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Abstract
The hitting set problem asks for a collection of sets over a
universe U to find a minimum subset of U that intersects
each of the given sets. It is NP-hard and equivalent to the
problem set cover. We give a branch-and-bound algorithm
to solve hitting set. Though it requires exponential time
in the worst case, it can solve many practical instances
from different domains in reasonable time. Our algorithm
outperforms a modern ILP solver, the state-of-the-art for
hitting set, by at least an order of magnitude on most
instances.

1 Introduction

Hitting set naturally emerges from many problems ap-
pearing in various domains, e.g., transportation [34],
model-based diagnosis [28], data profiling [3], or biol-
ogy [23]. Unfortunately, hitting set is NP-hard. In fact,
it is among the first 21 NP-complete problems [24].

Beyond its NP-completeness, there is a wide range
of theoretic results on hitting set, including exact algo-
rithms [30], approximation results [32, 12, 16], param-
eterized algorithms [1, 17], and parameterized approxi-
mation algorithms [7]. Moreover, several variants of the
problem have been studied, e.g., weighted variants [17],
geometric variants, where the instance represents geo-
metric objects [12], implicit hitting set, where the in-
stance is not explicitly given but implicitly by an oracle
that reveals sets not yet hit [11, 25], and the enumer-
ation variant, where one has to find all inclusion-wise
minimal hitting sets instead of just the minimum [18].

Due to its importance for various applications, hit-
ting set has also been studied from a practical perspec-
tive. A lot of engineering work has been dedicated to the
above mentioned enumeration variant; see the survey by
Gainer-Dewar and Vera-Licona [18] for an overview and
the paper of Murakami and Uno [26] for the state-of-the-
art algorithm. For the optimization problem of finding
a minimum hitting set, there are results on heuristic al-
gorithms, e.g., [35, 14], as well as heavily parallelized
brute-force approaches using GPUs [9, 10].

Concerning clever algorithmic techniques for solv-
ing hitting set exactly, there is the seminal work of
Weihe [34] proposing two rules for data reduction that
perform very well on instances coming from rail net-
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works [4]. More recently, Bevern and Smirnov [33] pro-
posed alternative reduction rules for d-hitting set (re-
stricting the size of each set to at most d) and evaluated
them on instances coming from the cluster vertex dele-
tion problem. Though reduction rules are a crucial com-
ponent in designing efficient algorithms, one generally
still needs an algorithm to solve the remaining instance.
Concerning such an algorithm, the current state-of-the-
art is somewhat unsatisfactory. In 2000, Caprara, Toth,
and Fischetti [8] did an exhaustive study of all prevalent
solvers at the time and conclude:

This shows that the state-of-the-art general-
purpose ILP solvers are competitive with the
best exact algorithms for SCP1 presented in
the literature, and that their performance can
sensibly be improved by an external prepro-
cessing procedure. ([8])

Later, de Kleer [15] conducted an empirical study on the
effect of Weihe’s reduction rules [34] in a simple branch-
and-bound algorithm. However, the algorithm does not
outperform a general-purpose ILP solver. To the best
of our knowledge, using an ILP solver, potentially after
preprocessing, remains the state-of-the-art to this day.

In this paper, we engineer and evaluate a branch-
and-bound algorithm that beats this state-of-the-art.
On our test set of 929 instances where the ILP solver
reported a non-zero2 running time, we reach a median
speedup factor of more than 25. For three quarters of
these instances, we have a speedup of more than one
order of magnitude.

The basic building blocks of our branch-and-bound
algorithm are bounds on the solution size and data
reduction rules. They are described in Section 2. We
note that most bounds and reduction rules we use have
been considered before, either for hitting set or in a
different context. For the different lower bounds we give
a theoretical analysis that completely characterizes how
they relate to each other; see Section 2.3. In Section 3
we specify our overall algorithm and provide details
on how to efficiently implement it. Our evaluation
in Section 4 is based on 4256 instances from different

1SCP stands for “set cover problem”, which is equivalent to
the hitting set problem.

2Gurobi reports running times below 0.01 as 0.
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domains. Beyond the overall running time of our
algorithm, we give a detailed evaluation of how much the
different building blocks contribute to the final result.
Our implementation is publicly available3.

