
Memory-restricted Routing With Tiled Map Data

Thomas Bläsius∗, Jan Eube†, Thomas Feldtkeller†, Tobias Friedrich∗, Martin S. Krejca∗

J. A. Gregor Lagodzinski∗, Ralf Rothenberger∗, Julius Severin†, Fabian Sommer†, Justin Trautmann†

Abstract—Modern routing algorithms reduce query time by
depending heavily on preprocessed data. The recently developed
Navigation Data Standard (NDS) enforces a separation between
algorithms and map data, rendering preprocessing inapplicable.
Furthermore, map data is partitioned into tiles with respect to
their geographic coordinates. With the limited memory found in
portable devices, the number of tiles loaded becomes the major
factor for run time.

We study routing under these restrictions and present new
algorithms as well as empirical evaluations. Our results show
that, on average, the most efficient algorithm presented uses more
than 20 times fewer tile loads than a normal A�.

I. INTRODUCTION

Due to the importance of routing applications in real-life

situations, finding shortest paths in graphs has been subject

to extensive research [1]–[5], [8]–[10], [12]–[15]. Thus, it

is not surprising that Dijkstra’s algorithm [5] for finding

shortest paths is arguably the most famous among all graph

algorithms. Although no algorithm with better asymptotic

run time is known, domain-specific knowledge can help to

speed up shortest path computations in industrial applications.

One improvement is to use estimates for the distances (for

example, geographic distances in road networks) in order to

make the search target-directed [13]. This modification of

Dijkstra’s algorithm is called A� and reduces the search space

by preferring the exploration of vertices presumably closer to

the target.

More recent speedup techniques are typically based on

the fact that the number of shortest path queries highly

predominates the number of graph changes. This allows for

a two-phase algorithm: the preprocessing phase computes

auxiliary information about the input graph, and the query phase

answers shortest path queries, profiting from the the auxiliary

data computed before. The research on such preprocessing

techniques gathered pace with the public release of large road

networks in 2005 as part of the 9th DIMACS Implementation

Challenge. With the goal of achieving better query times, a

plethora of speedup techniques has been developed. Examples

are target-directed techniques such as ALT [10] or Arc

Flags [14], [15], which aim for improved estimations of the

actual distances or exclude the use of certain edges leading in

the wrong direction. Other strategies such as REACH [12] and

Contraction Hierarchies [8] exploit the hierarchical nature of

road networks by pruning the search at unimportant vertices or

by introducing shortcuts. Techniques based on lookup tables

∗ Algorithm Engineering Group, Hasso Plattner Institute, University of
Potsdam, Potsdam, Germany, firstname.lastname@hpi.de

† Hasso Plattner Institute, University of Potsdam, Potsdam, Germany,
firstname.lastname@student.hpi.uni-potsdam.de

such as Transit Node Routing [1] or PHAST [3] yield extremely

low query times but require a large amount of auxiliary data.

Besides improving query times, recent research was also

impelled by the goal to handle additional challenges appearing

in real-world routing scenarios. Examples are the inclusion

of turn costs [9] and routing with time-dependent metrics [2].

In order to support real-time traffic updates, the algorithm

CRP starts with a metric-independent preprocessing step [4].

Afterward, a new metric (for example, depending on the current

traffic) can be incorporated in less than a second.

While preprocessing greatly improves the query times of

routing algorithms, it also requires sufficient memory for

computing and storing the preprocessed data. Further, the

information necessary in order to compute this data needs

to be available in the first place. This is, for example, not the

case with the Navigation Data Standard (NDS), which was

jointly developed by major automobile manufacturers1 and

suppliers2 and requires a separation between algorithm and

data. From a business point of view, this is highly desirable

for car manufacturers, as it enables them to obtain the routing

software and the underlying graph data from different sources.

From an algorithmic point of view, this implies that the routing

algorithm has no prior knowledge about the map data. Thus, it

has to treat each routing query as a new and unknown shortest

path instance, prohibiting any kind of preprocessing.

We consider this scenario under the constraint of restricted

memory, as found in mobile devices or built-in navigation

systems. Moreover, we assume that the data is subdivided into

tiles, as is the case with NDS. This subdivision of the map

has the advantage that map changes can be distributed to the

user by updating only a few tiles. However, in devices with

limited memory, this implies that the same tile is potentially

loaded multiple times if the shortest path algorithm explores

vertices from the same tile in different stages of the search. In

this scenario, the number of tile loads becomes an important

factor.

