

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c\bigcirc 2018 Society for Industrial and Applied Mathematics
Vol. 32, No. 4, pp. 2441--2452

UNBOUNDED DISCREPANCY OF DETERMINISTIC RANDOM
WALKS ON GRIDS\ast

TOBIAS FRIEDRICH\dagger , MAXIMILIAN KATZMANN\dagger , AND ANTON KROHMER\dagger

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . Random walks are frequently used in randomized algorithms. We study a deran-
domized variant of a random walk on graphs called the rotor-router model. In this model, instead
of distributing tokens randomly, each vertex serves its neighbors in a fixed deterministic order. For
most setups, both processes behave in a remarkably similar way: Starting with the same initial con-
figuration, the number of tokens in the rotor-router model deviates only slightly from the expected
number of tokens on the corresponding vertex in the random walk model. The maximal difference
over all vertices and all times is called single vertex discrepancy. Cooper and Spencer [Combin.
Probab. Comput., 15 (2006), pp. 815--822] showed that on \BbbZ d, the single vertex discrepancy is only a
constant cd. Other authors also determined the precise value of cd for d = 1, 2. All of these results,
however, assume that initially all tokens are only placed on one partition of the bipartite graph \BbbZ d.
We show that this assumption is crucial by proving that, otherwise, the single vertex discrepancy can
become arbitrarily large. For all dimensions d \geqslant 1 and arbitrary discrepancies \ell \geqslant 0, we construct
configurations that reach a discrepancy of at least \ell .

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . deterministic random walk, rotor-router model, single vertex discrepancy

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn . 60G50

\bfD \bfO \bfI . 10.1137/17M1131088

1. Introduction. Algorithms that are allowed to make random decisions can
solve many problems more efficiently than purely deterministic algorithms. One ex-
ample is the approximation of the volume of a convex body, where randomness gives
a superpolynomial speed-up in computing power [11]. The first polynomial-time al-
gorithm for this and other problems is based on a certain random walk (e.g., [1]).
Random walks appear to be powerful tools for designing efficient randomized algo-
rithms.

Rotor-router model. The wide applicability of random walks raises the ques-
tion of what properties of the random walk are crucial and how much randomness is
needed. To study this, we consider a derandomized variant of the random walk on
the infinite grid \BbbZ d. In this rotor-router model, each vertex \vec{}x \in \BbbZ d is equipped with
a ``rotor"" together with a cyclic permutation (called a ``rotor sequence"") of the 2d
cardinal directions of \BbbZ d. While the tokens performing a random walk leave a vertex
in a random direction, in the rotor-router model the tokens deterministically go in the
direction the rotor is pointing. After a token is sent, the rotor is rotated according to
the fixed rotor sequence. This ensures that the tokens are distributed evenly among
the neighbors.

Synonyms of the rotor-router model. The rotor-router model was rediscov-
ered independently several times in the literature. First under the name ``Eulerian
walker"" [21], then as ``edge ant walk"" [23], and then ``whirling tour"" [10]. It was
later popularized by James Propp [17] and, therefore, also called ``Propp machine""
by Cooper and Spencer [6]. The same authors later also used the term ``determinis-
tic random walk"" [5, 8]. To emphasize the working principle, we only use the term

\ast Received by the editors May 19, 2017; accepted for publication (in revised form) July 25, 2018;
published electronically October 18, 2018. A preliminary version of this paper appeared in [13].

http://www.siam.org/journals/sidma/32-4/M113108.html
\dagger Algorithm Engineering, Hasso Plattner Institute, University of Potsdam, Potsdam 14482, Ger-

many (tobias.friedrich@hpi.de, maximilian.katzmann@hpi.de, anton.krohmer@hpi.de).

2441

D
ow

nl
oa

de
d

08
/3

0/
20

 to
 1

39
.1

9.
61

.7
4.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://www.siam.org/journals/sidma/32-4/M113108.html
mailto:tobias.friedrich@hpi.de
mailto:maximilian.katzmann@hpi.de
mailto:anton.krohmer@hpi.de

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2442 T. FRIEDRICH, M. KATZMANN, AND A. KROHMER

``rotor-router model"" in the rest of this paper.
Some properties of the rotor-router model. Many aspects of the model

have been studied. The vertex and edge cover time of the rotor-router model can
be asymptotically faster or slower than the classical random walk, depending on the
topology [14, 2, 24]. Very precise bounds are also known if multiple tokens are deployed
in parallel [16, 18, 7]. Our focus is on the single vertex discrepancy with which we
compare the rotor-router model and the expected behavior of the classical random
walk. If particles are arbitrarily placed on the vertices and do a simultaneous walk
in both models, we are interested in the maximal difference in the number of tokens
between both models, at all times and on each vertex.

Known results for the single vertex discrepancy. Cooper and Spencer [6]
proved that on \BbbZ d, the single vertex discrepancy is a constant cd. For the case d = 1,
that is, when the graph is the infinite path, Cooper et al. [5] showed that c1 \approx 2.29.
For d = 2, the constant is c2 \approx 7.83 for circular rotor sequences and c2 \approx 7.29
otherwise [8]. It is further known that there is no such constant for infinite trees [4].
There are also (linear) upper and lower bounds for the discrepancy of finite graphs [15].
For some special finite graphs like hypercubes, stronger (i.e., polylogarithmic in the
number of nodes) upper bounds are known [15].

Open question. All three aforementioned results for the grid \BbbZ d assume that
the initial configuration is ``even,"" that is, it only has tokens on one partition of the
bipartite graph \BbbZ d. This assumption is, however, essential for achieving a constant
discrepancy. Cooper et al. already pointed out for d = 1 that without this assumption
their results ``cannot be expected"" [5, p. 2074]. We make this statement rigorous and
present for each dimension d a configuration such that the single vertex discrepancy
on \BbbZ d becomes arbitrarily large.

Results. To allow a direct comparison, let us first restate the result of Cooper
and Spencer [6]. The mathematical notation is introduced in section 2.

Theorem 1.1 (see [6]). For all d \geqslant 1 there is a constant cd \in \BbbR + such that for
all even initial configurations, the single vertex discrepancy on \BbbZ d is bounded by cd.

Our main result is the following complement of the previous statement.

Theorem 1.2. For all d \geqslant 1 and \ell \in \BbbR there is an initial configuration such that
the single vertex discrepancy on \BbbZ d is at least \ell .

The reason for the unbounded discrepancy observed for noneven initial configu-
rations is that the two partitions of \BbbZ d subtly interfere with each other through the
rotors. In every time step, all tokens switch back and forth between even and odd
positions. In a random walk they are distributed independently; in the rotor-router
model they follow the rotors, which exchange information between both partitions.
This causes an unbounded discrepancy for appropriately set up initial configurations.

It should be noted that the discrepancy of \ell in Theorem 1.2 already occurs for
small configurations. In fact, Corollary 3.5 shows that a discrepancy of \ell can be
reached after \Theta

\bigl(
\lceil \ell 2/d2\rceil

\bigr)
time steps with \scrO (\lceil 1 + \ell /d\rceil 2d+1) tokens.

