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Abstract

Network Creation Games are a well-known approach for explaining and analyzing the
structure, quality and dynamics of real-world networks like the Internet and other infrastruc-
ture networks which evolved via the interaction of selfish agents without a central authority.
In these games selfish agents which correspond to nodes in a network strategically buy in-
cident edges to improve their centrality. However, past research on these games has only
considered the creation of networks with unit-weight edges. In practice, e.g. when construct-
ing a fiber-optic network, the choice of which nodes to connect and also the induced price for
a link crucially depends on the distance between the involved nodes and such settings can be
modeled via edge-weighted graphs. We incorporate arbitrary edge weights by generalizing
the well-known model by Fabrikant et al. [PODC’03] to edge-weighted host graphs and fo-
cus on the geometric setting where the weights are induced by the distances in some metric
space. In stark contrast to the state-of-the-art for the unit-weight version, where the Price
of Anarchy is conjectured to be constant and where resolving this is a major open problem,
we prove a tight non-constant bound on the Price of Anarchy for the metric version and a
slightly weaker upper bound for the non-metric case. Moreover, we analyze the existence of
equilibria, the computational hardness and the game dynamics for several natural metrics.
The model we propose can be seen as the game-theoretic analogue of a variant of the classical
Network Design Problem. Thus, low-cost equilibria of our game correspond to decentralized
and stable approximations of the optimum network design.

1 Introduction

Designing efficient networks is a core topic in Computer Science and Operations Research and
the study of classical combinatorial optimization problems like the Minimum Spanning Tree
Problem [26], the Steiner Tree Problem [29] and the Network Design Problem [31, 24, 38] has a
significant impact on these research fields. However, all these problems assume that there is a
central authority designing the respective network. In practice, many important infrastructure
networks like the physical Internet, the road network and the electricity network are the outcome
of a distributed and decentralized design process by many interacting agents. This observation
kindled the study of game-theoretic models for network formation by selfish agents. In these
models the constructed network is determined by the agents’ strategies and the focus is on
equilibrium networks, where no agent wants to locally change the network [46]. The core research
question for such models is to quantify the loss of social welfare due to the lack of a central
designer and due to the agents’ selfishness, i.e. comparing the social cost of the worst possible
equilibrium network with the social optimum network [35]. Moreover, also the study of the
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computational hardness of finding the best possible strategy of an agent and the analysis of the
convergence properties of the induced sequential processes are key questions in the field.

Currently there are two classes of network formation games: variants of the Network Creation
Game (NCG) [22] and Network Design Games (NDG), e.g. [6, 7]. In the former games, the
selfish agents build incident edges to a subset of other agents to be as central as possible in the
constructed connected network. Hence, agents face a trade-off between costs for building and
maintaining edges and the service cost for using the network. Here centrality is measured in
the created unweighted network which consists of all edges built by the agents and distances are
measured as hop-distances. Moreover, every edge has the same fixed price α > 0 which is paid
by the building agent. Hence, NCGs can be understood as games where a complete unweighted
network is given as host graph and agents, corresponding to nodes in the host graph, strategically
select incident edges in the host graph for the price of α per edge. The constructed network is
the sub-network of the host graph which only contains selected edges.

In contrast, in NDGs a given network with weighted edges serves as the host graph and every
agent has a pair of terminal nodes in the host graph she wants to connect. For this, agents select
a connecting path in the host graph and pay a cost proportional to the length of the path for its
usage. If edges are used by several agents then the cost of the edge is split among these agents.

Thus in NCGs the distances between all pairs of nodes is important, whereas in NDGs the
focus is on simply connecting the terminal pairs. Moreover, the former assume a complete
unweighted host graph, whereas the latter assume a weighted not necessarily complete host
graph. Hence, NCGs are suitable to model the formation of social networks or the AS-level
graph of the Internet, where using the hop-distance is more natural and where agents want
to be central, i.e. close to all other agents. But, since NCGs crucially rely on an unweighted
host graph, these models cannot be used to investigate the creation of physical communication
networks, where edges, e.g. fiber-optic cables, have lengths. NDGs are well-equipped to model
the creation of physical communication networks between given terminal pairs, e.g. a network
connecting many clients to a server or access point, where only connectivity matters. However,
NDGs are not suited for studying settings where the agents are interested in communicating
with all other agents and where agents are restricted to buy only incident edges.

To overcome these shortcomings of NCGs and NDGs, we propose and investigate a model
which is a generalization of NCGs but which also shares some aspects with NDGs and therefore
allows to model the creation of physical communication networks where the goal is to achieve an
efficient communication between all pairs of nodes at low cost. That is, we are interested in the
decentralized creation of edge-weighted networks which minimize the pairwise distances between
agents and the total cost of all built edges. This can be seen as the game-theoretic analogue
of the well-known Network Design Problem [31], where a weighted network and budgets for
buying edges and the total routing cost between all pairs are given and the goal is to select a
sub-network which respects both budgets. For this, we consider a variant of the NCG, where
the given host graph is an arbitrary weighted graph and the prices for buying and using an
edge are proportional to its weight. For example, with this we can model the realistic geometric
setting where agents have a position in some metric space and the given weighted host graph
uses the distance between the positions of the involved agents as edge weights. To the best of
our knowledge, this is the first variant of a NCG with weighted edges.

1.1 Model and Notation

We consider a generalization of the well-known Network Creation Game by Fabrikant et al. [22].
In our game, called the Generalized Network Creation Game (GNCG), we consider a given host
graph H = (V,E(H)), which is a complete undirected weighted graph on n nodes v1, . . . , vn
with arbitrary non-negative edge weights w : E(H) → R+. Since edges are undirected, we will
denote any edge {u, v} ∈ E(H) as (u, v) and we assume (u, v) = (v, u) = {u, v}.
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Every node of H corresponds to a selfish agent who wants to participate in the network
formation. To achieve this, agents strategically decide which subset of incident edges to buy, i.e.
a strategy Su of an agent u is any node subset of V \ {u} towards which agent u wants to create
edges. If v ∈ Su, then we call agent u the owner of the undirected edge (u, v) and u has to pay
the full edge price1.

We assume that the edge price of any edge (u, v) is proportional to its weight w(u, v). In
particular, we assume that the edge price for any edge (u, v) is α ·w(u, v), where α > 0 is a fixed
parameter of the game which allows to model different trade-offs between the cost for buying
and for using edges.

Let s = (Sv1 , . . . , Svn) be any strategy profile, which is any vector of strategies of all n
agents. The strategy profile s uniquely determines a subgraph G(s) = (V,E(s)) of the host
graph H = (V,E(H)), where E(s) = {(u, v) | u ∈ V, v ∈ Su}.

Let dG(u, v) be the distance between two nodes u and v in the network G, which is equal
to the total weight of the shortest path between u and v, or +∞ if such a path does not exist.
To simplify the notation we will use dG(u, V ) :=

∑
v∈V dG(u, v) and w(u, Su) :=

∑
v∈Su

w(u, v),
where dG(u, V ) is the distance cost and α ·w(u, Su) is the edge cost of the agent u. By G− (u, v)
(or G+ (u, v)) we denote a network G where edge (u, v) is removed (is added, respectively).

Given any strategy profile s and its corresponding network G(s), then the cost of agent u in
G(s) is defined as

cost(u,G(s)) = α · w(u, Su) + dG(s)(u, V ).

The social cost of network G(s), denoted cost(G(s)) is defined as the sum of the cost of all
agents, i.e., cost(G(s)) =

∑
u∈V cost(u,G(s)).

For any host graph H, we say that the social optimum subgraph OPT of H is the network
G(s∗) = (V,E(s∗)) which minimizes cost(G(s∗)) among all possible strategy profiles. Thus,
OPT minimizes α ·

∑
(u,v)∈E(s∗)w(u, v) +

∑
u∈V dG(s∗)(u, V ).

We say that a strategy change from Su to S′u is an improving move for agent u, if cost(u,G(s))
< cost(u,G(s′)), where s′ is identical to s except for agent u’s strategy, which is S′u instead of
Su. If there is no improving move for agent u with strategy Su in s, then we say that Su is agent
u’s best response. Any strategy change towards a best response strategy is called a best response
move. A sequence of best response moves which starts and ends with the same strategy vector is
called a best response cycle. If any sequence of improving moves is finite, then the game has the
finite improvement property (FIP) which is equivalent to the game being a potential game [44].
The existence of a best response cycle therefore proves that the FIP is violated and thus that
the game is not a potential game.

We say that a network G(s) is in pure Nash Equilibrium (NE), if no agent in G(s) has an
improving move. A network G(s) is in Greedy Equilibrium (GE) [37] if no agent can improve
by buying, swapping or deleting a single edge, where a swap is the combination of deleting an
incident edge and buying another one. Moreover, G(s) is in Add-only Equilibrium (AE), if no
agent can improve by buying a single incident edge. It directly follows that any network in
NE is also in GE and any network in GE is also in AE. Additionally, we say that G(s) is in
β-approximate NE (β-NE) if no agent u can change her strategy to decrease her cost to less
than 1/β · cost(u,G(s)). A β-approximate GE (β-GE) is defined analogously.

We measure the impact of selfishness on the quality of the created networks via the Price of
Anarchy [35], which for our model is the maximum over the social cost ratios of any NE network
and its corresponding social optimum network OPT.

1If v ∈ Su and u ∈ Sv then both agents have to pay the full edge price. However, in this case one of the agents
could improve on her current situation in the network by not buying the edge (u, v), which implies that in any
equilibrium or in the social optimum network every edge has exactly one owner.
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Model Variants Besides the GNCG, where the game is played on a complete host graph H
with arbitrary non-negative edge weights, we also consider several interesting special cases (See
Fig. 1 for an overview). In the metric GNCG (M–GNCG) the edge weights of H satisfy the

NCG

1-∞–GNCG

1-2–GNCG

T–GNCG

Rd–GNCG

M–GNCG

GNCG
Model host graph is a clique with

1-∞–GNCG edge weights in {1,∞}

GNCG arbitrary non-neg. edge weights

M–GNCG metric edge weights

Rd–GNCG edge weights de�ned by distances
with p-norm in Rd

T–GNCG edge weights de�ned by distances
in a given weighted tree

1-2–GNCG edge weights in {1, 2}

NCG unweighted edges

Figure 1: Left: Model overview. Right: Model relations. Arrows point from special case to more
general model.

triangle inequality. Besides the general metric version, we consider three versions where the
edge weights of H are defined by specific metrics. In the simplest case, the 1-2–GNCG, the
edge weights of H are restricted to the set {1, 2}. We also consider the variant where the metric
edge weights of H are derived from the shortest path distances in a given weighted tree, the
T–GNCG. Finally, we consider the variant Rd–GNCG, where the agents are points in Rd and
the edge weights of H correspond to their p-norm distances. The original NCG [22] where H
is an unweighted clique, is the most restricted special case of the M–GNCG. In the literature a
non-metric special case of the GNCG, where the edge weights are restricted to the set {1,∞}
was proposed [19]. We call this variant the 1-∞–GNCG.

1.2 Related Work

There is a huge body of literature both on variants of the Network Creation Game and on
Network Design Games and it is impossible to give a full account. Instead, we focus on proposed
models which share core features of our model and discuss how they are related to our approach.
See also Table 1.