In order to account for these restrictions, we develop

routing algorithms without preprocessing and evaluate them

with respect to their number of tile loads. We note that this

complexity measure is similar to the parallel disk model by

Vitter and Shriver [18], which focuses on I/O-efficiency and

allows to load a block of data with a single I/O-operation. The

main difference in our setting is that the tiles prescribe the

partitioning of the data into blocks, which cannot be changed

in the course of the algorithm. Further, Sanders et al. [17]

1BMW, Daimler, Hyundai, Nissan, Renault, VW, Volvo
2For example, Garmin, HERE, and TomTom.

3347

2018 IEEE International Conference on Systems, Man, and Cybernetics

2577-1655/18/$31.00 ©2018 IEEE
DOI 10.1109/SMC.2018.00567

and Goldberg and Werneck [11] also consider routing with

restricted memory and propose efficient algorithms. However,

their scenarios still allow preprocessing, whereas ours does

not.

Contribution and Outline: In Section II, we describe

the limitations for routing algorithms motivated by NDS and

briefly introduce basic concepts related to Dijkstra’s algorithm

and A�, which form the basis of our algorithms. Different

strategies in order to reduce the number of tile loads are

presented in Section III. We extensively evaluate our algorithms

in Section IV. Compared to a simple A� algorithm, we decrease

the number of tile loads on a reasonably small device by a

factor of 20. A discussion and outlook in Section V concludes

the paper.

II. PRELIMINARIES

In this section, we first describe the limited information that

a routing algorithm has access to in our scenario. We then

explain the basic concept of routing with no preprocessing.

A. Modeling Tiled Map Data

We consider road networks whose sets of nodes are parti-

tioned into disjoint regions with respect to certain longitudes

and latitudes. We call a set of nodes that belong to the same

region a tile. Similar to NDS, we assume that the tiles have an

extent of 360◦
214 in each dimension, yielding squares sized about

6 km2 in equatorial regions and rectangles of about 3.7 km2 in

Europe.

We model such a road network as a directed edge-weighted

graph. Each node of the graph stores its geographic coordinates

as well as all of its outgoing and incoming edges. Moreover,

each node has a unique ID, referencing the tile containing the

node. An edge stores a positive weight and its two incident

nodes’ IDs. Note that an edge does not store the coordinates

of its incident nodes.

B. Basic Shortest Path Algorithms

Dijkstra’s algorithm [5] forms the basis of many algorithms

for finding shortest paths in graphs with non-negative weights.

Given a source node s and a target node t, it iteratively

computes the shortest paths to intermediate nodes until t is

reached. The algorithm conducts by using labels for every

node, which indicate the length of a shortest path from s to

that respective node found so far. The nodes are stored in a

priority queue that orders its elements by their label. Initially,

this queue only contains s.

In each iteration, a node v with highest priority (smallest

label) is removed from the queue and expanded. That is, for

all nodes adjacent to v, it is checked whether a path via v is

shorter than the shortest path known so far for that node. If so,

such a node’s label is updated and the node is added to the

queue if not already present.

The correctness of Dijkstra’s algorithm follows from its

property that a node’s label is final once it is removed from

the queue – that is, the shortest path from s has been found,

and the node will never be reintroduced into the queue again.

This property is known as label-setting. Thus, if t is removed

from the queue, the algorithm terminates and its complexity is

determined by the number of intermediate nodes explored.

In order to make Dijkstra’s algorithm target-directed, one can

reorder the queue such that nodes presumably closer to t get

expanded first. Thus, the queue is not necessarily ordered by

shortest distance from s anymore, and nodes removed from the

queue may be reintroduced later on if a shorter path is found.