Techniques. For proving Theorem 1.2, we define a specific (infinitely large) ini-
tial configuration called (k, d)-wedge (cf. Definition 3.1), for which we study explicitly
how it develops over time in the rotor-router and random walk model. We prove that
this configuration is ``stable"" in the rotor-router model, that is, it stays unchanged
after an even number of steps (cf. Lemma 3.3). The proof needs to consider 26 cases.
We only present three of them and verify the remaining cases with an automated the-
orem prover (in the supplementary section SM1 of this paper). Given this structural

D
ow

nl
oa

de
d

08
/3

0/
20

 to
 1

39
.1

9.
61

.7
4.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DETERMINISTIC RANDOM WALKS ON GRIDS 2443

insight on the behavior of the (k, d)-wedge, we calculate the resulting discrepancy
(cf. Lemma 3.4). The proof makes use of the fact that the expected behavior of the
d-dimensional random walk starting with a (k, d)-wedge can be decomposed into a
collection of 1-dimensional random walks. To obtain a result for finite time and fi-
nite configurations, we observe that a subset of the (k, d)-wedge suffices to achieve a
desired discrepancy (cf. Corollary 3.5).

2. Preliminaries. Random walks. A random walk is a stochastic process that
describes the movement of a number of tokens on a graph G. At each time step, each
token at a vertex \vec{}x chooses a neighbor independently and uniformly at random, and
moves to that neighbor.

We consider simple random walks on an infinite d-dimensional grid \BbbZ d. A token at
coordinate \vec{}x = (x1, . . . , xd) can move in one of the 2d cardinal directions, as given by
the unit vectors: \vec{}e1 = (1, 0, 0, . . .), \vec{}e2 = (0, 1, 0, . . .), . . . , - \vec{}e1 = (- 1, 0, 0, . . .), - \vec{}e2 =
(0, - 1, 0, . . .), . . . , - \vec{}ed = (0, . . . , - 1). We refer to this set of directions by E2d. Follow-
ing [19], we write Zi for the direction that a token took at time step i. As all directions
are equiprobable and independent, we have Pr[Zi = \vec{}ej] = Pr[Zi = - \vec{}ej] = 1

2d for all j.
The position of a token after t steps can then be described as a sum of random
variables St = \vec{}x+ Z1 + Z2 + \cdot \cdot \cdot + Zt.

We write Sd
t (\vec{}x) to express the probability that a d-dimensional random walk

starting at the origin reaches vertex \vec{}x after t steps. For example, for dimension d = 1
we obtain S1

t (x) = 2 - t
\bigl(

t
(t+x)/2

\bigr)
.

We denote by | \vec{}x| the sum of the individual components of \vec{}x, i.e., | \vec{}x| := \vec{}xT\vec{}1 =\sum d
i=1 xi. Observe that the grid \BbbZ d is a bipartite graph where all nodes with even | \vec{}x|

form one partition, and nodes with odd | \vec{}x| form the other. With each time step, a
token therefore moves from its current partition to the other. As a consequence, we
have Sd

t (\vec{}x) = 0 if (| \vec{}x| - t \equiv 1) mod 2. We write a \sim t to say that (a \equiv t) mod 2,
and we call a node \vec{}x even if | \vec{}x| \sim 0, and odd otherwise.

Rotor-router model. Let us now formally define the rotor-router model on the
grid \BbbZ d. Each vertex \vec{}x in this graph is equipped with a rotor r\vec{}x \in E2d. The rotor
sequence for a vertex \vec{}x is defined by a cyclic permutation \rho \vec{}x : E2d \rightarrow E2d.

At each time step t, all tokens at \vec{}x do exactly one move as follows. A particular
token moves in the direction of the rotor r\vec{}x, and afterwards, the rotor is updated to
point to \rho \vec{}x(r\vec{}x). This is repeated until all tokens have been moved. Since tokens are
not labeled, the order in which the tokens are passed to the rotor does not matter.
All configurations of the rotor-router model are therefore fully defined by the initial
placement of tokens, the initial rotor configurations r\vec{}x, and the rotor sequences \rho \vec{}x
for all vertices \vec{}x \in \BbbZ d. If all tokens are initially on even vertices, we speak of an even
configuration.

Single vertex discrepancy. When comparing the quality of the simulation
of the rotor-router model, one often refers to the single vertex discrepancy, which is
defined as follows. Let f(\vec{}x, t) : \BbbZ d \times \BbbN 0 \rightarrow \BbbN 0 be the number of tokens at vertex \vec{}x
after t steps of the (deterministic) rotor-router model, and let \BbbE (\vec{}x, t) : \BbbZ d \times \BbbN 0 \rightarrow \BbbR +

denote the expected number of tokens after t steps of a random walk with the same
starting configuration f(\vec{}x, 0). To compute \BbbE (\vec{}x, t) we determine for each \vec{}y \in \BbbZ d

the probability that a random walk starting at \vec{}y reaches \vec{}x after exactly t steps and
multiply the result with the number of tokens that were at \vec{}y. Hence,

\BbbE (\vec{}x, t) =
\sum
\vec{}y\in \BbbZ d

f(\vec{}y, 0) \cdot Sd
t (\vec{}x - \vec{}y).(2.1)

D
ow

nl
oa

de
d

08
/3

0/
20

 to
 1

39
.1

9.
61

.7
4.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2444 T. FRIEDRICH, M. KATZMANN, AND A. KROHMER

f(x, 0)

4k + 1

1

 - 2k 0 2k

x

Fig. 3.1. Illustration of the (k, d)-wedge for k = 8 and d = 1. The y-axis describes the number
of tokens at position x. Dark colored bars show the even partition, light colored bars the odd one.
This stable configuration is used to show our main result.

Using this, we can define the single vertex discrepancy.

Definition 2.1. Let d \geqslant 1, and let an initial configuration f(\vec{}x, 0) for all \vec{}x \in \BbbZ d

be given. We call \Delta (\vec{}x, t) = | f(\vec{}x, t) - \BbbE (\vec{}x, t)| the single vertex discrepancy at \vec{}x after
t steps. Then, we define the single vertex discrepancy \Delta d as

\Delta d := sup
\vec{}x\in \BbbZ d,t\in \BbbN

\Delta (\vec{}x, t).(2.2)

3. Stable configuration of the rotor-router model. According to Theo-
rem 1.1, the single vertex discrepancy is constant if we start with an even configu-
ration. To prove that this condition is necessary, we construct the (k, d)-wedge, a
starting configuration of tokens that ensures that there are effectively only two states
of the rotor-router model.

The (k, d)-wedge intuitively forms a ``peak"" of tokens at the origin, and the rest of
the graph is populated with tokens in a way that stabilizes the peak. In the random
walk model, the expected number of nodes in the origin will decrease over time, while
in the rotor-router model, the number of nodes always stays the same. There are
several ways to model this problem. We consider the following setting most suitable
for our work. The (k, d)-wedge is illustrated in Figure 3.1 and formally defined as
follows.

Definition 3.1. Let k, d \in \BbbN be given, where k adjusts the vertex discrepancy.
The rotor direction of vertex \vec{}x at time t will be denoted by r(\vec{}x, t) : \BbbZ d\times \BbbN 0 \rightarrow E2d. We
define the (k, d)-wedge, a starting configuration of the rotor-router model, as follows.
For even vertices \vec{}x with | \vec{}x| \sim 0, we set

f(\vec{}x, 0) := F0(| \vec{}x|) :=

\left\{
d \cdot (4k + 1 + 2| \vec{}x|) if | \vec{}x| \in [- 2k, 0] ,

d \cdot (4k + 3 - 2| \vec{}x|) if | \vec{}x| \in [1, 2k] ,

d otherwise,

r(\vec{}x, 0) := R0(| \vec{}x|) :=

\Biggl\{
 - \vec{}e1 if | \vec{}x| \in [1, 2k] ,

\vec{}e1 otherwise.

