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Abstract

Recently, a number of non-uniform random satisfiability mod-
els have been proposed that are closer to practical satisfiability
problems in some characteristics. In contrast to uniform ran-
dom Boolean formulas, scale-free formulas have a variable
occurrence distribution that follows a power law. It has been
conjectured that such a distribution is a more accurate model
for some industrial instances than the uniform random model.
Though it seems that there is already an awareness of a thresh-
old phenomenon in such models, there is still a complete
picture lacking. In contrast to the uniform model, the critical
density threshold does not lie at a single point, but instead
exhibits a functional dependency on the power-law exponent.
For scale-free formulas with clauses of length k = 2, we give
a lower bound on the phase transition threshold as a function
of the scaling parameter. We also perform computational stud-
ies that suggest our bound is tight and investigate the critical
density for formulas with higher clause lengths. Similar to
the uniform model, on formulas with k � 3, we find that the
phase transition regime corresponds to a set of formulas that
are difficult to solve by backtracking search.

Introduction

Despite the worst-case complexity results of SAT, many
large industrial instances can be solved efficiently by mod-
ern solvers. These instances, unlike formulas generated uni-
formly at random, appear to have some kind of underlying
tractable substructure that can be exploited by solvers during
preprocessing or execution (Williams, Gomes, and Selman
2003; Kullmann 2004; Ansótegui et al. 2008). Nevertheless,
most theoretical work on SAT instance distributions has fo-
cused almost exclusively on the uniform random distribution.
Uniform random formulas are easy to construct, and are com-
paratively more accessible to probabilistic analysis due to
their statistical uniformity.

A narrow focus on uniform random instances comes with
a risk of driving SAT research in the wrong direction (Kautz
and Selman 2007) because such instances do not possess
the same structural properties as those encountered in prac-
tice. It is also well-known that solvers that have been tuned
to perform well on one class of instances do not necessar-
ily perform well on another (Birattari 2009). To address

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

this, the SAT community has expanded their view to study
so-called industrial problem instances. Industrial instances
arise from problems in practice, such as hardware and soft-
ware verification, automated planning and scheduling, and
circuit design. Empirically, industrial instances appear to
have strongly different properties than formulas generated
uniformly at random, and SAT solvers behave very differ-
ently when applied to them (Crawford and Baker 1994;
Konolige 1994). However, benchmark industrial instances
are typically only available on an instance-by-instance basis,
so they are impossible to generate for any specific given pa-
rameter setting such as problem size; and empirical results
are difficult to generalize (Rish and Dechter 2000). More-
over, rigorous theoretical results have been out of reach for
such problems because a formal definition of their distribu-
tion is still lacking (Williams, Gomes, and Selman 2003).
In fact, generating synthetic instances that are more simi-
lar to real-world instances is one of the “Ten Grand Chal-
lenges” proposed in satisfiability research over the last two
decades (Selman, Kautz, and McAllester 1997; Selman 2000;
Kautz and Selman 2003; 2007).

An observable difference between uniform random in-
stances and real world instances is the statistics of variable
occurrence. On the uniform random model, the occurrence
of variables is strongly concentrated around its expectation.
On the other hand, very large variations in variable occur-
rence can be observed on real world instances such as those
that arise in bounded model checking and software verifica-
tion. It has been conjectured (Boufkhad et al. 2005) that this
property might be modeled well by a random formula model
with a power-law variable distribution. In such a distribu-
tion, the fraction of variables that occur z times in a formula
is proportional to z−β , where the constant β is called the
power-law exponent. The left plot of Figure 1 shows the
correspondence between the variable distributions of indus-
trial formulas and random power-law formulas. The figure is
generated by plotting the empirical cumulative variable dis-
tribution of two groups of industrial formulas selected from
SAT Race 2015 competition: hwmcc10 (hardware model
checking) and SAT dat (IBM formal verification suite). We
used the Clauset-Shalizi-Newman method (2009) to estimate
the power-law exponent in the industrial data and match it
in the randomly generated formula. A more detailed look at
the variable distribution statistics of industrial formulas is
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Figure 1: Empirical variable occurrence frequency (left) for formulas in two industrial categories from SAT Race 2015.
hwmcc10 contains three formulas with 8× 104 < n < 2× 105; SAT dat contains five formulas with 105 < n < 1.5× 106.
The industrial formulas are compared to a random power-law formula (n = 106, m = 4.5 × 106, β = 2.75) and a uniform
random formula (n = 106, m = 4.5 × 106). The variable frequencies of the industrial instances are closer to the random
power-law formula than to the uniform random formula. In fact, a vast majority of the industrial variable frequencies match very
closely to the powerlaw distribution. Variable occurrence probability pi (right) as a function of variable index i as described in
Equation (2) for n = 106, β = 2.5, 3.5, 5.0 scale-free distributions and uniform distribution.