This property is known as label-correcting. Note that a label-

correcting algorithm still terminates on a finite graph, as each

node can only be reintroduced into the queue a finite number

of times. Such an algorithm terminates once the shortest known

path from s to every vertex in the queue is longer than the

currently best path to t.
A beneficial way to reorder the queue is to introduce a

heuristic for every node that estimates the (non-negative)

distance from this node to t. A node’s label is then the sum of

its shortest path found so far and its estimate. This feature is

prominently displayed in the algorithm A� [13]. Note that A�

may expand far more nodes than Dijkstra’s algorithm if the

heuristic is bad, since many nodes may be reintroduced into

the queue. However, if the heuristic is admissible – that is,

the actual path length of a node to t is never overestimated –,

Dijkstra’s original termination criterion of removing t from the

queue becomes sufficient (as the estimate of t has to be 0).

A� with an admissible heuristic is not necessarily label-

setting, as intermediate nodes can still be added to the queue

multiple times. In order to make A� label-setting, the heuristic h
has to be monotone. That is, for any two adjacent nodes v1
and v2, the triangle inequality h(v1) ≤ h(v2) + d(v1, v2) needs

to hold, where d(v1, v2) denotes the weight of the edge from v1
to v2.

A typical estimate for h(v) is the geodesic distance be-

tween v and t. If the objective is travel time, h(v) can be

determined by dividing the geodesic distance between v and t
by a maximum speed value of 130 km/h. We use this term in

both cases, noting that the constant factor introduced for the

travel time does not change admissibility or monotonicity.

III. ALGORITHMIC FRAMEWORK

Dijkstra’s algorithm provides a good baseline for our

scenario, since we cannot preprocess our data. However, we

have the additional constraint of limited memory (the cache),

which restricts the number of loaded tiles. Hence, we introduce

the following approaches:

1. Using a heuristic based on the nodes’ coordinates.
Inspired by A�, we study heuristics that estimate the distance

from a node to the target yielded by the coordinates of both

nodes.

2. Prioritizing tiles in the cache. Some nodes in the queue

may belong to tiles that are cached while others belong to tiles

that are currently not in the cache. It serves the intuition to

give nodes in cached tiles a higher priority than other ones.

3. Loading new tiles that are close by. Over time, the

nodes in the queue may become geographically scattered. In

order to achieve a more compact search space, we choose a

3348

tile that is close to the currently cached nodes whenever a new

one has to be loaded.

4. Replacing tiles in the cache. When loading a new tile,

we may have to remove tiles from the cache. Hence, we discuss

two caching strategies.

5. Combining different strategies. Combining the strate-

gies mentioned above arbitrarily does not always make sense.

We describe the different possible combinations and introduce

a naming scheme (see Figure 2) used in Section IV.

A. Estimating the Distance to the Target

In order to reduce the size of the search space, nodes that

are supposedly closer to the target t can be expanded first.

A� does so by using a heuristic that estimates the distance of

each node to t. A common admissible and monotone heuristic

used for A� is the geodesic distance between a node v and t.
However, there is a major obstacle in our scenario: in order to

calculate the geodesic distance between v and t, their respective

coordinates have to be accessed. Hence, if the tile T that v
belongs to is currently not cached, it has to be loaded, resulting

in an expensive calculation of the estimate of v.

We circumvent this problem by introducing a new heuristic

involving a case distinction between T being currently cached

or not. We call cached tiles and their nodes accessible.

First, note that it is sufficient to apply the heuristic for nodes

in the queue. Assume the node v is inserted into the queue

due to the expansion of its neighbor u. We call u the parent
of v. If v is accessible, we compute the geodesic distance to t.
Otherwise, we use the estimated distance between u and t
and assume v to lie on this geodetic line. Since we know the

distance between u and v, we subtract this value from the

estimate of u without loading T . Refer to Figure 1a for a

visual representation of this case.

This new heuristic h′ is formalized as below. Here, h denotes

the geodesic distance of a node to t and d denotes the weight

of an edge.

h′(v) =

{
h(v) if v is accessible,

max
{
0, h(u)− d(u, v)

}
else.

