
Efficiently Computing Maximum Flows in Scale-Free Networks

Thomas Bläsius Tobias Friedrich Christopher Weyand

Abstract
We study the maximum-flow/minimum-cut problem on scale-
free networks, i.e., graphs whose degree distribution follows
a power-law. We propose a simple algorithm that capitalizes
on the fact that often only a small fraction of such a network
is relevant for the flow. At its core, our algorithm augments
Dinitz’s algorithm with a balanced bidirectional search. Our
experiments on a scale-free random network model indicate
sublinear run time. On scale-free real-world networks, we
outperform the commonly used highest-label Push-Relabel
implementation by up to two orders of magnitude. Compared
to Dinitz’s original algorithm, our modifications reduce the
search space, e.g., by a factor of 275 on an autonomous
systems graph.

Beyond these good run times, our algorithm has an
additional advantage compared to Push-Relabel. The latter
computes a preflow, which makes the extraction of a minimum
cut potentially more difficult. This is relevant, for example,
for the computation of Gomory-Hu trees. On a social network
with 70 000 nodes, our algorithm computes the Gomory-Hu
tree in 3 seconds compared to 12 minutes when using Push-
Relabel.

1 Introduction

The maximum flow problem is arguably one of the most
fundamental graph problems that regularly appears as
a subtask in various applications [2, 32, 35]. The go-
to general-purpose algorithm for computing flows in
practice is the highest-label Push-Relabel algorithm by
Cherkassky and Goldberg [10], which is also part of the
boost graph library [33]. Beyond that, the BK-algorithm
by Boykov and Kolmogorov [7] or its later iteration [17]
should be used for instances appearing in computer
vision. Our main goal in this paper is to provide a flow
algorithm tailored towards scale-free networks. Such
networks are characterized by their heavy-tailed degree
distribution resembling a power-law, i.e., they are sparse
with few vertices of comparatively high degree and many
vertices of low degree.

At its core, our algorithm is a variant of Dinitz’s
algorithm [12]. Dinitz’s algorithm is an augmenting
path algorithm that iteratively increases the flow along
collections of shortest paths in the residual network. In
each iteration, at least one edge on every shortest path
gets saturated, thereby increasing the distance between
source and sink in the residual network. To exploit
the structure of scale-free networks, we make use of the
facts that, firstly, shortest paths tend to span only a
small fraction of such networks, and secondly, a balanced
bidirectional breadth first search is able to find the

shortest paths very efficiently [6, 5]. Using a bidirectional
search to compute the collection of shortest paths in
Dinitz’s algorithm directly translates this efficiency to
the first iteration, as the residual network initially
coincides with the flow network. Though the structure
of the residual network changes in later iterations, our
experiments show that the run time improvements
achieved by using a bidirectional search remain high.

Scaling experiments with geometric inhomogeneous
random graphs (GIRGs)1 [8], in fact indicate that the
flow computation of our algorithm runs in sublinear time.
In comparison, previous algorithms (Push-Relabel, BK,
and unidirectional Dinitz) require slightly super-linear
time. This is also reflected in the high speedups we
achieve on real-world scale-free networks.

With the flow computation itself being so efficient,
the total run time for computing the maximum flow
for a single source-sink pair in a scale-free network is
heavily dominated by loading the graph and building
data structures. Thus, our algorithm is particularly
relevant when we have to compute multiple flows in the
same network. This is, e.g., the case when computing
the Gomory-Hu tree [20] of a network. The Gomory-Hu
tree is a compact representation of the minimum s-t cuts
for all source-sink pairs (s, t). It can be computed with
Gusfield’s algorithm [21] using n− 1 flow computations
in a network with n vertices. Using our bidirectional
flow algorithm as the subroutine for flow computations
in Gusfield’s algorithm lets us compute the Gomory-Hu
tree of, e.g., the soc-slashdot instance with 70 k nodes
and 360 k edges in only 2.6 s. In this context, we observe
that the Push-Relabel algorithm is also very efficient
in computing the flow values by computing a preflow.
However, converting this to a flow or extracting a cut
from it takes significantly more time.

Our algorithm is designed to work particularly well
on scale-free networks. Nonetheless, we also conducted
experiments on networks that are not scale-free. We
observe that our algorithm outperforms the Push-
Relabel algorithm significantly on Erds-Rnyi random
graphs and slightly on the Pennsylvania road network.

1GIRGs are a generative network model closely related to

hyperbolic random graphs [25]. They resemble real-world networks
in regards to important properties such as degree distribution,
clustering, and distances.

ar
X

iv
:2

00
9.

09
67

8v
1

 [
cs

.D
S]

 2
1

Se
p

20
20

Unsurprisingly, our algorithm is outperformed by the
BK-algorithm on a segmentation instance from computer
vision. Moreover, Push-Relabel performs best on a
layered network that was specifically constructed to
evaluate flow algorithms. However, we would argue
that this type of instance is rather artificial.

1.1 Contribution. Our findings can be summarized
in the following main contributions.

• We provide a simple and efficient flow-algorithm
that significantly outperforms previous algorithms
on scale-free networks.

• It’s efficiency on non-scale-free instances makes
it a potential replacement for the Push-Relabel
algorithm for general-purpose flow computations.

• Our algorithm is well suited to compute the Gomory-
Hu tree of comparatively large instances.

• There are situations, where computing a flow with
the Push-Relabel algorithm is significantly more
expensive than computing a preflow. This stands
in contrast to previous observations [10, 11].

1.2 Related Work. The maximum flow problem has
been for a long time and still is subject of active research.
In the following, we briefly discuss only the work most
related to our result. For a more extensive overview on
the topic of flows, we refer to the survey by Goldberg
and Tarjan [19].

Our algorithm is based on Dinitz’s Algorithm [12],
which belongs to the family of augmenting path al-
gorithms originating from the Ford-Fulkerson algo-
rithm [16]. Augmenting path algorithms use the residual
network to represent the remaining capacities and iter-
atively increase the flow by augmenting it with paths
from source to sink in the residual network, until no
such path exists. At every point in time, a valid flow is
known and at the end of execution, non-reachability in
the residual network certifies maximality.

From this perspective, the Push-Relabel algo-
rithm [18] does the reverse. At every point in time,
the sink is not reachable from the source in the residual
network, thereby guaranteeing maximality, while the ob-
ject maintained throughout the algorithm is a so-called
preflow and the algorithm stops once the preflow is ac-
tually a flow. This is achieved using two operations push
and relabel ; hence the name. Different variants of the
Push-Relabel algorithm mainly differ with regards to the
order in which operations are applied. A strategy per-
forming well in practice is the highest-label strategy [10].
The extensive empirical study by Ahuja et al. [1] on
ten different algorithms shows that the highest-label

Push-Relabel algorithm indeed performs the best out of
the ten. The only small caveat with these experiments
is the fact that they are based on artificial networks
that are specifically generated to pose difficult instances.
Our experiments show that the structure of the instance
matters in the sense that it impacts different algorithms
differently; potentially yielding different rankings on
different types of instances. The so-called pseudoflow
algorithm by Hochbaum [23] was later shown to slightly
outperform (low single-digit speedups on most instances)
the highest-label Push-Relabel algorithm; again based
on artificial instances [9].

Boykov and Kolmogorov [7] gave an algorithm
tailored specifically towards instances that appear in
computer vision; outperforming Push-Relabel on these
instances. It was later refined by Goldberg et al. [17].
Most related to our studies is the work by Halim et
al. [22] who developed a distributed flow algorithm for
MapReduce to compute flows on huge social networks.

2 Network Flows and Dinitz’s Algorithm

In this section we introduce the concept of network flow
and describe Dinitz’s algorithm [12].