The Network Creation Game (NCG) was proposed by Fabrikant et al. [22] and can be seen as
a simplified variant of the connection game by Jackson & Wolinsky [30]. Due to its simplicity, the
NCG became the basis of almost all later modes (including our model). For the NCG researchers
have focused mostly on analyzing the PoA and on studying the computational hardness and
dynamic properties. A long line of research, e.g. [22, 20, 2, 42, 39, 4, 14, 5], has established
that the PoA of the NCG is constant for almost all α > 0 and it is widely conjectured that
this holds for all α. Fabrikant et al. [22] proved a general upper bound of O(

√
α), which is

still the best known bound which only depends on α, and the best known general upper bound
as a function of n is o(nε), for any ε > 0, and is due to Demaine et al. [20]. It has been
shown that computing a best response is NP-hard [22] and that this holds for many variants
of the NCG, e.g. [43, 12, 17, 13, 16, 15]. However, also restricted variants with efficient best
response computation exist, e.g. [9, 3, 37, 12, 23]. Regarding the dynamic properties, it has been
shown [36, 33] that many NCG variants do not have the finite improvement property [44], which
states that any sequence of improving strategy changes by agents must be finite. Hence, natural
convergence protocols like iterated best response dynamics have no convergence guarantee.
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A weighted version of the NCG has been proposed by Albers et al. [2]. In contrast to our
model, they consider a version with a specific amount of traffic between each pair of agents but
distances are still measured by counting hops. Much closer to our model is the work by Demaine
et al. [19], where a NCG on a general unweighted host graph is introduced. This corresponds
to the special case of our model where only the edge weights 1 and ∞ are allowed. Edge weight
∞ encodes that a particular edge cannot be bought. The authors prove a general upper bound
on the PoA of O(

√
α) and for α ≥ n they show that the PoA is in Ω

(
min

{√
α/n, n2/α

})
and

at most min
{
O (
√
n) , n2/α

}
which yields a tight non-constant PoA bound if α ∈ ω(n1.5) and

α ∈ o(n2) holds. The highest tight PoA bound as a function of α therefore is Θ( 5
√
α) and is

achieved for α = n
5
3 . Unfortunately, the proof techniques in [19] crucially rely on edge weights

in {1,∞} and can therefore not be carried over to our model. However, their lower bound
construction yields a lower bound of Ω( 5

√
α) for the general non-metric case of our model. Also

related is the work of Bilò et al. [11] who investigated the max-version of the NCG [20], where
agents try to minimize their maximum distance, on a general unweighted host graph.

One of the distinctive features of our model is the non-uniform edge price. A few other
models with this feature have been proposed, e.g. [40, 41, 15], but they all use unit-weight
edges. In the model by Cord-Landwehr et al. [18] agents can choose different quality levels of
an edge for different prices, i.e. the paid price influences the edge length. With this, the model
is incomparable to our approach.

Also related are network formation games where not centrality but some other property is
the goal of each agent. There are games where agents simply want to be connected to all other
agents, e.g. [9, 34, 25]. Among them, the work by Eidenbenz et al. [21] is closely related to
our work. In their wireline strong connectivity game agents are points in the Euclidian plane
who strategically buy incident edges to create a connected network. The edge price equals the
length of the edge. This is similar to our model in the Euclidian plane with α = 1 but the focus
on connectivity changes the game completely. Another related geometric game was proposed
by Moscibroda et al. [45]. Also there the agents are points in some metric space but agents
pay a fixed price for each edge and try to minimize the total stretch towards all other agents.
Gulyás et al. [27] considered a network formation game in the hyperbolic plane where agents
strive for maximum navigability. This is also a geometric model but drastically different from
our approach.

Network Design Games have been proposed in [6, 7]. Their most important feature is that
they are potential games [44], which already shows the contrast to Network Creation Games.
Interestingly, Hoefer & Krysta [28] proposed and analyzed a geometric version.

There are many classical optimization problems related to network design, e.g. see the
survey by Magnanti & Wong [38]. Many of them are NP-complete, e.g. all the problems
labeled “ND” in [24]. Our model is closely related to the Network Design Problem [31] and
the Optimum Communication Spanning Tree Problem (ND7 in [24]). In particular, finding the
social optimum network corresponds to a variant of the Network Design Problem, where, instead
of having separate budgets for buying edges and for the routing cost, the sum of edge costs and
routing costs, i.e., the total distance between all pairs of nodes, is to be minimized. Hence
we strongly suspect that computing the social optimum in all versions of our model, with the
1-2–GNCG and the T–GNCG as exceptions, is NP-hard.
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1.3 Our Contribution

In this paper we investigate the classical Network Creation Game on edge-weighted host graphs.
This variant allows modeling the decentralized creation of networks, like fiber-optic communi-
cation networks or many variants of overlay networks, by selfish agents, e.g. ISPs. In such
settings, the nodes in a network have a physical location and the edge weights and also the cost
for creating and maintaining them depend on these locations. In particular, we focus on specific
natural metrics, e.g. graph and tree metrics as well as the geometric setting where the agents
correspond to points in Rd.

We show that computing a best response strategy is NP-hard for all variants of our model
and we prove for the 1-2–GNCG that deciding if a given strategy profile is in NE is NP-hard
as well. The latter is the first result of this type in the realm of NCGs. Moreover, we prove
that all our models do not have the finite improvement property. On the positive side, we give
an efficient algorithm for computing a social optimum network for the 1-2–GNCG and we show
how to trivially obtain the social optimum in the T–GNCG.

Our main focus is a rigorous study of the quality of the induced equilibrium networks of
our models. For this we show that NE exist in the 1-2–GNCG and the T–GNCG and that the
more general M–GNCG always admits a 3(α + 1)-approximate NE. The main contribution of
our paper is a collection of bounds on the Price of Anarchy, i.e. we bound the loss in social
welfare due to selfishness and to the lack of central coordination. We prove a tight PoA bound of
(α+2)/2 for the M–GNCG and the T–GNCG. This bound is remarkable, since it is non-constant
and much higher than the previously known upper bounds for the NCG or the inherently non-
metric 1-∞–GNCG. This shows that allowing weighted edges completely changes the picture.
Moreover, in contrast, settling the PoA for the original NCG, which is a special case of all our
models, is a major open problem in the field. For the model variant which is closest to the
NCG, the 1-2–GNCG, we prove a tight constant bound on the PoA for α ≤ 1 and show that
the PoA is in O(

√
α) for α > 1. Hence, this model behaves very similar to the NCG. For the

variant with points in Rd, the Rd–GNCG, with the 1-norm we show how to embed our lower
bound construction from the T–GNCG. This yields a tight PoA bound if d tends to infinity.
Additionally, for any p-norm with p ≥ 2 we give a lower bound construction which yields PoA
of at least 3 for high alpha and which generally shows that the PoA is larger than 1. Finally, for
the most general case, the GNCG, we show that the PoA is between (α+ 2)/2 and ((α+ 2)/2)2.

See Table 1 for an overview over the majority of our results and the most relevant results for
the earlier models which are marked with the star symbol. All results on the Price of Anarchy
with an equality sign are tight bounds.

2 Preliminaries

We start by clarifying the relation of the models we investigate. Fig. 1 shows which models are
special cases of other models. These relationships and the facts that computing a best response
strategy is NP-hard for the NCG [22] and that the NCG does not have the FIP [33] directly
yields the following corollary.

Corollary 1. Computing a best response strategy is NP-hard for the 1-2–GNCG, 1-∞–GNCG,
the M–GNCG and the GNCG. Additionally, these models do not have the FIP.

Let k ≥ 1. We say that a subgraph G of H is a k-spanner if dG(u, v) ≤ kdH(u, v) for every
pair of vertices u, v ∈ V . Next, we show a useful property, which holds for any host graph.

Lemma 1. For any host graph H any AE is a (α+ 1)-spanner.

Proof. First, we consider edges (u, v) with w(u, v) = dH(u, v), that is, a shortest path between u
and v in the host graph H uses the direct edge. We claim for such pairs u and v that in any NE
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network G we have dG(u, v) ≤ (α+ 1)dH(u, v) = (α+ 1)w(u, v). To see this, assume towards a
contradiction that dG(u, v) > (α + 1)dH(u, v), which implies that (u, v) /∈ E(G). Now consider
what happens if agent u buys the edge (u, v): Agent u additionally has to pay α · w(u, v) for
creating the edge and then her distance to v is guaranteed to be w(u, v). Thus her total cost for
buying the edge (u, v) and reaching node v is (α + 1)w(u, v). Since dG(u, v) > (α + 1)w(u, v),
buying the edge (u, v) is an improving move for agent u.

Now we consider two arbitrary agents u and v in G and let Puv = x1, x2, . . . , xk with u = x1
and xk = v be a shortest path between u and v in the host graph H. It follows that dH(u, v) =
w(x1, x2)+w(x2, x3)+· · ·+w(xk−1, xk). Since Puv is a shortest path in H and since any subpath
of a shortest path must be a shortest path itself it follows that for all pairs xi and xi+1, with
1 ≤ i ≤ k − 1, the equality w(xi, xi+1) = dH(xi, xi+1) holds. Thus, in any NE G on the host
graph H we have that dG(xi, xi+1) ≤ (α + 1)w(xi, xi+1) holds for all 1 ≤ i ≤ k − 1. Thus, the
distance between u and v in any NE G is dG(u, v) ≤ (α+ 1)w(x1, x2) + (α+ 1)w(x2, x3) + · · ·+
(α+ 1)w(xk−1xk) = (α+ 1)dH(u, v).

With a similar technique we get an analogous statement for the social optimum network OPT .

Lemma 2. The social optimum network is a
(
α
2 + 1

)
-spanner for any connected host graph H.

Proof. The proof is analogous to the proof of Lemma 1. Let OPT (H) be the subgraph of
H which minimizes the social cost. We start by considering edges (u, v) in OPT (H) where
w(u, v) = dH(u, v), that is, a shortest path between u and v in the host graph H uses the direct
edge. We claim for such pairs u and v that in OPT (H) we have

dOPT (H)(u, v) ≤
(α

2
+ 1
)
dH(u, v) =

(α
2

+ 1
)
w(u, v).

To see this, assume towards a contradiction that dOPT (H)(u, v) >
(
α
2 + 1

)
·w(u, v), which implies

that (u, v) /∈ E(OPT (H)). Now consider what happens if the edge (u, v) is added to OPT (H):
The social cost increases by α · w(u, v) for creating the additional edge. Moreover, the creation
of the edge (u, v) ensures that the distance between u and v is w(u, v). Thus, the distance from
u to v is decreased by more than

(
α
2 + 1

)
w(u, v)− w(u, v) =

(
α
2

)
w(u, v). The same holds true

for the distance from v to u. Thus, the total distance decrease induced by the addition of the
edge uv to OPT (H) is more than 2

(
α
2

)
w(u, v) = α · w(u, v). Since the total distance decrease

is strictly larger than the edge cost of the edge (u, v), this implies that the network OPT (H)
augmented by the edge (u, v) has strictly less social cost than OPT (H). This contradicts the
assumption that OPT (H) minimizes the social cost.

Now we consider two arbitrary agents u and v in OPT (H) and let Puv = x1, x2, . . . , xk with
u = x1 and xk = v be a shortest path between u and v in the host graph H. It follows that
dH(u, v) = w(x1, x2) +w(x2, x3) + · · ·+w(xk−1, xk). Since Puv is a shortest path in H and since
any subpath of a shortest path must be a shortest path itself it follows that for all pairs xi and
xi+1, with 1 ≤ i ≤ k − 1, the equality w(xi, xi+1) = dH(xi, xi+1) holds. Thus, in OPT (H) we
have that dOPT (H)(xi, xi+1) ≤

(
α
2 + 1

)
w(xi, xi+1) holds for all 1 ≤ i ≤ k−1. Thus, the distance

between u and v in OPT (H) is

dOPT (H)(u, v) ≤
(α

2
+ 1
)
w(x1, x2) +

(α
2

+ 1
)
w(x2, x3) + . . .

+
(α

2
+ 1
)
w(xk−1xk) =

(α
2

+ 1
)
dH(u, v).
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3 Host Graphs with Metric Weights

In this section we investigate the NCG on complete host graphs with edge weights which satisfy
the triangle inequality. After giving some general results, we focus on specific natural metrics.

Theorem 1. The PoA in the M–GNCG is at most α+2
2 .

Proof. Let G be a NE and let u and v be two distinct vertices. Let x and x∗ be two Boolean
variables such that x = 1 if and only if (u, v) is an edge of G and x∗ = 1 if and only if (u, v) is
an edge of the social optimum OPT . We prove the claim by showing that

σ :=
α · w(u, v) · x+ 2dG(u, v)

α · w(u, v) · x∗ + 2dOPT (u, v)
≤ α+ 2

2
.

Essentially σ is the ratio of the social cost contribution of every pair of nodes in the NE and in
OPT. If the ratio for every pair of nodes is bounded by (α+ 2)/2 then this also holds for their
sum.

Now we prove the claim. If x = 1 then dG(u, v) = w(u, v) and hence σ ≤ (α + 2) ·
w(u, v)/(2dOPT (u, v)) ≤ (α + 2) · w(u, v)/(2w(u, v)) = (α + 2)/2. If x = 0 and x∗ = 1 then
σ ≤ 2(α+ 1)/(α+ 2) ≤ (α+ 2)/2 since, by Lemma 1, dG(u, v) ≤ (α+ 1)w(u, v).