Since h is admissible, the same holds for h′. However, it is not

necessarily monotone, since the estimate of a node v highly

depends on its current parent if T is not cached at that point

in time. Furthermore, the estimate of v is updated every time

the parent node is replaced. Thus, applying h′ results only in

a label-correcting algorithm. Nevertheless, our results show

that the labels of the explored nodes get updated very rarely

(the number of node explorations increases by less than 0.1%
in comparison to A�), suggesting that the algorithm is almost

label-setting. One possible explanation for this behavior is that,

given a node v and its parent u, the new estimate h′(v) can

differ from h(v) by at most 2d(u, v), which is typically not

very large (in particular compared to h(v)). Thus, |h′(v)−h(v)|
will be rather small, which results in the algorithm being almost

label-setting.

v

u

T
d(u, v)

h(u)

t

h(v)

h′(v)

(a)

s t

(b)

v

s

u

w

56

3
1

TT ′

(c)

Fig. 1: (a) Illustration of how to compute an alternative heuristic

h′(v) depending on d(u, v) and h(v) but not on the distance

h(v) from v to the target t. (b) A possible state of a search

from s to t with the already explored search space (gray region)

and the vertices currently in the queue (yellow vertices). If all

vertices in the queue have the same label, all displayed tiles

have to be loaded before one tile is considered a second time.

(c) An example where the tile-exhaustive search has to reload

the tile T . The vertex u outside of T is expanded after v, and

the shortest path from s to w has to go through u. If T ′ is not

present in the cache, T may has to be discarded before T ′ is

loaded.

B. Prioritizing Tiles in the Cache

Over time, the search front (the vertices currently in the

queue) can become geographically large even with the target-

directed A� search. Moreover, the search space typically

expands rather uniformly. See Figure 1b for an exaggerated

example. With respect to the cache efficiency, this has the effect

that many tiles are relevant at the same time: after expanding

the search space in one tile T , the algorithm potentially expands

the search space in all other tiles along the search front before

coming back to T . If T has been replaced from the cache by

then, this results in an expensive reload.

In order to mitigate this effect, we use a strategy that

has already been employed successfully by Edelkamp and

Schrdl [6], [7] and decreases cache misses: as long as the

queue contains accessible vertices, we choose an accessible

vertex with the smallest label for the next expansion step. If

no vertex in the queue is accessible, we have to load a new

3349

tile and thus simply choose a vertex with the smallest label.

We call an algorithm tile-exhaustive if it uses this strategy.

Note that this drastically changes the order in which the

vertices are expanded, yielding the following two issues: first,

expanding vertices only because they are accessible could lead

the search in the wrong direction, increasing the search space.

Second, expanding a vertex v with a high label while the queue

contains vertices with much smaller labels increases the chance

that the shortest path to v has not been found yet. In this case,

v needs to be reexpanded later. This increases the run time

and might even lead to an additional tile load (in case the tile

of v has been discarded by then). In the following, we shortly

discuss why these are not major obstacles for realistic road

networks. Our results in Section IV support these observations.

Concerning the first issue, we assume that new tiles are

loaded only if a vertex in the tile is expanded. This ensures

that the tile includes at least one vertex that would have been

expanded even without reordering the queue. All other vertices

in the tile are geographically close. Thus, it is likely that they

would have been expanded not much later, which indicates

that expanding the whole tile immediately does not increase

the search space by a large amount. If above assumption does

not hold, this argument does not hold anymore. For instance,

because we load a tile only to access vertex coordinates for

estimating their distance to the target. Hence, we always use the

estimation proposed in Section III-A when applying A� together

with the prioritization of tiles in the cache. For more details

on the combinations of different techniques, see Section III-E.

Concerning the second issue, we can argue similarly: assume

the tile T is loaded to expand the vertex v. Then v has the

minimum label among all vertices in the queue. Therefore, if

we assume our base algorithm to be label-setting, we know

the shortest path from the source s to v. It is then reasonable

to assume that other vertices in T , which are geographically

close to v, either have their final label or obtain it by exploring

T . If this is the case, we never have to reexplore T . In fact,

the situation in which we have to reload T is rather special.

See Figure 1c for an example with specific path lengths. Our

results in Section IV show that this does not happen too often.

C. Loading New Tiles That Are Geographically Close

The discussion from the previous section indicates that it is

desirable to have geographically close tiles in the cache. For

instance, consider the situation in Figure 1c: if both tiles T
and T ′ are in the cache, then we find a shortest path to w
by only exploring accessible tiles. Thus, the tile T does not

have to be loaded multiple times. In this section, we propose

a strategy for loading new tiles into the cache that encourages

geographical compactness.

Recall from the previous section that a new tile is loaded only

if the queue contains no accessible vertices when employing a

tile-exhaustive strategy. The default behaviour in this situation

is to load the tile containing a vertex with the smallest label.