Network Flows. A flow network is a directed
graph G = (V,E) with source and sink vertices s, t ∈ V ,
and a capacity function c : V ×V → N with c(u, v) = 0 if
(u, v) 6∈ E. A flow f on G is a function over vertex pairs
f : V × V → Z satisfying three constrains: (I) capacity
f(u, v) ≤ c(u, v) (II) asymmetry f(u, v) = −f(v, u) and
(III) conservation

∑
v∈V f(u, v) = 0 for u ∈ V \ {s, t}.

We call an edge (u, v) ∈ E saturated if f(u, v) = c(u, v).
Denote the value of a flow f as

∑
v∈V f(s, v). The

maximum flow problem, max-flow for short, is the
problem of finding a flow of maximum value.

Given a flow f in G, we define a network Gf called
the residual network. Gf has the same set of nodes and
contains the directed edge (u, v) if f(u, v) < c(u, v). The
capacity c′ of edges in Gf is given by the residual capacity
in the original network, i.e., c′(u, v) = c(u, v)− f(u, v).
An s-t path in Gf is called an augmenting path.

Dinitz’s Algorithm. One can solve max-flow by
iteratively increasing the flow on augmenting paths, yield-
ing the famous Ford-Fulkerson algorithm [16]. Dinitz’s
algorithm belongs to the family of augmenting path algo-
rithms [2]. In contrast to the Ford-Fulkerson algorithm,
Dinitz groups augmentations into rounds.

Let ds(v) be the distance from s to vertex v in Gf .
We define a subgraph of Gf called the layered network
by restricting the edge set to edges (u, v) of Gf for which
ds(u) + 1 = ds(v), i.e., edges that increase the distance
to the source. We call a flow of some network a blocking
flow if every s-t path contains at least one edge that is
saturated by this flow, i.e., there is no augmenting path.

Each round, Dinitz’s algorithm (see Algorithm 1)
augments a set of edges that constitutes a blocking flow
of the layered network. One can find such a set of
edges by iteratively augmenting s-t paths in the layered
network until source and sink become disconnected.
After augmenting a blocking flow, the distance between
the terminals in the residual network strictly increases.

Algorithm 1: Dinitz’s Algorithm.

1 while s-t path in residual network do
2 build layered network
3 while s-t path in layered network do
4 augment flow with s-t path

Asymptotic Running Time. To better under-
stand how our modifications impact the run time, we
briefly sketch how Dinitz running time of O(n2m) is
obtained. Since ds(t) increases each round, the number
of rounds is bounded by n− 1. Each round consists of
two stages: building the layered network and augment-
ing a blocking flow. To build the layered network, the
distances from the source to every vertex in the resid-
ual network are needed. The layered network can be
constructed in O(m) using a breadth-first search (BFS).
Asymptotically, however, this is dominated by the time
to find the blocking flow. Finding the paths of the
blocking flow is done with a repeated graph traversal,
usually using a depth-first search (DFS). The number
of found paths is bounded by m, because each found
path saturates at least one edge, removing it from the
layered network. A single DFS can be done in amortized
O(n) time as follows. Edges that are not part of an s-t
path in the layered network do not need to be looked
at more than once during one round. This is achieved
by remembering for each node which edges of the lay-
ered network were already found to have no remaining
path to the sink. Each subsequent DFS will start where
the last one left off. Thus, per round, the depth-first
searches have a combined search space of O(m), while
each individual search additionally visits the nodes on
one s-t path which is O(n).

Efficient Dinitz Implementation. Typical im-
plementations represent the graph by adding a reversed
twin for each edge. Furthermore, neither the residual
network nor the layered network are constructed ex-
plicitly. The residual network is implicitly defined by
the capacities and flow values on edges and the layered
network by a distance labeling. This conveniently elimi-
nates the need to modify the network structure during
the algorithm. When, e.g., saturating an edge during
augmentation, this implicitly removes the edge from the
residual network and layered network. However, with

this representation, the BFS and DFS are performed on
all edges and must check if edges are part of the residual
or layered network when they are encountered. The
bound for the BFS is unaffected and the amortization
argument for the DFS extends to edges that are not
part of the layered and/or residual network. During the
augmentation of the blocking flow, a counter into the
adjacency list of each vertex indicates which outgoing
edges were already processed this round.

Practical Performance. The practical perfor-
mance of Dinitz’s algorithm is far better than its worst-
case bound. Actually, O(n) as the length of the found
augmenting path is very unrealistic. In our experiments
ds(t) remains mostly below 10, implying that the num-
ber of rounds is significantly lower than n− 1. Also, the
number of found augmenting paths during one rounds is
far below O(m). In unweighted networks, for example,
a DFS saturates all edges of the found path resulting
in a bound of O(m) to find a blocking flow. In fact,
Dinitz’s algorithm has a tight upper bound of O(n2/3m)
in unweighted networks [14, 24].

3 Improving Dinitz on Scale-Free Networks

We adapt a common Dinitz implementation2 to exploit
the specific structure of scale-free networks. We achieve
a significant speedup by using the fact that a flow and
cut respectively often depend only on a small fraction
of the network. The following three modifications each
tackle a performance bottleneck.

Bidirectional Search. Recently, sublinear run-
ning time was shown for balanced bidirectional search
in a scale-free network model [5, 6]. We use a bidi-
rectional breadth-first-search to compute the distances
that define the layered network during each round of
Dinitz’s algorithm. A forward search is performed from
the source and a backward search from the sink, each
time advancing the search that incurs the lower cost to
advance one layer. A shortest s-t path is found when
a vertex is discovered that was already seen from the
other direction. Note that, for our purpose, the bidirec-
tional search has to finish the current layer when such
a vertex is discovered, because all shortest paths must
be found. Figure 1 visualizes the difference in explored
vertices between a normal and a bidirectional BFS. The
augmentations with DFS are restricted to the visited
part of the layered network, meaning the search space
of the BFS plus the next layer.

The distance labeling obtained by the bidirectional
BFS requires a change to the DFS. The purpose of the
layered network is to contain all edges on shortest s-t
paths. The DFS identifies edges (u, v) of the layered

2https://cp-algorithms.com/graph/dinic.html

https://cp-algorithms.com/graph/dinic.html

ts ts

Figure 1: Search space of a breadth-first search from a
source s to a sink t unidirectional (left) and bidirectional
(right). The blue area represents the vertices that are
explored, i.e., whose outgoing edges were scanned, by
the forward search and the green area the backward
search. In the gray area are vertices that are seen
during exploration of the last layer, but not yet explored.
Vertices in the intersection of the upcoming layers of the
backward and forward search are marked orange.

network by checking if they increase the distance from
the source, i.e., ds(u)+1 = ds(v). However, we no longer
obtain the distances from the source for all relevant
vertices. For vertices processed by the backward search,
distances to the sink dt(v) are known instead. To
resolve the problem, we allow edges that either increase
distance from the source or decrease distance to the
sink, i.e., ds(u) + 1 = ds(v) or dt(u) − 1 = dt(v). This
deviates from the definition of the layered network. But
since edges on shortest s-t paths must both, increase the
distance from the source and decrease the distance to
the sink, we do not miss any relevant edges.

Time Stamps. The bidirectional search reduces
the search space of the breadth-first search and depth-
first search substantially, potentially to sublinear. The
initialization, however, still requires linear time. It
includes the following. For the BFS, distances from
the source and to the sink must be initialized to infinity.
For the augmentations, one counter per node has to be
initialized to zero.

To avoid the linear initializations, we introduce time
stamps to indicate if a vertex was seen during the current
round. The initialization of distances and counters is
done lazily as vertices are discovered during the BFS.
Another detail of our implementation is that we use begin
and end indices into an array instead of a dynamically
growing queue for the BFS. We allocate this memory in
advance and override the data each round.