2 Basic Building Blocks

In this section we describe lower and upper bounds as
well as reduction rules and introduce the hitting set
problem and our notation.

2.1 Problem Definition. Formally, a hypergraph F
is a set family over a vertex set V , i.e., every F ∈ F is a
subset of V . We call these elements F ∈ F hyperedges.
For brevity, we will refer to them as edges. The number
of vertices in the hypergraph is |V |, and likewise the
number of edges |F|. Additionally, we use ‖F‖, called
the hypergraph size, to refer to the sum of all edge
sizes, i.e., ‖F‖ =

∑
F∈F |F |. For a vertex v ∈ V , we

denote the set of edges containing v as F(v). We call
deg(v) = |F(v)| the degree of v. Note that the sum of
vertex degrees is equal to ‖F‖.

We say that a vertex hits an edge if it is contained
in it. Based on this, we call a vertex subset H ⊆ V
a hitting set of F if all edges in F are hit by at least
one vertex in H. Formally, H ⊆ V is a hitting set of
F if and only if ∀F ∈ F : H ∩ F 6= ∅. We call a
hitting set minimum if no smaller hitting set for the
same hypergraph exists. We refer to a hitting set as
minimal if it contains no other hitting set as proper
subset. The hitting set problem asks for a minimum
hitting set of a given hypergraph.

2.2 Upper Bounds. For the upper bound, we use
the simple greedy algorithm of repeatedly picking the
vertex with the highest degree. This results in a log n-
approximation, works well in practice, and runs in linear
time [20, 31]. We note that there are multiple LP-based
upper (and also lower) bounds for which we refer to the
overview by Caprara [8].

2.3 Lower Bounds. In contrast to upper bounds,
good lower bounds are harder to achieve, but crucial
for the pruning. Here we describe five lower bounds,
some of which have been used for hitting set or other
problems. Moreover, we prove a complete characteriza-
tion of how the lower bounds relate to each other.

max-degree bound The max-degree bound uses that
each vertex hits at most dmax many edges, where
dmax is the highest vertex degree. Thus, at least⌈
|F|
dmax

⌉
vertices are required to hit all edges.

3https://github.com/Felerius/findminhs

sum-degree bound Let d1, . . . , dn be the vertex de-
grees in descending order. Since vertices can only
be chosen once, the max-degree bound can be im-
proved to the smallest k for which

∑k
i=1 di ≥ |F|.

efficiency bound Consider any solution S. Let each
vertex v ∈ S charge its cost onto the edges it hits.
That is, each edge F ∈ F(v) is charged 1/ deg(v) by
v. The size of the solution can now be expressed
as the sum of the cost of all edges, i.e., |S| =∑

F∈F
∑

v∈S∩F 1/ deg(v). The efficiency bound
assumes the lowest cost for each edge individually,

yielding
⌈∑

F∈F minv∈F 1
deg(v)

⌉
as a lower bound.

packing bound A set P of pairwise disjoint edges
constitutes a lower bound, because each vertex
appears in at most one of those edges. Thus at least
|P | vertices are required to cover them. Finding
the best packing bound is actually an independent-
set problem on the intersection graph of the edges
F . Using an independent set of conflicts as a
lower bound is a known technique applied by recent
solvers for other hard problems [19].

sum-over-packing Any packing P can be used to
strengthen the sum-degree bound, as the packing
requires to select |P | vertices to cover the edges
in P , which might not be the vertices of highest
degree that the sum bound would use otherwise.
In the remainder, we focus on how many edges of
F \ P we cover. The vertices selected to cover P
can cover at most bP =

∑
F∈P maxv∈F (deg(v)− 1)

edges in F \ P . If bP is smaller than |F \ P |,
we have to pick additional vertices to cover the
remaining |F \ P | − bp edges. To this end, let
d1, . . . , dn be the descending vertex degrees in F\P ,
excluding the vertex of highest degree of each edge
in P (these vertices have already been selected and
cannot be selected twice). With this, the improved
sum bound is |P | + k where k ≥ 0 is the smallest

number for which
∑k

i=1 di ≥ |F \ P | − bP .