In order to achieve a certain geographical closeness of tiles

in cache, we slightly decrease the labels of vertices that are

close to accessible tiles. More precisely, let T be a tile that is

not in the cache but adjacent to an accessible tile. Let v be a

vertex in T with the smallest label. Then we give a boost to v
by decreasing its label, which increases the chance that T is

loaded next. For this purpose, we multiply the label of v with

a constant 0 < � < 1. Furthermore, if T is no longer adjacent

to an accessible tile, the priority boost of v no longer applies.

The exact impact of this strategy heavily depends on the

exact value we choose for �. If � is close to 1, almost nothing

changes. If � is close to 0, certain vertices are explored much

earlier than normally, which increases the odds that they have

to be explored multiple times, possibly even after the tile is

removed from cache.

Our experiments indicate that � close to 1 yields the desired

geographic compactness of accessible tiles while the negative

effects are negligible.

D. Cache Replacement Strategies

Once the cache is full and a new tile has to be loaded, it is

necessary to determine a tile to be replaced. A straightforward

approach is to employ the general-purpose caching strategy

LRU (least recently used), which replaces the tile that was not

accessed for the longest time. In this section, we introduce

a domain-specific caching strategy, exploiting the accessible

additional information about the tiles.

Considering a label-setting algorithm, the best candidate tiles

for removal are those whose nodes have all been expanded.

Such tiles will never have to be reloaded again, since their

nodes’ labels are final. Also for a label-correcting algorithm

that is almost label-setting, as discussed in Section III-A, it is

reasonable to remove such tiles.

In contrast to that, tiles that still contain unexplored nodes

should not be removed, since these tiles will very likely be

needed soon. Even when we utilize a tile-exhaustive algorithm

as described in Section III-B, it is possible that a new tile has

to be loaded even though there is an accessible tile containing

unexplored nodes. This situation occurs if the graph induced

by that tile is not connected. A typical instance in which this

happens is a highway that cannot be accessed from smaller

streets next to it without leaving the tile, as the closest entrance

ramp lies in an inaccessible, different tile. However, note

that the smaller streets next to the highway are probably not

much farther away from the source s than the highway. Thus,

chances are high that this tile will be reexplored soon. Hence,

it makes sense to preferably leave tiles with unexplored nodes

in the cache. If there is a tie (that is, there are multiple or no

completely explored tiles), we apply LRU as a tiebreaker.

E. Combinations of Approaches

In this section, we discuss which combinations of the

previously mentioned properties make sense. Additionally,

we introduce a naming scheme to identify the different

combinations. This scheme will also be used throughout the

remainder of the paper, in particular in the evaluation in

Section IV. The different combinations as well as the naming

scheme are illustrated in Figure 2.

3350

The two algorithms forming the basis of our other routing

strategies are Dijkstra’s Algorithm (abbreviated with DA) and

A� (which itself is based on DA). When using the heuristic

introduced in Section III-A, we call the resulting algorithm

A+. We can make these algorithms (DA, A�, and A+) tile-

exhaustive by prioritizing the exploration of accessible tiles,

as described in Section III-B. We indicate that an algorithm is

tile-exhaustive by adding the suffix TE.

Note that Figure 2 includes the tile-exhaustive variants of DA
(DATE) and of A+ (A+TE), but not of A� (A�TE). Although

it is theoretically possible to make A� tile-exhaustive, applying

A�TE can be very inefficient, since the geodesic distance

heuristic employed by A� depends on the node’s coordinates.

In order to know those coordinates, the node’s tile has to be

loaded. Therefore, when expanding a node, all of its neighbors’

tiles have to be loaded to calculate their geodesic distances

to t. These tiles then reside in the cache and are exhaustively

explored by the tile-exhaustive strategy. When the algorithm

expands nodes on the borders of these tiles, they might again

have neighbors in other tiles. This can result in a cascade where

A�TE unnecessarily explores a huge portion of the graph. We

also observed this behavior in preliminary experiments. Thus,

we disregard A�TE entirely in the remainder of the paper.