Skip Next Forward Layer. Recall that we iden-
tify edges of the layered network by checking if they
increase the distance from the source or decrease the
distance to the sink. Therefore the DFS proceeds along
edges outgoing from the last forward search layer inde-

pendent from the target vertex being seen only by the
forward search (gray in Figure 1) or also by the backward
search (orange in Figure 1). However, the former type of
vertex cannot be part of a shortest s-t path. By saving
the number of explored layers of the forward search we
can avoid the exploration of such vertices, thus limiting
the DFS to vertices colored blue, green, or orange in
Figure 1. With this optimization, the combined search
space during augmentation (lines 3,4 in Algorithm 1)
is almost limited to the search space of the BFS. The
only additional edges that are visited originate from the
intersection of the forward and backward search.

4 Experimental Evaluation

In this section, we investigate the performance of our al-
gorithm DinitzOPT 3. First, we compare it to established
approaches on real-world networks in Section 4.1. We
additionally examine the scaling behavior and how the
comparison is affected by problem size, i.e., is there an
asymptotic improvement over other algorithms? Then,
Section 4.2 evaluates to which extent the different op-
timizations contribute to better run times and search
space. In Section 4.3 we analyze the algorithms in a spe-
cific application (Gomory-Hu trees) and compare their
usability beyond the speed of the actual flow computa-
tion. To this end, we test three different approaches to
obtain a cut with the Push-Relabel algorithm. Lastly,
we extent our considerations to other types of networks
in Section 4.4 and discuss why the results on scale-free
networks differ from previous studies. Recall that bidi-
rectional search was found to perform particularly well
on heterogeneous networks.

4.1 Runtime Comparison. In this section we com-
pare our new approach to three existing algorithms:
Dinitz [12], Push-Relabel [18], and the Boykov-
Kolmogorov (BK) algorithm [7]. We modified their
respective implementations to support our experiments.
This also includes some minor performance-relevant
changes listed in the appendix (see Section A.1). The ex-
periments include two synthetic and eight real-world
networks. All networks are undirected and all but
visualize-us and actors are unweighted. Further de-
tails regarding the datasets can be found in Table 2.
We restrict our experiments in this section to the flow
computation only. That is, the measurements exclude
the time it takes to initialize intermediate data struc-
tures before and after flow computations as well as the
creation of the graph structure. For Push-Relabel we
only measure the computation of the preflow, which is
sufficient to determine the value of the flow/cut. Fig-

3The code will be available upon publication.

fb-pages-tvshow girg10000 soc-slashdot girg100000 soc-flickr visualize-us dogster as-skitter actors brain
Instance

10 2

10 1

100

101

102

103

104

Ti
m

e
[m

s]

Dinitz
DinitzOPT
PushRelabel
BK-Algorithm

low
high

Figure 2: Runtime comparison of flow computations. The 20 computed flows per instance are divided into low
and high terminal pairs. For low, the terminal degree is between 0.75 and 1.25 times the average degree. For high,
it is between 10 and 100 times the average degree. Pairs are chosen uniformly at random from all vertices with the
respective degree.

ure 2 shows the resulting run times. For this plot, the
terminals were chosen uniformly at random from the
set of vertices with degree close to the average (low) or
considerably higher degree (high).

One can see that Dinitz and Push-Relabel display
comparable times while BK is slightly slower on most
large instances. DinitzOPT consistently outperforms the
other algorithms by one to three orders of magnitude.
The variance is also higher for DinitzOPT with low pairs
approximately one order of magnitude faster on average
than high pairs. This is best seen in the girg100000

instance and suggests that DinitzOPT is able to better
exploit easy problem instances. For all other algorithms
the effect of the terminal degree on the run time is barely
noticeable. Another observation is that all algorithms
display drastically lower run times than their respective
worst-case bounds would suggest.

The times in our experiments are close to what
one might expect from linear algorithms. For example,
Dinitz computes a flow on the as-skitter instance in
one second. Considering the tight O(mn2/3) bound in
unweighted networks and assuming the throughput per
second to be around 108 — which is a generous guess
for graph algorithms — would result in an estimate
of 30 minutes per flow. In this context, there are
also experimental results that appear to conflict with
our results. Earlier studies found Dinitz to be slower
than Push-Relabel and both algorithms clearly super-
linear on a series of synthetic instances [1]. However,
these synthetic instances exhibit specifically crafted hard
structures that are placed between designated source and
sink vertices. These instances thus present substantially
more challenging flow problems. We assume the low
times in our experiments to be caused by the scale-free
network structure and, to a lesser degree, the simplicity

of the problem instances when choosing a random pair of
nodes as terminals. Furthermore, most of our instances
are unweighted and undirected.

Effect of the Terminal Degree. In the following,
we discuss the effect of terminal degree and structure
of the cut on the run time of Dinitz and DinitzOPT.
Note that the terminal degree is an upper bound on
the size of the cut in unweighted networks. Moreover,
the terminal degree in our experiments is based on the
average degree, which is assumed to be constant in
many real-world networks [3]. Thus, the O(mC) bound
for augmenting path based algorithms, with C being
the size of the cut, implies not only a linear bound
for the eight unweighted networks in our experiments,
but would also explain faster low pairs. Surprisingly,
DinitzOPT exploits low terminal degrees much more
than Dinitz. Another explanation for faster low pairs
is that many cuts are close around one terminal, which
is consistent with previous observations about cuts in
scale-free networks [29, 34]. Moreover, Dinitz tends to
perform well when the source side of the cut is small [30].
Although this does not fully explain why DinitzOPT
is more sensitive to the terminal degree, we observe
in Section 4.3 that Dinitz slows down massively when
the source degree is high, even with low sink degree.
Since DinitzOPT always advances the side with smaller
volume during bidirectional search it does not matter
which terminal has the higher degree.

Scaling. We perform additional experiments to an-
alyze the scaling behavior of the algorithms. Since real
networks are scarce and fixed in size, we generate syn-
thetic networks to gradually increase the size while keep-
ing the relevant structural properties fixed. Geometric
Inhomogeneous Random Graphs (GIRGs) [8], a gen-
eralization of Hyperbolic Random Graphs [25], are a

103 104 105 106

Number of Nodes

10 2

10 1

100

101

102

103
Ti

m
e

[m
s]

Dinitz
DinitzOPT
PushRelabel
BK-Algorithm

Figure 3: Runtime scaling of flow algorithms. The plot
shows the average time per flow over multiple GIRGs
and terminal pairs. Two linear and a quadratic function
were added for reference.

scale-free generative network model that captures many
properties of real-world networks. The efficient gener-
ator [4] allows us to benchmark our algorithms on dif-
ferently sized networks with similar structure. Figure 3
and Figure 4 show the results.

We measure the run time over a series of GIRGs with
the number of nodes growing exponentially from 1000 to
1 024 000 with 10 iterations each. In each iteration, we
sample a new random graph with average degree 10,
power-law exponent 2.8, dimension 1, and temperature 0.
The run time for each algorithm is then averaged over
10 uniform random pairs of vertices with degree between
10 and 20. Standard deviation is shown as error bars.
The lower half of the symmetric error bars seems longer
due to the log-axis. We add five functions in black
as reference: a quadratic and two linear functions in
Figure 3 and n0.88 and n0.7 in Figure 4.

Dinitz, Push-Relabel and BK show a near-linear
running time. Compared to the linear functions in
Figure 3, Dinitz and Push-Relabel seem to scale slightly
worse than linear, while DinitzOPT scales better than
linear. In a construction with super-sink and super-
source, a similar scaling was observed for Push-Relabel
on the Yahoo Instant Messenger graph [27]. We added
the function n0.88 to Figure 4, because it is the theoretical
upper bound for the bidirectional search on hyperbolic
random graphs with the chosen power-law exponent [5].
Also it appears to be a good estimate for Dinitz running
time with just the first optimization of bidirectional
search (DinitzBi). It was previously observed that
bidirectional search on hyperbolic random graphs with
the chosen parameters usually scales like n0.7 [5], which
fits the run time of DinitzOPT in our experiments.