D
ow

nl
oa

de
d

08
/3

0/
20

 to
 1

39
.1

9.
61

.7
4.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DETERMINISTIC RANDOM WALKS ON GRIDS 2445

For odd vertices \vec{}x with | \vec{}x| \sim 1, we set

f(\vec{}x, 0) := F1(| \vec{}x|) :=

\left\{
d \cdot (1 - 2| \vec{}x|) if | \vec{}x| \in [- 2k, 0] ,

d \cdot (2| \vec{}x| - 1) if | \vec{}x| \in [1, 2k] ,

d \cdot (4k + 1) otherwise,

r(\vec{}x, 0) := R1(| \vec{}x|) :=

\Biggl\{
 - \vec{}e1 if | \vec{}x| \in [- 2k, - 1] ,

\vec{}e1 otherwise.

The rotor sequences follow the order \vec{}e1, . . . , \vec{}ed, - \vec{}e1, . . . , - \vec{}ed.
Next, we show that the (k, d)-wedge is a stable configuration, meaning that the

rotor-router model returns to the initial configuration every two steps. To this end,
we introduce a function g : \BbbZ d\times E2d\times E2d\times \BbbN \rightarrow \BbbN , where g(\vec{}x,\pm \vec{}ei,\pm \vec{}ej , t) denotes the
number of tokens that vertex \vec{}x receives from vertex \vec{}x\pm \vec{}ei at time t when r(\vec{}x\pm \vec{}ei, t) =
\pm \vec{}ej . Therefore,

g(\vec{}x,\vec{}e,\vec{}h, t) =

\Biggl\{
\lfloor f(\vec{}x+\vec{}e,t) - d

2d \rfloor if sgn(\vec{}e) = sgn(\vec{}h),

\lfloor f(\vec{}x+\vec{}e,t)+d
2d \rfloor otherwise,

(3.1)

where sgn(- \vec{}ei) = - 1 and sgn(+\vec{}ei) = 1 for all i = 1, . . . , d. Then we can write

f(\vec{}x, t+ 1) =

d\sum
i=1

g(\vec{}x,\vec{}ei, r(\vec{}x+ \vec{}ei, t), t) +

d\sum
i=1

g(\vec{}x, - \vec{}ei, r(\vec{}x - \vec{}ei, t), t),(3.2)

which results from summing up the number of tokens that the neighbors of \vec{}x pass
to \vec{}x at time step t.

If the rotor-router model is initialized with the (k, d)-wedge, the number of tokens
at a vertex \vec{}x only depends on | \vec{}x| at all times t. We can thus extend the definition
of f to f(| \vec{}x| , t). Consequently, we have f(\vec{}x, 0) = f(| \vec{}x| , 0) and therefore f(\vec{}x\pm e1, 0) =
f(| \vec{}x| \pm 1, 0). The same holds for r(\vec{}x, 0). The definition of g in (3.1) can in this case
be extended to g(| \vec{}x| ,\pm 1,\pm \vec{}e1, 0), and we can simplify (3.2) to

f(| \vec{}x| , 1) =
d\sum

i=1

g(| \vec{}x| , 1, r(| \vec{}x| + 1, 0), 0) +

d\sum
i=1

g(| \vec{}x| , - 1, r(| \vec{}x| - 1, 0), 0)

= d \cdot (g(| \vec{}x| , 1, r(| \vec{}x| + 1, 0), 0) + g(| \vec{}x| , - 1, r(| \vec{}x| - 1, 0), 0)).(3.3)

To prove stability, it remains to show the following lemmas.

Lemma 3.2. Given a (k, d)-wedge, it holds that

r(\vec{}x, 1) = - r(\vec{}x, 0) and f(\vec{}x, 1) =

\Biggl\{
F1(| \vec{}x|) if | \vec{}x| \sim 0,

F0(| \vec{}x|) if | \vec{}x| \sim 1.

Lemma 3.3. Given a (k, d)-wedge, it holds that r(\vec{}x, 2) = r(\vec{}x, 0) and f(\vec{}x, 2) =
f(\vec{}x, 0).

Lemma 3.2 states that the configuration of the rotor-router model after one step
is again the (k, d)-wedge, except that it is reflected in the origin (reflecting all rotors
at the same time) and then shifted by \vec{}e1 to the right. Furthermore, all rotors point
in the opposite direction. By the same intuition, the next step undoes these changes

D
ow

nl
oa

de
d

08
/3

0/
20

 to
 1

39
.1

9.
61

.7
4.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2446 T. FRIEDRICH, M. KATZMANN, AND A. KROHMER

f(x, 0)

4k + 1

1

 - 2k 0 2k

x

x \sim 0

x \sim 1

Fig. 3.2. Illustration of the (k, 1)-wedge. The y-axis describes the number of tokens at posi-
tion x. Circles mark the proof cases that our exemplary proof covers.

and the configuration returns to the (k, d)-wedge after two steps, which is shown by
Lemma 3.3.

These statements can be proven by a case analysis of (3.3). While none of the
cases are mathematically challenging, there are 26 of them. Proving every case by
hand is tedious and provides little to no further insight into the problem. Neverthe-
less, even small off-by-one errors break the stability of the (k, d)-wedge, which is why
we wanted to convince ourselves that the (k, d)-wedge is indeed correct. To this end,
we provided an exemplary proof for three cases and used the automated prover Is-
abelle/HOL [20] for the remaining cases. Our code can be found in the supplementary
section SM1. Such provers excel at keeping track of all subgoals (i.e., cases) of a proof.
Mostly, the proofs are not human readable, as they rely on internal proof routines.
Automated proof systems like Isabelle/HOL, however, contain a certified kernel, so
trusting the automated proof boils down to trusting the formalization of the problem
and the correctness of the kernel. It is debated whether an automated proof can be
considered rigorous or not---in our case, we believe that it is more reasonable to trust
the correctness of Isabelle's kernel than to trust a lengthy and error-prone proof of
26 cases. In particular, the open-source nature of the Isabelle kernel and the libraries
our proof draws upon means that, as with human-readable proofs, the argument can
continue to be scrutinized in perpetuity. Figure 3.2 shows which proof cases were
covered in the exemplary proof.

Proof. We begin with the proof for the case | \vec{}x| = 0 and t = 1. By (3.3),

f(0, 1) = d \cdot (g(0, 1, r(1, 0), 0) + g(0, - 1, r(- 1, 0), 0))

= d \cdot (g(0, 1, 1, 0) + g(0, - 1, - 1, 0))

= d \cdot 1

2d
(f(1, 0) - d+ f(- 1, 0) - d)

=
1

2
(d \cdot (2 \cdot 1 - 1) - d+ d \cdot (1 - 2 \cdot (- 1)) - d)

= d = F1(0).