As discussed in Section III-C, it is beneficial for tile-

exhaustive algorithms if the accessible tiles are geographically

close. We call an algorithm that prefers loading new tiles close

to accessible tiles local. In the abbreviations used in Figure 2

and in Section IV, we denote local algorithms with the prefix

L. As explained in Section III-C, the local strategy is only

meant to be used together with the tile-exhaustive strategy.

Its main purpose is to always have a compact search front

which can be explored exhaustively, thus rendering reloads of

tiles more unlikely. Therefore, we consider the local strategy

only together with the tile-exhaustive strategy, yielding the two

variants LDATE and LA+TE.

If the algorithm uses the domain-specific cache replacement

strategy of removing tiles with only explored nodes before

tiles with unexplored nodes discussed in Section III-D, we

denote it with the suffix R (for replacement strategy). Note

that the cache replacement strategy can be used independently

of all other improvements. However, if the algorithm is

not tile-exhaustive, then the cache rarely contains tiles with

only explored nodes. Thus, the replacement strategy often

degenerates to LRU. Therefore, we only consider it together

with the tile-exhaustive strategies. Moreover, as the domain-

specific replacement strategy has only a small effect on the

performance, we omit the less interesting variants that are not

local (that is, we omit A+TER and DATER and consider only

LA+TER and LDATER).

IV. EXPERIMENTS

The two main questions we want to answer with our

experiments are the following: how well do we reduce the

number of tiles loaded by employing our strategies from

Section III, and do these strategies increase the overall run

time indicated by the number of accessed nodes?

favor tiles
in cache

DA

A+

A+TE

LA+TE

LA+TERLDATER

favor tiles
in cache

lazy
heuristic

domain-specific
caching

domain-specific
caching

prefer local
tiles

prefer local
tiles

LDATE

DATE

A�

lazy
heuristic

heuristic

Fig. 2: Overview of the combinations of approaches.

One factor that might influence the overall run time of our

algorithm is computing the actual solution after computing

the cost of a shortest path. This can be done by basically

going backward through the solution in a way akin to dynamic

programming: if the destination t has distance dist(s, t) from s,

then t must have a neighbor t′ such that dist(s, t′)+d(t′, t) =
dist(s, t), where dist(s, t′) is the distance from s to t′ and

d(t′, t) is the length of the edge (t′, t). Then we know that

the shortest path from s to t includes the edge (t′, t), and it

remains to reconstruct the shortest path from s to t′, which can

be done analogously. Concerning our setting, this clearly leads

to additional tile loads. However, the number of tiles loaded by

constructing the actual path is always the same, independently

of our routing strategy. We thus do not think it makes sense

to include this constant overhead into our experiments.

A. Setup

We evaluate our algorithms on the PTV road graph3

subdivided into tiles as explained in Section II. For our

experiments, we sampled 10,000 pairs of source and target

nodes and computed a shortest path with each algorithm shown

in Figure 2. For the local strategy, we used � = 0.99 as

a boosting factor, since this value produced good results in

preliminary experiments. Most of our experiments use a cache

size of 500 tiles in order to model highly restricted memory.

While, this might seem rather small for a state-of-the-art cache,

only a small fraction of a device’s memory can be used by

the routing algorithm, as other processes need memory, too.

Further, car manufacturers are known for saving every cent

they can, which leads to surprisingly small main memories

of on-board devices. However, we also ran experiments on

vastly varying cache sizes (between 10 and 10,000 tiles). The

corresponding results are reported in Figure 3.

3The PTV graph can be obtained for research purposes at i11www.iti.
uni-karlsruhe.de/resources/roadgraphs.php.

3351

Fig. 3: Number of tiles loaded compared among different cache

sizes for A+, A�TE, and LA+TER (from left to right).

We present our results as box plots. The boxes depict the

interquartile range (middle 50%), where a line denotes the

median. We let the whiskers extend 1.5 times the interquartile

range beyond that. Outliers are shown individually.

