
Experimental Analyses of Crossover and Diversity on Jump
Timo Kötzing

Hasso-Plattner-Institute, Potsdam University
Potsdam, Germany

Timo.Koetzing@hpi.de

Xiaoyue Li
Hasso-Plattner-Institute, Potsdam University

Potsdam, Germany
Xiaoyue.Li@hpi.de

ABSTRACT
While it is mathematically proven that the (` + 1) GA optimizes
Jump𝑘 efficiently for low crossover probabilities, theory research
still struggles with the analysis of crossover-based optimization
for high crossover probabilities on this key test function. Research
in this area has improved our understanding of crossover in gen-
eral, in particular regarding the emergence of diversity, the crucial
ingredient for successful optimization with genetic algorithms.

In this paper we study the optimizing process after the (` +
1) GA has reached the plateau of Jump𝑘 . We are interested in (a)
the stationary distribution of the algorithm on the plateau (when
ignoring the optimum) and (b) the dynamics of the stationary dis-
tribution. We experimentally show that the (` +1)GA achieves 10%
complementary pairs if ` = 10 · 𝑘 , unless 𝑛 is very small. Regarding
the dynamics, we show samples of how bit positions gain and lose
individuals with a 0 at that position.

CCS CONCEPTS
• Theory of computation→ Design and analysis of algorithms.

KEYWORDS
genetic algorithm; diversity; crossover
ACM Reference Format:
Timo Kötzing and Xiaoyue Li. 2023. Experimental Analyses of Crossover
and Diversity on Jump. In Genetic and Evolutionary Computation Conference
Companion (GECCO ’23 Companion), July 15–19, 2023, Lisbon, Portugal.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3583133.3590657

1 INTRODUCTION
In [7], five benefits from populations are named, several pertaining
to the benefits of crossover. In evolutionary computing, crossover
is a ubiquitous part of algorithms [3, 4, 6, 8].

For years, theory research aims at explaining the effectiveness of
crossover, and at suggesting what particular crossover operators are
effective for which kind of landscapes. An important milestone was
the work of Jansen and Wegener [5], introducing the now-classic
test function Jump𝑘 with parameter 𝑘 . Formally, Jump𝑘 is defined
such that

∀𝑥 ∈ {0, 1}∗ : Jump𝑘 (𝑥) =
{
𝑘 + |𝑥 |1, if |𝑥 |1 = 𝑛 or |𝑥 |1 ≤ 𝑛 − 𝑘 ;
𝑛 − |𝑥 |1, otherwise.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0120-7/23/07.
https://doi.org/10.1145/3583133.3590657

where |𝑥 |1 denotes the number of 1s of a bit string. Essentially,
there is a plateau of equal fitness in distance 𝑘 of the optimum (in
fact, all and only the bit strings in distance 𝑘 of the optimum are
on the plateau of equal fitness closest to the optimum). While it
is easy for any hill-climbing search heuristic to find the plateau,
making the final jump (hence the name) to the optimum is hard
for search operators focused on the neighborhood of search points
(like in mutation-based search). By contrast, if in a population are
two individuals that do not share a 0, a crossover operator might
be able to combine the specific features of two such individuals to
obtain the optimum.

Concretely, we consider the (` + 1) GA as given in Algorithm 1.
It uses one variation operator, which picks two parents from the
population uniformly at random, performs a uniform crossover
(inheriting each bit independently from a uniformly chosen par-
ent) followed by mutation (flipping each bit independently with
probability 1/𝑛).

