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a b s t r a c t

Multi-objective optimization problems arise frequently in applications, but can often only be solved approx-

imately by heuristic approaches. Evolutionary algorithms have been widely used to tackle multi-objective

problems. These algorithms use different measures to ensure diversity in the objective space but are not

guided by a formal notion of approximation. We present a framework for evolutionary multi-objective opti-

mization that allows to work with a formal notion of approximation. This approximation-guided evolutionary

algorithm (AGE) has a worst-case runtime linear in the number of objectives and works with an archive that

is an approximation of the non-dominated objective vectors seen during the run of the algorithm. Our ex-

perimental results show that AGE finds competitive or better solutions not only regarding the achieved

approximation, but also regarding the total hypervolume. For all considered test problems, even for many

(i.e., more than ten) dimensions, AGE discovers a good approximation of the Pareto front. This is not the

case for established algorithms such as NSGA-II, SPEA2, and SMS-EMOA. In this paper we compare AGE with

two additional algorithms that use very fast hypervolume-approximations to guide their search. This signifi-

cantly speeds up the runtime of the hypervolume-based algorithms, which now allows a comparison of the

underlying selection schemes.

© 2014 Elsevier B.V. All rights reserved.
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. Introduction

Real-world optimization problems are usually very complex and

ard to solve due to different circumstances such as constraints, com-

lex function evaluations that can only be done by simulations, or

ultiple objectives. Most real-world optimization problems are char-

cterized by multiple objectives. As these objectives are often in con-

ict with each other, the goal of solving a multi-objective optimization

MOO) problem is to find a (not too large) set of compromise solutions.

he so-called Pareto front of a MOO problem consists of the function

alues representing the different trade-offs with respect to the given

bjective functions. The set of compromise solutions that is the out-

ome of a MOO run is an approximation of this Pareto front, and the

dea of this posteriori approach is that afterwards the decision maker

elects an efficient solution from this set. Multi-objective optimiza-

ion is regarded to be more (or at least as) difficult as single-objective

ptimization due to the task of computing several solutions. From a

omputational complexity point of view even simple single-objective

roblems on weighted graphs like shortest paths or minimum span-
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ing trees become NP-hard when they encounter at least two weight

unctions (Ehrgott, 2005). In addition, the size of the Pareto front is

ften exponential for discrete problems and even infinite for contin-

ous ones.

Due to the hardness of almost all interesting multi-objective prob-

ems, different heuristic approaches have been used to tackle them.

mong these methods, evolutionary algorithms are frequently used.

hey work at each time step with a set of solutions called population.

he population of an evolutionary algorithm for a MOO is used to

tore desired trade-off solutions for the given problem.

As the size of the Pareto front is often very large, evolutionary

lgorithms and all other algorithms for MOO have to restrict them-

elves to a smaller set of solutions. This set of solutions should be a

ood approximation of the Pareto front. The main question is now

ow to define approximation. The literature (see e.g. Deb, 2001) on

volutionary multi-objective optimization (EMO) just states that the

et of compromise solutions (i) should be close to the true Pareto

ront, (ii) should cover the complete Pareto front, and (iii) should be

niformly distributed. There are different evolutionary algorithms for

ulti-objective optimization such as NSGA-II (Deb, Pratap, Agrawal, &

eyarivan, 2002), SPEA2 (Zitzler, Laumanns, & Thiele, 2002), or IBEA

Zitzler & Künzli, 2004), which try to achieve these goals by preferring
iverse sets of non-dominated solutions.

http://dx.doi.org/10.1016/j.ejor.2014.11.032
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However, the above notion of approximation is not a formal def-

inition. Having no formal definition of approximation makes it hard

to evaluate and compare algorithms for MOO problems. Therefore,

we think that it is necessary to use a formal definition of approxi-

mation in this context and evaluate algorithms with respect to this

definition.

Different formal notions of approximation have been used to eval-

uate the quality of algorithms for multi-objective problems from a

theoretical point of view. The most common ones are the multi-

plicative and additive approximations (see Cheng, Janiak, & Kovalyov,

1998; Daskalakis, Diakonikolas, & Yannakakis, 2010; Diakonikolas &

Yannakakis, 2009; Papadimitriou & Yannakakis, 2000, 2001; Vassilvit-

skii & Yannakakis, 2005). Laumanns, Thiele, Deb, and Zitzler (2002)

have incorporated this notion of approximation in an evolutionary

algorithm for MOO. However, this algorithm is mainly of theoretical

interest as the desired approximation is determined by a parameter

of the algorithm and is not improved over time. Another approach

related to a formal notion of approximation is the popular hypervol-

ume indicator (Zitzler & Thiele, 1999) that measures the volume of

the dominated portion of the objective space. Hypervolume-based

algorithms such as MO-CMA-ES (Igel, Hansen, & Roth, 2007) or SMS-

EMOA (Beume, Naujoks, & Emmerich, 2007) are well-established for

solving MOO problems. They do not use a formal notion of approxi-

mation but it has recently been shown that the worst-case approx-

imation obtained by optimal hypervolume distributions is asymp-

totically equivalent to the best worst-case approximation achievable

by all sets of the same size (Bringmann & Friedrich, 2010b, 2010c).

The major drawback of the hypervolume approach is that it cannot

be computed in time polynomial in the number of objectives unless

P = NP (Bringmann & Friedrich, 2010a). It is even NP-hard to deter-

mine which individual gives approximately the least contribution to

the total hypervolume (Bringmann & Friedrich, 2012).

We introduce an efficient framework of an evolutionary algorithm

for MOO that works with a formal notion of approximation and im-

proves the approximation quality during its iterative process. The

algorithm can be applied to a wide range of notions of approximation

that are formally defined. As the algorithm does not have complete

knowledge about the true Pareto front, it uses the best knowledge

obtained so far during the optimization process.

The intuition for our algorithm is as follows. During the optimiza-

tion process, the current best set of compromise solutions (usually

called “population”) gets closer and closer to the Pareto front. Simi-

larly, the set of all non-dominated points seen so far in the objective

space (we call this “archive”) is getting closer to the Pareto front. Ad-

ditionally, the archive is getting larger and larger and becoming an

increasingly good approximation of the true Pareto front. Assuming

that the archive approximates the Pareto front, we then measure the

quality of the population by its approximation with respect to the

archive. In our algorithm

• any set of feasible solutions constitutes an (potentially bad) ap-

proximation of the true Pareto front, and
• we optimize the approximation with respect to all solutions seen

so far.