Finally, the standard deviation and shape of the

103 104 105 106

Number of Nodes

10 2

10 1

100

101

102

103

Ti
m

e
[m

s]

Dinitz
DinitzBi
DinitzStamp
DinitzOPT

Figure 4: Scaling of Dinitz variants. This plot differs
from Figure 3 only in the set of displayed algorithms.

curve confirms our claim that the run time of DinitzOPT
is more sensitive to the graph structure. In fact,
comparison with our intermediate versions of Dinitz
shows that, while bidirectional search improved run time
the most, each successive optimization increased the
sensitivity to the graph structure.

4.2 Optimizations in Detail. In this section we
evaluate the performance impact of the changes discussed
in Section 3. We present a search space analysis and
in-depth profiler results4. In addition to the unmodified
Dinitz, we consider four incrementally more optimized
versions of the algorithm: DinitzBi, DinitzReset, Dinitz-
Stamp, and DinitzOPT. Each algorithm corresponds to
adding one optimization to the previous ones.

Experimental Setup. All optimizations can be
applied in any order and combination. Instead of
considering all combinations, we individually add them
in a specific order, such that the next change always
tackles a performance bottleneck. In fact, additional
benchmarks reveal that the current optimization speeds
up the computation more than enabling all other
remaining changes together.

The experiments and benchmarks in this section
consider 1000 uniform random terminal pairs close to
the average degree on the as-skitter instance. The
average distance between source and sink in the initial
network is 4.2. The average number of rounds until a
maximum flow is found is 4.8, where the last round runs
only the BFS to verify that no augmenting path exists.
Only counting rounds before the last round, 2.9 units of
flow are found on average per round. Out of the 1000
cuts, 882 have value equal to the degree of the smaller
terminal. Table 1 shows profiler results and search space
for Dinitz and the optimized versions of the algorithm.

4We used the Intel VTune profiler.

Table 1: Total run times and search space of visited edges for the five intermediate versions of our Dinitz
implementation during the computation of 1000 flows in as-skitter. Terminals are chosen like low pairs in
Figure 2. The first seven columns show times in seconds accumulated over all flow computations. BUILD is the
construction of the residual network that is reused for all flow computations, RESET means clearing flow on edges
between computations, INIT includes initialization of distances and counters per round, BFS and DFS refer to
the respective subroutines, FLOW is the summed time during flow computations (sum of BFS, DFS, INIT), and
TOTAL is the run time of the whole application including reading the graph from file. The last three columns
contain the search space relative to the number of edges in the graph in percent. Search space columns for BFS
and DFS are per round, while the FLOW column lists the search space per flow, e.g., Dinitz visits on average
65.66% of all edges per BFS and every edge is visited about 5.58 times on overage in one flow computation.

MaxFlow Search Space [%]

BUILD RESET INIT BFS DFS FLOW TOTAL BFS DFS FLOW

Dinitz 0.50 56.79 14.87 405.46 426.80 847.13 904.85 65.66 63.64 558.04
DinitzBi 0.55 58.15 21.02 2.78 8.94 32.73 91.82 0.26 1.87 8.38
DinitzReset 0.50 — 20.73 2.47 8.01 31.20 32.06 0.26 1.87 8.38
DinitzStamp 0.55 — — 2.51 10.30 12.81 13.72 0.26 1.87 8.38
DinitzOPT 0.55 — — 2.40 1.06 3.46 4.22 0.26 0.20 2.03

Additionally, Figure 5 compares the search space with
and without bidirectional search.

Bidirectional Search. Dinitz takes 15 minutes
to compute the 1000 flows and the search space per
flow is more than five times the number of edges on
average. Almost all of that time is spent in BFS or DFS.
The bidirectional Dinitz reduces the flow-time from 14
minutes to 30 seconds, an improvement by a factor of 25.

The search space is reduced by factors of 252 for BFS,
34 for DFS, and 67 per flow. It is interesting to note,
that the search space of BFS during the last round of
each flow changes even more. In this round the BFS will
find no s-t path. The bidirectional search visits 39 edges
on average, while the normal breadth-fist-search visits
44% of the graph. This not only emphasizes that the
cuts are close around one terminal, but also shows that
the bidirectional search heavily exploits this structure.

The run time does not fully reflect this drastic
reduction in search space, because DFS and BFS no
longer dominate the flow computation. The initialization
time per round increased by 50%, which can be explained
by the additional distance label per node to store the
distance to the sink (now 3 ints instead of 2). Although
the initialization is a simple linear operation in the
number of nodes, it takes twice as long as BFS and DFS
combined. Actually, the performance of initialization
heavily depends on the data layout. We decided to
store node data interleaved instead of in separate buffers.
This data layout reduces memory loads and facilitates
cache locality because all data for one node is fetched
at once. On the other hand, the choice hinders efficient
initialization with SIMD instructions.

The real bottleneck, however, is to reset the flow
values between computations. RESET takes almost a
full minute which is twice as long as computing the flows.

Reset flow between computations. Between
flow computations, the residual capacity of all edges
has to be reset before another flow can be found. After
changing the BFS to a bidirectional search, resetting
the flow on all edges between computations dominates
the run time. To reduce the time of our benchmarks,
and to make the code more efficient in situations where
multiple flows are computed in the same network, we
address this bottleneck. Instead of explicitly resetting
flow values for all edges, we remember the edges that
contain flow and reset only those. The number of edges
with positive flow is typically very small in comparison
to the whole network. Additionally, edges that contain
flow are visited during the algorithm anyway. By storing
changed edges during DFS, reset flow takes at most as
long as augmenting the flow in the first place. In fact,
the time to reset flow is so low, it is not detected by
the profiler. This change is not mentioned in Section 3
because it does not speed up a single flow computation.

This change completely eliminates the time for
RESET, while other operations are not affected. The
total time to compute all 1000 flows is thus three times
lower with the flow computation making up for almost
all spent time. The slowest part of the flow computation
itself is still the initialization with 21 of the 31 seconds.

Time Stamps. The distance labels and counters
per node are initialized each round. Using time stamps
eliminates the need for initialization completely while
adding a small overhead to DFS. The flow computation

ALL

BFS

DFS

UNI-directional Search
Forward Search
Next Forward Layer
Intersection
Next Backward Layer
Backward Seach

ALL

BFS

DFS

BI-directional Search

7673553

278067

173114

88303699

70055477

38282210

Figure 5: Average number of edges visited per flow
computation for the terminal pairs used in Table 1,
partitioned as in Figure 1. Forward/Backward Search
represent the edges explored by the respective search.
Next Forward/Backward Layer denote the edges that
would be explored in the next step of the BFS. Edges in
the Intersection originate from vertices in both upcoming
BFS-layers. The BFS and DFS bars show the edges that
are actually visited by the algorithm. The shaded area
indicates the edges skipped by our last optimization
(from DinitzStamp to DinitzOPT in Table 1) and is
excluded in the sum on the right.

gets 2.4 times faster with 13 seconds instead of 31.
After introducing the time stamps, the DFS is the new
bottleneck and makes up for about 80% of flow time.

Skip Next Forward Layer. As discussed in Sec-
tion 3, this change prevents the DFS from visiting ver-
tices beyond the last layer of the forward search that
are not also seen by the backwards search. In Figure 5
the skipped part is shaded. This optimization reduces
the average search space for DFS during one round from
almost 2% of all edges to just 0.2%. The improvement
in search space is reflected by the profiler results. DFS
is sped up from 10 seconds to just one second, which is
faster than the BFS. The resulting time to compute all
1000 flows is 3.46 seconds, which is only 7 times slower
than building the adjacency list in the beginning. In
total, the time to compute the flows with the optimized
Dinitz is 245 times faster than the unmodified Dinitz.