It remains to prove σ ≤ (α + 2)/2 when x = 0 and x∗ = 0. This means that there is a
vertex z with z 6= u and z 6= v along a fixed shortest path in OPT between u and v. As G
is a NE, neither u nor v has an incentive to buy the edge towards z. If u bought the edge
(u, z) at the price of α · w(u, z), its distances towards z would be at most w(u, z) and, by
the triangle inequality, its distance towards v would be at most w(u, z) + dG(z, v). Since this
is not an improvement, we have (α + 2)dOPT (u, z) + dG(z, v) = (α + 2)w(u, z) + dG(z, v) ≥
α · w(u, z) + dG+(u,z)(u, z) + dG+(u,z)(u, v) ≥ dG(u, z) + dG(u, v) and hence

(α+ 2)dOPT (u, z) + dG(z, v) ≥ dG(u, z) + dG(u, v). (1)

Analogously for agent v we get (α + 2)dOPT (v, z) + dG(z, u) ≥ (α + 2)w(v, z) + dG(z, u) ≥
α · w(v, z) + dG+(v,z)(v, z) + dG+(v,z)(v, u) ≥ dG(v, z) + dG(v, u) which yields

(α+ 2)dOPT (v, z) + dG(z, u) ≥ dG(v, z) + dG(v, u). (2)

By summing up the inequalities (1) and (2), we obtain

(α+ 2)dOPT (u, v) = (α+ 2)dOPT (u, z) + (α+ 2)dOPT (v, z) ≥ 2dG(u, v).

Therefore, also the last case yields σ ≤ (α+ 2)/2.

Existence It is an interesting open question if NE always exist for the M–GNCG. Here we
prove a weaker result which essentially states that for low α there always is an outcome of the
game where no agent can improve by a high multiplicative factor. This yields that there always
is a network which is approximately stable.

Theorem 2. Any AE network in the M–GNCG is in (α+ 1)-GE.

Proof. Consider a network G = (V,E) which is in AE. By the definition of a (α+1)-GE we need
to evaluate the maximal improvement of the cost function which can be made by a deletion or
swap of any edge in G.

First, we consider a deletion. Compare the cost function value of some agent u ∈ V before
and after an improving deletion of one of her edges e = (u, v) ∈ E(G):

cost(u,G)

cost(u,G′)
=
α · w(u, Su) + dG(u, V )

α · w(u, S′u) + dG′(u, V )
,
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where G′ is the network obtained from G by applying new strategy S′u = Su \ {v}, i.e. E(G′) =
E(G) \ {(u, v)}. In the worst case, the deletion of the edge (u, v) does not change distance
between the nodes u and v, i.e., w(u, v) = dG′(u, v). This yields

cost(u,G)

cost(u,G′)
=
α · w(u, Su) + dG(u, V )

α · w(u, S′u) + dG(u, V )

=
α · w(u, v) + α · w(u, Su \ {v}) + dG(u, V )

α · w(u, Su \ {v}) + dG(u, V )

= 1 +
α · w(u, v)

α · w(u, Su \ {v}) + dG(u, V )

≤ 1 +
α · w(u, v)

dG(u, V )
≤ 1 +

α · w(u, v)

w(u, v)
= 1 + α. (3)

Now we consider an improvement which can be made by one swap. Let agent u ∈ V (G) can
improve her cost by swap an edge (u, v) to (u,w), and let Gswap be the new graph. Compare
the cost function after the swap with the cost value after the sequential addition of the edge
(u, v) and the deletion of the edge (u,w). Let Gadd and Gdel be the corresponding networks.
Thus, E(Gswap) = E(Gdel) = E(Gadd) \ {(u,w)} = (E(G) ∪ {(u, v)}) \ {(u,w)}. Then, by the
inequality (3) and because G is in AE, we have:

costGswap(u) = costGdel
(u) ≥ 1

α+ 1
costGadd

(u) ≥ 1

α+ 1
costG(u). (4)

Finally, by (3) and (4), we get that G is in (α+ 1)-GE.

Now, we adapt the technique from [37] to relate GE and β-NE.

Theorem 3. In the M–GNCG every network in GE is in 3-NE.

Proof. We prove the claim by a "locality gap preserving" reduction to the Uncapacitated Metric
Facility Location problem (UMFL). Roughly speaking, in UMFL we are given a set of facilities,
each of which has a non-negative opening cost, a set of clients, and a distance between each
client and each facility (the distances satisfy the quadrangle inequality). The task in UMFL
it to open a set of facilities and assign each client to the closest opened facility in such a way
that the overall cost – i.e., the overall cost of the opened facilities plus the overall sum of client-
to-assigned-facility distances – is minimized. Since it was shown in [8] that the locality gap of
UMFL is 3, that means that any UMFL solution that cannot be improved by a single move, i.e.,
by opening, closing or swapping one facility, is a 3-approximation of the optimal solution.

Consider a graph G = (V,E). Let u ∈ V be an agent in (G,α) and let Z ⊂ V be the set
of vertices which own an edge to u. Consider the subgraph G′ = (V,E′) of G which does not
contain edges owned by the agent u. Denote S(u) be the set of u’s pure strategies in (G′, α).
We construct an instance I(G′) for UMFL from the graph G′ as follows: let F = C = V \ {u},
where F is the set of facilities, C is the set of clients; we define for all facilities f ∈ Z ∩ F the
opening cost c(f) to be 0, and c(f) = α · w(f, u) for all other facilities. We define distances for
all i ∈ F, j ∈ C to be dij = dG′(i, j) + w(i, u). If G′ is disconnected, then dij =∞.

Now we construct a map π : S(u) → SUMFL, where SUMFL is the set of solutions of the
UMFL for the instance I(G′), as follows: for any S ∈ S(u), define π(S) = S ∪ Z and for any
FS ∈ SUMFL, π−1(FS) = FS \ Z. Since for any solution FS of the UMFL Z ⊆ FS , the strategy
S′ = π−1(FS) exists, and for any two strategies S1 6= S2, π(S1) 6= π(S2). Therefore, the map π
is a bijection. To prove the statement of the theorem we need to show that if agent u cannot
improve her strategy by adding, deleting or swapping one edge, then the corresponding solution
FS = π(S) for UMFL cannot be improved by opening, closing or swapping one facility.
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First, we show that the cost of agent u is equal to the cost of the corresponding UMFL
solution FS . Indeed,

cost(u,G(S)) = α·w(u, S) +
∑

v∈V \{u}

(
min
x∈S∪Z

(dG′(x, v) + w(u, x))

)

= α·w(u, S \ Z) + 0 · w(u, Z) +
∑

v∈V \{u}

(
min
x∈S∪Z

dxv

)

= α ·
∑

f∈FS\Z

c(f) +
∑
f∈Z

c(f) +
∑
v∈C

(
min
x∈FS

dxv

)
= cost(FS).

Next we show that Fs = π(S) cannot be decreased by opening, closing or swapping one
facility. By the sake of contradiction, assume that the solution FS can be improved by a single
step. Denote F ′S be an improved solution. Note that no facility z ∈ Z is included in an
opening, closing or swapping step. Indeed, by construction, Z ⊆ FS and if there is a facility
z ∈ FS \ F ′S , then there is at least one client c ∈ C such that dcz ≤ min

f∈FS

dcf , thus, closing

the facility z does not decrease cost(FS) and, therefore, z ∈ F ′S . Thus, and because π is a
bijection, we have that there is a strategy S′ = π−1(F ′S) such that S′ 6= S. Therefore, we have
cost(u,G(S′)) = cost(F ′S) < cost(FS) = cost(u,G(S)). Hence, there is the better strategy S′

for the agent u, which contradicts with the assumption that there is no one step improvement
of the strategy S.

Finally, applying the result by Arya et al.[8], we get cost(u,G(S)) ≤ 3 cost(u,G(S∗)) where
S∗ is an optimal strategy in (G′, α).

By Theorem 2 and Theorem 3, we get the following:

Corollary 2. Every network which is in AE in the M–GNCG is in 3(α+ 1)-NE.

3.1 1-2-Graphs

Here we consider the M–GNCG for the special case where for every pair of nodes u and v we
have either w(u, v) = 1 or w(u, v) = 2. We call an edge of weight 1 or 2 a 1-edge or 2-edge,
respectively. We call such graphs 1-2-graphs.

Studying 1-2-graphs is especially interesting since this class of host graphs is the simplest
generalization of the unweighted host graphs from the NCG and the edge weights are guaranteed
to satisfy the triangle inequality. 1-2-graphs are commonly used as the simplest non-trivial metric
special case, e.g. when studying the TSP [32, 10, 1], and hence they are a natural starting point.
We start with a simple statement about 1-edges. We show that for α < 1 any NE must contain
all the 1-edges from the host graph. If α = 1, then there always exists a NE which contains all
1-edges.

Lemma 3. For α = 1 in any NE network in the 1-2–GNCG buying any additional 1-edge is
cost neutral for the buyer. For α < 1 buying any 1-edge is an improving move for the buyer.

Proof. Consider a graph G which is in NE in the 1-2–GNCG. Assume there is an edge (u, v) of
weight 1 which is not in G. Thus, dG(u, v) ≥ 2. Then buying the edge by one of its endpoint
costs α while the distance cost decreases by at least 2− 1. Hence, if α < 1, the decrease of the
distance cost exceeds the increase in the edge cost, which means that this is an improving move
for the buying agent. If α = 1, the cost for the buying agent does not change.
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Hardness Here we discuss the hardness of deciding if a given strategy profile is in NE for the
1-2–GNCG. Note that the NP-hardness of computing a best response strategy for some agent,
which is guaranteed by Corollary 1, does not directly imply the NP-hardness of the NE decision
problem.

First, we take a detour via the Vertex Cover problem. A vertex cover of an undirected graph
G is a subset C of vertices of G such that, for every edge (u, v) of G, u ∈ C or v ∈ C. It is
well-known that computing a minimum vertex cover of a subcubic graph is NP-hard. We start
with a result which may be folklore.

Lemma 4. Unless P=NP, there is no polynomial time oracle that, given a graph G and a vertex
cover of G of size k, decides whether G admits a vertex cover of size at most k − 1.

Proof. We prove the claim by showing that the existence of such an oracle would imply the
existence of a polynomial time algorithm for computing a vertex cover of G of size at most k−1,
assuming it exists. Therefore, by reiterating the algorithm at most k times, we might be able to
compute a minimum vertex cover of G in polynomial time, thus proving that P=NP. Let C be
a vertex cover of G of size k.

The algorithm works as follows. First of all, we query the oracle to understand whether G
admits a vertex cover of size strictly better than k. In case of a “no” answer, we know that C
is an optimal vertex cover and therefore G does not admit a vertex cover of size k − 1. So, we
assume that the oracle answers “yes”. This implies that there is a vertex cover of size k − 1. In
the following we show how to compute a vertex cover of size (at most) k− 1 in polynomial time.

Let G− v be the graph obtained from G without the vertex v (and all the edges incident to
v). For every vertex v of C, we query the oracle using the graph G− v and the cover C − v (so
we want to know whether G− v has a vertex cover of size k − 2). If all the k answers returned
by the oracle are “no”, then V (G)\C is a vertex cover of size strictly smaller than k. Indeed, the
answer “no” for v means that there is no vertex cover of size k−1 that contains v. However, since
a vertex cover of size k− 1 exists, such a vertex cover has to contain the entire neighborhood of
v (otherwise some edges incident in v would remain uncovered).

To complete the proof, we assume that the oracle has answered “yes” for at least one vertex
of C, say v. This means that there is a vertex cover of size (at most) k − 1 that contains v. We
build such a vertex cover by adding v to the vertex cover of size (at most) k−2 that is computed
recursively on G− v and C − v. Clearly, the running time of this algorithm is polynomial in the
number of vertices of the graph.

Theorem 4. Unless P=NP, there is no polynomial time algorithm that decides whether a strategy
profile is in NE for the 1-2–GNCG.

Proof. The reduction is from the Vertex Cover problem and α = 1. More precisely, we define
both a 1-2-graph and a strategy profile such that every agent but one is playing her best response
and computing a best response of the remaining agent is equivalent to computing a minimum
vertex cover.