We introduce a basic approximation guided evolutionary algo-

rithm which already performs very well for problems with many

objectives. One drawback of the basic approach is that the archive

size might grow tremendously during the run of the algorithm. In

order to deal with this, we propose to work with an approximative

archive which keeps at each time step only an ε-approximation of all

solutions seen so far. We do this by incorporating the ε-dominance

approach of Laumanns et al. (2002) into the algorithm. Furthermore,

we introduce a powerful parent selection scheme which especially

increases the performance of our algorithm for problems with just a

few objectives by given the algorithm a stronger focus on the extreme

points on the Pareto front.
We show on a set of well established benchmark problems that

ur approach is highly successful in obtaining high quality approxi-

ations according to the formal definition. Comparing our results to

tate of the art multi-objective algorithms such as NSGA-II, SPEA2,

BEA, and SMS-EMOA, we show that our algorithm typically gives

etter results, especially for high dimensional problems.

In our experimental study, we measure the quality of the results

btained not only in terms of the approximation quality but also with

espect to the achieved hypervolume. Our experiments show that the

xamined hypervolume-based algorithms can sometimes achieve a

arger hypervolume than our algorithm AGE, but AGE is the only one

onsidered that finds a competitive hypervolume for all functions.

ence our algorithm not only performs better regarding our formal

efinition of approximation on problems with many objectives, but it

s also competitive (or better, depending on the function) regarding

he hypervolume.

This article is based on its previous conference publications. The

ased AGE algorithm has been introduced in Bringmann, Friedrich,

eumann, and Wagner (2011). The archive approximation has been

resented in Wagner and Neumann (2013) and different parent selec-

ion schemes for AGE have been examined and discussed in Wagner

nd Friedrich (2013).

The outline of this paper is as follows. We introduce some ba-

ic definitions in Section 2. The main idea of approximation guided

volution and the basic AGE algorithm are presented in Section 3. In

ection 6 we show how to speed up the approach by using an ap-

roximative archive and discuss different parent selection schemes

n Section 5. We present our experimental results in Section 8 and

nish with a summary and some concluding remarks.

. Preliminaries

Multi-objective optimization deals with the optimization of sev-

ral (often conflicting) objective functions. The different objective

unctions usually constitute a minimization or maximization problem

n their own. Optimizing with respect to all given objective functions,

here is usually no single optimal objective function vector, but a set

f vectors representing the different trade-offs that are imposed by

he objective functions.

Without loss of generality, we consider minimization problems

ith d objective functions, where d ≥ 2 holds. Each objective function

i : S �→ R, 1 ≤ i ≤ d, maps from the considered search space S into the

eal values. In order to simplify the presentation we only work with

he dominance relation on the objective space and mention that this

elation transfers to the corresponding elements of S.

For two points x = (x1, . . . , xd) and y = (y1, . . . , yd), with x, y ∈ Rd

e define the following dominance relation:

� y :⇔ xi ≤ yi for all 1 ≤ i ≤ d,

≺ y :⇔ x � y and x �= y.

The typical notions of approximation used in theoretical computer

cience are multiplicative and additive approximation. We use the

ollowing definition

efinition 1. For finite sets S, T ⊂ Rd, the additive approximation of

with respect to S is defined as

(S, T) := max
s∈S

min
t∈T

max
1≤i≤d

(si − ti).

n this paper, we only consider additive approximations. However,

ur approach can be easily adapted to multiplicative approximations.

n this case, the term si − ti in Definition 1 has to be replaced by si/ti.

. Basic algorithm

Our aim is to minimize the additive approximation value of the

opulation P we output with respect to the archive A of all points
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Subroutine 1: Measure approximation quality of a population.

input : Archive A, Population P

output: Indicator Sα(A, P)

1 S ← ∅;

2 foreach a ∈ A do

3 δ ← ∞;

4 foreach p ∈ P do

5 ρ ← −∞;

6 for i ← 1 to d do

7 ρ ← max{ρ, ai − pi};

8 δ ← min{δ, ρ};

9 S ← S ∪ {δ};

10 sort S decreasingly;

11 return S;

Subroutine 2: Insert point into archive.

input : Archive A, Point p ∈ Rd

output: Archive consisting of the Pareto optimal points of

A ∪ {p}
1 dominated ← false;

2 foreach a ∈ A do

3 if p ≺ a then delete a from A;

4 if a � p then dominated ← true;

5 if not dominated then add p to A;

6 return A;
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Algorithm 3: Basic (μ + λ)-Approximation Guided EA.

1 Initialize population P with μ random individuals;

2 Set archive A ← P;

3 foreach generation do

4 Initialize offspring population O ← ∅;

5 for j ← 1 to λ do

6 Select two random individuals from P;

7 Apply crossover and mutation;

8 Add new individual to O, if it is not dominated by any

individual from P;

9 foreach p ∈ O do

10 Insert offspring p in archive A with Subroutine 2;

11 Add offspring to population, i.e., P ← P ∪ O;

12 while |P| > μ do

13 foreach p ∈ P do

14 Compute Sα(A, P \ {p}) with Subroutine 1;

15 Remove p from P for which Sα(A, P \ {p}) is

lexicographically smallest;
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een so far, i.e., we want to minimize α(A, P). The problem is that

(A, P) is not sensitive to local changes of P. As its definition is based

n maximum and minimum values, α(A, P) only measures the ap-

roximation of points that are worst approximated. Consequently,

t does not take into account approximation values for points that

re not “worst approximated”. We will illustrate this with a very

imple example. Let us consider a two-dimensional space with an

rchive A = {(1, 2), (2, 1), (3, 0)} and a population P = {(2, 1)}. Then,

(A, P) = 1 due to archive points (1, 2) and (3, 0). Even if points such

s (3, 0) or (2.5, 0.5) are added to the population, the approxima-

ion value will remain α(A, P) = 1 because of the worst approximated

rchive point (1, 2), even though the approximation of (3, 0) is signif-

cantly improved.