This agrees with the statement.
Additionally, we present the proof for the case | \vec{}x| \in \BbbZ \setminus [- 2k - 1, 2k + 1], with

D
ow

nl
oa

de
d

08
/3

0/
20

 to
 1

39
.1

9.
61

.7
4.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DETERMINISTIC RANDOM WALKS ON GRIDS 2447

| \vec{}x| \sim 0 and t = 1. By (3.3),

f(| \vec{}x| , 1) = d \cdot (g(| \vec{}x| , 1, r(| \vec{}x| + 1, 0), 0) + g(| \vec{}x| , - 1, r(| \vec{}x| - 1, 0), 0))

= d \cdot (g(| \vec{}x| , 1, 1, 0) + g(| \vec{}x| , - 1, 1, 0))

= d \cdot 1

2d
(f(| \vec{}x| + 1, 0) - d+ f(| \vec{}x| - 1, 0) + d)

=
1

2
(d \cdot (4k + 1) + d \cdot (4k + 1))

= d \cdot (4k + 1) = F1(| \vec{}x|).

This agrees with the statement. Finally, we present the proof for the case | \vec{}x| \in (1, 2k),
with | \vec{}x| \sim 1 and t = 1. By (3.3),

f(| \vec{}x| , 1) = d \cdot (g(| \vec{}x| , 1, r(| \vec{}x| + 1, 0), 0) + g(| \vec{}x| , - 1, r(| \vec{}x| - 1, 0), 0))

= d \cdot (g(| \vec{}x| , 1, - 1, 0) + g(| \vec{}x| , - 1, - 1, 0))

= d \cdot 1

2d
(f(| \vec{}x| + 1, 0) + d+ f(| \vec{}x| - 1, 0) - d)

=
1

2
(d \cdot (4k + 3 - 2(| \vec{}x| + 1)) + d \cdot (4k + 3 - 2(| \vec{}x| - 1)))

= d \cdot (4k + 3 - 2| \vec{}x|) = F0(| \vec{}x|).

This agrees with the statement. All other cases can be shown similarly. Supplemen-
tary section SM1 presents an automated proof of all cases.

3.1. Discrepancy with infinite steps. If the rotor-router model is initialized
with the (k, d)-wedge, the number of tokens stays the same at all vertices \vec{}x inde-
pendent of the number of steps the process is run (mod 2), as was shown above. In
contrast, the expected number of tokens on the even partition decreases over time for
the random walk. In particular, the two processes deviate because at every time step
and on every vertex the number of tokens is not a multiple of the number of neighbor-
ing vertices, ensuring that the rotor-router model cannot distribute the tokens equally
to all neighbors as the random walk does. To determine the resulting discrepancy, we
inspect the difference between the actual and the expected number of tokens at the
origin after enough steps. We prove the following lemma.

Lemma 3.4. If the rotor-router model is initialized with the (k, d)-wedge, we have

lim
t\rightarrow \infty

\Delta (0, t) = 4dk.

Proof. Recall that f(0, t) describes the number of tokens at \vec{}x = 0 when the rotor-
router model is run, whereas \BbbE (0, t) describes the expected number of tokens at \vec{}x = 0
for the random walk after t steps. By Definition 2.1,

\Delta (0, t) = | f(0, t) - \BbbE (0, t)| .

For the sake of brevity, we assume from now on that t is even; however, the statement
holds for all t. Then, since the (k, d)-wedge was proven to be stable, we obtain
f(0, t) = d \cdot (4k + 1).

The calculation of \BbbE (0, t) is more involved. According to (2.1),

\BbbE (0, t) =
\sum
\vec{}y\in \BbbZ d

f(\vec{}y, 0) \cdot Sd
t (\vec{}y),

D
ow

nl
oa

de
d

08
/3

0/
20

 to
 1

39
.1

9.
61

.7
4.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2448 T. FRIEDRICH, M. KATZMANN, AND A. KROHMER

where Sd
t (\vec{}y) is the probability that a d-dimensional random walk that starts at \vec{}y =

(y1, . . . , yd) ends at 0 after t steps. Sd
t (\vec{}y) admits simple formulas for d \in \{ 1, 2\} , but

there are no simple equations for d \geqslant 3 known to us.
To circumvent this problem, we show that the expected number of tokens \BbbE (\vec{}x, t)

is actually the same for all dimensions d \geqslant 1 if the starting configuration is the
(k, d)-wedge.

Consider the expected number of tokens at a vertex \vec{}x with respect to | \vec{}x| =
x1 + \cdot \cdot \cdot + xd. With one step, a token starting at \vec{}x can only reach vertices \vec{}y with
| \vec{}y| \in \{ | \vec{}x| - 1, | \vec{}x| + 1\} . The probability that either happens is 1/2, i.e.,

\sum
\vec{}y\in \BbbZ d

| \vec{}y| =b

Sd
1 (\vec{}x - \vec{}y) =

\Biggl\{
1
2 if b \in \{ | \vec{}x| - 1, | \vec{}x| + 1\}
0 otherwise.

Consider now the following variation of a random walk on \BbbZ d, where each token
can only move in one dimension, i.e.,

Pr[Zi = e1] = Pr[Zi = - e1] = 1/2,

Pr[Zi = ej] = Pr[Zi = - ej] = 0 for all j > 1.

In this setting, we obtain a collection of 1-dimensional random walks operating inde-
pendently of each other. We write \BbbE \prime (\vec{}x, t) to denote the expected number of tokens
in this random walk, and we initialize \BbbE \prime (\vec{}x, 0) again with the (k, d)-wedge. Note that
\BbbE \prime (\vec{}x, t) = \BbbE \prime (| \vec{}x| , t) again only depends on | \vec{}x| and t. By showing \BbbE \prime (\vec{}x, t) = \BbbE (\vec{}x, t) we
can analyze a 1-dimensional random walk and directly obtain results for d-dimensional
random walks.

We prove \BbbE \prime (\vec{}x, t) = \BbbE (\vec{}x, t) by induction over t. For the base case, we have
\BbbE (\vec{}x, 0) = \BbbE \prime (\vec{}x, 0) by definition. For the inductive step t \rightarrow t+ 1, we obtain

\BbbE (\vec{}x, t) =
\sum
\vec{}y\in \BbbZ d

\BbbE (\vec{}y, t - 1) \cdot Sd
1 (\vec{}x - \vec{}y)(3.4)

=
\sum
\vec{}y\in \BbbZ d

| \vec{}y| =| \vec{}x| +1

\BbbE \prime (| \vec{}y| , t - 1) \cdot Sd
1 (\vec{}x - \vec{}y) +

\sum
\vec{}y\in \BbbZ d

| \vec{}y| =| \vec{}x| - 1

\BbbE \prime (| \vec{}y| , t - 1) \cdot Sd
1 (\vec{}x - \vec{}y)

= \BbbE \prime (| \vec{}x| + 1, t - 1) \cdot 1
2
+ \BbbE \prime (| \vec{}x| - 1, t - 1) \cdot 1

2
= \BbbE \prime (| \vec{}x| , t) = \BbbE \prime (\vec{}x, t),(3.5)

where (3.4) and (3.5) hold by the tower rule for expectation.
We now focus on the 1-dimensional random walk initialized with the (k, d)-wedge.