Algorithm 1: The (` + 1) GA on fitness function 𝑓 .
1 𝑃0 ← ` individuals from {0, 1}∗ chosen u.a.r.;
2 𝑡 = 0;
3 while stopping criterion not met do
4 𝑥 ← uniform random bit string from 𝑃𝑡 ;
5 𝑦 ← uniform random bit string from 𝑃𝑡 ;
6 𝑧 ← uniform crossover of 𝑥 and 𝑦;
7 𝑧′← flip each bit of 𝑧 independently with probab. 1/𝑛;
8 𝑃𝑡 = 𝑃𝑡 ∪ {𝑧′};
9 𝑃𝑡+1 = 𝑃𝑡 \ {an individual 𝑥 ∈ 𝑃𝑡 with least 𝑓 (𝑥) value};

10 𝑡 = 𝑡 + 1;

The only way in which crossover can be beneficial is by ex-
ploiting diversity in the population. In fact, the key difficulty in
the formal analysis of crossover is to give an account of the emer-
gence and progression of diversity. The analysis of Jansen and
Wegener [5] considered a very strong implicit diversity mech-
anism, using crossover very sparingly, only with probability of
𝑂 (1/(𝑛 log𝑛)). It is a long-standing open problem to give insights
into settings with less strong diversity mechanisms.

While strong explicit diversity mechanisms quickly lead to good
run time guarantees [1], essential progress on the analysis of the
(` + 1) GA on Jump𝑘 without such mechanisms was made on this
question in a work on emergent diversity [2]. However, still a
very large gap remains between observed run time and theoretical
bounds; see [9] for a survey on theoretical work in this area.

With this paper we want to give a very careful and in-depth
analysis of the behavior of the (` + 1) GA at the plateau of Jump𝑘 .

https://doi.org/10.1145/3583133.3590657
https://doi.org/10.1145/3583133.3590657

GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal Timo Kötzing and Xiaoyue Li

Our goal is to inform both practical uses and the theoretical analysis
of crossover alike about the inner workings of crossover and about
how diversity emerges in populations.

In particular, we let the (` + 1) GA run on Jump𝑘 where the
optimum is removed; thus, the population will assemble on the
plateau (of bit strings with 𝑛 − 𝑘 many 1s) and perform a random
walk on the set of all possible such populations. This random walk
is a Markov chain with a unique stationary distribution which is
approached quickly by the process. Thus, it is now interesting to
analyze exactly this stationary distribution.

For the optimization of Jump𝑘 , uniform crossover requires two
parent individuals which do not share any of their 𝑘 bit positions
where they have a 0. We call such pairs complementary pairs. We are
particularly interested in the proportion of complementary pairs
among all possible pairs of individuals in the population.

In Section 2 we show two ways to sample the stationary distri-
bution. We establish what run times are required for the process to
arrive at the stationary distribution.

In Section 3 we show how the proportion of complementary
pairs depends on the various parameters of problem and algorithm
(𝑛 and 𝑘 for the problem and ` for the population pool size). We see
that it is surprisingly easy to find a proportion of 10% in comple-
mentary pairs. We see that there is a minimal ` required to achieve
such a proportion of 10% complementary pairs and show that the
requirement is about ` ≥ 10𝑘 . We note that very small values of 𝑛
do not allow for finding ` large enough to achieve 10% complemen-
tary pairs; we show that approximately 𝑛 ≥ 0.6 𝑘2 + 4 is sufficient
to be able to find ` which give 10% complementary pairs.

In Section 4, we consider the dynamics of the stationary distribu-
tion. That is, we wait until the algorithm has reached the stationary
distribution and observe then what happens with the diversity.
Specifically, we consider, for each bit position, the number of indi-
viduals with a 0 at that position. We find that this number typically
stays far away from ` (its potential maximum) for all bit positions.
For the positions there are occasional fluctuations between 0 and
just a few individuals with a 0 at that position; a few positions gain
higher values.

2 STATIONARY DISTRIBUTION
In this section we consider the stationary distribution exhibited by
running the algorithm on Jump𝑘 with the optimum removed. We
are interested in how the population is spread out on the plateau of
equal fitness at distance 𝑘 to 1𝑛 . In order to experimentally sample
the stationary distribution on the plateau, we run the (` +1)GA for
a sufficient number of iterations. We consider two initialization
strategies as follows.