To get a sensitive indicator, which can be used to guide the search,

e consider instead the set {α({a}, P) | a ∈ A} of all approximations

f the points in A. We sort this set decreasingly and call the resulting

equence

α(A, P) := (α1, . . . , α|A|).
he first entry α1 is again α(A, P). Our new goal it then to min-

mize Sα(A, P) lexicographically, meaning that we take the lexico-

raphically smallest sequence when we face several sequences.1 Note

hat this is a refinement of the order induced by α(A, P): If we have

(A, P1) < α(A, P2) then we also have Sα(A, P1) <lex Sα(A, P2). More-

ver, this indicator is locally sensitive. Subroutine 1 states the pseudo-

ode for computing Sα(A, P) for a given archive A and a population P.

We are now ready to describe the basic AGE algorithm. It works

ith the vector Sα(A, P) and tries to minimize it with respect to the

exicographical order. Depending on the optimization process the

rchive A changes and stores at each point in time for each non-

ominated objective vector one single solution.
1 (a1, . . . , a|A|) <lex (b1, . . . , b|A|) ⇔ (a1 < b1) or ((a1 = b1) and (a2, . . . , a|A|) <lex

b2, . . . , b|A|)).

p

t

t

The basic AGE algorithm shown in Algorithm 3 works with a par-

nt population of μ individuals and produces in each generation λ
ffspring.

A newly produced offspring p is added to the archive A if it is not

ominated by any other solution found so far. If it is added to the

rchive, all solutions that are dominated by p are removed from A

see Subroutine 2). In order to obtain the next parent population, the

et consisting of the union of the parent and offspring is considered.

rom this set, the individual p for which Sα(A, P \ {p}) is lexicograph-

cally smallest is removed iteratively until a population of size μ is

btained. Note that in contrast to many other evolutionary algorithms

like Laumanns et al., 2002 or all hypervolume-based algorithms), the

asic AGE algorithm needs no meta-parameters besides the popula-

ion sizes μ and λ.

We now analyze the runtime of the basic AGE algorithm in de-

endence of μ, λ, the archive size A, and the number of func-

ion evaluations N of the algorithm. One generation consists of

roducing and processing λ offspring. The main part of the run-

ime is needed for the O(λ(μ + λ)) computations of Sα(A, P \ {p}),
ach costing O(d |A| (μ + λ)+ |A| log |A|). Hence, we get a runtime of

(λ(μ + λ)|A| (d (μ + λ)+ log |A|)) for generating an offspring pop-

lation of λ individuals. This means for N function evaluations, that

s, N generated points overall, we get a total runtime of

(N (μ + λ)|A| (d (μ + λ)+ log |A|)) (1)

s we can see, this basic algorithm becomes very slow due to the

μ + λ)2 factor when, e.g., μ + λ = 200 is chosen. However, this algo-

ithm works well (in the sense of runtime) for very small population

nd offspring sizes.

The following three sections describe three successive improve-

ents for this basic framework of approximation guided evolution.

. Improved approximation calculation

It can be observed that the selection phase is the most costly step

n one iteration of the basic AGE given in Algorithm 3 as it has to

valuate the points of the parent and offspring population against the

rchive. We can obtain a significant speed-up for each generation of

he algorithm by cleverly updating the approximation value of the

oints in the archive that are affected by the removal of a point from

he set consisting of the parents and offspring.

Let us first assume that the approximations α({a}, {p}) are dis-

inct for all a ∈ A and p ∈ P. For all a ∈ A we denote the point p ∈ P
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Subroutine 4: Fast approximation-guided selection.

input : Population P, Archive A, μ
output: μ individuals from P which (greedily) give best

approximation of archive A

1 foreach a ∈ A do

2 p1(a) ← argminp∈P α({a}, {p});
3 p2(a) ← argminp1(a)�=p∈P α({a}, {p});
4 α1(a) ← minp∈P α({a}, {p});
5 α2(a) ← minp1(a)�=p∈P α({a}, {p});
6 foreach p ∈ P do

7 β(p) ← maxa∈A{α2(a) | p1(a) = p};

8 while |P| > μ do

9 Remove p∗ from P with β(p) minimal;

10 foreach a ∈ A with p1(a) = p∗ do

11 Compute p1(a), p2(a), α1(a), α2(a) as done above in

lines 2–5;

12 β(p1(a)) ← max{β(p1(a)), α2(a)};
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that approximates it best by p1(a) and the second best by p2(a).
The respective approximations we denote by αi(a) := α({a}, {pi(a)})
for i ∈ {1, 2}. Now, let p �= q ∈ P and consider Sp := Sα(A, P \ {p}) and

Sq := Sα(A, P \ {q}). Significant for the comparison of the two are only

the positions a ∈ A where Sp or Sq differ from S := Sα(A, P). This

is the case for all positions in B := {a ∈ A | p1(a) ∈ {p, q}}. Now, if

we delete p from the population P, then the worst approximation

of one of the a ∈ B is the maximum of max{α2(a) | p1(a) = p} and

max{α1(a) | p1(a) = q}. Now observe that if

β(p) := max
a∈A

{α2(a) | p1(a) = p}
is smaller than the respective β(q), then also the larger term above

is smaller, as max{α1(a) | p1(a) = q} < max{α2(a) | p1(a) = q}. Hence,

we end up with the fact that we only have to compare β(p)and throw

out the point p with minimal β(p). This is shown in Subroutine 4,

which replaces lines 12–15 of Algorithm 3.2

Recall that we assumed that all approximations α({a}, {p}) with

a ∈ A, p ∈ P are distinct. If this does not hold, we can simply change

the indicator Sα(A, P) slightly and insert symmetry breaking terms

a · ε, where ε > 0 is an infinitesimal small number. This means that

we treat equal approximations as not being equal and hence in some

arbitrary order.

We now give an upper bound for the runtime of AGE with

Subroutine 4. For one generation, i.e., for producing and process-

ing λ offspring with one run of Subroutine 4, AGE needs a runtime

of O(d (μ + λ)|A|) for computing the values p1(a), p2(a), α1(a), α2(a)
and β(p) initially. Then we repeat λ times: We delete the point p∗ ∈ P

with β(p) minimal in O(μ + λ), after which we have to recompute

the values p1(a), p2(a), α1(a), α2(a), but only for a ∈ A with p1(a) = p∗.