Let I1 := [- 2k, 2k] and I2 := \BbbZ \setminus I1. We know that f(\vec{}x, t) = d for all x \in I2, x \sim 0.
We denote the expected number of tokens that started in S \subseteq \BbbZ and arrive at the
origin after t \sim 0 steps by \BbbE S(0, t):

\BbbE I2(0, t) =
\sum
x\in I2
x\sim 0

f(x, 0) \cdot S1
t (| x|) \leqslant

\sum
x\in [- t,t]

x\sim 0

d \cdot 2 - t \cdot
\biggl(

t

(t+ | x|)/2

\biggr)
.D

ow
nl

oa
de

d
08

/3
0/

20
 to

 1
39

.1
9.

61
.7

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DETERMINISTIC RANDOM WALKS ON GRIDS 2449

We now split the sum using that S1
t (x) = S1

t (- x):

\BbbE I2(0, t) \leqslant
d

2t
\cdot

\left(t\sum
x=0
x\sim 0

\biggl(
t

(t+ x)/2

\biggr)
+

t\sum
x=2
x\sim 0

\biggl(
t

(t+ x)/2

\biggr) \right) =
d

2t
\cdot

t\sum
x=0

\biggl(
t

x

\biggr)
= d.

This approximation shows that \BbbE I2(0, t) \leqslant d, which is obviously independent of the
number of steps the process is run.

The number of expected tokens that start in I1 and end at the origin after t steps

will be approximated using the upper bound
\bigl(

t
t/2

\bigr)
\leqslant
\sqrt{}

2
\pi t \cdot 2t [22].

Then, \BbbE I1 can be estimated the following way:

\BbbE I1(0, t) =

k\sum
i=1

S1
t (2i) \cdot f(2i, 0) +

k\sum
i=0

S1
t (2i) \cdot f(- 2i, 0)

= d2 - t

\Biggl(
k\sum

i=1

\biggl(
t

t
2 + i

\biggr)
\cdot (4k + 3 - 4i) +

k\sum
i=0

\biggl(
t

t
2 + i

\biggr)
\cdot (4k + 1 - 4i)

\Biggr)

\leqslant

\biggl(
t

t/2

\biggr)
\cdot d2 - t \cdot

\Biggl(
k\sum

i=1

(4k + 3 - 4i) +

k\sum
i=0

(4k + 1 - 4i)

\Biggr)

=

\biggl(
t

t/2

\biggr)
\cdot d2 - t \cdot (2k + 1)

2 \leqslant

\sqrt{}
2

\pi t
\cdot d \cdot (2k + 1)2.

Knowing \BbbE I1(0, t) and \BbbE I2(0, t), we compute \BbbE (0, t) by adding these terms and ob-

taining \BbbE (0, t) \leqslant d+
\sqrt{}

2
\pi t \cdot d \cdot (2k + 1)2. This results in a discrepancy of

| f(0, t) - \BbbE (0, t)| \geqslant max

\Biggl\{
0, 4dk -

\sqrt{}
2

\pi t
\cdot d \cdot (2k + 1)2

\Biggr\}
.(3.6)

We obtain \Delta (0, t) \geqslant 4dk for t \rightarrow \infty . It remains to show that \Delta (0, t) \leqslant 4dk.
Recall that f(\vec{}x, 0) \geqslant d for all \vec{}x. Thus, in the random walk process, every vertex

distributes at least d tokens evenly among its neighbors, i.e., each of the 2d neighbors
obtains at least d/(2d) tokens in expectation. It follows that every vertex, in total,
receives at least d tokens from its 2d neighbors, which it distributes evenly in the
next step. With this invariant, it is easy to see that \BbbE (\vec{}x, t) \geqslant d for all \vec{}x and t.
Analogously, we have \BbbE (\vec{}x, t) \leqslant d(4k + 1) for all \vec{}x and t, since f(\vec{}x, 0) \leqslant d(4k + 1)
for all \vec{}x. Additionally, due to the stability of the (k, d)-wedge (Lemma 3.3), we know
that d \leqslant f(\vec{}x, t) \leqslant d(4k+ 1) holds for all \vec{}x and t. Taken together, we can derive that
0 \leqslant \Delta (\vec{}x, t) \leqslant 4dk holds for all \vec{}x and t, and in particular, \Delta (0, t) \leqslant 4dk for all t.

This means that by using the second partition of \BbbZ d in the rotor-router model,
it is possible to produce an arbitrarily large discrepancy of \Omega (dk), which reveals that
there is no constant bound for the single vertex discrepancy. Figure 3.3 illustrates the
single vertex discrepancy in a (k, 1)-wedge over time for k \in \{ 16, 32, 64\} .

3.2. Discrepancy within finite steps. Lemma 3.4 shows that a discrepancy of
4dk can be reached if the processes are run for t \rightarrow \infty steps. It is, however, possible to
achieve high discrepancy using already few steps by investigating (3.6) more carefully.
We show the following corollary.

D
ow

nl
oa

de
d

08
/3

0/
20

 to
 1

39
.1

9.
61

.7
4.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2450 T. FRIEDRICH, M. KATZMANN, AND A. KROHMER

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000
0

50

100

150

k = 16

k = 32

k = 64

Steps

D
is
cr
ep

a
n
cy

Fig. 3.3. The simulated single vertex discrepancies for different (k, 1)-wedges. The plots show
that even for small t and k a high discrepancy can be achieved. This intuition is formalized in
Corollary 3.5.

Corollary 3.5. Given dimension d \geqslant 1 and a discrepancy \ell \in \BbbR +, there exists
a (k, d)-wedge that reaches the discrepancy \ell in t \in \scrO

\bigl(\bigl\lceil
\ell 2/d2

\bigr\rceil \bigr)
steps using \scrO (\lceil 1 +

\ell /d\rceil 2d+1) tokens.

Proof. By (3.6), the number of steps that are needed to reach discrepancy \ell with
a (k, d)-wedge are

\ell \leqslant 4dk -
\sqrt{}

2

\pi t
\cdot d \cdot (2k + 1)2,

\Leftarrow t \geqslant
2

\pi
\cdot d

2(2k + 1)4

(4dk - \ell)2
.

Using standard analysis tools, we find that the minimum number of steps necessary
to reach the given discrepancy \ell is

t =
2 \cdot d2(

\bigl\lceil
d+\ell
2d

\bigr\rceil
+ 1)4

\pi \cdot (2d+ \ell)2
\in \Theta

\biggl(\biggl\lceil
\ell 2

d2

\biggr\rceil \biggr)

when using a (
\bigl\lceil
d+\ell
2d

\bigr\rceil
, d)-wedge. As the process runs t steps, it visits \Theta (td) positions

of the grid \BbbZ d, each of which needs \leqslant d \cdot (4k + 1) tokens. Therefore, in total it needs
at most \scrO (\lceil 1 + \ell /d\rceil 2d+1) tokens.

4. Conclusion. The rotor-router model is a derandomized variant of the clas-
sical random walk. It can be used algorithmically, for example, in broadcasting [9],
external mergesort [3], and load balancing [12]. We study the rotor-router model's
similarity to the expected behavior of the random walk. It was observed and well
studied that on grids tokens only differs by some small constant at all times and on
each vertex [5, 8, 6]. We closely look at the underlying assumptions of these results
and prove that if tokens are allowed to start at an arbitrary position, both models
can deviate arbitrarily far. Besides the revealed combinatorial structure, our result
indicates that also in algorithmic applications the rotor-router model can deviate sig-

D
ow

nl
oa

de
d

08
/3

0/
20

 to
 1

39
.1

9.
61

.7
4.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DETERMINISTIC RANDOM WALKS ON GRIDS 2451

nificantly from the expected behavior of the random walk, which should be studied
further.