We define the graph G = (V,E) such that there is one vertex node ai ∈ V for each vertex vi
of the Vertex Cover instance, and two edge nodes pj and p′j in V for each edge ej of the Vertex
Cover instance. Finally, there is a new node u, that is neither a vertex node nor an edge node.
There is an edge of weight 1 between vertex node ai and each edge node pj , p′j if and only if vi
is an endvertex of ej . Furthermore, there is an edge of weight 1 between every pair of vertex
nodes. All the other edges have weight 2. See Fig. 2 for the construction.
Consider the strategy profile in which each edge of weight 1 is bought by any of the two agents
that are incident to the edge, while u is buying all the edges towards vertex nodes that correspond
to a vertex cover of size k w.r.t. the Vertex Cover instance computed using any polynomial time
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Figure 2: Illustration of the construction used in the reduction. All depicted edges have weight
equal to 1; the missing edges are all of weight equal to 2.

algorithm. Note that by Lemma 3 and since α = 1, buying a 1-edge is neutral for the incident
agents.

First of all, we observe that the eccentricity of each node is at most 3. Therefore, every agent
other than u is actually playing a best response. We claim that for any improving move of u,
there exists another improving move in which agent u buys only the edges towards the vertex
nodes that correspond to a vertex cover of size at most k − 1 w.r.t. the Vertex Cover instance.
The claim then would follow from Lemma 4.

Consider any improving move Su for u. We prove the claim by first showing the existence of
an alternative improving move consisting only of edges towards vertex nodes. Indeed, if u bought
an edge towards an edge node in Su, w.l.o.g. say pj , then u would not buy the edge towards any
vertex node ai such that vi is an endvertex of ej . This is simply because the edge (v, pj) would
only affect the distance between u and pj . Moreover, either p′j would be at distance 4 from u
or u would have also bought the edge towards p′j . In either case, u would have convenience in
deleting the edge towards pj – as well as the edge towards p′j , if she has bought it – and in
buying the edge towards a vertex node ai, with vi being an endvertex of ej , thus, decreasing her
overall cost by at least 1.

Now we show that for any improving move Su in which u buys only edges towards vertex
nodes, there is another improving move in which u buys only edges towards vertex nodes that
correspond to a vertex cover of the Vertex Cover instance. Indeed, if this is not the case, then
there exist two nodes, say pj and p′j , which are at distance 4 from u. Let ai be a vertex node
such that vi is an endvertex of ej . Clearly, the distance from u to ai is 3. Therefore, by buying
the edge towards ai the cost of u would decrease by at least 1.

As a consequence, we can restrict the strategy space for agent u only to improving moves
that correspond to vertex covers of the Vertex Cover instance. Let k′ be the number of edges
bought by u in any strategy of the restricted strategy space for u, and let N and m be the
number of vertices and edges of the Vertex Cover instance, respectively, The cost of u is equal
to 2k′ + 2k′ + 3(N − k′) + 6m = 3N + 6m+ k′. Since N and m are fixed, we observe that the
cost of u is minimized when k′ is minimized. Hence, any improving move for u would define a
vertex cover of size of at most k − 1.

3.1.1 1-2-Graphs for α ≤ 1

Here we study the 1-2–GNCG with α ≤ 1. We prove that in this case a NE network always
exists. In contrast to the corresponding result for the original NCG [22] we do not prove this
via a generic construction. Moreover, we provide a simple algorithm which computes a social
optimum network in polynomial time and we provide tight bounds on the PoA.
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Existence In the following we prove an interesting connection between existence of a NE for
the 1-2–GNCG with α ≤ 1 and k-spanners. The weight of a k-spanner is the total sum of its
edge weights. The following results are inspired by Lemma 2.

Lemma 5. Let 1
2 ≤ α ≤ 1 and let G be a 3

2 -spanner of minimum weight. Then G contains all
the edges of H of weight 1 and has a diameter of at most 3.

Proof. Let (u, v) be any edge of H. Since dG(u, v) ≤ 3/2 · dH(u, v) ≤ 3/2 · w(u, v) and all
edge weights are in the set {1, 2}, we have that dG(u, v) ≤ 3; furthermore, if w(u, v) = 1, then
dG(u, v) = 1, i.e., (u, v) is contained in G. Therefore, G contains all the edges of H of weight 1
and has a diameter of at most 3.

Theorem 5. Let 1
2 ≤ α ≤ 1 and let G be a 3

2 -spanner of minimal weight. There is an edge
ownership assignment in G such that G is in NE.

Proof. The claim is proved by contradiction. Consider any edge ownership assignment inG which
induces strategy profile s and assume there is an agent u ∈ V who can improve on her strategy
Su in s. We will show that if there is a better strategy S′u for agent u, then |S′u| ≤ |Su| − 1
and that S′u contains strictly less 2-edges than Su. Then we prove that for any edge (u, v),
which would be removed by agent u in the strategy change from Su to S′u, we can exchange
the ownership of its endpoint such that the new owner v cannot improve on her strategy, or we
can apply a combination of the two strategies S′u and S′v to G which yields a new graph which
is a 3/2-spanner with less total weight, which contradicts that G is a 3/2-spanner of minimum
weight. Therefore, the edge ownership can be chosen such that graph G is in NE.

First, we prove that |S′u| ≤ |Su| − 1 and that S′u contains less 2-edges than Su. Towards
this we claim that the change from Su to S′u can only consist of a change of the 2-edges which
are bought by u and, if α = 1, possibly the removal of some 1-edges. This is true since by
Lemma 5 we have that all 1-edges are contained in G and by Lemma 3 removing any 1-edge
is not an improving move, in particular, removing a 1-edge is a cost neutral move if α = 1.
Using the latter, we can define a new strategy S′′u which is identical to S′u but still has all
the 1-edges which are contained in Su. Thus, S′′u \ S′u only consists of 1-edges which are cost
neutral for agent u under strategy S′u. Hence, cost(u, S′′u) = cost(u, S′u) and we have |S′′u| ≥ |S′u|.
Let Su+ = {v ∈ V : v ∈ S′′u \ Su} be the set of nodes to which new edges have been added,
Su− = {v ∈ V : v ∈ Su \S′′u} be the set of nodes to which the edges have been deleted and let G′′

be the graph obtained from G by exchanging agent u’s strategy Su with S′′u. Since the diameter
of G is 3, then, after changing the strategy from Su to S′′u, only distances between u and nodes at
hop-distance 2 from u might increase. Thus, if there is a node v ∈ Su\S′′u such that dG′′(u, v) ≥ 4
or dG′′(u, x) ≥ 4, where x is at distance 1 from v, then the deletion of v from strategy Su is not
an improvement for u. This means that for any node v ∈ V we have dG′′(u, v) ≤ 3. Therefore,
the new strategy S′′u decreases agent u’s edge cost by 2α·(|Su|−|S′′u|), increases her distance to all
nodes in Su− by 1 and decreases her distance by 1 for |Su+| many nodes. Since we assume that
cost(u, Su) > cost(u, S′′u), then 0 > −2α · (|Su| − |S′′u|) + |Su+| − |Su−| = (2α+ 1)(|Su+| − |Su−|),
thus, |Su+| ≤ |Su−| − 1. Hence, |S′′u| ≤ |Su| − 1, i.e., S′′u contains strictly less 2-edges than Su.
Since |S′′u| ≥ |S′u|, we have |S′u| ≤ |Su| − 1.

Let G′ be the graph obtained from G by exchanging agent u’s strategy Su with strategy S′u.
Since the number of edges in G′ is strictly less than the number of edges in G and since G′ has
strictly less 2-edges than G, it follows that if the diameter of G′ is 3, then G′ is a 3/2-spanner
of total weight less than the total weight of G and we get a contradiction. But it might happen
that there are at least two nodes x, y ∈ V at distance 4 in G′. Note that if the distance between
x and y increased because of removing the edge (u, v) ,i.e., d(x, y) = d(x, u) +w(u, v) + d(v, y),
then w(u, v) = 2. Indeed, if (u, v) was a 1-edge, then the distance between u and y as well as
the distance between u and v would increase by 1. Therefore, the 1-edge (u, v) would not a
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neutral edge and its removing is not an improving move, i.e., v ∈ S′u. Hence, any edge whose
deletion influences the distance between not only its endpoints must be a 2-edge. Since for any
v ∈ V we have dG′′(u, v) ≤ 3 and since G′′ and G′ only differ in 1-edges bought by agent u whose
removal increases the distance only to the other endpoint, it follows that for any v ∈ V we have
dG′(u, v) ≤ 3. Since the diameter of G is 3 and since for any v ∈ V we have dG′(u, v) ≤ 3, then
x must be a neighbor of u which is connected by a 1-edge and y ∈ Su \ S′u. For each such edge
(u, y) we can invert the ownership and, if none of the new owners has an improving strategy
which does not contain u then agent u has a strategy she cannot improve on.

Now we prove that after the inversion of the edge ownership for each edge (u, y), for all
y ∈ Su \ S′u, no agent y can have an improving strategy which does not contain u. Assume
towards a contradiction that U is the non-empty set of nodes y, which have an improving
strategy S′y which does not contain u. We apply all improving strategies S′y, for all y ∈ U , and
S′u to G and obtain a new graph G∗. Note that if there are two nodes x, y such that there is a
2-edge (x, y) ∈ E(G), the edge can be removed by one of the endpoints, say x. This move does
not influence the strategy of the agent y, since otherwise there must be a node v ∈ V , which
is at distance 1 from x and dG(y, v) = w(y, x) + w(x, v) = 2 + 1, and then we could assign the
ownership of (x, y) to agent y and then the edge (x, y) would not be removed from G. Therefore,
all the strategies can intersect only in pairs of nodes that want to add the same edge.

Note that for any y ∈ U we have Sy+∩Su+ = ∅ and Sy−∩Su− = {(u, y)}, and for all v ∈ V we
have dG∗(u, v) ≤ 3 and dG∗(y, v) ≤ 3. The number of edges in G is |E(G)| =

∣∣Ẽ∪(⋃y∈U Sy−

)
∪

Su−
∣∣ = |Ẽ|+

∑
y∈U |Sy−|+ |Su−| − |U |, where Ẽ ⊂ E(G) is a set of edges which are both in G

and in G∗. On the other hand, |E(G∗)| =
∣∣Ẽ∪(⋃y∈U Sy+

)
∪Su+

∣∣ ≤ |Ẽ|+∑y∈U |Sy+|+ |Su+| ≤
|Ẽ|+

∑
y∈U (|Sy−| − 1) + |Su+| − 1 = |Ẽ|+

∑
y∈U |Sy−|+ |Su+| − |U | − 1 < |E(G)|. Hence, since

only 2-edges were modified, the new graph G∗ is a 3/2-spanner with less weight than the weight
of the spanner G, which contradicts that G is a 3/2-spanner with minimum weight. Therefore,
the edge ownership can be chosen such that the graph G is in NE.

Optimal networks Now we consider how to compute a social optimum network.

Algorithm 1: computes a social optimum for the 1-2–GNCG in polynomial time.
1 input A complete graph G = Kn;
2 while there is 1-1-2 triangle in G do
3 Remove the edge of weight 2 from the triangle;

Theorem 6. For any α ≤ 1, algorithm 1 produces an optimal network in polynomial time.

Proof. Let G∗ be an optimal network. We first prove that there is an optimal network of
diameter 2. We assume that G∗ has diameter strictly greater than 2. Let u and v be the vertices
at distance greater than or equal to 3 in G∗. We show that G∗ + (u, v) is also an optimal
network. Indeed, the cost of adding the edge to the network is at most 2α ≤ 2, while the sum
of the all-to-all distances decreases by at least 2 as the distance between u and v decreases by
at least 1.

Next, we show that the social optimum contains all 1-edges. Indeed, if one 1-edge, say (u, v),
were missing in G∗, then G∗ + (u, v) would be a network which is cheaper than G, because its
edge cost is at most 1 plus the edge cost of G, while its distance cost is at most the distance
cost of G minus 2.

Now, observe that the network G produced by the algorithm has diameter equal to 2 and
contains all 1-edges. The claim follows by observing that every network of diameter 2 that
contains all the 1-edges has to contain all the edges of G.
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Price of Anarchy We start with the following technical lemma observing a relation between
stable networks and the corresponding optimum.