Observe that we can store a list of these a’s during the initial computa-

tion and keep these lists up to date with no increase of the asymptotic

runtime. Also note that we would expect to find O(|A|/|P|) points

with p1(a) = p∗, while in the worst case there may be up to O(|A|)
such points. Summing up, we can estimate the expected runtime

for one generation by O(d (μ + λ)|A| + λ((μ + λ)+ d|P| · |A|/|P|)),
which simplifies to O(d(μ + λ)|A|) as |A| ≥ μ + λ. In the worst case

we replace O(|A|/|P|) by O(|A|) and get a runtime for one generation

of O(dλ(μ + λ)|A|). For N fitness evaluations we, therefore, get a run-

time of O(d(1 + μ/λ)|A|N) heuristically, and O(d(μ + λ)|A|N) in the

worst case. Note that |A| ≤ N. For any λ = O(μ), e.g. λ = 1 or λ = μ,

this can be simplified to O(dμ|A|N) in both cases, while for λ = 	(μ),
2 AGE with this selection scheme was called “Fast AGE” in Bringmann et al. (2011).

a

t

.g. λ = μ, we get a reduced estimate of the expected runtime of

(d|A|N).

. Improved parent selection

Quite interestingly, and despite the basic AGE’s good performance

n problems with many objectives (as shown in Bringmann et al.,

011), it is clearly outperformed by other algorithms in several cases,

hen the problem has just two or three objectives. The key discovery

s that the random parent selection of the basic AGE is free of any

ias. For problems with many objectives, this is not a problem, and

an even be seen as its biggest advantage. For problems with just

few objectives, however, it is well known that one can do better

han random selection, such as selection based on crowding distance,

ypervolume contribution, etc. Such strategies then select potential

andidates based on their relative position in the current population.

or the basic AGE, the lack of this bias means that solutions can be

icked for parents that are not necessarily candidates with high po-

ential. Consequently, it is not surprising to see that the basic AGE is

utperformed by algorithms that do well with their parent selection

trategy, if their strategy is effective in the respective d-dimensional

bjective space.

We improve the basic AGE’s performance, subject to the following

onditions:

1. The introduced computation time required to select parents

should be polynomial in the number of objectives d.

2. The selection mechanism should significantly improve the perfor-

mance on problems with few objectives, while not influencing the

performance on problems with many objectives.

3. The selection scheme should favor individuals that have the po-

tential to improve the approximation quality.

Note that most hypervolume-based algorithms, such as SMS-

MOA and MO-CMA-ES, violate condition (1), as some of the com-

utations that are associated with the selection process take time

xponential in d. However, we have to note that it is possible to deal

ith this drawback by approximating the hypervolume, as shown and

emonstrated in Bringmann, Friedrich, Igel, and Voß (2013). Never-

heless, as the maximization of the hypervolume can interfere with

ur goal of improving the approximative quality, we do not consider

uch approaches.

Also note that the exclusive use of domination based-criteria is

roblematic. Assuming a general d-dimensional unbounded space

with d ≥ 2), then a point in this space dominates 1/2d of the vol-

me. Obviously then, a pure dominance check in high-dimensional

paces is extremely likely to fail. Or, when interpreted the other way

round, this means that a check of the dominance relation between

wo solutions is extremely unlikely to bring up any additional infor-

ation about the relative quality between these two solutions.

It is relatively easy to design algorithms that easily discover points

t the fringe of the Pareto front. With these fringe points (or points

hat are very close to the fringe), the decision maker can get an idea

bout the achievable ranges for each objective. However, the problem

f finding points “between” those fringe points proves to be much

ore difficult. Selection mechanisms for the (fitness-based) parent

election and the offspring selection tend to have different biases

hat result in different preferences for fringe points or central points,

epending on the “shape” of the intermediate populations and on

he shape of the true Pareto front. With an increasing number of di-

ensions, this problem becomes even more apparent, as solutions

hould evenly cover the front, while not concentrating only on ex-

reme points.

We choose the best-performing selection scheme from Wagner

nd Friedrich (2013), which works as follows in each generation. In

he first step, the population is “pre-processed” (see Algorithm 5):



M. Wagner et al. / European Journal of Operational Research 243 (2015) 465–479 469

Subroutine 5: Pre-processing of the population for the subse-

quent parent selection.

input : Population P

output: Pre-processed population Q

1 Q ← ∅;

2 Split P into non-dominating fronts F1, . . . , Fi;

3 foreach front Fj, 1 ≤ j ≤ i do

4 foreach p ∈ Fj do

5 Add p to Q with probability 1/j;

6 Split Q into non-dominating fronts G1, . . . , Gk;

7 foreach front Gj, 1 ≤ j ≤ k do

8 Compute the crowding distances for the solutions in Gj;

9 return Q;

Algorithm 6: (μ + λ)-Approximation Guided EA (AGE).

1 Initialize population P with μ random individuals;

2 Set εgrid the resolution of the approximative archive Aεgrid
;

3 foreach p ∈ P do

4 Insert offspring floor(p) in the approximative archive Aεgrid

such that only non-dominated solutions remain;

5 foreach generation do

6 Initialize offspring population O ← ∅;

7 for j ← 1 to λ do

8 Select two individuals from the pre-processed P (see

Section 5);

9 Apply crossover and mutation;

10 Add new individual to O;

11 foreach p ∈ O do

12 Insert offspring floor(p) in the approximative archive

Aεgrid
such that only non-dominated solutions remain;

13 Discard offspring p if it is dominated by any point

increment(a), a ∈ A;

14 Add offspring to population, i.e., P ← P ∪ O;

15 Apply fast approximation-guided selection of

Subroutine 4 to P and obtain population of size μ;
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Subroutine 7: Function floor.

input : d-dimensional objective vector x, archive parameter

εgrid

output: Corresponding vector v on the ε-grid

1 for i = 1 to d do v[i] ←
⌊

x[i]
εgrid

⌋
;

Subroutine 8: Function increment.

input : d-dimensional vector x, archive parameter εgrid

output: Corresponding vector v that has each of its

components increased by 1

1 for i = 1 to d do v[i] ← o[i] + 1 ;
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w

K

i

he population is split into fronts of non-dominating solutions,3 and

hen solutions in the front i have a probability of 1/ i of staying in the

opulation. Thus, we increase the selection pressure, and solutions

hat are dominated multiple times are less likely to be selected as a

otential parent. Additionally, we determine the crowding distances

or the points in the reduced population. In the second step of the

election scheme, a binary tournament is performed where solutions

f higher crowding distance are preferred. The crowding distance

elps to pick diverse parents when the number of objectives is low.