(1) Uniformly random: Drawing independently ` individuals
u.a.r. from {0, 1}𝑛 .

(2) Homogeneous on plateau: All individuals are identical,
starting with 𝑘 sequential 0s followed by (𝑛 − 𝑘) many 1s.

In [1] it was proven that the (` + 1) GA requires O(`𝑛 log𝑛) to
reach the plateau. Disregarding log-factors and normalizing by 𝑛 · `
(to account for the time it takes to consider any given bit in any
given individual), we observe the population once every 𝑛 · ` itera-
tions. Since the maximum value of the number of complementary
pairs depends on `, we normalize by

(`
2
)
. All results are averaged

over 50 independent runs. In Figure 1 we see that the stationary

0 2 4 6 8
t/(n*mu)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
op

or
tio

n
of

 c
om

pl
em

en
ta

ry
 p

ai
rs

k= 4,mu = 100
k= 4,mu = 100
k= 8,mu = 100
k= 8,mu = 100
 k= 4,mu = 200
 k= 4,mu = 200
k= 8,mu = 200
k= 8,mu = 200

Figure 1: Proportion of complementary pairs. Red plots indi-
cate uniform initialization, green plots homogeneous initial-
ization on plateau.

distribution is approximated after at most 5`𝑛 iterations. For our
further investigations, we use this as the time budget and assume
the population to be sufficiently mixed.

3 PROPORTION OF COMPLEMENTARY PAIRS
Next we regard the impact of the population size ` on the proportion
of complementary pairs in the stationary distribution. Following
Section 2, we sample the stationary distribution by running the
(` + 1) GA for 5`𝑛 iterations and average over 20 samples.

We consider different values for 𝑛 (400 and 800) and different
values for 𝑘 (4 to 20 in steps of 4). In Figure 2 we see the resulting
proportion of complementary pairs for a range of population sizes
`, from ` = 20 to ` = 200 with a step size of 10.

25 50 75 100 125 150 175 200
population size

0.0

0.2

0.4

0.6

0.8

pr
op

or
tio

n
of

 c
om

pl
em

en
ta

ry
 p

ai
rs

k=4, n = 400
k=8, n = 400
k=12, n = 400
k=16, n = 400
k=20, n = 400

k=4, n = 800
k=8, n = 800
k=12, n = 800
k=16, n = 800
k=20, n = 800

Figure 2: 𝑛 = 800. Complementary pairs increasing with pop-
ulation size. Horizontal lines in blue are at 50% and at 10%.

We can see from Figure 2 that the value of 𝑛 has only a small
impact on the proportion of complementary pairs, while the values

Experimental Analyses of Crossover and Diversity on Jump GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal

50 100 150 200 250
population size

0.0

0.2

0.4

0.6

0.8

pr
op

or
tio

n
of

 c
om

pl
em

en
ta

ry
 p

ai
rs

k = 4
k = 8

Figure 3: Complementary pairs increasing with population
size. Different color represents different 𝑘 value Plots are
averages and bars are ± standard deviation.

200 400 600 800 1000
population size

0.0

0.2

0.4

0.6

0.8

pr
op

or
tio

n
of

 c
om

pl
em

en
ta

ry
 p

ai
rs

n = 100, k = 8
n = 400, k = 8
n = 100, k = 20
n = 400, k = 20

Figure 4: Complementary pairs leveling out for large pool
sizes. Horizontal line in blue is at 10%. Same color represents
same 𝑘 value. The red is 𝑘 = 8 and the green is 𝑘 = 20. Same
linestyle represents same 𝑛 value. Dotted line is 𝑛 = 100 and
the other is 𝑛 = 400

of 𝑘 and ` have a strong impact. Large values of ` give a higher
proportion of complementary pairs while larger value of 𝑘 decrease
the proportion of complementary pairs. Note that we consider a
value of 𝑘 = 16 already large, and also in this setting proportions
of 10% of complementary pairs are easily reached.