B. Experimental Results

For the number of tiles loaded compared among all al-

gorithms, see Figure 4a. One can observe that the A� or A+

variants perform significantly better than their DA counterparts,

which is mainly due to a smaller search space. Moreover,

the tile-exhaustive strategy significantly decreases the number

of tile loads. It yields the strongest improvement among all

proposed strategies, reducing the number of tiles loaded by a

factor of roughly 14 when applied to A+ and by a factor of 11.9
when applied to DA. Comparing the number of loaded tiles

to the number of distinct tiles, each apportioned by the path

lengths, we observe that this is already close to optimal. Note

that the number of distinct tiles loaded is a lower bound for the

number of tiles loaded unless we are able to reduce the search

space somehow. Figure 4c implies that A+ still has potential

in this regard (on average, each tile is loaded 21.87 times),

whereas Figure 4d shows that the tile-exhaustive strategy rarely

has to load the same tile multiple times (each tile is loaded

1.56 times on average). Although our other strategies have a

much lesser impact, they reduce this factor further down to

1.43 and 1.3 for LA+TE and LA+TER, respectively.

Refer to Figures 4e and 4f in order to investigate more

closely how preferring local tiles and using our domain-specific

caching strategy decreases the number of tile loads. Preferring

local tiles has a minor impact for short roads, but the impact

is increasing for longer roads. This can be reasoned about as

follows: for long-distance queries, the search space as well

as the search front become larger. Therefore, the accessible

tiles are more likely to be scattered along the search front, and

preferring local tiles has an impact. Contrary, independent of

the path length, the domain-specific caching strategy slightly

reduces tile loads.

Concerning our second question of our strategies’ impact

on the number of processed nodes, refer to Figure 4b. The A�

variants naturally load fewer nodes than their DA counterparts,

due to their smaller search space. Furthermore, our strategies

for decreasing tile loads only yield a minor impact on the

number of processed nodes. For instance, LA+TER processes

about 15.5% more nodes than A� (which is label-setting). In

other words, LA+TER processes on average each node at most

1.155 times. Thus, it is almost label-setting.

Overall, combining all of our different strategies (LA+TER)

decreases the number of tile loads by a factor of 34.93,

compared to Dijkstra’s algorithm, and by a factor of 20.77,

compared to A�. Additionally, the number of processed nodes

is increased by only 1.155, compared to A�. This significant

decrease in tile loads strongly outweighs the small increase

in the number of processed nodes. Our results for a cache

size of 500 tiles qualitatively carry over to other cache sizes

as well, as is evident from Figure 3. Again, we see that the

tile-exhaustive strategy has the most impact, which is even

bigger for smaller cache sizes.

V. CONCLUSION AND OUTLOOK

Due to the separation between data and algorithm motivated

by NDS, many state-of-the-art algorithms are not applicable.

Moreover, the tiled data in addition with memory restrictions

yield new challenges for computing shortest paths; in particular,

the number of tile loads becomes the major factor for run time.

In this paper, we introduced and evaluated several strategies

for handling these challenges. Without increasing the number

of processed nodes significantly, the presented algorithms were

able to reduce the number of tile loads by a factor of 34.93,

compared to Dijkstra’s algorithm, and by a factor of 20.77,

compared to A�.

There are three different ways to further improve our results:

first, improving the strategies for cache replacement and loading

new tiles. Second, reducing the search space, for example, with

a bidirectional search. Third, setting up scenarios more similar

to realistic situations. In the following, we discuss these three

possibilities in greater detail.

In order to improve the strategy of loading new tiles such

that accessible tiles are geographically close to each other,

one could consider a range of influence extending beyond the

direct neighbors. For the domain-specific caching, we only

used the information whether or not all nodes of a tile are

already expanded. Additionally, we also have domain-specific

information such as the geographic positions and the current

labels. These could help improve the cache replacement strategy.

However, the possible improvements are rather limited, as

LA+TER already rarely reloads tiles. This directly leads to

the second way for improvement: reducing the search space.

One technique in order to reduce the search space is

bidirectional search [16]. We note that all improvements

presented in our paper can easily be applied to bidirectional

algorithms. However, the setting of memory-restricted routing

3352

(a) (b)

(c) (d)

(e) (f)

Fig. 4: Experimental performance measures for different algorithms. (a) Tiles loaded for all algorithms. (b) Nodes processed for

all algorithms. (c) Tiles loaded compared to search space in tiles for A+, by different route lengths. (d) Tiles loaded compared

to search space in tiles for A+TE, by different route lengths. (e) Tiles loaded for DATE, LDATE, and LDATER for routes

of different length. (f) Tiles loaded for A+TE, LA+TE, and LA+TER for routes of different length.