provided by Ansótegui, Bonet, and Levy (2009a).
The constraint graph of a formula Φ is a graph G = (V,E)

where V corresponds to the variables of Φ and (u, v) ∈ E iff
u and v appear together in a clause. The power-law variable
distribution gives rise to an underlying constraint graph with
the so-called scale-free property. The presence of this scale-
free property on real-world formulas could explain the suc-
cess of complete solvers on industrial instances (Ansótegui,
Bonet, and Levy 2009a), since it has been shown that they
typically have a small set of key variables that, when set cor-
rectly, make the formula easy (Williams, Gomes, and Selman
2003). Others have further conjectured that even incomplete
stochastic local search algorithms could also exploit scale-
free structure in SAT formulas (Tompkins and Hoos 2010).

To address the need for industrial-like models and moti-
vated by the conjectured scale-free property in real world
problems noted by Boufkhad et al. (2005), Ansótegui et
al. (2009a; 2009b) proposed a number of non-uniform SAT
distributions including a model in which variables are se-
lected from a power-law distribution. The resulting instances
have the benefit that they can be generated at random, but
they also bear the claimed computational properties observed
in practical applications (Ansótegui, Bonet, and Levy 2009b).

The study of random SAT formulas is concerned with
characterizing probability distributions over satisfiability for-
mulas. The constraint density of a distribution of formulas
on n variables and m clauses is measured as the ratio of
clauses to variables m/n. A phase transition in a random
satisfiability model is the phenomenon of a sharp transition
as a function of constraint density between formulas that are
almost surely satisfiable and formulas that are almost surely
not satisfiable. The location of such a transition is called

the critical density. Ansótegui et al. (2009b) experimentally
identified a “phase transition point” at a constant density for
the scale-free model. They found that the critical density
appears to depend on the power-law exponent of the vari-
able occurrence distribution. However, its precise location
and functional dependence on both the power-law exponent
and density is not currently known. Furthermore, so far no
rigorous bounds exist for formulas of any clause length.

Our contribution. In this paper, we specifically address the
phase transition phenomenon in scale-free k-SAT formulas.
We sketch a proof for a lower bound on the location of the
threshold for the case of k = 2. Our bound implies that the
critical density scales as a simple polynomial function of the
power-law exponent β of the formula. We present empirical
results that suggest our bound is tight. For k > 2, we perform
a computational study to provide a more detailed picture
of the phase transition for scale-free formulas, and clarify
the regime of hard formulas. We conjecture that the critical
density also scales as some polynomial in β for k > 2, and
we also give evidence for a dependence on k.

Similar to the uniform model, we find that the threshold
corresponds to hard formulas. In the scale-free model, this
corresponds to a region of hard formulas that depends both on
the density and the power-law exponent. We perform a short
empirical study that suggests this hard region is relatively
consistent across different types of solvers.

Related work on uniform random SAT. In the uniform
random distribution each k-CNF formula over n variables
and m clauses occurs with equal probability. This distribution
was popularized in a seminal paper by Mitchell, Selman
and Levesque (1992) who were interested in whether hard
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Figure 2: Phase diagram for scale-free 2-SAT formulas with
n = 107 variables. We empirically observe a sharp phase
transition ( ), which closely matches the theoretical bound
of Theorem 1 ( ).

instances of SAT come up often, or rather if they are always
a result of encodings tailored to a specific purpose. They
also showed that a backtracking complete solver exhibited
an empirical easy-hard-easy pattern at the transition. The
explanation for this pattern is that formulas near the critical
density have few satisfying assignments (unlike low-density
formulas), but still many variables must be assigned before
finding a solution or deriving a contradiction (unlike high-
density formulas) resulting in deep search trees.