A lower bound a dominates another bound b, if
a ≥ b for all problem instances. If a bound has multiple
choices (e.g., the packing bounds), we consider the
choice that leads to the highest bound. Two bounds are
incomparable if neither dominates the other, i.e., there
is an instance where a < b and another instance where
a > b. Figure 1 shows the relations between the lower
bounds stated in the following lemmas. Their proofs
can be found in section A.

Lemma 2.1. The sum-over-packing dominates the sum-
degree and the packing bound. The sum-degree bound

https://github.com/Felerius/findminhs
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Figure 1: Relations between lower bounds. A bold
arrow from a to b means that a is dominated by
b (Lemma 2.1). Dashed arrows are labeled as in
Lemma 2.2 and indicate that there exists an instance
where a is smaller than b. Note that for any pair of
bounds, there is either a directed bold path (indicating
dominance) or a directed path containing exactly one
dashed edge (indicating non-dominance).

dominates the max-degree bound and is dominated by
the efficiency bound.

Lemma 2.2. The packing bound is incomparable with
the max-degree, sum-degree, and efficiency bound. The
efficiency bound is incomparable with the sum-over-
packing bound.

2.4 Reduction Rules. Our algorithm uses the fol-
lowing reduction rules. The domination rules were first
described by Weihe [34]. The costly discard rule is a
standard technique in branch and bound but has, to
the best of our knowledge, not yet been used for hitting
set. The unit edge rule is widely known and stated, e.g.,
by Shi and Cai [30].

Unit Edge Rule. If there is an edge of size one, then
pick the contained vertex.

Edge Domination Rule. If there are two edges e1, e2
with e1 ⊆ e2, then delete e2.

Vertex Domination Rule. If there are two vertices
v1, v2 such that F(v1) ⊆ F(v2), then delete v1.

Costly Discard Rule. If discarding a vertex raises
the lower bound to or above the current upper
bound, then pick this vertex.

We do not consider the complement of the costly
discard rule (costly inclusion) because including a vertex
cannot raise the packing lower bound by more than one.
The rule could only take effect when the upper and lower
bound differ by one, in which case the instance is almost
solved anyway.

We note that Shi and Cai [30] proved that branch-
and-bound runs in time O(1.23801n) when using the

first three of the above reduction rules in addition to
two rules based on edges of size two. We omitted these
two rules from our solver, as they rarely take effect.

3 The Branch-and-Bound Algorithm

In this section we describe the structure and efficient
implementation of our solver as outlined in Algorithm 1.
In every step, our algorithm branches on the inclusion
or exclusion of a vertex in the solution, thereby creating
two new instances that are solved recursively. Before
each branch, we apply the follow two steps. First, an
approximate solution for the current instance is found
using a greedy algorithm. The best found solution so
far represents the current upper bound and is globally
maintained as a result of the algorithm. It is used
to prune branches where no better solution can be
achieved. Second, reduction rules are repeatedly applied
until either no reduction is possible or a lower bound
allows the current branch to be pruned.

Algorithm 1: Solve Recursively.

1 update upper bound // greedy

2 while reductions or pruning possible do
3 compute lower bounds
4 if lower bound ≥ upper bound then return
5 apply first applicable reduction

6 select branching vertex v by highest degree
7 branch on choosing v // inclusion branch

8 branch on discarding v // exclusion branch

3.1 Operation Summary and Reduction Order.
Initially we compute a greedy upper bound in time
O(||F||) but do not repeat it in the reduction loop.
Then, reductions and bounds are checked one after an-
other (Algorithm 1, line 2-5). They are processed in
ascending order by runtime to prevent expensive oper-
ations when possible. After one reduction is applied,
the search starts from the top of the list again. In gen-
eral, lower bound pruning happens before reductions.
Although the max-degree bound is dominated by the
efficiency bound, we include it due to the lower com-
putational complexity. The order of lower bounds and
reductions is as follows.