Note that the size of the pre-processed population is not deter-

inistic. It is only guaranteed to contain the entire first front (see

ine 5 of Algorithm 5).

. Approximating the archive

The basic AGE algorithms stores all objective vectors into the

rchive that are currently not dominated by any other objective vec-

or produced so far. It is common for multi-objective optimization
3 Iteratively, all non-dominated solutions are identified and then removed (as one

ront), which results in potentially several fronts of dominating solutions—see NSGA

nd NSGA-II (Deb et al., 2002).

f

q

v

g

roblems that the number of such trade-offs can be very large, i.e. ex-

onential with respect to the given input size in the case of discrete

ptimization or even infinite for continuous optimization problems.

s, in the worst case, the archive size |A| can grow linearly in the

umber of fitness function evaluations, the runtime given in Eq. (1)

ecomes quadratic in the number of generated points N. We there-

ore want to work with an archive of reduced size which can lead to

significant speed up of the algorithm.

In this section, we show how we adapt the ε-dominance approach

aumanns et al. (2002) in order to approximate the different points

een so far during the run of the algorithm. This archive is significantly

educed and therefore leads to a faster algorithm.

.1. Archive approximation

In order to approximate the archive, we are facing a problem that

s similar to the original problem of multi-objective optimization,

amely a set of solutions is sought that nicely represents the true set

f compromise solutions.

We reuse AGE’s own main idea of maintaining a small set that

pproximates the true Pareto front. By approximating the archive as

ell in a controlled manner, we can guarantee a maximum size of

he archive, which directly translates into a bound with respect to the

untime of AGE when considering a fixed number of iterations.

Our archive approximation is based on the idea of ε-dominance

ntroduced in Laumanns et al. (2002). Instead of using an archive
t that stores at any point in time t the whole set of non-dominated

bjective vectors, we are using an archive A(t)
εgrid

that stores an additive

-approximation of the non-dominated objective vectors produced

ntil time step t.

In order to maintain such an approximation during the run of

he algorithm, a grid on the objective space is used to pick a small

et of representatives (based on ε-dominance, see Fig. 1). We reuse

he update-mechanism from Laumanns et al. (2002), and thus can

aintain the ε-Pareto set A(t)
εgrid

of the set A(t) of all solutions seen so

ar. Due to Laumanns et al. (2002), the size is bounded by

A(t)
εgrid

∣∣∣ ≤
d−1∏
j=1

⌊
K

εgrid

⌋

here

= d
max

i=1

(
max

s∈S
fi(s)

)

s the maximum function value attainable among all objective

unctions.

We parameterize our algorithm by the desired approximation

uality εgrid ≥ 0 of the archive with respect to the seen objective

ectors. AGE is shown in Algorithm 6, and it uses the helper functions

iven in Subroutines 7 and 8. The latter is used to perform a relaxed
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f1

f2

εgrid 2 · εgrid 3 · εgrid 4 · εgrid

εgrid

2 · εgrid

3 · εgrid

P
areto

front

A

P

Pε

Q

Qε

RRε

Fig. 1. The newly generated points P, Q , and R are shown with their corresponding

additive ε-approximations Pε , Qε , and Rε . Both objectives f1 and f2 are to be minimized,

and the current approximative archive is represented by . Only Pε will be added to

the approximative archive, replacing A. Both P and Q will be candidates for the selection

process to form the next population.
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dominance check on the offspring p in Line 13. A strict dominance

check here would require an offspring to be not dominated by any

point in the entire archive. However, as the archive approximates

all the solutions seen so far (via the flooring), it might very unlikely,

or even impossible, to find solutions that pass the strict dominance

test.

6.2. Impact of archive approximation on running times

The algorithm works at each time step t with an approximation

A(t)
εgrid

of the set of non-dominated points At seen until time step t.

Note, that setting εgrid = 0 implies the basic AGE approach that stores

every non-dominated objective vector. We now investigate the effect

of working with different archives sizes (determined by the choice

of εgrid) in AGE. Our goal is to understand the effect of the choice of

this parameter on the actual archive size used during the run of the

algorithm as well as on the approximation quality obtained by AGE.

Next, we outline the results of our experimental investigation of

the influence of approximative archives on the runtime and the so-

lution qualities. Note, that the computational complexity of AGE is

linear in the number of objectives. The algorithm was implemented

in the jMetal framework (Durillo, Nebro, & Alba, 2010) and is publicly

available.4

The parameter setup of AGE is as follows. We use polynomial mu-

tation and the simulated binary crossover (Agrawal & Deb, 1994) in

order to create new offspring. Both variation operators are widely

used in MOO algorithms (Deb et al., 2002; Gong, Jiao, Du, & Bo, 2008;

Zitzler et al., 2002) and they are transformations of bit-string op-

erators to bounded real-valued domains. The distribution parame-

ters associated with the operators are ηm = 20.0 and ηc = 20.0. The

crossover operator is biased towards the creation of offspring that

are close to the parents, and is applied with pc = 0.9. The mutation

operator has a special explorative effect for MOO problems, and is

applied with pm = 1/(number of variables).5 Population size is set to

μ = 100 and λ = 100, and each run uses 100,000 fitness evaluations.

We assess the quality of the final population using the additive ap-

proximation measure (Bringmann et al., 2011). First, we draw one

million points of the mathematically described true Pareto front uni-

formly at random. Then we compute the additive approximation that

the final population achieved for this sample of the true Pareto front.
4 http://cs.adelaide.edu.au/~optlog/research/age.php.
5 Note that other setups can be used, including different recombination and explo-

ration operators. However, this is beyond the scope of this article as we focus on the

comparison of the algorithms.

8

m

Exemplary, we show in Fig. 2 the results averaged over 100 inde-

endent runs for DTLZ 2 with d = 3. Note that the archive grows very

uickly in the case of εgrid = 0, where every non-dominated point

s stored. Without sacrificing solution quality, a speed-up by a fac-

or of 7.8 is achieved with εgrid = 0.01. Additional speed-ups can be

chieved, but it is then up to the decision maker to balance the com-

utation speed and the solution quality. More results can be found

n Wagner and Neumann (2013). For example, for DTLZ 4 with 20

bjectives: “a speed-up by a factor of over 250 can be achieved, while

chieving even better quality solutions as well.”