The study of a threshold phenomenon in the uniform
model has been the focus of intense study in the last two
decades. The satisfiability threshold conjecture asserts if Φ
is a formula drawn uniformly at random from the set of all
k-CNF formulas with n variables and m clauses, there ex-
ists a real number rk such that limn→∞ Pr{Φ is satisfiable}
vanishes for m/n < rk, and is equal to one for m/n < rk.
Friedgut (1999) showed that the transition is sharp, even
though its location is not known exactly for all values
of k (and may also depend on n). For k = 2, the crit-
ical threshold is r2 = 1 (Chvátal and Reed 1992). For
k � 3, recently Coja-Oghlan (2014) proved that rk =
2k ln 2 − 1

2 (1 + ln 2) + o(1) where the asymptotic term
vanishes as k → ∞. Ding et al. (2015) derived an ex-
act representation of the threshold for all k � k0, where
k0 is a large enough constant. Gent and Walsh (1996;
1999) performed a detailed experimental study on the phase
transition for random k-SAT and several other models. For
random k-SAT, they found the hardest problems for back-
tracking solvers are associated with a constraint gap that
induces hard unsatisfiable branches in the search tree.

Related work on non-uniform random SAT. The study of
phase transitions has been extended to other random distribu-
tions. Cooper et al. (2007) identified the existence of a sharp
phase-transition in random 2-SAT formulas with prescribed
literal occurrences. More specifically, if all literals appear
equally often, we obtain regular random k-CNF formulas.

This model is claimed to be more difficult to solve than the
uniform model because solvers cannot exploit variations in
variable occurrence. Boufkhad et al. (2005) used the result of
Cooper et al. (2007) to show that the regular random k-CNF
distribution exhibits a sharp phase transition at m/n = 1 for
k = 2, and established upper and lower bounds on the critical
density for k = 3. Their results suggest that the transition of
the regular model occurs at much lower densities than with
the uniform model.

Giráldez-Cru and Levy (2015) argue that industrial in-
stances exhibit modularity and propose a random instance
generator that partitions the variables into c disjoint sets of
size n/c. Clauses are then chosen uniformly at random so
that each clause contains literals only from the same com-
munity with probability p, otherwise with probability 1− p
they are chosen uniformly out of the set of variables such that
each variable comes from a different community. They argue
that when the communities do not overlap (p = 1), and their
size tend to infinity, the phase transition point is the same for
uniform random formulas.

Random scale-free formulas

We consider random k-SAT formulas Φ on n variables and m
clauses. We denote by x1, . . . , xn the Boolean variables. A
clause of size k is a disjunction of exactly k literals �1∨ . . .∨
�k, where each literal assumes a (possibly negated) variable.
Following conventions, we write |�| to denote the variable
corresponding to literal �. Finally, a formula Φ in conjunctive
normal form is a conjunction of clauses c1 ∧ . . . ∧ cm. We
say that Φ is satisfiable if there exists an assignment of its
variables x1, . . . , xn such that the formula evaluates to 1.

To construct a random satisfiability formula in the scale-
free model, we sample each clause independently at random.
In contrast to the classical uniform random model, however,
the probabilities pi := Pr(X = xi) to choose a variable
xi are non-uniform. In particular, a scale-free formula is
generated by using a power-law distribution for the variable
distribution. To this end, we assign each variable xi a weight
wi and sample it with probability

pi := Pr(X = xi) =
wi∑
j wj

.

To achieve a power-law distribution, we assume the concrete
weight sequence

wi :=
β−2
β−1 (

n
i )

1
β−1 (1)

for i = 1, 2 . . . , n, which is a canonical choice for power-law
weights, cf. (Chung and Lu 2002a). This sequence guarantees∑

j wj → n for n → ∞ and therefore

pi → 1
n

β−2
β−1 (

n
i )

1
β−1 . (2)

We plot Equation (2) on the right of Figure 1 for various
values of β compared with the flat uniform distribution. To
sample Φ, we generate each clause c as follows.