1. max-degree bound in O(|V |)
2. efficiency bound in O(||F||)
3. packing bound in O(||F||+ |F| log |F|)
4. sum-over-packing bound in O(||F||)
5. unit edge rule in O(|F|)



6. costly discard rule with efficiency bound updates
for all vertices in O(||F||)

7. costly discard rule with packing updates for all
vertices in O(||F||+ |F| log |F|)

8. costly discard rule with repack for 3 vertices in
O(||F||+ |F| log |F|)

9. edge domination rule in O(|F| · ||F||)
10. vertex domination rule in O(|V | · ||F||)

In the following, we discuss the branching strategy
and implementation details of the instance representa-
tion, the bound computation, and the reduction rules.

3.2 Branching Strategy. As mentioned above, we
branch on the inclusion or exclusion of a verticex.
The remaining degrees of freedom are the vertex to
branch on and the order in which the two branches are
processed. We found the latter to be irrelevant while the
former crucially affects search space and performance.
Our solver always branches on the vertex with highest
degree in the remaining instance and processes the
inclusion branch first.

3.3 Instance Representation. During the algo-
rithm the instance needs to be updated regularly. To
avoid copying the instance, we maintain one data struc-
ture representing the current instance throughout the
algorithm. There are three places in the algorithm
where the instance is modified. First, the greedy algo-
rithm iteratively deletes vertices. Second, the reduction
rules reduce the instance. Third, when branching, a
vertex is excluded (it is deleted) or is included (it and
all its edges are deleted). In all cases, changes have to
be rolled back appropriately.

To support these operations, we maintain the ver-
tices of each edge and the edges of each vertex in sorted
order at all times. Maintaining the order speeds up set-
like operations, e.g., union of two edges, and is required
by the reduction rules for edge and vertex domination.

For this, we implement a data structure called or-
dered subset list that manages a subset S ⊆ {s1, . . . , sn}
of n strictly-ordered objects s1 < s2 < · · · < sn. As-
suming the si are sorted in advance, it supports the
following operations.

Name Description Time

init() Initialize S = {s1, . . . , sn} O(n)
del(i) Delete si from S O(1)

undo() Undo last (not undone) deletion O(1)
iter() Traverse S in increasing order O(|S|)

iterrev() Traverse S in decreasing order O(|S|)

This can be implemented by storing the subset S itself
in a doubly-linked list. Additionally, we have an array
A that points for each i to the list entry corresponding
to si. When deleting an element from S, its list entry
can be found in constant time via A. It is removed from
the list, but the list item itself remains in memory and
A keeps the pointer to it. To allow for later reinsertion,
we maintain a stack of indices of deleted list entries. As
the list entry itself has not been modified at the time
of deletion, its previous and next entries are intact and
thus we can reinsert it into the list in constant time in
the position it was before its deletion.

3.4 Upper Bound Computation. The greedy al-
gorithm picks the highest degree vertex and deletes it
and its edges from the instance until all edges are hit.
Since modifications, i.e., deleting edges and vertices, are
done in time linear in the number of changes (see Sec-
tion 3.3), this totals to at most linear time until a hitting
set is found. Finding the vertex with highest degree in
each step is done with a bucket heap [13, 31] that stores
the vertex degrees. The data structure allows constant
time operations due to the limited range of the stored
values. Since degrees are only lowered during the pro-
cedure and the total vertex degree is ||F|| the greedy
algorithm takes linear time in the size of the instance.

3.5 Packing Bound Computation. Finding a
maximum packing of disjoined edges is an independent
set problem and thus computationally expensive. Re-
cent solvers for the quasi-threshold editing and cluster
editing problem, which use the same idea of packing
conflicts, apply the min-degree heuristic to find a good
packing [19, 22]. In our context, the degree in the con-
flict graph of an edge F from the original instance would
be the number of other edges that share at least one ver-
tex with F . We approximate this and sort all edges by∑

v∈F deg(v) in ascending order. Then, we go through
the edges and add the current edge to the packing if
possible. When adding an edge to the packing, each
contained vertex is marked. An edge F can be added
if all contained vertices are unmarked, which can be
checked in |F |. In total, the initial packing is computed
in O(||F||+ |F| log |F|).

We implemented the 2-improvement heuristic for
independent set to grow the packing [2]. The heuristic is
a local search that repeatedly tries to replace an element
from the packing with two new ones. Although this
technique is effective [19], we found it to be too slow and
too rarely applicable to justify the high computational
cost (see Figure 5). Our implementation runs in O(|P | ·
||F||) per improvement where P is the current packing.