Misc. Since the BFS is the slowest part of the final
algorithm, we add another low-level optimization for
undirected networks. Line-by-line load analysis shows
that more time is spent during the backward search than
the forward search. The backward search from the sink
has to consider incoming instead of outgoing edges but
our implementation only maintains an adjacency list of
outgoing edges. However, for each incoming edge there
is an outgoing twin edge with a reference to the incoming
edge. This reference is used to determine the residual
capacity of the incoming edge to check if the incoming
edge is part of the residual network.

We can save a memory lookup in the hot code of
the algorithm, by determining the residual capacity of
the incoming edge without loading it into memory. The
residual capacity of an edge is obtained by subtracting
the flow from the capacity. In undirected networks the
capacity of an edge is the same as that of its twin.
Additionally, consistency of flow links the flow of both
edges. Thus we can compute the residual capacity of
incoming edges by looking only at the outgoing edges.
The change improves performance by 20 to 40 percent
in undirected networks.

Note that a similar optimization is possible for
directed networks: one can cache the capacity of the
back edge in each twin. This concept is known and was
applied in previous flow implementations5, however we
only use the optimization for undirected networks.

4.3 Gomory-Hu Trees. In the last sections we
observed that heterogeneous network structure yields
easy flow problems that can be solved significantly
faster than the construction of the adjacency list.
This performance becomes important in applications
that require multiple flows to be found in the same
network. Gomory-Hu trees [20] fit this setting and have
applications in graph clustering [15]. A Gomory-Hu tree
(GH-tree) of a network is a weighted tree on the same
set of vertices that preserves minimum cuts, i.e., each
minimum cut between any two vertices s and t in the
tree is also a minimum s-t cut in the original network.
Thus, they compactly represent s-t cuts for all vertex
pairs of a graph. For the construction of a GH-tree,
there exists a very simple algorithm by Gusfield [21] that
requires n− 1 cut-oracle calls in the original graph.

In this section we evaluate the performance of max-
flow algorithms for the construction of a Gomory-Hu tree
in heterogeneous networks. We will see that the terminal
pairs required for Gusfield’s algorithm yield easier flow
problems than uniform random pairs. DinitzOPT is able
to make use of this easy structure to achieve surprisingly
low run times, so is Push-Relabel when only considering
the computation of the flow value. However, we find that
the need to extract the source side of the cut hinders
Push-Relabel to benefit from this performance.

Flow Computation on Gusfield Pairs. Figure 6
shows the same networks and algorithms as in Figure 2
but with terminal pairs sampled out of the n − 1 flow
computations needed by Gusfield’s algorithm. The run
times for all algorithms except the BK-Algorithm have
high variance and are spread over up to four orders of
magnitude for the larger instances. Although results for
different terminal pairs vary greatly, BK seems to be the

5https://github.com/Zagrosss/maxflow

https://github.com/Zagrosss/maxflow

fb-pages-tvshow girg10000 soc-slashdot girg100000 soc-flickr visualize-us dogster as-skitter actors brain
Instance

10 3

10 2

10 1

100

101

102

103

Ti
m

e
[m

s]

Dinitz
DinitzOPT
PushRelabel
BK-Algorithm

gh

Figure 6: Runtime comparison of flow computations. The 10 terminal pairs per instance are uniformly chosen out
of the n− 1 cuts required by Gusfield’s algorithm.

slowest algorithm followed by Dinitz. DinitzOPT and
PR have comparable but significantly lower run times
than the other algorithms. For example, 6 out of the
10 gh pairs measured for the soc-slashdot instance are
solved by DinitzOPT and Push-Relabel faster than one
microsecond which is the precision of our measurements.
This suggests, that these algorithms are more sensitive
to the varying difficulty of the flow computations for gh
pairs. Our speedup over the Push-Relabel algorithm on
gh pairs is not as pronounced as for the random pairs in
Section 4.1. On the dogster instance PR is even faster
than DinitzOPT.

To further investigate why gh pairs are this easy to
solve, we analyze a complete run of all pairs needed by
Gusfield’s algorithm on the soc-slashdot instance. In
Gusfield’s algorithm each vertex is the source once, thus
the average degree of the source is the average degree
of the graph (10.24). In contrast, the average degree
of the sink is ca. 1500, which hinders the benefit of
bidirectional search. Uni-directional Dinitz slows down
by a factor of 15 when computing the flows with switched
terminals. The average distance between two vertices
in the original network is 4.16, but interestingly here
the average distance from source to sink is 1.78. Out of
the 70 k flow computations, 56 k are trivial cuts around
one terminal. Computing a flow for a single s-t pair
takes 2.76 rounds on average with the last round only to
confirm that the flow is optimal. Before the last round
on average 5.56 flow is being found per round.

DinitzOPT and Push-Relabel are both extremely
fast on gh pairs. DinitzOPT takes 2.5 seconds to
compute all n = 70 k required flows, while PR needs
5 seconds. To obtain the 5 seconds for PR we exclusively
measured the preflow computation, but PR is not
limited by the time to compute the preflow. Actually,
the entire computation of the Gomory-Hu tree on the
soc-slashdot instance takes 12 minutes with Push-

Relabel and 2.6 seconds with DinitzOPT. Instead of
being caused by the Gusfield logic — which actually
makes up less than 3% of the run time when using
DinitzOPT as oracle — the bottleneck when using PR as
a cut oracle is not the flow computation, but initialization
and extracting the cut. The drastic difference in run
time is in part due to the optimizations we added to
DinitzOPT to reduce time between flow computations,
while the Push-Relabel implementation recreates the
auxiliary data structures, except the adjacency list,
before each flow. However, in the following we will see
that a large amount of Push-Relabels run time is actually
necessary to extract the cuts for Gusfield’s algorithm.

Measuring Gusfield’s Algorithm. In Gusfield’s
algorithm we have to iterate over all vertices in the
source-side of the cut. Extracting these with the Push-
Relabel algorithm is slower than with Dinitz. We outline
the three approaches to extract the cut with Push-
Relabel and show that each has major drawbacks.

The PR algorithm is executed in two stages. The
first stage computes a preflow and the second stage
converts the preflow into a flow. Often, computing
a preflow is sufficient, because one obtains the value
of the max-flow/min-cut and can determine a cut by
finding all sink-reaching vertices in the residual network.
Since Gusfield requires the source-side of the cut, the
complement of the found set of vertices can be used.
This approach is computationally expensive, because of
the high sink degree.

Given a max-flow, one partition of a min-cut can
also be identified by reachability from the source in the
residual network. Since the source usually has a smaller
degree during Gusfield’s algorithm, the source-side of
the cut is small. This approach is efficient and can be
used for Dinitz. However, for PR it requires the preflow
to be converted into a flow. Asymptotically, the first
stage (preflow) dominates the second (convert) stage,

Convert

T-Side

Swap

initialize
preflow
convert
find cut

736s

1062s

3333s

Figure 7: Distribution of spent time during Gusfield’s
algorithm on the soc-slashdot instance with three
approaches to use the Push-Relabel algorithm as a min-
cut oracle. We split the measurements into initialization,
preflow, conversion, and cut identification. The time
overhead for measurement, logging, and the logic of
Gusfield’s algorithm is included in the numbers on the
right but excluded in the bars.

but in practice this is not always the case. In the paper
that proposed the current PR implementation [10] the
authors experiment with different implementations of
the conversion and find a method whose ”running time
[. . .] is a small fraction of the running time of the first
stage”. Other works find that 95% of time is spent in
stage one [11]. Our experiments in Section 4.1 are in line
with these findings and thus only the time for the first
stage of PR is shown there. However, Gusfield pairs pose
easily solvable flow instances due to the low distance
between source and sink. Thus, the simplicity causes
the second stage of PR to dominate the first one.