1. Sample k variables independently at random according to
the distribution pi. Repeat until no variables coincide.

2. Negate each of the k variables independently at random
with probability 1/2.
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This model for constructing propositional satisfiability for-
mulas first appeared in (Ansótegui, Bonet, and Levy 2009b).
Note, however, that the authors of that paper use α in-
stead of β as the power-law exponent and define β =
1/(α− 1). We instead define β to follow the notational con-
vention of Chung and Lu, cf. (Aiello, Chung, and Lu 2000;
Chung and Lu 2002b; 2002a).

Analysis of scale-free 2-SAT

2-SAT is polynomial-time solvable, but still exhibits some
typical properties of k-SAT such as a phase transition. 2-SAT
was also the first uniform random SAT distribution for which
a sharp threshold could be proven (Chvátal and Reed 1992).
We show a proof sketch that power-law 2-SAT formulas are
satisfiable if the constraint density is small enough. Denote
[n] := {1, . . . , n}.
Lemma 1. Whenever β > 3, it holds for all 1 � i � n∑
S⊆[n]
|S|=t

∏
i∈S

p2i � exp
(

t·(β−3)
n·(β−1)

)
·
(

(β−2)2

(β−1)(β−3)

)t

· 1
t!
· n−t.

Proof Sketch. The idea is to arrange the elements of the set
S ⊆ [n] in decreasing order s1 > s2 > . . . > st, yielding

∑
S⊆[n]
|S|=t

∏
i∈S

p2i =

n∑
s1=t

(
p2s1

s1−1∑
s2=t−1

(
p2s2 . . .

st−1−1∑
st=1

p2st

))
.

This can be estimated inductively, beginning with the inner-
most sum. In the induction step, the resulting sums are upper
bounded by integrals to derive the desired result. �

Theorem 1. Scale-free random 2-SAT with power-law expo-
nent β > 3 and clause-variable ratio m/n < (β−1)(β−3)

(β−2)2 is
satisfiable with probability 1− o(1).

Proof Sketch. The proof of this theorem is oriented along
the lines of the proof of Theorem 3 from (Chvátal and Reed
1992). We define a bicycle of length t to be a sequence of t+1
clauses of the form (u, �1) ,

(
�̄1, �2

)
, . . . ,

(
�̄t−1, �t

)
,
(
�̄t, v

)
,

where �1, . . . , �t are literals of distinct variables and u, v ∈{
�1, . . . , �t, �̄1, . . . , �̄t

}
. Chvátal and Reed (1992, Theo-

rem 3) show that every unsatisfiable 2-CNF contains a bicycle.
To upper bound the probability that Φ is unsatisfiable it is
therefore sufficient to upper bound the probability that Φ con-
tains a bicycle. To do so, we calculate the expected number
of bicycles and use Markov’s inequality.

Observe that the probability to sample a clause (� ∨ h) is
exactly

Pr (� ∨ h) :=
p|�| · p|h|

2 (1−∑n
i=1 p

2
i )

=
C

2
· p|�| · p|h|, (3)

since a pair of different variables is sampled with proba-
bility 2 · p|�| · p|h|; there are four combinations of signs;
and the probability that no variable appears twice is C−1 =(
1−∑n

i=1 p
2
i

)
= 1−Θ( 1n ) for our given weight sequence

whenever β > 3.

Now let X denote the random variable counting the num-
ber of bicycles that appear in F . One can show combinatori-
ally that

E [X] �
n∑

t=2

2 ·mt+1 · t! · Ct+1 · t2p2max

∑
S⊆[n]
|S|=t

∏
i∈S

p2i .

By Lemma 1 and using r := m/n, pmax = Θ(n−
β−2
β−1 ), and

C = 1+Θ
(
1
n

)
, we obtain that the right-hand side is at most

2 · e β−3
β−1 · r · n · C

n∑
t=2

·t2p2max

(
Cr (β−2)2

(β−1)(β−3)

)t

= O
(
n

3−β
β−1

) n∑
t=2

t2
(
r (β−2)2

(β−1)(β−3)

)t

. (4)

Since we assume r (β−2)2

(β−1)(β−3) < 1, there is a

t0 = polylog(n) with t20 ·
(
r (β−2)2

(β−1)(β−3)

)t0
< n−2,

i.e.
n∑

t=2

t2
(
r (β−2)2

(β−1)(β−3)

)t

� t20 + n−1 = O(polylog(n)).