3.6 Efficient Costly Discard Rule. The costly
discard rule states that a vertex must be picked if
discarding it raises some lower bound to or above the
current upper bound. That is, if we were to branch
on that vertex, the exclusion branch would be pruned
immediately. The rule has two degrees of freedom:
first, the vertex it is applied to and, second, the lower
bound that is used. For maximum effectiveness of
the reduction, we would like to check the rule for all
vertices and lower bounds. However, computing all
lower bounds from scratch |V | times is computationally
expensive. We restrict it to the efficiency and packing
bound. In the following, we discuss how to compute
these bounds efficiently for all vertices at once.

Costly Discard with Efficiency Bound. For
the efficiency bound, checking the costly discard rule for
all vertices at once can be done in O(||F||) as follows.
First, the efficiency bound is computed for the current
instance. While doing so, for each edge the two vertices
with highest degree are saved. When a vertex v would
be discarded from the instance, only edges v is contained
in can change their contribution to the bound. Such an
edge F changes the contribution minu∈F 1/ deg(u) only
if v was the vertex with highest degree in F . In this
case the contribution depends on the vertex with second
highest degree in F , which was identified earlier. In
total, discarding v changes the contribution of at most
deg(v) edges that can be updated in constant time each.
Over all vertices this sums up to ||F||.

Costly Discard with Packing Bound. For the
packing bound, a similar approach of dynamically up-
dating a packing bound |V | times can be used to check
the rule for all vertices and constitutes item 7 in Sec-
tion 3.1. Discarding a vertex v removes it from all edges.
The edges that are relevant are those that intersect the
union of the current packing exactly in vertex v. That
is, they could now be included in the packing after v’s
removal. We say that such an edge is blocked by vertex
v. Each edge is blocked by at most one vertex. Af-
ter the initial packing is constructed, we create for each
vertex v a list of edges that are blocked by this vertex
and sort each list individually by the highest degree of
a contained vertex (excluding v). These lists are found
and sorted in O(||F|| + |F| log |F|). When checking if
a vertex qualifies for the costly discard rule with the
packing bound, we traverse the list of blocked edges for
this vertex and greedily add them to the packing if pos-
sible. After the rule is checked, we remove the added
edges to restore the initial packing. Since each edge F
is in at most one list and can be added to the packing in
time O(|F |), the costly discard rule can be checked for
all vertices in time O(||F||) when using the lists. The
creation of the lists dominates the running time with

O(||F|| + |F| log |F|), which is the same as the time it
takes to compute the initial packing.

Unfortunately, the updated packings are worse than
if they were computed from scratch. Therefore, we
additionally choose the c vertices of highest degree, for
which we check the costly discard rule with a completely
new packing each (see item 8 in Section 3.1). Our
experiments in Section 4.3 suggest that c = 3 is a
reasonable choice.

3.7 Efficient Domination Rules. The domination
rules can be checked naively by comparing each set with
all others to find inclusions. This implies a running time
of O(|V |·||F||) and O(|F|·||F||) which is quadratic in the
number of edges or vertices, respectively. In fact, under
the strong exponential time hypothesis the reduction
cannot be done in less than quadratic time in the worst
case [6]. In practice, however, the sub- and superset
reductions can be sped up significantly using set tries,
a data structure described by Savnik [29].

A set trie manages a collection T of sets over [n] and
supports the following operations which require that the
given sets are sorted and can be traversed in linear time.

Name Description Time

add(S) add S to T O(|S|)
hasSubset()

does T contain a
subset of S

O(|S|+ ‖T ‖)

hasSuperset()
does T contain a
superset of S

O(|S|+ ‖T ‖)

For the dominated edge rule we create an empty set
trie and iterate through the edges in increasing order of
their size. For each edge, we check whether a subset of
it exists in the set trie. If so, the edge is dominated.
Otherwise the edge is added to the set trie. Note that
this process can be continued after the first dominated
edge to find all of them.