We estimate sampling bias with Figure 3. Here we see that our
samples do have some variance for mid-range population sizes, but
it diminishes quickly for larger sizes.

In Figure 2 the proportion of complementary pairs seems to keep
increasing. As shown in Figure 4, we can see that also large values
of ` do not significantly increase the proportion of complementary
pairs. For example, for 𝑘 = 20, it seems impossible that ` could be
large enough to reach a proportion of 10% complementary pairs.

2 4 6 8 10 12 14
k

0

50

100

150

200

250

300

350

m
in

im
um

 μ
 p

ro
vi

de
s 1

0%
 o

f c
om

pl
em

en
ta

ry
 p

ai
rs

n = 50
n = 100
n = 200
n = 500
n = 1000
hypothesis

Figure 5: Minimum pool size for 10% complementary pairs.
Given as purple dots is the hypothesis of 10𝑘 as minimum
population size. Dashed lines indicate that, for high values of
𝑘 , even ` = 50𝑘 is not sufficient to achieve 10% complementary
pairs.

We conduct an experiment to find the minimal ` which is suffi-
cient to arrive at a value of 10% complementary pairs. For various 𝑛,
we see in Figure 5 that roughly ` = 10𝑘 is necessary and sufficient,
as long as 𝑛 is large enough. As an aside we note that 𝑛 needs to be
large enough; experimentally, this is at about 𝑛 ≥ 0.6 𝑘2 + 4.

4 DYNAMICS OF THE STATIONARY
DISTRIBUTION

In the previous section, we saw snapshot values of the stationary
distribution. In this section, we are interested in how the stationary
distribution behaves from step to step. Since we are interested in di-
versity, and all individuals on the plateau have 1s in most positions,
we are interested in the distribution of 0s in the population.

For any 𝑖 ≤ 𝑛 and a given population 𝑃 , we say that 𝑃 has a 0 at
𝑖 , if some individual of 𝑃 has a 0-bit at position 𝑖 . Similarly, we talk
of “many 0s at 𝑖” and so forth. We are interested in how long the
population maintains a 0 at a certain bit position, as well as how
many 0s are presented at any given position. In order to understand
this, we focus on one specific parameter setting and observe the
stationary distribution over a number of time steps.

Specifically, we let 𝑛 = 500, ` = 50 and 𝑘 = 4. As argued in Sec-
tion 3, this is a setup with at least 10% complementary pairs in the
stationary distribution. We let the algorithm run for 105 iterations
and only record the zero positions for the last 104 generations.

In Figure 6 we see the result for all bit positions, while Figure 7
focuses on the eleven bit positions 400 to 410. As we see, many bit
positions appear in the population, some disappear quickly, some
take some time to disappear without ever gaining prominence (in
the sense of a lot of individuals having a 0 here) and some almost
take over the entire population (note that no position ever has more
than 40 0s in the population, at a population size of 50).

In our example, out of the 500 bit positions, in the last 104 itera-
tions, there are 463 bit positions in which a 0 appears. This justifies

GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal Timo Kötzing and Xiaoyue Li

Figure 6: The 𝑥-axis shows the number of generations, and
the 𝑦-axis shows the bit positions. A white spot for a genera-
tion and a bit position 𝑖 means that 𝑖 is not in the population
at that time step. The color codes the number of individuals
in the population that have a 0 in that position.

90k 92k 94k 96k 98k 100k
generation

400
401
402
403
404
405
406
407
408
409
410

po
sit
io
n

5

10

15

20

25

30

35

40

Figure 7: Time is on the 𝑥-axis, and the bit positions are on
the 𝑦-axis. Bit positions range from 400 till 410

our previous argument that with this parameter setup, there are
complementary pairs through all generations.

As we see in Figure 7, position 407 has a high frequency of zeros
appearing, while in bit position 404 zeros appear and disappear
relatively fast. Next, we study in more detail how the number of
individuals with a 0 in several representative positions evolves.