3353

on tiled data yields new problems for bidirectional search. The

major difficulty results from both searches competing for cache

when running alternatingly. Another reason why we did not

consider bidirectional search is that routing data is typically

time-dependent. Thus, it would be necessary to know the arrival

time in advance in order to perform the backward search.

Although the considered setting is already rather close to

actual industrial instances, there are certain aspects we idealized.

For example, we assumed each tile to occupy the same amount

of space in the cache, whereas real-world data is potentially

more heterogeneous. For instance, one could consider that

removing a large tile, on the one hand, frees more space in

the cache and, on the other hand, it is more expensive to be

reloaded. Another aspect potentially yielding new challenges

when employing NDS is the graph data structure at hand: in

NDS maps, graphs are considered undirected, and potential

restrictions on the routing direction are stored as additional

information for each edge. Furthermore, this information as well

as the length of the edges is stored only in the tile containing

one of the end vertices (independent of the possible routing

directions). Hence, for edges crossing the boundary of a tile,

one might have to reload a tile only to access this information.

REFERENCES

[1] Holger Bast, Stefan Funke, Domagoj Matijevic, Peter Sanders, and
Dominik Schultes. In transit to constant time shortest-path queries in
road networks. In Proc. of 9th ALENEX, pages 46–59, 2007.

[2] G. Veit Batz, Robert Geisberger, Peter Sanders, and Christian Vetter.
Minimum time-dependent travel times with contraction hierarchies.
Journal of Experimental Algorithmics, 18:1.1–1.43, 2013.

[3] Daniel Delling, Andrew V. Goldberg, Andreas Nowatzyk, and Renato F.
Werneck. PHAST: Hardware-accelerated shortest path trees. In Proc. of
25th IPDPS, pages 921–931, 2011.

[4] Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato F.
Werneck. Customizable route planning in road networks. Transportation
Science, 51:1–26, 2015.

[5] Edsger W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1:269–271, 1959.

[6] Stefan Edelkamp. Improving the cache-efficiency of shortest path search.
In Proc. of 40th KI, pages 99–113, 2017.

[7] Stefan Edelkamp and Stefan Schrödl. Localizing a*. In Proc. of. 17th
AAAI, pages 885–890, 2000.

[8] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling.
Contraction Hierarchies: Faster and simpler hierarchical routing in road
networks. In Proc. of 7th WEA, pages 319–333, 2008.

[9] Robert Geisberger and Christian Vetter. Efficient routing in road networks
with turn costs. In Proc. of 10th SEA, pages 100–111, 2011.

[10] Andrew V. Goldberg and Chris Harrelson. Computing the shortest path:
A search meets graph theory. In Proc. of 16th SODA, pages 156–165,
2005.

[11] Andrew V. Goldberg and Renato Fonseca F. Werneck. Computing point-
to-point shortest paths from external memory. In Proc. of 7th ALENEX,
pages 26–40, 2005. URL: http://www.siam.org/meetings/alenex05/papers/
03agoldberg.pdf.

[12] Ronald J. Gutman. Reach-based routing: A new approach to shortest
path algorithms optimized for road networks. In Proc. of 6th ALENEX,
pages 100–111, 2004.

[13] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for
the heuristic determination of minimum cost paths. IEEE Transactions
on Systems Science and Cybernetics, 4:100–107, 1968.

[14] Ekkehard Köhler, Rolf H. Möhring, and Heiko Schilling. Acceleration
of shortest path and constrained shortest path computation. In Proc. of
4th WEA, pages 126–138, 2005.

[15] Ulrich Lauther. An extremely fast, exact algorithm for finding shortest
paths in static networks with geographical background. In Geoinformation
und Mobilität – von der Forschung zur praktischen Anwendung, pages
219–230, 2004.

[16] Ira S. Pohl. Bi-directional and Heuristic Search in Path Problems. PhD
thesis, Stanford University, USA, 1969.

[17] Peter Sanders, Dominik Schultes, and Christian Vetter. Mobile route
planning. In Proc. of 16th ESA, pages 732–743, 2008. doi:10.1007/
978-3-540-87744-8_61.

[18] Jeffrey S. Vitter and Elizabeth A. M. Shriver. Algorithms for parallel
memory, I: Two-level memories. Algorithmica, 12:110–147, 1994.

3354