REFERENCES

[1] R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lov\'asz, and C. Rackoff, Random walks,
universal traversal sequences, and the complexity of maze problems, in Proceedings of the
20th Annual Symposium on Foundations of Computer Science, IEEE, New York, 1979,
pp. 218--223.

[2] E. Bampas, L. G\c asieniec, N. Hanusse, D. Ilcinkas, R. Klasing, and A. Kosowski, Euler
tour lock-in problem in the rotor-router model, in Proceedings of the 23rd International
Conference on Distributed Computing, Springer-Verlag Berlin, Heidelberg, 2009, pp. 423--
435.

[3] R. D. Barve, E. F. Grove, and J. S. Vitter, Simple randomized mergesort on parallel disks,
Parallel Comput., 23 (1997), pp. 601--631, also in Proceedings of the Eighth Annual ACM
Symposium on Parallel Algorithms and Architectures, 1996, pp. 109--118.

[4] J. Cooper, B. Doerr, T. Friedrich, and J. Spencer, Deterministic random walks on regular
trees, Random Structures Algorithms, 37 (2010), pp. 353--366, also in Proceedings of the
19th Annual ACM-SIAM Symposium on Discrete Algorithms, 2008, pp. 766--772.

[5] J. Cooper, B. Doerr, J. Spencer, and G. Tardos, Deterministic random walks on the inte-
gers, European J. Combin., 28 (2007), pp. 2072--2090, also in Proceedings of the Workshop
on Analytic Algorithmics and Combinatorics, SIAM, Philadelphia, 2006, pp. 185--197.

[6] J. N. Cooper and J. Spencer, Simulating a random walk with constant error, Combin.
Probab. Comput., 15 (2006), pp. 815--822.

[7] D. Dereniowski, A. Kosowski, D. Paj\c ak, and P. Uzna\'nski, Bounds on the cover time of
parallel rotor walks, in Proceedings of the 31st International Symposium on Theoretical
Aspects of Computer Science, 2014, pp. 263--275.

[8] B. Doerr and T. Friedrich, Deterministic random walks on the two-dimensional grid, Com-
bin. Probab. Comput., 18 (2009), pp. 123--144, also in Proceedings of ISAAC, 2006, pp. 474--
483.

[9] B. Doerr, T. Friedrich, and T. Sauerwald, Quasirandom rumor spreading, ACM Trans.
Algorithms, 11 (2014), 9, https://doi.org/10.1145/2650185, also in Proceedings of the 19th
Annual ACM-SIAM Symposium on Discrete Algorithms, 2008, pp. 773--781.

[10] I. Dumitriu, P. Tetali, and P. Winkler, On playing golf with two balls, SIAM J. Discrete
Math., 16 (2003), pp. 604--615, https://doi.org/10.1137/S0895480102408341.

[11] M. Dyer, A. Frieze, and R. Kannan, A random polynomial-time algorithm for approximating
the volume of convex bodies, J. ACM, 38 (1991), pp. 1--17, also in Proceedings of the
Twenty-first Annual ACM Symposium on Theory of Computing, 1989, pp. 375--381.

[12] T. Friedrich, M. Gairing, and T. Sauerwald, Quasirandom load balancing, SIAM J. Com-
put., 41 (2012), pp. 747--771, https://doi.org/10.1137/100799216, also in Proceedings of the
Twenty-first Annual ACM-SIAM Symposium on Discrete Algorithms, 2010, pp. 1620--1629.

[13] T. Friedrich, M. Katzmann, and A. Krohmer, Unbounded discrepancy of deterministic
random walks on grids, in Proceedings of the 26th International Symposium on Algorithms
and Computation,Nagoya, Japan, 2015, pp. 212--222.

[14] T. Friedrich and T. Sauerwald, The cover time of deterministic random walks, Electron.
J. Combin., 17 (2010), Research paper 167, also in Proceedings of the 16th International
Computing and Combinatorics Conference, 2010, pp. 130--139.

[15] S. Kijima, K. Koga, and K. Makino, Deterministic random walks on finite graphs, in 9th
Meeting on Analytic Algorithmics and Combinatorics, 2012, pp. 16--25.

[16] R. Klasing, A. Kosowski, D. Paj\c ak, and T. Sauerwald, The multi-agent rotor-router on
the ring: A deterministic alternative to parallel random walks, in Proceedings of the 32nd
ACM Symposium on Principles of Distributed Computing, 2013, pp. 365--374.

[17] M. Kleber, Goldbug variations, Math. Intelligencer, 27 (2005), pp. 55--63.
[18] A. Kosowski and D. Paj\c ak, Does adding more agents make a difference? A case study of

cover time for the rotor-router, in 41st International Colloquium on Automata, Languages,
and Programming, 2014, pp. 544--555.

[19] G. Lawler and V. Limic, Random Walk: A Modern Introduction, Cambridge Studies in
Advanced Mathematics, Cambridge University Press, Cambridge, 2010.

[20] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL: A Proof Assistant for Higher-
Order Logic, Lecture Notes in Comput. Sci. 2283, Springer-Verlag, Berlin, Heidelberg,
2002.

D
ow

nl
oa

de
d

08
/3

0/
20

 to
 1

39
.1

9.
61

.7
4.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1145/2650185
https://doi.org/10.1137/S0895480102408341
https://doi.org/10.1137/100799216

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2452 T. FRIEDRICH, M. KATZMANN, AND A. KROHMER

[21] V. B. Priezzhev, D. Dhar, A. Dhar, and S. Krishnamurthy, Eulerian walkers as a model
of self-organized criticality, Phys. Rev. Lett., 77 (1996), pp. 5079--5082.

[22] H. Robbins, A remark on Stirling's formula, Amer. Math. Monthly, 62 (1955), pp. 26--29.
[23] I. A. Wagner, M. Lindenbaum, and A. M. Bruckstein, Distributed covering by ant-robots

using evaporating traces, IEEE Trans. Robot. Autom., 15 (1999), pp. 918--933.
[24] V. Yanovski, I. A. Wagner, and A. M. Bruckstein, A distributed ant algorithm for efficiently

patrolling a network, Algorithmica, 37 (2003), pp. 165--186.