This gives us E [X] = O(n
3−β
β−1 · polylog(n)) = o(1), since

we require β > 3. �

This yields a lower bound for the critical density of scale-
free random 2-SAT formulas. Figure 2 shows that this theo-
retical bound matches our empirical observations.

Empirical study of scale-free k-SAT

In this section, we experimentally investigate the behavior
of scale-free k-SAT. We report the satisfiability of random
formulas depending on the constraint density m/n and the
power-law exponent β in Figure 2 (for k = 2) and Fig-
ure 3 (for k = 3, 4). The phase diagram in Figure 2 and
in the leftmost panels of Figure 3 are generated as follows.
In an interest to eliminate statistical fluctuations that can
arise at small problem sizes, we set n very large, specifi-
cally n = 107 for k = 2 and n = 106 for k > 2. For
the appropriate value of n, 50 scale-free formulas are gen-
erated for each β = 1.5, 1.6, . . . , 3.5 and each m such that
m/n = 1/10, 2/10, . . . , 5 (for k = 2 we use increments of
1/50 with maximum m/n = 1). Each resulting formula is
solved by the CDCL-based solver MapleCOMSPS (Liang et
al. 2016) with a time cutoff of 900 seconds (15 min).

If the satisfiability of the formula cannot be determined
within this time, the formula is marked as “hard”, and its
satisfiability state is unknown. On the phase diagrams, each
point corresponds to a set of 50 formulas at a given density
and scale parameter. If all 50 formulas were unsatisfiable,
a red cross ( ) is drawn. If some formulas are satisfiable, a
green dot ( ) is drawn with the size of the dot corresponding
to the fraction of satisfiable instances. Note that the threshold
appears to be sharp, and in most cases, either all formulas
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Figure 3: Phase diagrams (left) and timing contour plots (center) for scale-free k-SAT with n = 106 and k = 3 (top) and
k = 4 (bottom). The phase diagrams show a clear phase transition from unsatisfiable ( ) to satisfiable ( ) and a patch of very
hard instances ( ), close to the phase transition for higher m/n and β. The contour plots and heat maps in the center column
report mean solver time on the formulas (blue=fast,red=slow); solver run time strongly increases around the phase transition.
Comparison of threshold bounds (right) proposed by four different solvers. As a function of β: the upper bound on density for
the unsatisfiable phase is drawn in red; lower bound on density for satisfiable phase drawn in green.
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tially at the critical point (corresponding to the lower left corner
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below the critical point, both solvers scale more efficiently.
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were satisfiable, all were unsatisfiable, or all were hard. More-
over, the sat/unsat transition appears to shift to lower overall
β values when moving from k = 3 to k = 4.

To understand the effect of the model parameters on solver
time, we measured the average time to determine the sat-
isfiability of all formulas at each (β,m/n) point. When
k = 2, solver time was not generally affected by the thresh-
old, though there is an expected (polynomial) dependency on
formula size. We omit the details for this case due to space
constraints. For k = 3, 4 we report the mean solver time (in
seconds) in a contour plot in the center panel of Figure 3.

Our solver choice is motivated by the good performance of
MapleCOMSPS on the Application Benchmarks at the SAT
2016 competition. MapleCOMSPS implements machine-
learning branching heuristics and is based on MiniSAT (Eén
and Sörensson 2003), which has also performed well in in-
dustrial categories in previous SAT competitions (Le Berre
and Simon 2006). For k = 3, there is an expanding region of
hard formulas that begins at densities above 2 and power-law
exponent β � 2.5. For k = 4, we see a crossover at around
2.33, and the hard region seems to lie at higher densities.

In order to determine how other types of solvers be-
have in the model, we also repeated the experiment
with march hi (Heule and van Maaren 2009), a DPLL-
based solver employing look-ahead heuristics to select
branching variables, and two stochastic local search (SLS)
solvers, WalkSAT (Selman, Kautz, and Cohen 1994) and
probSAT (Balint and Schöning 2014). We plot the upper
and lower bounds of the sat/unsat threshold proposed by all
solvers for k = 3, 4 in the right-most panel of Figure 3. The
lines can be interpreted as follows. At each β value, the high-
est (resp., lowest) density at which the majority of formulas
are successfully determined to be unsatisfiable (resp., satisfi-
able) yields a proposed upper bound (resp., lower bound) on
the threshold at that β. The upper bounds (at the unsat region)
are drawn in red and the lower bounds (at the sat region) are
drawn in green. Note that the SLS solvers are incomplete in
the sense that they can only decide satisfiability. Therefore,
they can only propose lower bounds on the threshold.