Lemma 6. Consider 0 < α ≤ 1. Let G∗ be the social optimum obtained by Algorithm 1 and
let G be a stable network. Then E(G) ⊆ E(G∗). Moreover, dG(u, v) = 2 for every 1-edge
(u, v) /∈ E(G) and dG(u, v) ≤ 3 for every 2-edge (u, v) /∈ E(G∗).

Proof. We observe that G∗ contains all the 1-edges and has diameter 2. So, every 1-edge con-
tained in G is also contained in G∗. Let (u, v) be a 1-edge that is not contained in G. We have
dG(u, v) = 2, as otherwise u could buy the edge towards v to improve her cost by at least 1.

Let (u, v) be a 2-edge of G. We show by contradiction that (u, v) is also contained in G∗.
Assume that (u, v) is not contained in G∗. Since G∗ has diameter 2, there exists a vertex x such
that (u, x) and (v, x) are two 1-edges. First of all, we observe that G cannot contain both the
edges (u, x) and (v, x) as otherwise the agent that is buying the 2-edge (u, v) would remove such
an edge without increasing any point-to-point distance in the graph and thus saving 2α of her
edge cost. We split the proof into two cases, according to whether exactly one of the two edges
between (u, x) and (v, x) is contained in G, or not, and we show how to obtain a contradiction
in either case.

We consider the case in which either (u, x) or (v, x) is an edge of G. W.l.o.g., we assume
that (u, x) is an edge of G. Since dG(v, x) = 2, there is a vertex, say y, such that (x, y) and
(y, v) are two 1-edges of G. If the edge (u, v) is bought by v, then v can improve her cost by
swapping the edge (u, v) with the edge (x, v). By this the edge cost decreases by α and no
distances from v towards all the other vertices increases. Therefore, the edge (u, v) is bought by
player u. Because G is stable, there is a vertex z such that the unique shortest path from u to
z passes through v, as otherwise u would never have bought the edge towards v. Therefore, we
have 1 + dG(x, z) = dG(u, z) + dG(x, z) ≥ dG(u, v) + dG(v, z) + 1 = dG(v, z) + 3 which implies
that dG(x, z) ≥ dG(v, z) + 2. But in this case, x can improve on her cost by buying the 1-edge
towards v. By this, her edge cost increases by at most 1 while both the distances towards v and
z decrease by at least 1. Hence, G could not be stable.

We consider the case in which neither (u, x) nor (v, x) is an edge of G. Since dG(u, x) =
dG(v, x) = 2, there are two vertices, say y and z, such that (u, y), (y, x), (x, z), and (z, v) are four
1-edges inG. We claim that dG(u, z) = dG(v, y) = 2. We prove the claim for dG(u, z) as the proof
for dG(v, y) uses similar arguments. The claim is proved by contradiction. If dG(u, z) = 1, then
the player buying the edge (u, v) may remove such an edge, without increasing any point-to-point
distance, and thus saving a cost of 2α. If dG(u, z) ≥ 3, then u can improve on her cost by buying
the 1-edge towards x. By this, the edge cost increases by at most 1 while both the distances
towards x and z decrease by 1. As a consequence, there is a vertex w such that the unique shortest
path from u to w in G passes through v, as otherwise u would never bought the edge towards v.
Therefore, we have 2 + dG(x,w) = dG(u, x) + dG(x,w) ≥ dG(u, v) + dG(v, w) + 1 = dG(v, z) + 3
which implies that dG(x,w) ≥ dG(v, z) + 1. But in this case x can improve on her cost by
buying the 1-edge towards v. Indeed, by this the edge cost increases by at most 1 while both
the distances towards v and w decrease by at least 1. Hence, G could not be stable.

To complete the proof, it remains to show that dG(u, v) ≤ 3 for every 2-edge (u, v) that
is not in G∗. Let (u, v) be a 2-edge that is not in G∗. Since E(G) ⊆ E(G∗), (u, v) is not
contained in G. We prove by contradiction that dG(u, v) ≤ 3. For the sake of contradiction,
assume that dG(u, v) ≥ 4. Since G∗ has diameter 2, there is a vertex x such that (u, x) and
(v, x) are two 1-edges. Since dG(u, x), dG(v, x) ≤ 2, both edges (u, x) and (x, v) are missing from
G. Furthermore, there are two vertices, say y and z, such that (u, y), (y, x), (x, z), and (z, v)
are 1-edges in G. Because dG(u, v) ≥ 4, we have that dG(u, z) ≥ 3. In this case, u can improve
her cost by buying the edge towards x. By this, the edge cost increases by α ≤ 1 while all the
distances towards x, z, and v decrease by 1.
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Theorem 7. For 1/2 ≤ α < 1, PoA ≤ 3/(α+ 2).

Proof. First of all, we observe that both the social optimum and any NE contain all the 1-edges.
Let G be a NE and let u and v be two distinct vertices. Let x and x∗ be two Boolean

variables such that x = 1 iff (u, v) is an edge of G and x∗ = 1 iff (u, v) is an edge of the social
optimum OPT . We prove the claim by showing that

σ :=
α · w(u, v)x+ 2dG(u, v)

α · w(u, v)x∗ + 2dOPT (u, v)
≤ 3

α+ 2
.

First of all, we observe that if w(u, v) = 1, then x = x∗ = 1. Furthermore, if x = x∗ = 1, then
σ = 1. Therefore, we only need to prove the claim for the case in which w(u, v) = 2 and x and
x∗ that cannot be both equal to 1.

Let G′ be the graph induced by all the 1-edges. We observe that if dG′(u, v) = 2, then neither
OPT nor G contains the edge (u, v) since G′ is a subgraph of both OPT and G. Therefore, we
assume that dG′(u, v) ≥ 3. In this case, we have that x∗ = 1: indeed, the addition of edge (u, v)
to OPT would increase the edge cost by 2α, but would decrease the overall sum of all-to-all
distances by at least 2. Similarly, if dG′(u, v) ≥ 4, then x = 1. Since we are considering the
case in which x and x∗ cannot be both equal to 1, but x∗ = 1, it follows that x = 0. Therefore,
dG′(u, v) = 3 and thus, dG(u, v) = 3. Hence, σ ≤ 6/(2α+ 4) ≤ 3/(α+ 2). The claim follows.

We proceed with a lower bound on the PoA which matches the upper bounds given in Theorem 1
and Theorem 7.

Theorem 8. For every constant ε > 0,

PoA ≥

{
3/2− ε if α = 1;
3/(α+ 2)− ε if 1/2 ≤ α < 1.

Proof. We prove the lower bound for α = 1 first. The host graph H and contains a clique K of
N vertices formed by 1-edges only. Each vertex v of the clique is the center of star Xv made of
1-edges only and whose leaves are N new vertices. Finally, there is a new vertex, that we call u,
that is connected to every other vertex by a 1-edge. Thus, the overall number of vertices of the
host graph is n = N2 + 1. All other edges are 2-edges.

u u

Figure 3: NE and optimal networks. All depicted edges are 1-edges. On the right hand side,
the optimal network for α = 1 is depicted. The graph on the left hand side is a NE for every
1/2 ≤ α ≤ 1.

We observe that the social optimum corresponds to exactly the subgraph induced by the
1-edges. Therefore, the edge cost of the social optimum is O(N2), while the distance cost is at
most 2N4 + 2N2. Therefore, the social cost of the social optimum is at most 2N4 +O(N2).

We claim that the subgraph induced by all the 1-edges, except for those among u and the
leaves of each of the Xv, is a NE. Indeed, since the resulting graph has diameter 3, no player
has an incentive to buy a 2-edge. Furthermore, no player has an incentive in removing a 1-edge.
Finally, neither u nor any leaf of any star Xv has an incentive in buying the leftover 1-edge
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connecting them. The edge cost of the stable network is O(N2), while the distance cost is at
least 3N2(N(N − 1)) = 3N4 − 3N3, since any leaf of any star Xv has all the N(N − 1) leaves
of the other stars at distance 3. Therefore, the social cost of the stable graph is 3N4 −Θ(N3).
The claim for α = 1 follows by choosing a sufficiently large value of N .

Now, we prove the claim for 1/2 ≤ α < 1. Let the graph on the left hand side of Figure 3 be
the host graph (only 1-edges are depicted). A trivial upper bound on the social optimum is the
cost of the entire host graph. Therefore, the edge cost of the social optimum is upper bounded
by 2α (N2+1)N2

2 = αN4 + Θ(N2), while the distance cost is upper bounded by 2(N2 + 1)N2 =
2N4 + Θ(N2). Therefore, the cost of the social optimum is (α + 2)N4 + Θ(N2). Once again,
the subgraph induced by all the 1-edges is a NE as, for α < 1, any NE contains all the 1-edges.
Furthermore, since the resulting graph has diameter 3, no player has an incentive to buy a
2-edge as α ≥ 1/2. As already proved for the case α = 1, the social cost of the NE graph is
3N4 −Θ(N3). The claim now follows by choosing a sufficiently large value of N .

Now we show that selfishness does not lead to a loss in social welfare if α is small enough.

Theorem 9. For any 0 ≤ α < 1
2 the PoA is equal to 1.

Proof. We claim that, if 0 ≤ α < 1
2 , any NE network is equal to the optimal network produced

by Algorithm 1. To show this we need to prove that a NE network does not contain 1-1-2
triangles but containes all the other edges.

Consider a graph which is in NE. It is easy to see that all 1-edges are contained in G because
otherwise, the addition of any such edge improves distance cost by at least 1 and increases
the edge cost by α < 1. Moreover, if there is a 2-edge (u, v), which is not in G and does
not form a 1-1-2 triage in G + (u, v), then the addition of (u, v) improves the distance cost
by dG(u, v) − w(u, v) ≥ 3 − 2 = 1 and increases the edge cost by 2α < 1, i.e., it implies an
improvement for an owner of the edge. Finally, it is clear that G does not contain 1-1-2 triangles
because removing a 2-edge from such triangle does not change the distance cost. Therefore, G
is equal to the social optimum obtained by Algorithm 1.

3.1.2 1-2-Graphs for α > 1

In this section we show that the 1-2–GNCG for α > 1 behaves very similar to the original NCG.

Theorem 10. For α ≥ 3 any star graph is in NE.

Proof. Consider a star graph Sn that has n − 2 edges. Assume that the central node u is an
owner of all edges in the star. Then u cannot improve her strategy. Let v, z be two leaf nodes.
The only possible strategy improvement for a leaf node is an edge addition. In the worth case
w(v, u) = w(z, u) = 2 and w(z, v) = 1, thus, adding an edge (z, v) improves the distance only
between the edge endpoints by 3 and costs α ≥ 3. Therefore, there is no strategy improvement
for any agent. It implies that Sn is in NE.

Price of Anarchy We use the proof technique from [22] to show that the PoA may be bounded
by the same value as in the original proof. We start with the bounding the social cost of the NE.

Lemma 7. Consider any NE G in the 1-2–GNCG. If G has diameter D, then its social cost is
at most O(D) times the social cost of the optimal network OPT .

Proof. First, we evaluate the social cost of the optimal network. Since the network should be
connected and each edge has length at least 1, the total cost is in Ω(α · n+ n2).

Now we analyze the social cost of G = (V,E) which is in NE. The distance cost is trivially in
O(Dn2) since each pair of vertices is in distance D in G. To evaluate the edge cost we consider
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cut edges, whose removal disconnects G. There are at most n− 1 cut edges in the graph, thus,
the edge cost is at most O(α(n − 1)) plus the edge cost of noncut edges. Now consider a node
v in G which has at least one noncut edge. We claim that the number of noncut edges of v is
at most n(2D+ 1)/α, thus, the total edge cost of all noncut edges in G is at most 2n2(2D+ 1),
which implies that cost(G) ∈ O(α(n− 1) + 2n2(2D+ 1) +Dn2) = O(αn+Dn2). And therefore
we conclude that the ratio between cost(G) and the cost of the optimal solution is in O(D).