The choice of εgrid can have a significant impact on the final ap-

roximation, which is why we consider several values in the final

xperiments. In particular, with “coarser” archives, the number of

oints that represent a particular region decreases. Since the fast

pproximation-guided selection will at first consider only the single

est approximating solution per cuboid, fewer points will actually

epresent that region. If the cuboids end up very large with the choice

f a larger value of εgrid, then the remaining solutions of the popu-

ation (that are not the best approximating ones) are not necessarily

istributed in way that results in a good approximation.

. Discussion on impact of algorithm components

The AGE algorithm consists of different components that make

he approach successful. It heavily relies on the used archive which

uides the search as it contains information collected during the run

f the algorithm with respect to the true Pareto front. In this section,

e would like to discuss them further in detail such that practitioners

ecome aware of the different contributions.

The framework of AGE has two components that speed up the

omputation. The first one is the faster approximation calculation

escribed in Section 4 which gives a runtime speed-up compared to

he basic approach without any impairment in terms of quality, i.e.,

he same set of solutions is computed. This improvement in terms of

unning time should always be incorporated as it does not come with

ny disadvantage compared to the basic framework (as described in

ection 3).

A further significant speed-up is obtained by working with an ap-

roximative archive as outlined in Section 6. Here, the parameter εgrid

etermines the size of the archive during the run of the algorithm.

his component imposes a trade-off in running time and approxima-

ion behavior as an increasing value of εgrid leads to a speed-up of

he approach at the expense of a worsening in the approximation.

etting the parameter εgrid is crucial for the success of the algorithm

nd a good choice is dependent on the given multi-objective problem.

ur experimental studies on εgrid have shown that the value can be

hosen to gain very significant speed-ups with almost no impairment

n terms of quality. Setting εgrid too large in relation to the range of

he objective values would imply that the archive only consists of a

ew points which implies that there is almost no guidance for the

election process of the algorithm.

While the faster approximation calculation and the approximative

rchive mainly aim for a speed up of the algorithm, the improved par-

nt selection introduced in Section 5 aims for a better spread of the

opulation in the objective space. As the runtime of AGE is mainly de-

ermined by the size of its archive different methods can be exploited

ithout having a huge impact on the running time. Different par-

nt selection methods have been examined in Wagner and Friedrich

2013) and the best performing one is integrated into the final AGE

lgorithm.

. Experimental investigations

In this section, we compare AGE to well-known evolutionary

ulti-objective algorithms on commonly used benchmark functions.

http://cs.adelaide.edu.au/~optlog/research/age.php
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Fig. 2. Influence of εgrid on the archive size, the runtime, and the final quality. Shown are the means of the archive sizes, and their standard deviation is shown as error bars.

Additionally, the means of the runtime t in seconds and the achieved additive approximation a of the true Pareto front are listed (smaller values are better). Note: the archive can

grow linearly with the number of solutions generated, even when problems have just d = 3 objectives.
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Fig. 3. Comparison of the performance of our AGE (εgrid = 0: , εgrid = 0.1: , εgrid = 0.01: ) with IBEA ( ), NSGA-II ( ), SMS-EMOA ( ), and

SPEA2 ( ) on the test function classes WFG (2 and 3 dimensions) and LZ (2 dimensions for LZ 1–5 and LZ 7–9; 3 dimensions for LZ 6). The figures show the average of 100

repetitions each. Only non-zero hypervolume values are shown.
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e first study low-dimensional problems and later pay special at-

ention to problems with many dimensions. We judge the algorithms

y the approximation quality and the hypervolume that they achieve.

GE is investigated for different values of ε in order to study the effect

f working with an approximative archive on the quality of the results.
.1. Low-dimensional problems

In our first study, we investigate the performance of AGE on prob-

ems with few objectives. We use the jMetal framework (Durillo

t al., 2010) to compare AGE with the established algorithms IBEA
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Fig. 4. Comparison of the performance of AGE (εgrid = 0: , εgrid = 0.1: , εgrid = 0.01: ) with IBEA ( ), NSGA-II ( ), SMS-EMOA ( ), and

SPEA2 ( ) on DTLZ test functions with d ≤ 10 dimensions. The figures show the average of 100 repetitions each. We limit the computations per repetition to a maximum of

100,000 evaluations and to a maximum computation time of 4 hours. Only non-zero hypervolume values are shown. For reference, we also plot ( ) the maximum hypervolume

achievable for μ → ∞.
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(Zitzler & Künzli, 2004), NSGA-II (Deb et al., 2002), SMS-EMOA

(Emmerich, Beume, & Naujoks, 2005), and SPEA2 (Zitzler et al., 2002)

on the benchmark families WFG (Huband, Barone, While, & Hingston,

2005) and LZ (Li & Zhang, 2009), and DTLZ (Deb, Thiele, Laumanns,

& Zitzler, 2005). For each of the problems, the objective values are

within “roughly” the same ranges. When facing a problem with sig-

nificantly differing ranges, we recommend (as we do for other algo-

rithms) to rescale the objectives for the algorithms into comparable

ranges, as mechanisms like hypervolume or density computations

will not necessarily produce “evenly spread” outcomes as intended

by the respective algorithms’ authors.

It is important to note that we limit the calculations of the algo-

rithms to a maximum of 50,000/100,000/150,000 fitness evaluations
or WFG/DTLZ/LZ and to a maximum computation time of 4 hours per

un, as the runtime of some algorithms increases exponentially with

espect to the size of the objective space. The further parameter setup

f the algorithms is as follows. Parents are selected through a binary

ournament. We will present our results for population sizes μ = 100

nd λ = 100 and average the results over 100 independent runs. The

GE test setup has been outlined in Section 6.2.