Interestingly, the two backtracking solvers behave simi-
larly in the unsatisfiable phase, but march hi fails for much
lower densities in the satisfiable phase. Its performance in
the satisfiable phase is similar to that of WalkSAT, though
even WalkSAT solves slightly higher densities at large β
in the k = 4 model. Furthermore, despite the overall weak
performance of WalkSAT, the other SLS solver (ProbSAT)
even achieves the best proposed lower bound for k = 3.

Figure 4 investigates easy-hard-easy patterns at fixed β val-
ues. The easy-hard-easy pattern is a well-known phenomenon
for backtracking solvers in the uniform model. Difficult for-
mulas appear at the critical density and become easier again
as density is increased. This can be an overly simplistic per-
spective. Coarfa et al. (2003) summarize this by pointing out
that the pattern is observed only when fixing n and varying
m/n. In this case the class of instances is finite. On the other
hand, fixing density and varying n reveals a different “slice”
of the picture. For example, Chvátal and Szemerédi (1988)
showed that any resolution proof of a high density uniform
random formula (e.g., m/n � 5.8 for k = 3) must generate

a number of clauses that grows exponentially with n.
Nevertheless, understanding hardness as a function of den-

sity at fixed orders can help to give a picture of where the
troubling regions are for solvers at finite n, and we observe in
Figure 4 that such a pattern emerges as β increases. The densi-
ties at which the hard formulas emerge also vary with β. The
solver cutoff is 900s, and so the peaks appear truncated. Such
a relatively low cutoff means high-density uniform random
formulas only become easy again for n = 500 (see above
point). On the other hand, for scale-free formulas, we are able
to observe the pattern even for n = 104. This supports the
conjecture that scale-free random formulas are easier than
uniform random formulas for backtracking solvers.

Finally in Figure 5 we observe in a semi-log plot the scal-
ing of mean solver time as a function of n at the critical
point β = 2.6, m/n = 2.28 in the k = 3 model (lower left
of the hard region in the top left of Figure 3). At this point
(for n � 104), we find that roughly half of the formulas are
unsatisfiable. The solver times scale exponentially, but with
seemingly similar bases. Reducing the exponent only slightly
(β = 2.4) results in significantly more efficient scaling.

Conclusion

The characterization of the satisfiability threshold on uniform
random formulas has been an important and challenging
research program spanning several decades. In this paper, we
open a new line of inquiry into the satisfiability threshold
of scale-free k-SAT: a distribution that better models the
variable occurrence statistics of many real-world problems.
We give a lower bound on the location of the threshold for
k = 2, and present an empirical picture of the threshold that
is described by a line in the plane determined by formula
density and power-law exponent.

Hard instances of many random combinatorial problem
instances can often be found near the critical values of or-
der parameters (Cheeseman, Kanefsky, and Taylor 1991).
In scale-free k-SAT, we also find the hardest instances ap-
pear in an expanding region that emerges along the threshold
line. Formulas with low power-law exponent β are easy to
refute, most likely because they contain simple contradic-
tions. On the other hand, those with small constraint density
but sufficiently large β are typically underconstrained and
contradiction-free. These formulas are easily solved by both
complete backtracking and SLS solvers. On formulas that
cluster along the phase transition, we conjecture that, simi-
lar to the uniform model (Gent and Walsh 1996) backtrack-
ing solvers make spurious decisions early in the search tree.
Moreover, solutions become more sparsely distributed in the
search space, rendering SLS solvers ineffective.

In general, the study of non-uniform random problem dis-
tributions can provide better insights into the instance struc-
ture of practical applications. Trajectories for future work
include developing a matching upper bound for 2-SAT and
generalizing the threshold bounds to k > 2. It is also inter-
esting to consider non-uniform random instances of other
problems that undergo a phase transition such as graph col-
oring (Cheeseman, Kanefsky, and Taylor 1991) and vertex
cover (Hartmann and Weigt 2001).
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