Consider an edge e = (u, v) ∈ E(G), owned by the player u. Let Ve be the set of nodes w,
such that the edge e is in the shortest path from u to w. Let G′ be the graph G without the edge
e. Since G is stable, we have 0 ≤ costG′(u)−costG(u) ≤ −α ·w(u, v)+(dG′(u, v)−w(u, v)) · |Ve|.
We claim that dG′ ≤ 2d. Indeed, consider a cycle which consists of the shortest path from u
to v in G′ and the edge (u, v). Let v′ ∈ Ve be the node which is furthest away from node v
in the cycle and let (u′, v′) be its incident edge in the cycle but not in Ve. Since u′ /∈ Vuv, we
have dG′(u, u′) = dG(u, u′) ≤ d, and since v′ ∈ Ve we get dG′(v, v′) = dG(v, v′) ≤ d. Thus,
dG(u, v) ≤ dG′(u, u

′) + w(u′, v′) + dG′(v
′, v) ≤ 2D + 2. Therefore, we get 0 ≤ −α · w(u, v) +

(dG′(u, v)−w(u, v)) · |Ve| ≤ −α+ (2D+ 2− 1)|Ve|. It follows that |Ve| ≥ α/(2D+ 1). Thus, the
total number of noncut edges of v in G is at most n(2D + 1)/α. This completes the proof.

With the above lemma we can easily get the following.

Theorem 11. The 1-2–GNCG with α > 1 has a PoA ∈ O(
√
α).

Proof. Using Lemma 7, we only need to prove that the diameter of the NE is at most
√
α. We

consider a pair of nodes u, v in the graph G, which is in NE and has diameter D. Assume that
dG(u, v) = D. Since G is in NE, the addition of the edge (u, v) does not yield an improvement
for agent u. Thus, 0 ≤ costG+(u,v)(u)− costG(u). Let P := v = v1, v2, . . . , vm−1, vm = u be the
shortest u − v path in G and let k = D/5. We observe that the distances from u to v1, . . . , vk
will all change after the addition of the edge (u, v). Thus, taking into account that each edge

has length at most 2, we have: 0 ≤ costG+(u,v)(u) − costG(v) ≤ α · w(u, v) +
k∑
i=1

(
w(u, v) +

dG+(u,v)(v, vi)− dG(u, vi)
)
≤ 2α+

k∑
i=1

(
2i− (D− 2k)

)
≤ 2α+

k∑
i=1

(4k−D) ≤ 2α− D2

25 . It follows

that D ∈ O(
√
α).

We are convinced that also other proof techniques from the NCG can be carried over to the
1-2–GNCG. Thus, the PoA should be constant for almost all α and in o(nε) for the remaining
range.

3.2 Tree Metrics

This section is devoted to the study of tree metrics. We assume that the host graph H = (V,E)
is defined as the metric closure of an edge-weighted tree T .2

Existence The first result is about the structure of any NE. Differently for general metrics
and 1-2-graphs, we prove that any NE in T–GNCG is as much sparse as possible.

Theorem 12. In the T–GNCG any NE is a tree.

Proof. Consider a graph G = (V,E) which is in NE. For the sake of contradiction, we assume
that G contains a cycle. Clearly, this cycle has at least one edge, say (u, v), which is not contained
in the tree T . Without loss of generality, assume u be the owner of the edge (u, v). Consider a
vertex x ∈ V such that the edge (x, v) is in the shortest u-v–path in T . Note that (x, v) /∈ E(G),

2More precisely, w(u, v) = dT (u, v) for every two vertices u and v.
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otherwise swapping the edge (u, v) to (u, x) is an improving move that contradicts with G being
in NE. Consider two possible situations: dG(u, x) > w(u, x) and dG(u, x) = w(u, x).

In case dG(u, x) > w(u, x), consider a graph G′ = (V,E′) obtained from G by swapping the
edge (u, v) to (u, x) by agent u. Denote by Z = {z ∈ V : dG(u, z) < dG′(u, z)} the set of vertices
to which the distance from u has increased. Note that Z is not an empty set because v ∈ Z.
Since G is in NE, α · w(u, x) + w(u, x) + dG′(u, Z) ≥ α · w(u, v) + dG(u, x) + dG(u, Z), whereas
the left part of the inequality is at most α · w(u, x) + w(u, x) + |Z| · w(u, x) + dG(x, Z) and the
right part is equal to α · w(u, v) + dG(u, x) + |Z| · w(u, v) + dG(v, Z). Since dG(u, x) > w(u, x),
we get α · w(u, x) + |Z| · w(u, x) + dG(x, Z) > α · w(u, v) + |Z| · w(u, v) + dG(v, Z).

In case dG(u, x) = w(u, x), consider deletion of the edge (u, v). Since (u, v) is in the cycle, the
deletion does not increase any distance in G′ to infinity. We use the same notation: G′ = (V,E′)
is a graph after modification, Z is a set of verticies to which the distance from u has increased.
As before, Z 6= ∅ because otherwise deletion of the edge (u, v) is an improving move for agent
u. Since G is stable, |Z| · w(u, x) + dG(x, Z) ≥ dG′(u, Z) ≥ α · w(u, v) + dG(u, Z) = αw(u, v) +
|Z| · w(u, v) + dG(v, Z). Adding positive term α · w(u, x) to the left part of the inequality,
we get the same inequality as in the previous case: α · w(u, x) + |Z| · w(u, x) + dG(x, Z) >
α · w(u, v) + |Z| · w(u, v) + dG(v, Z).

From the other hand, the agent x does not buy the edge (x, v). Therefore, α · w(x, v) +
|Z| · w(x, v) + dG(v, Z) ≥ dG(x, Z). We sum up this inequality with the inequality we obtained
by analyzing swapping and deletion and we get α(w(x, v) + w(u, x)) + |Z|(w(x, v) + w(u, x)) +
dG(x, Z) + dG(v, Z) > α · w(u, v) + |Z| · w(u, v) + dG(v, Z) + dG(x, Z). Simplifying and taking
into account that w(u, x)+w(x, v) = w(u, v), we get that (α+ |Z|) ·w(u, v) > (α+ |Z|) ·w(u, v),
that is a contradiction. Therefore, G has no cycles, i.e., G is a tree.

The next result follows by observing that the tree T that defines the metric is the network
with cheapest total edge cost that preserves all the distances of the host graph at the same time.

Corollary 3. In the T–GNCG the tree T which defines the metric is both the social optimum
and in NE.

Corollary 3 yields that the cheapest NE is also a social optimum.3

Hardness We prove that the problem of computing the best response of a player is NP-hard
for tree metrics (T–GNCG).

Theorem 13. It is NP-hard to compute a best response of an agent in the T–GNCG.

Proof. We perform the proof by a reduction from the Minimum Set Cover problem, which is well-
known to be NP-hard. The problem is defined as follows: for a given universe U = {1, 2, . . . , k}
and a collection of non-empty subsets X = {X1, . . . , Xm} such that for any 1 ≤ i ≤ m we have

Xi ⊆ U and
m⋃
i=1

Xi = U . It is required to find minimum number of subsets covering U .

We define the corresponding instance of the best response problem in the T–GNCG with
α = 1 as follows: Consider a tree T = (V,ET ) which defines metric such that

V = {u, c} ∪ {a1, . . . , am} ∪ {b1, . . . , bm} ∪ {p1, . . . , pk}

and

E = {(c, u)} ∪
m⋃
i=1

({(bi, u), (c, ai)} ∪ {(ai, pj)| pj ∈ Xi}) ,

3In Algorithmic Game Theory, this is equivalent to say that the Price of Stability – the ratio between the cost
of the cheapest NE and the cost of a social optimum – is 1.
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where each pj represents one element of the universe U and each ai corresponds to one subset
Xi. All nodes c, b1, . . . , bm are connected with u and each edge (u, bi) has length 1

2(L − β),
whereas the edge (u, c) is of length L − ε. Each of set nodes a1, . . . , am is connected with c by
an edge of length ε. Furthermore, all edges between the element nodes p1, . . . , pm and the set
nodes are of length L and each set element node connected with only one set node. We assume
throughout the proof that L >> ε holds. Moreover, we assume that each edge (bi, u) is owned
by the respective node bi. Finally, note that agent u does not own any edges in G. See the right
side Figure 4 for the illustration of the constructed graph.

Consider a graph G = (V,E) such that each node c, b1, . . . , bm is an owner of the edge
connecting it with the node u. For all i = 1, . . . ,m there is an edge (bi, ai) of length 1

2(L− β) +
(L − ε) + ε = 1

2(L − β) + L. Also each element node pj is connected with some set node ai iff
the element is in the set corresponding to the set node. Note that L ≤ w(ai, pj) ≤ L+ 2ε. See
figure 4(left) for the illustration of the constructed graph G and the metric tree T .
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Figure 4: Illustration of the construction used in the reduction. The left figure shows the
constructed graph G. On the right figure the given metric tree T is shown .

We claim that the best response S∗u of the player u contains only the set nodes corresponding
to a solution of the Minimum Set Cover problem.

First, we prove that S∗u includes only set nodes. Assume that there is a node pj ∈ S∗u.
Consider a node ai corresponding to the set Xi containing element pj . If ai ∈ S∗u, then the
player u can delete the edge (u, pj) because this move decreases her edge cost by w(u, pj) = 2L
and increases her distance cost by at most 2ε, thus, her total cost decreases by at least L− 2ε.
If ai /∈ S∗u, then swap of the edge (u, pj) to (u, ai) improves agent’s cost by at least L − 2ε − β
because it decreases her edge cost by L, decreases distance cost to at least one node, which is
ai, by L− β and increases distance only to the node pj by 2ε.

Next we show that all the nodes in S∗u correspond to a set cover. Indeed, if there is a
node pj such that none of its incident set nodes is in S∗u, then buying an edge to one of the
corresponding set node ai decreases distance between the node u and both nodes ai, pj by at
least 2(2L − β − L) = 2(L − β). Hence, the social cost of the agent u is improves by at least
L− 2β.

Finally, we show that S∗u corresponds to a minimum set cover. Consider two strategies
S1
u, S

2
u corresponding to two different set covers of all elements. Assume ∆ := |S2

u| − |S1
u| > 0.

Thus, the difference in the agent’s u cost with strategy S1
u compared with the strategy S2

u is
−∆ · L+ (L− β)∆ + 2kε = −∆β + 2kε < 0.
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Dynamic Properties The following theorem shows that the network dynamics consisting of
best responses only may never converge to a NE for T–GNCG and thus also for M–GNCG.

Theorem 14. The T–GNCG is not a potential game.

Proof(sketch). Consider the weighted tree depicted in Fig. 5 (left). With this tree defining the
metric distances, we can construct a best response cycle of length 4. See Fig. 5 (right)).
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Figure 5: Left: Tree which defines the metric. Right: Best response cycle. The active agent is
colored red. The direction of the edges denotes the owner.

Price of Anarchy We prove that the upper bound given in Theorem 1 for more general metric
instances is tight for tree metrics and thus also for graph metrics.

Theorem 15. The PoA in the T–GNCG is at least α+2
2 − ε, for any ε > 0.

Proof. Let S∗n be the weighted tree which defines the metric distances. The tree S∗n is a star and
contains n− 2 edges of weight 2/α and one edge (u, v) of weight 1, where u is the center of the
star. See Fig. 6 (left).
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Figure 6: Left hand side figure shows a tree T , on the right figure is shown the stable graph Sn.
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The star S∗n minimizes the social cost, which is

cost(S∗n) =α · edge(S∗n) + edge(S∗n) + (n− 2)(edge(S∗n)

+ (n− 2) · 2/α) + (edge(S∗n) + n− 2)

=(2n+ α− 2) · edge(S∗n)

=(2n+ α− 2) · ((n− 2)2/α+ 1) .

Let Sn be a spanning star of the host graph such that a center of Sn is the vertex v. The star
Sn contains one edge of weight 1 and (n − 2) edges of weight (1 + 2/α). Moreover, we assume
that the central vertex v is an owner of all edges in Sn. See Fig. 6 (right).

We claim that Sn is in NE. Indeed, the central agent v cannot improve her strategy because
all other vertices are leaves. No leaf owns an edge and, therefore, a leaf agent can possibly
improve her strategy only by adding edges to other leaves. For any leaf agent x 6= u buying the
edge (x, u) costs α · 2/α = 2 and improves her distances only towards u by 2 + 2/α− 2/α = 2.
Hence, buying (x, u) is not an improvement. Buying any other edge costs α · 4/α = 4 for agent
x and improves her distance only to the endpoint of the new edge by 2 + 4/α − 4/α = 2. At
the same time, the agent u cannot improve her strategy by buying edges to the leafs because it
improves distance to each vi by 2 and increases edge cost by the same value for each new edge.
Hence, no agent has an improving strategy change and it follows that Sn is in NE. The social
cost of Sn is

cost(Sn) = (2n+ α− 2) · edge(Sn)

= (2n+ α− 2) · ((n− 2)(1 + 2/α) + 1) .