The drawbacks of the two previous approaches
can be avoided in undirected networks by computing
the preflow from sink to source. Without preflow-
conversion, a cut can then be extracted by determining
the vertices that can reach the original source in the
residual network. The drawback of this method is that
the preflow computation slows down massively.

In short, the three approaches to extract the source-
side of a min-cut with the Push-Relabel algorithm are:

Convert. Compute a preflow from the source, convert
it into a flow, then run BFS from the source.

T-Side. Compute a preflow from the source, run BFS
backwards from the sink, then take complement.

Swap. Compute a preflow from sink to source, then run
BFS backwards from the source.

Figure 7 shows the distribution of run time using
these approaches to run Gusfields algorithm on the
soc-slashdot instance. The convert approach is the
fastest with just above 12 minutes followed by T-side
with 18 minutes and swap with almost an hour. The
initialization time provides a reference, because it is

approximately 7 minutes for all approaches. We note
here that the initialization for PR creates some Boost
related data and performs an operation linear in the
number of edges.

We see that the flow computation is actually really
fast for convert. It takes only about 5 seconds of these
12 minutes. The initialization dominates this time and
the conversion is also far slower than the flow itself.

Surprisingly, the flow takes twice as long for T-side
than for convert, although only the way to identify the
cut was changed. This is, because we find other min-
cuts and thus obtain a different GH-tree while processing
different terminal pairs. We also implemented the T-
side approach for DinitzOPT to verify the correctness
of the computed cuts and trees. Interestingly running
this takes 4.5 minutes which is a factor 100 slower than
identifying the cut via the source-side for DinitzOPT.
Similarly for PR, we observe that the cut identification,
which was almost unnoticeable for convert, makes up
most of the computation time for T-side.

Lastly, the swap approach takes more than 4 times as
long as the convert approach. As the degree of the sink is
significantly larger than the source, the flow computation
slows down massively. It goes from 5 seconds to 47
minutes. Recall that the unmodified Dinitz slows down
by a factor of 15 when switching source and sink.

In conclusion, all three methods perform significantly
worse than DinitzOPT, not because PR flow computa-
tions are slow, but because the initialization and cut
identification already take orders of magnitude longer
than the complete process with DinitzOPT. Both meth-
ods to avoid the four minutes run time of stage two of
the Push-Relabel algorithm imply even worse perfor-
mance cost; either due to a breadth-first search that has
to traverse almost the whole graph (T-side) or due to
significantly slower preflow computations (Swap).

4.4 Other Types of Networks. After evaluating
the performance on heterogeneous networks we extend
our experiments to networks of different structures. We
consider the following networks: an Erdős-Rényi ran-
dom graph [13] (er100000), an Erdős-Rényi random
graph with uniform random weights in [500, 10000]
(er100000 weighted), an Erdős-Rényi random graph
with super terminals (er100000 super), a generated
layered network [1] (layered10000), the road network
of Pennsylvania (roadNet-PA), and a liver CT scan as
a regular 6-connected grid (liver.n6c100). Further de-
tails regarding the datasets can be found in Section A.2.

Figure 8 shows the performance of the flow algo-
rithms on these instances. The performance on the
Erdős-Rényi graphs is similar to our results for het-
erogeneous networks; the BK-algorithm is the slowest,

er100000 er100000_weighted er100000_super layered10000 roadNet-PA liver.n6c100
Instance

10 1

100

101

102

103

104

105

Ti
m

e
[m

s]

Dinitz
DinitzOPT
PushRelabel
BK-Algorithm

Figure 8: Run time of max-flow computations for various networks. Each point corresponds to one s-t flow. For
each instance we computed 50 s-t flows. The instances er100000 super, layered10000, and liver.n6c100 have
designated terminals. For er100000, er100000 weighted, and roadNet-PA terminals are chosen uniformly at
random. Unlike the experiments in Section 4.1, the algorithms rebuild their internal data structures including
the adjacency list before each flow computation. This was necessary to prevent the BK-algorithm from reusing
search-trees, which makes the instances with given terminal pairs trivial after the first run.

followed by Dinitz, Push-Relabel, and DinitzOPT in this
order. Note that a running time close to O(

√
n) was

shown for bidirectional search on Erdős-Rényi random
graphs [6]. Neither weights nor higher-degree terminals
change how the algorithms compare among each other.

The layered network, which is specifically con-
structed to produce a computationally difficult flow
instance [1], is indeed more difficult than the others.
In the layered network, Push-Relabel is at least five
times faster than Dinitz. DinitzOPT is 10-20% slower
than Dinitz. After all, our optimizations trade a small
overhead during flow computation for the possibility of
sublinear running time on particularly easy instances.

For the road network, the choice of the algorithm
does not matter as much as for the other instances.
The choice of the terminal pair, however, affects the
performance immensely. With a diameter of almost 800
and a very homogeneous degree distribution, the uniform
random choice of terminal pairs produces problems of
varying difficulty. Dinitz, BK, and DinitzOPT capitalize
on the easier pairs, while Push-Relabel shows less
variance between pairs.

Lastly, the liver scan produces different results than
previous instances. The BK-algorithm was specifically
designed for this kind of network structure and applica-
tion. Unsurprisingly, the BK-algorithm performs best,
followed by Push-Relabel, Dinitz, and DinitzOPT.

5 Conclusion

We presented a modified version of Dinitz’s algorithm
with greatly improved run time and search space on real-
world and generated scale-free networks. The scaling
behavior appears to be sublinear, which matches previous

theoretical and empirical observations about the running
time of balanced bidirectional search in scale-free random
networks. While these theoretical bounds apply during
the first round of our algorithm, it is still unknown
whether the analysis can be extended to account for
the changes in the residual network. Our experiments,
however, indicate that the search space remains small in
subsequent rounds.

We observe that that the low diameter and heteroge-
neous degree distribution leads to small and unbalanced
cuts that our algorithm finds very efficiently. The flow
computations required to compute a Gomory-Hu tree
are even easier, making usually insignificant parts of
the tested algorithms be a bottleneck. For example, the
preflow conversion leads to Push-Relabel being greatly
outperformed by our algorithm in this setting.

Our results on other types of instances show that
their structural properties play a huge role when com-
paring flow algorithms. It is not surprising that
our algorithm is outperformed by the BK-algorithm,
which was specifically designed for vision problems, on
liver.n6c100. Moreover, the experiments on the arti-
ficial layered1000 instance indicate that Push-Relabel
is more robust regarding hard instances. On scale-free
networks, however, we drastically improve performance
over existing algorithms.

References

[1] Ravindra K. Ahuja, Murali Kodialam, Ajay K. Mishra,
and James B. Orlin. Computational investigations
of maximum flow algorithms. European Journal of
Operational Research, 97(3):509–542, 1997. doi:10.

1016/S0377-2217(96)00269-X.
[2] Ravindra K. Ahuja, Thomas L. Magnanti, and James B.

Orlin. Network flows: Theory, algorithms and applica-
tions. Prentice-Hall, Inc., 1993.

[3] Albert-László Barabási. Network science. Cambridge
university press, 2016.

[4] Thomas Bläsius, Tobias Friedrich, Maximilian Katz-
mann, Ulrich Meyer, Manuel Penschuck, and Christo-
pher Weyand. Efficiently Generating Geometric In-
homogeneous and Hyperbolic Random Graphs. In
27th Annual European Symposium on Algorithms (ESA
2019), volume 144 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 21:1–21:14. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019. doi:

10.4230/LIPIcs.ESA.2019.21.
[5] Thomas Blsius, Cedric Freiberger, Tobias Friedrich,

Maximilian Katzmann, Felix Montenegro-Retana, and
Marianne Thieffry. Efficient Shortest Paths in Scale-
Free Networks with Underlying Hyperbolic Geome-
try. In 45th International Colloquium on Automata,
Languages, and Programming (ICALP 2018), volume
107 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 20:1–20:14. Schloss DagstuhlLeibniz-
Zentrum fuer Informatik, 2018. doi:10.4230/LIPIcs.