D
ow

nl
oa

de
d

08
/3

0/
20

 to
 1

39
.1

9.
61

.7
4.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

SUPPLEMENTARY MATERIALS: UNBOUNDED DISCREPANCY
OF DETERMINISTIC RANDOM WALKS ON GRIDS∗

TOBIAS FRIEDRICH† , MAXIMILIAN KATZMANN† , AND ANTON KROHMER†

SM1. Isabelle Code. This Isabelle/HOL code formalizes and proves Lemma 3.2
and Lemma 3.3. For reasons of completeness, we provide the code here in the Ap-
pendix. The file has also been made available at https://www13.hpi.uni-potsdam.de/
fileadmin/user upload/fachgebiete/friedrich/publications/2015/automated proof.thy for
convenience.

theory automated_proof
imports Main
begin

definition even :: "int \<Rightarrow> bool"
where

"even z \<equiv> \<exists> k. z = 2*k"

lemma noteven [simp]: "even v \<Longrightarrow> \<not> even (v+1) \<and> \<not> even (v - 1)"
apply (unfold even_def)
apply auto
apply arith+
done

lemma notevenb [simp]: "\<not> even v \<Longrightarrow> even (v+1) \<and> even (v - 1)"
apply (unfold even_def)
apply auto
apply arith+
done

definition r0even :: "int \<Rightarrow> int \<Rightarrow> int \<Rightarrow> int"
where

"r0even d v l = (if (0 < v \<and> v \<le> 2*l) then 0 else d)"
definition r0odd :: "int \<Rightarrow> int \<Rightarrow> int \<Rightarrow> int"
where

"r0odd d v l = (if (-2*l < v \<and> v < 0) then 0 else d)"

definition r0 :: "int \<Rightarrow> int \<Rightarrow> int \<Rightarrow> int"
where

"r0 d v l = (if (even v) then r0even else r0odd) d v l"

definition r1 :: "int \<Rightarrow> int \<Rightarrow> int \<Rightarrow> int"
where

"r1 d v l = d - r0 d v l"

definition f0even :: "int \<Rightarrow> int \<Rightarrow> int \<Rightarrow> int"
where

"f0even d v l = (if v \<le> 0 \<and> v \<ge> -2*l then d*(4*l + 1 + 2*v) else
(if 1 \<le> v \<and> v \<le> 2*l then d*(4*l + 3 - 2*v) else d))"

definition f0odd :: "int \<Rightarrow> int \<Rightarrow> int \<Rightarrow> int"
where

"f0odd d v l = (if v \<le> 0 \<and> v \<ge> -2*l then d*(1 - 2*v) else
(if 1 \<le> v \<and> v \<le> 2*l then d*(2*v - 1) else d*(4*l + 1)))"

definition f0 :: "int \<Rightarrow> int \<Rightarrow> int \<Rightarrow> int"
where

"f0 d v l = (if even v then f0even else f0odd) d v l"

definition f1 :: "int \<Rightarrow> int \<Rightarrow> int \<Rightarrow> int"
where

∗Submitted to the editors 07/27/2018. A preliminary version of this paper appeared in [SM1]
†Hasso Plattner Institute, University of Potsdam, Potsdam, Germany

(firstname.lastname@hpi.de).

SM1

https://www13.hpi.uni-potsdam.de/fileadmin/user_upload/fachgebiete/friedrich/publications/2015/automated_proof.thy
https://www13.hpi.uni-potsdam.de/fileadmin/user_upload/fachgebiete/friedrich/publications/2015/automated_proof.thy
mailto:firstname.lastname@hpi.de

SM2 T. FRIEDRICH, M. KATZMANN AND A. KROHMER

"f1 d v l = (if even v then f0odd else f0even) d v l"

function f :: "int \<Rightarrow> int \<Rightarrow> int \<Rightarrow> nat \<Rightarrow> int"
and r :: "int \<Rightarrow> int \<Rightarrow> int \<Rightarrow> nat \<Rightarrow> int"

where
"f d v l 0 = f0 d v l"

| "r d v l 0 = r0 d v l"
| "f d v l (Suc n) = d * ((f d (v - 1) l n) div (2*d)) + d*((f d (v + 1) l n) div (2*d)) +

((r d (v - 1) l n) div d) * ((f d (v - 1) l n) mod (2*d)) +
((d - (r d (v + 1) l n)) div d) * ((f d (v + 1) l n) mod (2*d))"

| "r d v l (Suc n) = (r d v l n + f d v l n) mod (2*d)"
by (pat_completeness, auto)
termination
by lexicographic_order

lemma [simp]: "\<forall> d l ::int. (d + d * (4 * l + 1)) mod (2 * d) = 0" by algebra

lemma onestep [simp]: "r d v l (Suc 0) = r1 d v l"
apply simp
apply (unfold r0_def f0_def r1_def)
apply simp
apply (unfold r0even_def r0odd_def f0even_def f0odd_def)
apply auto
apply arith+
apply algebra+
apply arith+
by (metis diff_0_right diff_minus_eq_add even_def minus_diff_eq mult.commute mult_2_right)

(* some facts needed to resolve subcases *)
lemma [simp]: "\<forall> v::int. (- 1 - 2 * v) mod 2 = 1" by arith
lemma [simp]: "\<forall> v::int. (4 * v - 3) mod 2 = 1" by arith
lemma [simp]: "\<forall> v::int. (4 * v + 1) mod 2 = 1" by arith
lemma [simp]: "\<forall> v::int. (3 - 4 * v) mod 2 = 1" by arith
lemma [simp]: "even v \<Longrightarrow> \<not> v + 1 = 0" by (unfold even_def, arith)
lemma [simp]: "\<forall> x y ::int. (4 * x + y) div 2 = (4 * x div 2) + (y div 2)" by auto
lemma [simp]: "\<forall> x y ::int. (4 * x - y) div 2 = (4 * x div 2) + (- y div 2)" by auto
lemma [simp]: "\<forall> x y ::int. (x - 4 * y) div 2 = - (4 * y div 2) + (x div 2)" by auto
lemma [simp]: "\<forall> l v z ::int. (z + (4 * l + 2 * v)) div 2 = 2 * l + v + (z div 2)" by auto
lemma [simp]: "\<forall> l v z ::int. (z + (4 * l - 2 * v)) div 2 = 2 * l - v + (z div 2)" by auto
lemma [simp]: "\<forall> l v z ::int. ((4 * l + 2 * v) -z) div 2 = 2 * l + v + (-z div 2)" by auto
lemma [simp]: "\<forall> d l v ::int. d * (2 * l + v - 1) + d * (2 * l + v + 1) + d

= d * (4 * l + 1 + 2 * v)" by algebra
lemma [simp]: "\<forall> d l ::int. 2 * d + (d * (2 * l) + d * (2 * l - 1)) = d * (1 + 4 * l)" by

algebra↪→
lemma [simp]: "\<forall> d l v ::int. d * (2 * l - v + 2) + d * (2 * l - v) + d

= d * (4 * l + 3 - 2 * v)" by algebra
lemma [simp]: "\<forall> l v::int. (4 * l + 2 * v - 1) mod 2 = 1" by arith
lemma [simp]: "\<forall> l v::int. (1 + (4 * l - 2 * v)) mod 2 = 1" by arith

lemma [simp]: "\<And> d k l ::int. 0 < d \<longrightarrow>
\<not> 2 * k + 1 \<le> 2 * l \<longrightarrow>
2 * l \<noteq> 1 \<longrightarrow> - (2 * l) < 2 * k - 1 \<longrightarrow> k \<le> l

\<longrightarrow>↪→
d * (2 * k - 2) + d * (2 * l) + d = d * (4 * k - 1)"

proof -
fix d k l ::int
{ assume " \<not> 2 * k + 1 \<le> 2 * l" and "k \<le> l"

hence "k=l" by simp
then have "d * (4 * l - 1) = d * (4 * k - 1) " by auto
moreover have "d * (2 * l - 2) + d * (2 * l) + d = d * (4 * l - 1)" by algebra
ultimately have "d * (2 * k - 2) + d * (2 * l) + d = d * (4 * k - 1)" by auto }

thus "?thesis d k l" by simp
qed

theorem onestepf [simp]: "\<forall> d v l ::int. d > 0 \<longrightarrow> f d v l (Suc 0) = f1 d v
l"↪→

apply simp
apply (unfold r0_def f0_def f1_def)
apply simp
apply auto
apply (unfold r0even_def r0odd_def f0even_def f0odd_def)
apply simp
apply (unfold even_def)
apply auto