Then, for sufficiently large n, the ratio between he social costs of the NE network Sn and the
optimum S∗n is α+2

2 − ε.

3.3 Points in Rd

In this section we consider the M–GNCG with the assumption that all nodes are points in Rd

and that distances are measured via the p-norm, i.e., for any two points u = (u1, . . . , ud), v =
(v1, . . . , vd) the weight of the corresponding edge between them is defined as

wp(u, v) :=

(
d∑
i=1

|ui − vi|p
)1/p

.

Further, we omit the subscript p if its value does not play any role.

Hardness We start with investigating the hardness of computing the best response of an agent
in the Rd–GNCG.

Theorem 16. It is NP-hard to compute a best response of an agent in the Rd–GNCG under
any p-norm.

Proof. We perform the proof by a reduction from the Minimum Set Cover problem analogously
to the proof of the Theorem 13. We define the corresponding instance of the best response
problem in the Rd–GNCG with α = 1 as follows: Consider a graph G = (V,E) such that

V = {u} ∪ {a1, . . . , am} ∪ {b1, . . . , bm} ∪ {p1, . . . , pk}

and

E =

m⋃
i=1

{(bi, u), (bi, ai)} ∪
m⋃
i=1

⋃
pj∈Xi

{(ai, pj)},
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where each pj represents one element of the universe U and each ai corresponds to one subset
Xi. We locate nodes on the plane such that all points a1, . . . , am are at the same distance L
from u and equally spaced on the circle segment of length equal to some arbitrary small value
ε > 0. All points p1, . . . , pk are equispaced on the circle segment of the same length ε and are
at distance 2L from u. We assume throughout the proof that L >> ε holds. In addition, we
have a set of nodes {b1, . . . , bm} at distance 1

2(L−β), where 1
3L > β > kε, such that each bi, for

1 ≤ i ≤ m lies on the line through the nodes u and ai and is connected to nodes u and ai. By
construction we get that dG(bi, ai) = 1

2(L− β) + L, dG(u, ai) = 2L− β and dG(u, pj) = 3L− β.
Moreover, we assume that each edge (bi, u) is owned by the respective node bi. Finally, note
that agent u does not own any edges in G. See Figure 7 for the illustration of the constructed
graph.

u
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a2

a3

am

p1

p2

pk

L

L

1
2(L− β)

b1

b2

b3

bm

ε

Figure 7: Illustration of the construction used in the reduction.

We claim that the best response of the agent u corresponds to the solution of the Minimum Set
Cover problem.

Consider a best response strategy S∗u of agent u and the corresponding network G∗ which
is the network G augmented by the edges which agent u buys according to strategy S∗u. Thus,
G∗ = (V,E∗), where E∗ = E(G) ∪

⋃
v∈S∗u{(u, v)}.

First of all, we show that S∗u 6= ∅ must hold, since adding at least one edge (u, ai) to network
G is already an improvement for agent u. This edge costs L and decreases agent u’s distance to
ai by L − β. Moreover, since Xi is non-empty there must be a neighboring p-node of node ai.
Let pj be this node. Buying edge (u, ai) changes agent u’s distance to pj from at least 3L − β
to at most 2L+ ε, which is an improvement of at least L− β− ε. Hence, the total improvement
for agent u is at least L− 2β − ε > 0.

Now we prove that agent u always prefers buying edges to ai nodes over edges to pj nodes.
Assume that pj ∈ S∗u and let ar be a set node which is adjacent to pj . Since

⋃
Xi = U , such a

node ar must exist by construction. If there is a set node ai ∈ S∗u which is adjacent to pj in G∗,
then agent u can simply delete the edge (u, pj) because it decreases her edge cost by at least 2L
and increases her distance cost by at most ε, since only the distance to the nodes pj can increase
by at most ε, since for any 1 ≤ r ≤ m holds w(ai, ar) ≤ ε.

Since L >> ε, deleting (u, pj) would be an improving move for agent u. If there is no node
ai ∈ S∗u such that (ai, pj) ∈ E(G∗), then the swap of the edge (u, pj) to (u, ar) improves agent
u’s cost by at least 2L−ε−β since this move improves u’s distance to at least node ar by L−β,
increases u’s distance only to the nodes pj by ε, respectively, and improves u’s total edge cost
by L. Hence, S∗u cannot contain pj nodes.
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Next, we show that every pi node is adjacent to some node ai ∈ S∗u, i.e., that the correspond-
ing set of subsets {Xi | ai ∈ S∗u} is a set cover of U . For the sake of contradiction, assume that
there is a node pj for which there is no node ai ∈ S∗u such that (ai, pj) ∈ E(G∗). Clearly, there
must be a path from u to pj in G∗ since otherwise agent u would have infinite cost. Let ar /∈ S∗u
be any set node, for which (ar, pj) ∈ E(G∗). Such a node ar must exist, since

⋃
Xi = U . Thus,

we have that dG∗(u, pj) ≥ 3L − β, since there is a path from u to pj via br and ar. We claim
that agent u could buy the edge (u, ar) and thereby strictly decrease her cost. The edge (u, ar)
costs L and decreases agent u’s distances to ar by L− β and to each of the nodes pj by at least
L − β. Thus, this yields a cost decrease for agent u. Note, that this implies that agent u can
improve on any strategy Su, where the corresponding set of subsets {Xi | ai ∈ Su} does not
cover all elements of U . Thus, the set of subsets {Xi | ai ∈ S∗u} must be a set cover of U .

We finish the proof by showing that the best response strategy of agent u corresponds to a
minimum set cover of the given set cover instance. For this, consider two arbitrary strategies
S1
u and S2

u of agent u, such that the corresponding sets {Xi | ai ∈ S1
u} and {Xi | ai ∈ S2

u}
both cover all elements of U . Now we show that if |S1

u| < |S2
u| then u’s cost with strategy S1

u is
strictly less than u’s cost with strategy S2

u. This implies that agent u’s best response strategy
S∗u corresponds to a minimum set cover.

Let ∆ = |S2
u| − |S1

u|. Hence, the difference between agent u’s edge cost with strategy S1
u

and u’s edge cost with strategy S2
u is exactly −∆ · L. Since both strategies correspond to set

covers and since w(a1, am) = ε, the distances of u to any pj node under the strategies S1
u and

S2
u can differ by at most ε. Moreover, with strategy S1

u agent u has distance L to exactly |S1
u|

many ai nodes and distance 2L − β to all the other ai nodes. Analogously, with strategy S2
u

agent u has distance L to |S2
u| many ai nodes and distance 2L− β to the other ai nodes. Thus,

the total difference in agent u’s cost with strategy S1
u compared with strategy S2

u for agent u
is −∆ · L + kε + ∆(L − β) = −∆β + kε < 0, where the inequality holds since ∆ ≥ 1 and by
construction we have β > kε.

Dynamic Properties Also for the Rd–GNCG we investigate whether best response dynamics
are guaranteed to converge, i.e. if the game has the finite improvement property.

Theorem 17. The Rd–GNCG with the 1-norm does not have the finite improvement property.

Proof(sketch). We prove the statement by providing best response cycle, shown in Fig. 8. We
use the following node positions: a0 = (3, 0), a1 = (0, 3), a2 = (2, 2), a3 = (0, 2), a4 = (1, 1), a5 =
(4, 3), a6 = (2, 0), a7 = (4, 1), a8 = (1, 4), a9 = (1, 0). Distances are measured by the 1-norm.

We are convinced that the above best response cycle can be adapted to arbitrary p-norms.

Conjecture 1. The Rd–GNCG with any p-norm does not have the finite improvemet property.

Price of Anarchy From Theorem 1 it follows that in the Rd–GNCG the PoA is at most α+2
2 .

It turns out that settling the PoA for the Rd–GNCG is a challenging problem. We prove some
first steps in this direction and show that the PoA approaches the upper bound for the 1-norm
if the number of dimensions grows.

We start with a lower bound which is strictly larger than 1 for the PoA in case of an arbitrary
p-norm and independent of number of nodes n and dimension d.

Lemma 8. The PoA in the Rd–GNCG is strictly larger than 1.

Proof. To prove the claim we show a NE graph and the corresponding optimal graph in the
1-dimensional space, i.e., path metric. It is clear that the obtained result holds for arbitrary
d ≥ 1 and independent on the p-norm.
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Figure 8: Best response cycle for the Rd–GNCG with 1-norm.

Consider a path graph Pn+1 on n+ 1 nodes {v0, v1, . . . , vn}. We arrange lengths of the edges
as follows: w(v0, v1) = 1, and ∀i ∈ {2, . . . , n}, w(vi−1, vi) = 2

α ·
(
1 + 2

α

)i−2. Then the host graph
H is a complete graph containing Pn+1 such that for any pair of nodes u, v w(u, v) = dPn+1(u, v).
Clearly, P corresponds to a social optimum.

v0 v1 v2 v3 vn
1 2

α
2
α

(
1 + 2

α

)1 + 2
α

2
α

(
1 + 2

α

)n−2

(
1 + 2

α

)2 (
1 + 2

α

)n−1

Figure 9: Lower bound graph. The black graph corresponds to the social optimum Pn+1, the
blue graph Sn+1 is in NE.

Consider a star graph S := Sn+1 on the same set of nodes with the following edge weights

w(v0, vi) = dP (v0, vi) =
i∑

j=1
w(vj−1, vj) = 1 + 2

α ·
i∑

j=2

(
1 + 2

α

)j−2
= 1 + 2

α ·
((

1 + 2
α

)i−1 − 1
)/

2
α =(

1 + 2
α

)i−1. See figure 9 for the construction.
First, we show that the star graph Sn is in NE. Since no deletions or swaps are possible,

we need to prove that no addition of any new edge is profitable for its owner. Indeed, consider
a player vi, which tends to buy an edge (vi, vj) such that j ≤ i − 1. This move decreases
distance cost of the player by w(vi, v0) + w(v0, vj) − w(vi, vj) = 2w(v0, vj) = 2

(
1 + 2

α

)j−1. At

the same time, the edge cost increases by α ·w(vi, vj) = α ·
i∑

k=j+1

w(vk−1, vk) = α · 2α
(
1 + 2

α

)j−1 ·((
2
α + 1

)i−j − 1
)/

2
α = α ·

(
1 + 2

α

)j−1 (( 2
α + 1

)i−j − 1
)
≥ α ·

(
1 + 2

α

)j−1 · ( 2α + 1− 1
)
≥ α ·(

1 + 2
α

)j−1 · 2α = 2 · (1 + 2
α)j−1. Thus, this move is not an an improvement for the player vi. If

j > i, distance cost is 2
(
1 + 2

α

)i−1, whereas the edge cost is α ·w(vi, vj) = α ·
j∑

k=i+1

w(vk−1, vk) =

α ·
(
1 + 2

α

)i−1 (( 2
α + 1

)j−i − 1
)
≥ α ·

(
1 + 2

α

)i−1 ( 2
α + 1− 1

)
≥ α ·

(
1 + 2

α

)i−1 · 2α = 2 · (1+ 2
α)i−1.

Thus, the star graph is in NE. The social cost of Sn is cost(Sn+1) = (2n+α)·
∑

(u,v)∈E(Sn)

w(u, v) =
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(2n+ α)
n∑
i=1

(
1 + 2

α

)i−1
= (2n+ α) · α2

((
1 + 2

α

)n − 1
)
.