ICALP.2018.20.
[6] Michele Borassi and Emanuele Natale. KADABRA is

an ADaptive Algorithm for Betweenness via Random
Approximation. In 24th Annual European Symposium
on Algorithms (ESA 2016), volume 57 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pages
20:1–20:18. Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik, 2016. doi:10.4230/LIPIcs.ESA.2016.20.

[7] Y. Boykov and V. Kolmogorov. An experimental
comparison of min-cut/max- flow algorithms for energy
minimization in vision. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 26(9):1124–1137,
2004. doi:10.1109/TPAMI.2004.60.

[8] Karl Bringmann, Ralph Keusch, and Johannes Lengler.
Geometric inhomogeneous random graphs. Theoretical
Computer Science, 760:35–54, 2019. doi:10.1016/j.

tcs.2018.08.014.
[9] Bala G. Chandran and Dorit S. Hochbaum. A com-

putational study of the pseudoflow and push-relabel
algorithms for the maximum flow problem. Operations
Research, 57(2):358–376, 2009.

[10] B. V. Cherkassky and A. V. Goldberg. On imple-
menting the push—relabel method for the maximum
flow problem. Algorithmica, 19(4):390–410, 1997. doi:

10.1007/pl00009180.
[11] U. Derigs and W. Meier. Implementing Goldberg’s

max-flow-algorithm A computational investigation.

Zeitschrift fr Operations Research, 33(6):383–403, 1989.
doi:10.1007/BF01415937.

[12] Yefim Dinitz. Algorithm for Solution of a Problem of
Maximum Flow in Networks with Power Estimation.
Soviet Mathematics Doklady, 11:1277–1280, 1970.

[13] Paul Erdős and Alfréd Rényi. On random graphs,
i. Publicationes Mathematicae (Debrecen), 6:290–297,
1959.

[14] Shimon Even and R. Endre Tarjan. Network flow
and testing graph connectivity. SIAM Journal on
Computing, 4(4):507–518, 1975. doi:10.1137/0204043.

[15] Gary William Flake, Robert E. Tarjan, and Kostas
Tsioutsiouliklis. Graph clustering and minimum cut
trees. Internet Mathematics, 1(4):385–408, 2004. doi:

10.1080/15427951.2004.10129093.
[16] L. R. Ford and D. R. Fulkerson. Maximal flow through

a network. Canadian Journal of Mathematics, 8:399404,
1956. doi:10.4153/CJM-1956-045-5.

[17] Andrew V. Goldberg, Sagi Hed, Haim Kaplan, Robert E.
Tarjan, and Renato F. Werneck. Maximum Flows by
Incremental Breadth-First Search. In 19th Annual Eu-
ropean Symposium on Algorithms (ESA 2011), Lecture
Notes in Computer Science, pages 457–468. Springer,
2011. doi:10.1007/978-3-642-23719-5_39.

[18] Andrew V. Goldberg and Robert E. Tarjan. A new
approach to the maximum-flow problem. Journal of
the ACM, 35(4):921–940, 1988. doi:10.1145/48014.

61051.
[19] Andrew V. Goldberg and Robert E. Tarjan. Efficient

maximum flow algorithms. Commun. ACM, 57(8):82–
89, 2014. doi:10.1145/2628036.

[20] R. E. Gomory and T. C. Hu. Multi-Terminal Network
Flows. Journal of the Society for Industrial and Applied
Mathematics, 9(4):551–570, 1961.

[21] Dan Gusfield. Very simple methods for all pairs network
flow analysis. SIAM Journal on Computing, 19(1):143–
155, 1990. doi:10.1137/0219009.

[22] Felix Halim, Roland H.C. Yap, and Yongzheng Wu.
A MapReduce-Based Maximum-Flow Algorithm for
Large Small-World Network Graphs. In 2011 31st
International Conference on Distributed Computing
Systems, pages 192–202, 2011. ISSN: 1063-6927. doi:

10.1109/ICDCS.2011.62.
[23] Dorit S. Hochbaum. The pseudoflow algorithm: A new

algorithm for the maximum-flow problem. Operations
Research, 56(4):992–1009, aug 2008. doi:10.1287/

opre.1080.0524.
[24] Alexander V. Karzanov. On finding a maximum flow in

a network with special structure and some applications.
Matematicheskie Voprosy Upravleniya Proizvodstvom,
5:81–94, 1973.

[25] Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim
Kitsak, Amin Vahdat, and Marián Boguñá. Hyperbolic
geometry of complex networks. Physical Review E,
82(3), 2010. doi:10.1103/physreve.82.036106.

[26] Jrme Kunegis. KONECT – The Koblenz Network
Collection. In Proc. Int. Conf. on World Wide Web
Companion, pages 1343–1350, 2013. URL: http://

https://doi.org/10.1016/S0377-2217(96)00269-X
https://doi.org/10.1016/S0377-2217(96)00269-X
https://doi.org/10.4230/LIPIcs.ESA.2019.21
https://doi.org/10.4230/LIPIcs.ESA.2019.21
https://doi.org/10.4230/LIPIcs.ICALP.2018.20
https://doi.org/10.4230/LIPIcs.ICALP.2018.20
https://doi.org/10.4230/LIPIcs.ESA.2016.20
https://doi.org/10.1109/TPAMI.2004.60
https://doi.org/10.1016/j.tcs.2018.08.014
https://doi.org/10.1016/j.tcs.2018.08.014
https://doi.org/10.1007/pl00009180
https://doi.org/10.1007/pl00009180
https://doi.org/10.1007/BF01415937
https://doi.org/10.1137/0204043
https://doi.org/10.1080/15427951.2004.10129093
https://doi.org/10.1080/15427951.2004.10129093
https://doi.org/10.4153/CJM-1956-045-5
https://doi.org/10.1007/978-3-642-23719-5_39
https://doi.org/10.1145/48014.61051
https://doi.org/10.1145/48014.61051
https://doi.org/10.1145/2628036
https://doi.org/10.1137/0219009
https://doi.org/10.1109/ICDCS.2011.62
https://doi.org/10.1109/ICDCS.2011.62
https://doi.org/10.1287/opre.1080.0524
https://doi.org/10.1287/opre.1080.0524
https://doi.org/10.1103/physreve.82.036106
http://konect.cc/
http://konect.cc/

konect.cc/.
[27] Kevin Lang. Finding good nearly balanced cuts in

power law graphs. Technical Report YRL-2004-036,
Yahoo! Research Labs, 2004.

[28] Jure Leskovec and Andrej Krevl. SNAP Datasets:
Stanford large network dataset collection. http://snap.
stanford.edu/data, 2014.

[29] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and
Michael W. Mahoney. Community structure in large
networks: Natural cluster sizes and the absence of large
well-defined clusters. Internet Mathematics, 6(1):29–
123, 2009. doi:10.1080/15427951.2009.10129177.

[30] Lorenzo Orecchia and Zeyuan Allen Zhu. Flow-based
algorithms for local graph clustering. In Proceedings of
the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms. Society for Industrial and Applied
Mathematics, 2014. doi:10.1137/1.9781611973402.