In Figure 8, we see three conditions of 0 behavior: 0 appear and
disappear quickly but also no other 0 share the same bit position
(bit position 404); 0s appears at a generation and stay through some
generations but with low frequencies (bit position 400); in some
period of generations, 0s vividly increase and decrease frequency
(bit position 407).

90k 92k 94k 96k 98k 100k
generation

0

5

10

15

20

25

30

35

40

nu
m

be
r o

f z
er

os

at bit position 400
at bit position 404
at bit position 407

Figure 8: Number of 0s in the population at position 404, 402
and 407.Notice at the bit position 404, there is only one 0
appears within a brief period.

5 CONCLUSION
We performed a number of analyses detailing the behavior of the
(` + 1) GA on Jump𝑘 for a wide range of parameters. We find it
surprising that complementary pairs emerge quickly, yet it is so
hard to prove rigorous statements about this emergence of diversity.
Especially Figure 6 might give a strong hint: the behavior is very
varied, gaining and losing 0 at bis positions over and again.

Overall, we believe that this work contributes to a dialectic pro-
cess between proofs and experiments to understand better the
emergence of diversity and the effectiveness of crossover.

ACKNOWLEDGMENTS
This work is supported by grant FR 2988/17-1 by the German Re-
search Foundation (DFG).

REFERENCES
[1] Duc-Cuong Dang, Tobias Friedrich, Martin S. Krejca, Timo Kötzing, Per Kristian

Lehre, Pietro S. Oliveto, Dirk Sudholt, and Andrew Michael Sutton. 2016. Escaping
Local Optima with Diversity Mechanisms and Crossover. In Proc. of GECCO’16.
ACM Press, 645–652.

[2] Duc-Cuong Dang, Tobias Friedrich, Timo Kötzing, Martin S. Krejca, Per Kristian
Lehre, Pietro S. Oliveto, Dirk Sudholt, and Andrew M. Sutton. 2018. Escaping
Local Optima Using Crossover With Emergent Diversity. IEEE Transactions on
Evolutionary Computation 22, 3 (2018), 484–497.

[3] Grasiele R. Duarte and Beatriz S. L. P. de Lima. 2021. An Operation to Promote
Diversity in Evolutionary Algorithms in a Dynamic Hybrid Island Model. In Proc.
of GECCO’21 Companion. ACM Press, 1779–1787.

[4] Thomas Gabor, Lenz Belzner, and Claudia Linnhoff-Popien. 2018. Inheritance-
Based Diversity Measures for Explicit Convergence Control in Evolutionary Algo-
rithms. In Proc. of GECCO’18. ACM Press, 841–848.

[5] Thomas Jansen and Ingo Wegener. 2002. The Analysis of Evolutionary Algorithms
- A Proof That Crossover Really Can Help. Algorithmica 34 (2002), 47–66.

[6] Valentín Osuna-Enciso, Erik Cuevas, and Bernardo Morales Castañeda. 2022.
A diversity metric for population-based metaheuristic algorithms. Information
Sciences 586 (2022), 192–208.

[7] Adam Prügel-Bennett. 2010. Benefits of a Population: Five Mechanisms That
Advantage Population-Based Algorithms. IEEE TEvC 14 (2010), 500–517.

[8] Giovanni Squillero and Alberto Tonda. 2016. Divergence of character and prema-
ture convergence: A survey of methodologies for promoting diversity in evolu-
tionary optimization. Information Sciences 329 (2016), 782–799.

[9] Dirk Sudholt. 2020. The Benefits of Population Diversity in Evolutionary Algorithms:
A Survey of Rigorous Runtime Analyses. Springer, 359–404.

	Abstract
	1 Introduction
	2 Stationary Distribution
	3 Proportion of Complementary Pairs
	4 Dynamics of the Stationary Distribution
	5 Conclusion
	Acknowledgments
	References