The social optimum is a path graph Pn+1. An edge cost is α · w(v0, vn) = α
(
1 + 2

α

)n−1. To
calculate the distance cost we count for each edge how many shortest paths it participates, i.e.,
its betweenness centrality.

d(Pn) = 2

n∑
i=1

w(vi−1, vi)i(n− i+ 1)

= 2

bn/2c∑
k=0

(n− 2k)

n−k∑
i=k+1

w(vi−1, vi)

= 2n

n∑
i=1

w(vi−1, vi) + 2

bn/2c∑
k=1

(n− 2k)

n−k∑
i=k+1

w(vi−1, vi)

= 2n ·
(

1 +
2

α

)n−1
+

4

α

bn/2c∑
k=1

(n− 2k)

n−k∑
i=k+1

(
1 +

2

α

)i−2

= 2n ·
(

1 +
2

α

)n−1
+ 2

bn/2c∑
k=1

(n− 2k)

(
1 +

2

α

)k−1((
1 +

2

α

)n−2k
− 1

)

≤ 2n ·
(

1 +
2

α

)n−1
+ 2n

bn/2c∑
k=1

(
1 +

2

α

)n−k−1
= 2n ·

(
1 +

2

α

)n−1
+ (α+ 2) · n ·

(
1 +

2

α

)n−2(
1−

(
1 +

2

α

)−bn/2c)

< 2n ·
(

1 +
2

α

)n−1
+ (α+ 2) · n ·

(
1 +

2

α

)n−2
·

(
1−

(
1 +

2

α

)−1)

≤ 2n ·
(

1 +
2

α

)n−1
+ 2n ·

(
1 +

2

α

)n−2
.

Thus, an upper bound of the social cost of the social optimum is

cost(Pn) < (2n+ α) ·
(

1 +
2

α

)n−1
·

(
1 +

(
1 +

2

α

)−1)
.

Therefore, for sufficiently large n the PoA is at least:

cost(Sn)

cost(Pn)
>

α
2 (2n+ α)

((
1 + 2

α

)n − 1
)

(2n+ α) ·
(
1 + 2

α

)n−1 · (1 +
(
1 + 2

α

)−1)

=

α
2

(
1 + 2

α − 1
) n−1∑
i=0

(
1 + 2

α

)i
(
1 + 2

α

)n−1 · (1 +
(
1 + 2

α

)−1)

=

n−1∑
i=0

(
1 + 2

α

)i
(
1 + 2

α

)n−1
+
(
1 + 2

α

)n−2 ≥ 1 for n ≥ 2.

Hence, PoA > 1.
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For a small number of players the lower bound for the PoA can be improved, which is shown in
the next lemma.

Theorem 18. In the Rd–GNCG under any p-norm with p ≥ 1 the PoA is at least

3α3 + 24α2 + 40α+ 24

α3 + 10α2 + 32α+ 24
.

Proof. We prove the claim for the 2-dimensional case, then the result immediately follows for
higher dimensions.

Consider the same construction as in the proof of the lemma 8 restricted on 4 nodes v0, v1, v2,
v3. The ratio between the cost of the star graph, which is in NE, and the social optimum is

cost(S4)

cost(P4)
=

(6 + α) · α2 ·
((

1 + 2
α

)3 − 1
)

(6 + α)
(
1 + 2

α

)2
+ 4

α

=
3α3 + 24α2 + 40α+ 24

α3 + 10α2 + 32α+ 24

In contrast to other p-norms, where p ≥ 2, the 1-norm allows us to embed a reduced version of
our lower bound construction from the T–GNCG. With increasing number of dimensions we can
embed more and more of our construction. The following lemma shows that for arbitrary large
d the lower bound of the PoA approaches the upper bound of α+2

2 .

Theorem 19. In a 1-norm d-dimensional space the PoA is at least 1 +
α

2 + α/(2d− 1)
.

Proof. Consider a set of n = 2d+ 1 points v0 = (0, . . . , 0), v1 = (1, 0, . . . , 0), v2 = (− 2
α , 0 . . . , 0),

vi = (0, . . . , 0︸ ︷︷ ︸
i−1

, 2α , 0, . . . , 0), vi+d−1 = (0, . . . , 0︸ ︷︷ ︸
i−1

,− 2
α , 0, . . . , 0) for i ∈ {2, . . . , d}.
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Figure 10: Construction of the optimal graph S∗7 and the stable graph S7 in 3-dimensional
1-norm space.

On the one hand it is easy to see that the star graph S∗n with a center in v0 is an optimal network.
On the other hand, the star graph Sn with its center in v1 such that v1 is the owner of all edges
in the star, is in NE. Indeed, since the distances are measured via the 1-norm, the construction
is exactly the same as in the proof of Theorem 15. See Fig. 10 for the construction in R3. Thus,
the PoA is bounded by:

cost(Sn)

cost(S∗n)
=

(2 · (2d+ 1) + α− 2)
(
α+2
α · (2d− 1) + 1

)
(2 · (2d+ 1) + α− 2)

(
2
α · (2d− 1) + 1

) = 1 +
α

2 +
α

2d− 1

.
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4 General Weighted Host Graphs

Theorem 20. The PoA for general instances is at most
(
α+2
2

)2.
Proof. Let G be a NE and let u and v be two distinct vertices. Let x and x∗ be two Boolean
variables such that x = 1 if and only if (u, v) is an edge of G and x∗ = 1 if and only if (u, v) is
an edge of the social optimum OPT . We prove the claim by showing that

σ :=
α · w(u, v)x+ 2dG(u, v)

α · w(u, v)x∗ + 2dOPT (u, v)
≤
(
α+ 2

2

)2

.

The only case we have to prove is when w(u, v) > dH(u, v), x = 1, and x∗ = 0 as the proof for
all the other cases is identical to the proof of Theorem 1 for M–GNCG, where σ ≤ α+2

2 .
We prove the claim by showing that w(u, v) ≤ α+2

2 · dH(u, v) ≤ α+2
2 · dOPT (u, v). The proof

is by contradiction. W.l.o.g., we assume that u is the owner of the edge (u, v). Let P be a
shortest path between u and v in H. Since w(u, v) > dH(u, v), P contains two or more edges.
Furthermore, some edges of P are missing from G, as otherwise player u would remove the edge
(u, v) without increasing the distance towards v and thus improving on her cost function. Let
k be the number of edges of P that are not in G. We consider the edges of P in order from u
to v and we denote by (xi, yi) the i-th edge of P that is not in G. We observe that x1 might be
equal to u.

First, we prove that dG(u, yi) ≤ dG(u, xi) + α+2
2 w(xi, yi), for every i = 1, . . . , k. We divide

the proof into two cases, according to whether xi = u or not.
We consider the case in which xi 6= u. We observe that this case definitely occurs if i > 1. The

proof is by contradiction. For the sake of contradiction, we assume that dG(u, yi) > dG(u, xi) +
α+2
2 w(xi, yi). By the triangle inequality, dG(u, yi) ≤ dG(u, xi) + dG(xi, yi). As a consequence,

dG(xi, yi) >
α+2
2 w(xi, yi). Since G is a NE, player yi does not have incentive in buying the edge

towards xi. Therefore, αw(xi, yi) + dG+(xi,yi)(xi, yi) + dG+(xi,yi)(yi, u) ≥ dG(xi, yi) + dG(yi, u),
i.e., αw(xi, yi) + 2w(xi, yi) + dG(xi, u) ≥ dG(xi, yi) + dG(yi, u) > α+2

2 w(xi, yi) + dG(u, xi) +
α+2
2 w(xi, yi), i.e., 0 > 0, a contradiction.
We consider the case in which xi = u. We observe that this case might occur only if i = 1.

Since G is a NE, player u has no incentive in swapping the edge (u, v) with the edge (u, y1). If
we denote by G′ the graph obtained from G and in which player u swaps the edge (u, v) with
the edge (u, y1), we get α ·w(u, y1) +dG′(u, y1) +dG′(u, v) ≥ αw(u, v) +dG(u, y1) +dG(u, v). By
substituting dG′(u, y1) = w(u, y1), dG′(u, v) ≤ w(u, y1) + dG−(u,v)(y1, v), and dG(u, v) = w(u, v)
and simplifying we have (α+ 1)w(u, v) ≤ (α+ 1)dH(y1, u) + dG−(u,v)(y1, v). If dG−(u,v)(y1, v) =
dG(y1, v), then, since dG(y1, v) ≤ dG(y1, u)+w(u, v), α·w(u, v) ≤ α·dH(y1, u) ≤ α·dH(u, v), i.e.,
w(u, v) = dH(u, v) ≤ α+2

2 · dH(u, v), thus contradicting the fact that w(u, v) > α+2
2 · dH(u, v).

Therefore, we can assume dG−(u,v)(y1, v) > dG(y1, v). As a consequence, dG(y1, v) = dG(y1, u) +
w(u, v). Since G is a NE, player y1 has no incentive in buying the edge towards u. If we
denote by G′′ the graph obtained from G and in which player y1 buys the edge (u, y1), then
α·w(u, y1)+dG′′(y1, u)+dG′′(y1, v) ≥ dG(y1, u)+dG(y1, v), i.e., α·w(u, y1)+w(u, y1)+w(u, y1)+
w(u, v) ≥ dG(y1, u) + dG(y1, u) + w(u, v), i.e., dG(y1, u) ≤ α+2

2 w(y1, u).
Now, using induction on i, we prove that dG(u, yi) ≤ α+2

2 · dP (u, yi). For the base case,
clearly dG(u, x1) = dP (u, x1) since no edge of P between u and xi is missing from G. There-
fore, using the triangle inequality, we obtain dG(u, y1) ≤ dG(u, x1) + dG(x1, y1) ≤ dP (u, x1) +
α+2
2 w(x1, y1) ≤ α+2

2 dP (u, y1). For the inductive case, by induction, we have that dG(u, yi−1) ≤
α+2
2 dP (u, yi−1). Since no edge of P between yi−1 and xi is missing from G, we have that

dG(u, xi) ≤ dG(u, yi−1) + dG(yi−1, xi) ≤ α+2
2 dP (u, yi−1) + dP (yi−1, xi) ≤ α+2

2 dP (u, xi). There-
fore, using the triangle inequality, we have that dG(u, yi) ≤ dG(u, xi) + dG(xi, yi) ≤ dP (u, xi) +
α+2
2 w(xi, yi) ≤ α+2

2 dP (u, yi).
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To show that dG(u, v) ≤ α+2
2 dH(u, v), we observe that w(u, v) ≤ dG(u, v), as otherwise

player u would remove the edge towards v thus improving on her cost function. Therefore, by
the triangle inequality and since no edge of P between yk and v is missing from G, we obtain
w(u, v) ≤ dG(u, v) ≤ dG(u, yk) + dP (yk, v) ≤ α+2

2 dP (u, yk) + dP (yk, v) ≤ α+2
2 dH(u, v).

The proof technique used in Theorem 20 cannot lead to a better bound on the PoA. Consider,
as a host graph, a cycle of three edges of weight 0, 1, and (α+2)/2. The social optimum is given
by the path containing the two edges of weight 0 and 1, respectively; a NE is given by the path
containing the edges of weight 0 and (α+ 2)/2, respectively. Let u and v be the two endvertices
of the edge of weight (α+2)/2. The value σ, so as defined in the proof of Theorem 20, is exactly
equal to

(
α+2
2

)2. However, if we compute the ratio between the cost of the defined NE and
the cost of the social optimum, we obtain the value (α + 2)/2 that coincides with the PoA for
M–GNCG (see Theorem 1). Therefore, we close this section with the following very interesting
conjecture, stating that the PoA for GNCG should be the same as the PoA for M–GNCG.

Conjecture 2. The PoA for the GNCG is α+2
2 .

5 Conclusion

In this paper we have analyzed the well-known Network Creation Game on weighted complete
host graphs. We think this is a significant step towards a more realistic game-theoretic model
for the decentralized creation of networks, like fiber-optic or overlay networks. We showed that
the weighted version of these games behaves similarly to the unit-weight NCG in terms of the
hardness of computing a best response and in its dynamic properties. However, the Price of
Anarchy is radically different. Whereas in the original NCG the PoA is conjectured to be
constant and actually proven to be constant for almost all α, we have shown that the PoA, even
for the restricted metric case of the T–GNCG, is linear in α. Since α is a parameter for adjusting
the trade-off between edge cost and distance cost, this implies that for settings where the edge
cost dominates, i.e. α is high, coordination is needed to guarantee socially efficient outcomes.

For understanding the impact of coordination, the next step should be to analyze the Price
of Stability, i.e. the social cost ratio of the best equilibrium network and the social optimum.
Another challenging task is to prove or refute that pure Nash equilibria always exist and to find
a way to guide the agents to stable states with preferably low social cost. Besides this, naturally
our conjectures, most prominently Conjecture 2, call for further investigation.
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