We assess the algorithms by examining their final populations. To

easure the quality of the final population, we consider the addi-

ive approximation and the hypervolume (Zitzler & Thiele, 1999). The

atter is very popular in the performance assessment of evolutionary

ulti-objective algorithms and measures the volume of the domi-

ated portion of the objective space relative to a reference point r.
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Fig. 5. Comparison of the performance of AGE (εgrid = 0: , εgrid = 0.1: , εgrid = 0.01: ) with IBEA ( ), SMS-EMOA ( ), and MO-CMA-ES ( ) on

the DTLZ test functions with varying dimension d = 2, . . . , 20. The used implementations of SMS-EMOA and MO-CMA-ES use very fast approximation algorithms to compute the

hypervolume to improve their running time. The figures show the averages of 100 repetitions each. We limit the computations per repetition to a maximum of 250,000 evaluations

and to a maximum computation time of 24 hours. Only non-zero hypervolume values are shown. For reference, we also plot ( ) the maximum hypervolume achievable

for μ → ∞.
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or the quality assessment on the WFG and LZ functions, we com-

ute the achieved additive approximations and the hypervolumes

ith respect to the Pareto fronts given in the jMetal package. For

he DTLZ functions, we compute the additive approximations as de-

cribed in Section 6.2. For the hypervolume computations for DTLZ 1

e choose r = 0.5d, and r = 1d for all other benchmark problems. We

pproximate the achieved hypervolume with an FPRAS (Bringmann

Friedrich, 2010a), which has a relative error of not more than 2

ercent with probability at 1/1000. The volumes shown for DTLZ 1

re normalized by the factor 2d. As it is very hard to determine

he minimum approximation ratio achievable or the maximum

ypervolume achievable for all populations of a fixed size μ, we
nly plot the theoretical maximum hypervolume for μ → ∞ as a

eference.

esults. The benchmarking results for the different algorithms are

hown in Figs. 3 and 4 and are a clear evidence for AGE’s excel-

ent performance. AGE ranks among the best algorithms on the

ow-dimensional WFG and LZ functions (see Fig. 3). This holds for

he additive approximation quality as well as for the achieved hy-

ervolumes. Interestingly, NSGA-II ( ), which normally performs

ather well on such problems, is beaten in almost all cases. AGE per-

orms very similarly for the different used approximative archive set-

ings (εgrid = 0: , εgrid = 0.1: , εgrid = 0.01: ). This
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Fig. 6. Distribution of diversity related variables. We show the means and standard deviation (stdev) of the ‘means of a population’ for 100 independent runs of AGE with

εgrid = 0.01. The error bars show the standard deviation of the respective measure.

8

d

w

S

o

confirms that working with an approximative archive usually leads

to a significant speed-up without a detrimental effect on the solution

quality.

Our investigations on the DTLZ family (see Fig. 4) prove to be more

differentiating between the different type of algorithms. The DTLZ

family can be scaled with the number of objectives and therefore

enables us to investigate the impact for problems with more than

two objectives. With an increasing number of objectives, the benefits

and drawbacks of the algorithms’ underlying mechanisms become

more apparent. We can summarize the experimental results in the

following way.

• AGE (εgrid = 0: , εgrid = 0.1: , εgrid = 0.01: )

shows a very good performance on all DTLZ variants. It is either

the best performing algorithm, or in many cases, it shows at least

competitive performance.
• It is interesting to see that even though AGE incorporates the

crowding distance idea from NSGA-II ( ) for a fitness assign-

ment, it is not influenced by its detrimental effects in higher di-

mensional objective spaces. This is a consequence of how the next

generation is formed (i.e., based on contribution to the approxi-

mation quality achieved with respect to the archive, see Line 16 of

Algorithm 6).
• Remarkably, NSGA-II ( ), SMS-EMOA ( ), and SPEA2

( ) are unable to find the front of the higher-dimensional

DTLZ 1 and DTLZ 3 variants. This results in extremely large ap-

proximation values and zero hypervolume values. In particular,

the mechanisms used by NSGA-II ( ) and SPEA2 ( ) are

inadequate for higher-dimensional spaces, and both algorithms

push their population too far out to the boundaries for high di-

mensions.
• For higher dimensions (d ≥ 5) IBEA ( ) is AGE’s strongest com-

petitor. However, its performance is not consistent for all functions

and its runtime does not scale well with increasing dimension. The

same holds for SMS-EMOA ( ), which uses an exponential-time

algorithm to internally determine the hypervolume. It did not fin-

ish a single generation for d ≥ 8 and only performs around 5000

iterations within 4 hours for d = 5.

.2. High-dimensional problems

Encouraged by the good performance of AGE on lower-

imensional test problems, we also study high-dimensional problems

ith dimensions d > 10. It is known that the classical algorithms

PEA2 and NSGA-II deteriorate with an increasing number of

bjectives. Also for SMS-EMOA we observed runtime issues for
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Fig. 7. Distribution of convergence related variables. We show the means and standard deviation (stdev) of the ‘means of a population’ for 100 independent runs of AGE with

εgrid = 0.01. The error bars show the standard deviation of the respective measure.
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igher-dimensional spaces. For a meaningful comparison we there-

ore neglect these algorithms for higher-dimensional test problems

nd instead compare AGE with two recent EMOA specifically designed

or high-dimensional problems. In particular, we compare AGE with

wo hypervolume-based algorithms that use fast approximations of

he hypervolume to guide their search, namely MO-CMA-ES (Igel

t al., 2007) and SMS-EMOA (Emmerich et al., 2005), which are both

mplemented in the Shark Machine Learning Library (Igel, Glasmach-

rs, & Heidrich-Meisner, 2008). Note that we again include IBEA in

his final comparison due to its good performance on DTLZ 2 and 4

or lower number of objectives.

Among the studied test problems, only DTLZ (Deb et al., 2005)

llows scaling to an arbitrary number of objective space dimen-

ions. We therefore study DTLZ 1–4 for up to 20 dimensions. The

est setup remains unchanged, with the difference that we limit the

alculations of the algorithms to a maximum of 250,000 fitness eval-

ations and to a maximum computation time of 24 hours per run, due

o the increased difficulty. As this is our final test, we also compared

he algorithms using the Wilcoxon–Mann–Whitney two-sample
ank-sum test. If we call a comparison “statistically significant”, it is

ignificant at the 99 percent confidence level. The results are shown

n Fig. 5 and summarized as follows.

