, A., Manzoni, L.: A comparison between geometric semantic GP and
cartesian GP for Boolean functions learning. In: Proc. of GECCO’14. pp. 143–144
(2014)

16. Mambrini, A., Oliveto, P.S.: On the analysis of simple genetic programming for
evolving Boolean functions. In: Proc. of EuroGP’16. pp. 99–114 (2016)

17. Mercier, H., Hayez, L., Matos, M.: Optimal epidemic dissemination. CoRR
abs/1709.00198 (2017), http://arxiv.org/abs/1709.00198

18. Moraglio, A., Mambrini, A., Manzoni, L.: Runtime analysis of mutation-based geo-
metric semantic genetic programming on Boolean functions. In: Proc. of FOGA’13.
pp. 119–132 (2013)

19. Neumann, F.: Computational complexity analysis of multi-objective genetic pro-
gramming. In: Proc. of GECCO’12. pp. 799–806 (2012)

20. Nguyen, A., Urli, T., Wagner, M.: Single- and multi-objective genetic programming:
new bounds for weighted ORDER and MAJORITY. In: Proc. of FOGA’13. pp.
161–172 (2013)

21. O’Reilly, U.M.: An Analysis of Genetic Programming. Ph.D. thesis, Carleton
University, Ottawa, Canada (1995)

22. O’Reilly, U.M., Oppacher, F.: Program search with a hierarchical variable length
representation: Genetic programming, simulated annealing and hill climbing. In:
Proc. of PPSN’94. pp. 397–406 (1994)

12