94.
[31] Ryan A. Rossi and Nesreen K. Ahmed. The net-

work data repository with interactive graph analyt-
ics and visualization. In AAAI, 2015. URL: http:

//networkrepository.com.
[32] Satu Elisa Schaeffer. Graph clustering. Computer

Science Review, 1(1):27–64, 2007. doi:10.1016/j.

cosrev.2007.05.001.
[33] Boris Schäling. The boost C++ libraries. Boris Schäling,

2011. URL: https://theboostcpplibraries.com/.
[34] S.-W. Son, H. Jeong, and J. D. Noh. Random field ising

model and community structure in complex networks.
The European Physical Journal B, 50(3):431–437, 2006.
doi:10.1140/epjb/e2006-00155-4.

[35] Tanmay Verma and Dhruv Batra. MaxFlow revisited:
An empirical comparison of maxflow algorithms for
dense vision problems. In Procedings of the British
Machine Vision Conference 2012. British Machine
Vision Association, 2012. doi:10.5244/c.26.61.

http://konect.cc/
http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://doi.org/10.1080/15427951.2009.10129177
https://doi.org/10.1137/1.9781611973402.94
https://doi.org/10.1137/1.9781611973402.94
http://networkrepository.com
http://networkrepository.com
https://doi.org/10.1016/j.cosrev.2007.05.001
https://doi.org/10.1016/j.cosrev.2007.05.001
https://theboostcpplibraries.com/
https://doi.org/10.1140/epjb/e2006-00155-4
https://doi.org/10.5244/c.26.61

A Appendix

A.1 Implementation Details Experiments were
done on a Dell XPS 15 9570 Laptop with an Intel Core
i7-8750H CPU.

BK-Algorithm. As a BK implementation we use
the one that was written for the original paper [7]
provided on the web page of Vladimir Kolmogorov6.
For each s-t flow we add edges with huge capacity
between s, t and the virtual terminals. After the flow is
computed, we remove these edges again. This O(1) work
is included in time measurements. We apply the reuse
trees feature and mark the changed terminals between
flow computations accordingly. Internal memory is
allocated on network construction and not per flow.
There is a BK implementation available in Boost7.
We found the original one easier to use, because its
interface is tailored towards multiple flow computations
and provides easy and efficient access to the found cut.

Push-Relabel The original implementation, used
for example in [35], is no longer available8. We use the
C++ version of the original implementation provided
in Boost9. The Boost version is mostly the same code
(up to same variable names) ported to C++, but is data
structure agnostic. Therefore, we had to reimplemented
the linearised adjacency list data structure used in the
original implementation.

Dinitz and DinitzOPT. Our implementation is
based on a version of Dinitz that is usually used in
programming competitions10. We changed the graph
representation to a linear adjacency list of outgoing
edges. Edges are sorted by originating vertex in linear
time. Each node stores a range of edges into this list.
This is the same structure used for the Push-Relabel
implementation. Performance-wise, the data structure
significantly reduces the time to build large networks,
but flow time remains the same. We use an array of size
n as a queue, because during BFS each vertex is pushed
at most once. We allocate memory for distance labels,
counter, and the queue in advance when the network is
built instead of per flow. In the unidirectional BFS, one
could break when the sink is encountered but we finish
the current layer for the purpose of measuring search
space.

Undirected Networks. We support flow for undi-
rected networks. A simple way to do this, is to represent
each undirected edge as two directed edges, which was

6http://pub.ist.ac.at/~vnk/software.html
7https://www.boost.org/doc/libs/1_72_0/libs/graph/doc/

boykov_kolmogorov_max_flow.html
8was http://www.avglab.com/andrew/soft.html
9https://www.boost.org/doc/libs/1_72_0/libs/graph/doc/

push_relabel_max_flow.html
10https://cp-algorithms.com/graph/dinic.html

done for Push-Relabel. However, each directed edge
already implies two edges in the residual network: one
with the given capacity, and a reversed twin edge with
no capacity. To avoid storing four times the amount of
edges, the twin edge can be used to implement undi-
rected flow. By giving the twin edge the same capacity
as its counterpart, the exact same implementation can
be used for undirected as well as directed networks.

Non-integer capacities. We use 64-bit floating
point numbers instead of integers to represent flow
values and capacities, because some applications use
non-integer capacities. The same implementation can be
used but requires more memory and additional checks
to handle floating point imprecision. We applied this to
Dinitz, PR, and BK and observed a performance drop
of approximately 10% for all algorithms. Note that the
range in which 64-bit floats exactly represent integral
numbers even exceeds the range of 32-bit integers.
Precision issues are cause by the infinity capacity edges
introduced for BK. To resolve this, the representation of
infinity on these edges must be chosen according to the
range of capacities.

A.2 Data. We obtained the datasets from the Univer-
sity of Koblenz (KONECT) [26], the Network Repository
website [31], as well as the Stanford Network Analysis
Project (Snap) [28].

Furthermore, we used the GIRG generator by
Bläsius et al. [4] mostly with default parameters. We
implemented the ER model and the layered network
construction from Ajuja et al. [1]. The parameters for
ER are n = 100000 and p = 0.02. The parameters for
the layered network are taken from the largest instance
in their paper (W=71, L=141, d=10).

Lastly, the liver.n6c100 instance is from the
University of Western Ontario. It is a regular 3D grid
with 170x170x144 nodes, 6 edges per node, capacities
up to 100, and a super sink/source.

We converted all instances to a text-based edge
list with zero-based indices. In Section 4.4 we use the
directed DIMACS format instead.

http://pub.ist.ac.at/~vnk/software.html
https://www.boost.org/doc/libs/1_72_0/libs/graph/doc/boykov_kolmogorov_max_flow.html
https://www.boost.org/doc/libs/1_72_0/libs/graph/doc/boykov_kolmogorov_max_flow.html
http://www.avglab.com/andrew/soft.html
https://www.boost.org/doc/libs/1_72_0/libs/graph/doc/push_relabel_max_flow.html
https://www.boost.org/doc/libs/1_72_0/libs/graph/doc/push_relabel_max_flow.html
https://cp-algorithms.com/graph/dinic.html

Table 2: Instances used in this paper. The road network was undirected and is converted to directed DIMACS
format. In this case, the number of edges refers to the undirected version.

instance directed weighted nodes edges avg. degree source

fb-pages-tvshow 4K 17K 8.87 Network Repository
girg10000 10K 60K 11.99 generated
soc-slashdot 70K 360K 10.24 Network Repository
girg100000 100K 600K 12.00 generated
soc-flickr 514K 3.2M 12.42 Network Repository
visualize-us X 594K 3.2M 10.92 Network Repository
dogster 427K 8.5M 40.03 U. Koblenz
as-skitter 1.7M 11.1M 13.08 U. Stanford
actors X 382K 15.0M 78.69 U. Koblenz
brain 178K 15.8M 176.47 Network Repository
er100000 X 100K 20M 199.94 generated
layered10000 X 10K 100K 9.96 generated
roadNet-PA (X) 1.1M 1.5M 2.83 U. Stanford
liver.n6c100 X X 4.1M 25M 6.04 U. Western Ontario

http://networkrepository.com/fb-pages-tvshow.php
http://networkrepository.com/soc-slashdot.php
http://networkrepository.com/soc-flickr.php
http://networkrepository.com/visualize-us.php
http://konect.cc/networks/petster-friendships-dog
https://snap.stanford.edu/data/as-Skitter.html
http://konect.cc/networks/actor-collaboration
http://networkrepository.com/bn-human-BNU-1-0025890-session-1.php
https://snap.stanford.edu/data/roadNet-PA.html
https://vision.cs.uwaterloo.ca/data/maxflow

	1 Introduction
	1.1 Contribution.
	1.2 Related Work.

	2 Network Flows and Dinitz's Algorithm
	3 Improving Dinitz on Scale-Free Networks
	4 Experimental Evaluation
	4.1 Runtime Comparison.
	4.2 Optimizations in Detail.
	4.3 Gomory-Hu Trees.
	4.4 Other Types of Networks.

	5 Conclusion
	A Appendix
	A.1 Implementation Details
	A.2 Data.