• On all higher-dimensional (d ≥ 6) test problems, AGE achieves

(statistically significantly) the best approximation. MO-CMA-ES

( ) and SMS-EMOA ( ) fail at achieving good approxima-

tions on DTLZ 1 and 3. On these, IBEA ( ) performs relatively

well, but we observed runtime issues for the twenty-dimensional

spaces.
• AGE achieves statistically significantly better approximations than

IBEA on all functions. Compared to MO-CMA-ES ( ), AGE

achieves statistically significantly better approximations on DTLZ

1/3 (all dimensions), DTLZ 2 (d ≥ 6), DTLZ 4 (d ≥ 4). The best

competitor in low dimensions (d ≤ 5) is SMS-EMOA. However,

also in low dimensions AGE is either competitive or still better

than the other algorithms.
• The hypervolume-based algorithms, MO-CMA-ES ( ), SMS-

EMOA ( ) and IBEA ( ), sometimes achieve slightly larger
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Fig. 8. Distribution of the obtained solutions (examples from the ZDT family, all with d = 2).
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hypervolumes for DTLZ 2 and DTLZ 4, but fail completely on DTLZ 1

and DTLZ 3. AGE achieves statistically significantly higher hyper-

volume than IBEA ( )and MO-CMA-ES ( ) on DTLZ 1 and

DTLZ 3 for all dimensions. The same holds compared to SMS-EMOA

( ) for d ≥ 6.
• All aforementioned observations hold for all three variants of

AGE. The performance of AGE is very similar for the differ-

ent used approximative archive settings (εgrid = 0: , εgrid =
0.1: , εgrid = 0.01: ). While the grid size has a sig-

nificant impact on the runtime of AGE (cf. Section 6.2), it

apparently has little impact on the approximation quality. Count-

ing the number of test functions where the achieved approxi-

mation of one variant statistically significantly outperforms an-

other variant, we can still derive a total ordering: εgrid = 0.01 per-

formed 75× better (48× worse, 21× insignificant) than εgrid = 0,

which performed 72× better (51× worse, 21× insignificant) than

εgrid = 0.1.

8.3. Distribution of the obtained solutions

In the following, we show and comment about the distribution of

the obtained solutions, in variable and objective space.

First, we investigate the diversity in the variable space. For the

DTLZ functions, the variables x1, . . . , x30 ∈ [0, 1] of these problems are
ivided in diversity related variables (x1, . . . , xm−1), and convergence

elated variables (xm, . . . , x30). In Figs. 6 and 7 we show the distribu-

ions of several such variables on four DTLZ functions are shown. The

ata is based on 100 independent runs, from which we take from the

opulations the means and standard deviations of different variables.

e then show the respective means and standard deviations of that

ata.

For most problems we can see that a wide range of values for the

iversity related variables is achieved and maintained (see Fig. 6). For

xample, the standard deviations of x1 within the individual popula-

ions is high (given the valid range x1 ∈ [0, 1]) and the means of the

opulations are stable across multiple runs. During the runs, diver-

ity is achieved and maintained, which is expressed in stable statis-

ics along the x-axis. Interestingly, the diversity in the search space

ppears to decrease with a growing number of objectives. In par-

icular, the final diversity in the search space for DTLZ 4, d = 20 is

xtremely low when compared to the other problems. The reasons

or this are not entirely clear, however, it appears that for this problem

GE’s “not-so-diverse” solutions sets can still achieve better approx-

mations of the Pareto front than all other algorithms (see Figs. 4

nd 5).

The analysis of the convergence related variables reveals an en-

irely different, but expected, behavior (see Fig. 7). The initial diversity

f these variables collapses very quickly and continues to decrease as
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Fig. 9. Distribution of the obtained solutions (examples from the DTLZ and WFG family).

o
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d

ptimization progresses. This can be seen best in the standard de-

iations that continue to plummet. Amongst different runs, there is

ittle variation, as the small standard deviation of the standard devi-

tions reveals. This behavior is independent of the investigated DTLZ

unction and its number of objectives.
Next, since diversity in the variable space not necessarily implies

iversity in the objective space, we show in Figs. 8 and 9 randomly

icked final populations in the objective space.

The solutions for the two-objective problems are very uniformly

istributed. Note that “uniformity” is with respect to the additive
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q

p

d

a

approximation used: for example in the case of DTLZ 2, d = 2 a single

solution near the bottom right corner can additively approximate a

larger part of the true Pareto front than a single solution near the

center of the true Pareto front (near 〈0.71, 0.71〉). The same effect can

be observed for ZDT 3 and WFG 8. Similarly, we can often observe
uite uniform distributions of the solutions for the three-objective

roblems.

Lastly, as objective spaces with more than three dimensions are

ifficult to visualize, we show the final solutions in the objective space

s parallel coordinate plots in Fig. 10 (the individual axes stand for the
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ifferent objectives). These plots nicely augment many of the figures

n this article. First, diverse sets of solutions are responsible for AGE’s

ndicator values shown in Figs. 4 and 5. Second, even though the final

iversity in the search space is low at times (e.g., DTLZ 4, d = 20 in

ig. 6) diverse sets of objective vectors can be found by AGE, and

hese sets achieve better approximations of the Pareto fronts than

he other investigated algorithms for many-objective optimization

roblems.

. Conclusions

Evolutionary algorithms are frequently used to solve multi-

bjective optimization problems. Often, it is very hard to formally

efine the optimization goal that current state-of-the-art approaches

ork with. We have presented an evolutionary multi-objective algo-

ithm that works with a formal notion of approximation. The frame-

ork of our algorithm allows to work with various formal notions of

pproximations. The basic framework of AGE works with an archive

hich stores every non-dominated objective vector and uses this

rchive to judge the quality of newly produced solutions. In order

o increase performance of this basic variant, we introduced an ap-

roximative archive and a parent selection scheme which increases

erformance for low dimensional problems.

The experimental results show that AGE efficiently solves prob-

ems with few and with many conflicting objectives.6 Its computation

ime increases only linearly with the number of objectives. Given

fixed time budget, AGE outperforms current state-of-the-art ap-

roaches (including those using fast hypervolume-approximations)

n terms of the desired additive approximation on standard bench-

ark functions for more than four objectives. On functions with two

nd three objectives, it lies level with the best approaches. Addi-

ionally, it also performs competitive or better regarding the covered

ypervolume, depending on the function. This holds in particular for

roblems with many objectives, which most other algorithms have

ifficulties dealing with. The choice of the approximative archive (de-

ermined by the choice of ε) mainly determines the computational

ost of the algorithm but has no major effect on the quality of the

utcome for the investigated choices of ε. Thus we can observe run-

ime reductions by a factor of up to 250 without sacrificing the final

olution quality.

In summary, AGE is an efficient approach to solve multi-objective

roblems with few and many objectives. It enables practitioners now

o add objectives with only minor consequences, and to explore

roblems for even higher dimensions.
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