SUPPLEMENTARY MATERIALS: UNBOUNDED DISCREPANCY OF DETERMINISTIC RANDOM WALKS ON GRIDSSM3

apply presburger
apply arith+
apply algebra
apply presburger
apply algebra+
apply presburger+
apply algebra+
apply presburger+
done

lemma simplifyonce [simp]: "d>0 \<longrightarrow> f d v l (Suc(Suc(0))) =
d * ((f1 d (v - 1) l) div (2*d)) + d * ((f1 d (v + 1) l) div (2*d)) +
((r1 d (v - 1) l) div d) * ((f1 d (v - 1) l) mod (2*d)) +
((d - (r1 d (v + 1) l)) div d) * ((f1 d (v + 1) l) mod (2*d))"

by (metis Int.Pos_def One_nat_def f.simps(2) onestep onestepf)

lemma [simp]: "\<And>k d v l :: int. 0 < d \<longrightarrow> v = 2 * k \<longrightarrow> - (2 * l)
< 2 * k - 1 \<longrightarrow>↪→

\<not> 2 * k + 1 < 0 \<longrightarrow> 2 * k + 1 \<noteq> 0 \<longrightarrow> 2 * k
\<le> 1 \<longrightarrow> 2 * k \<noteq> 1 \<longrightarrow>↪→

2 * d + (d * (2 * l + 2 * k - 1) + d * (2 * l - 2 * k)) = d * (4 * l + 1 + 4 * k)"
proof -
fix k d v l ::int
{ assume "\<not> 2 * k + 1 < 0" and "2 * k + 1 \<noteq> 0" and "2 * k \<le> 1" and "2 * k \<noteq>

1"↪→
then have "k = 0" by auto
then have "2 * d + (d * (2 * l + 2 * k - 1) + d * (2 * l - 2 * k)) = d * (4 * l + 1 + 4 * k)"

by algebra }
thus "?thesis k d v l" by simp
qed

lemma [simp]: "\<And>d l k ::int. 0 < d \<longrightarrow> \<not> 2 * k \<le> 1 \<longrightarrow>
\<not> 2 * k + 1 \<le> 2 * l \<longrightarrow> k \<le> l↪→

\<longrightarrow> d * (2 * l - 2 * k + 2) + d = d * (4 * l + 3 - 4 *
k)"↪→

proof -
fix d l k ::int
{ assume "\<not> 2 * k + 1 \<le> 2 * l" and "k \<le> l"

hence "k = l" by simp
hence "d * (2 * l - 2 * k + 2) + d = d * (4 * l + 3 - 4 * k)" by simp }

thus "?thesis d l k" by simp
qed

lemma [simp]: "\<And>d v l ::int. 0 < d \<longrightarrow>
(\<forall>k. v \<noteq> 2 * k) \<longrightarrow> 0 < v - 1 \<longrightarrow> v - 1

\<le> 2 * l \<longrightarrow> \<not> v \<le> 2 * l↪→
\<longrightarrow> 2 * d + (d * (v - 2) + d * (2 * l)) = d * (4 * l + 1)"

proof -
fix d v l ::int
{ assume "v - 1 \<le> 2 * l" and "\<not> v \<le> 2 * l"

hence "v = 2*l + 1" by simp
hence "2 * d + (d * (v - 2) + d * (2 * l)) = d * (4 * l + 1)" by algebra }

thus "?thesis d v l" by simp
qed

lemma [simp]: "\<And>d v l ::int. 0 < d \<longrightarrow> (\<forall>k. v \<noteq> 2 * k)
\<longrightarrow> \<not> - (2 * l) < v \<longrightarrow>↪→

v + 1 \<le> 0 \<longrightarrow> - (2 * l) \<le> v + 1 \<longrightarrow> - (2 * l)
\<noteq> v \<longrightarrow>↪→

d * (2 * l) + d * (- 1 - v) + d = d * (4 * l + 1)"
proof -
fix d v l ::int
{ assume "\<not> - (2 * l) < v" and "- (2 * l) \<le> v + 1" and "- (2 * l) \<noteq> v"

hence "v = - (2 * l) - 1" by simp
hence "d * (2 * l) + d * (- 1 - v) + d = d * (4 * l + 1)" by algebra }

thus "?thesis d v l" by simp
qed

lemma [simp]: "\<forall> x y ::int. (2 * x - y) div 2 = (2 * x div 2) + (- y div 2)" by auto
lemma [simp]: "\<forall> v ::int. (3 - 2 * v) div 2 = 1 - v" by auto
lemma [simp]: "\<forall> v ::int. (-1 - 2 * v) div 2 = - 1 - v" by auto
lemma [simp]: "\<forall> d v ::int. d * (v - 2) + d * v + d = d * (2 * v - 1)" by algebra
lemma [simp]: "\<forall> k l :: int. (3 + (4 * l + 4 * k)) mod 2 = 1" by presburger
lemma [simp]: "\<forall> v :: int. (2*v - 3) mod 2 = 1" by presburger

SM4 T. FRIEDRICH, M. KATZMANN AND A. KROHMER

lemma [simp]: "r d v l 2 = (r d v l 1 + f d v l 1) mod (2*d)"
by (metis Suc_1 r.simps(2))

theorem twostep: "d>0 \<longrightarrow> r d v l 2 = r d v l 0"
apply (simp del: r.simps(2) f.simps(2))
apply (unfold r0_def f1_def r1_def)
apply simp
apply (unfold r0even_def r0odd_def f0even_def f0odd_def)
apply auto
apply algebra
apply arith+
apply algebra
apply arith
done

theorem twostepf: "\<forall> d v l ::int. d>0 \<longrightarrow> f d v l (Suc(Suc 0)) = f d v l 0"
apply (simp del: f.simps(2))
apply (unfold f0_def f1_def r1_def r0_def)
apply auto
apply (unfold r0even_def r0odd_def f0even_def f0odd_def)
apply (unfold even_def)
apply auto
apply arith+
apply (metis (erased, hide_lams) add.left_commute diff_0_right diff_add_cancel diff_minus_eq_add

diff_numeral_special(11) monoid_mult_class.mult.right_neutral mult.commute mult_minus_right
right_diff_distrib)

apply (metis even_less_0_iff left_minus linorder_neqE_linordered_idom mult_2 mult_eq_0_iff
mult_less_cancel_right1 mult_numeral_1_right not_one_less_zero numeral_One plus_int_code(2)
zless_imp_add1_zle)

apply arith+
apply (metis (erased, hide_lams) add.commute diff_minus_eq_add monoid_mult_class.mult.right_neutral

mult.assoc mult.commute mult_minus_right right_diff_distrib)+
done

end

REFERENCES

[SM1] T. Friedrich, M. Katzmann, and A. Krohmer, Unbounded discrepancy of deterministic
random walks on grids, in Algorithms and Computation - 26th International Symposium,
ISAAC 2015, Nagoya, Japan, December 9-11, 2015, Proceedings, 2015, pp. 212–222.

	Introduction
	Preliminaries
	Stable configuration of the rotor-router model
	Discrepancy with infinite steps
	Discrepancy within finite steps

	Conclusion
	References