For the dominated vertex rule, the process is sim-
ilar. An empty set trie is created that stores sets of
edges. Then, vertices are iterated in decreasing order of
their degree. Recall that F (v) is the set of edges con-
taining the vertex v. If the set trie contains a superset
of F (v), the vertex v is dominated. Otherwise, F (v) is
added to the set trie.

4 Evaluation

In this section, we evaluate our branch-and-bound algo-
rithm experimentally. First, in Section 4.2, we com-
pare its run time to the state-of-the-art ILP-solver
Gurobi [21] and analyze how much time is spent in
which part of the algorithm. In Section 4.3, we investi-
gate details regarding the performance and effectiveness
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Figure 2: Run time of our solver compared to Gurobi
with preprocessing. Times are rounded up to 0.01s.

of lower bounds, upper bounds, and reduction rules to
evaluate the used techniques as well as to substantiate
our design decisions.

4.1 Experimental Setup. Our implementation is
written in the Rust programming language and is avail-
able in our public GitHub repository4 along with all
datasets, logs, run results, and evaluation scripts. All
auxiliary packages, including the versions used, are
listed in the repository as part of the Cargo project
format. For the evaluation, we used version 1.53.0 of
the Rust compiler with link-time optimization enabled.
The experiments were run on a Gigabyte R282-Z93
(rev. 100) server at 2.6GHz base speed with 1024GB
DDR4 (3200MHz) memory. Runs had a timeout of 24h.

We use instances from four sources.

UCC [3] contains 134 instances, two for each of 67
databases. In the first type of instance, the hitting
sets correspond to the unique column combinations
of the database. The second type of instances are
the transversal hypergraphs of the first type.

CVD [33] contains cluster vertex deletion instances, de-
rived from weighted graphs of protein similari-
ties [27, 5]. In the reduction step from weighted
graphs to unweighted graphs, we use all edges

4https://github.com/Felerius/findminhs

with non-negative weights. This is consistent
with the code linked in the paper of Bevern and
Smirnov [33], but differs from the statement in the
paper itself, which only uses edges with positive
weights. Like the authors, we restict us to hyper-
graphs with at most 106 edges, resulting in a total
of 3952 instances.

EN1 [26] contains 159 instances that were previously
used to evaluate algorithms for enumerating min-
imal hitting sets. These contain several classes of
instances, including real-world and generated in-
stances. The original data set contains 172 in-
stances of which we omitted 13 whose size ||F||
exceeds 3 · 107, as the RAM required to run ex-
periments on them proved to be prohibitive.

EN2 [18] contains eleven additional instances that
have been used to evaluate enumeration algorithms.
Five of them are derived from metabolic reaction
networks and six from interventions in cell signaling
networks.

We distinguish between the randomly generated
instances (rnd) from the EN1 dataset and application
specific instances (appl) due to their different structure.
The instances displayed in the various plots are filtered
depending on the context. Figure 2 includes all 4256
instances. Subsequent plots are restricted to the 136
instances (58 rnd, 78 appl) that finish in 24 hours
(excludes 6) and are non-trivial (excludes 4114), that is,
instances where our solver runs at least one second in
its default configuration. For experiments that compare
different configurations, only the instances finishing in
all configurations are used. Effected by this is Figure 5
where three instances were dropped due to timeout in
some configuration. Additionally, ten instances where
dropped in Figure 9 because they had no forced vertices
and two instances where dropped in Figure 4 because
they never had a branch pruned due to bounds.

4.2 Runtime. Figure 2 shows the run time of our
solver in comparison with Gurobi. Gurobi is at ver-
sion 9.1.2, restricted to a single thread, and without a
memory restriction. We note that there are instances
where Gurobi uses almost 50GB of memory. Following
Caprara [8], instances were reduced with the domination
rules before running Gurobi on them. The reduction
process is included in the reported run times. Prelimi-
nary experiments showed this to be faster than running
the ILP alone.

Our solver is significantly faster than Gurobi on
non-random instances; on three quarter of non-random
instances at least one order of magnitude. Contrasting

https://github.com/Felerius/findminhs
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Figure 3: For each instance, the run time share of each operation was measured relative to the total run time of
the instance. Note that the time for efficiency costly discard is included in the efficiency bound time.

this, there are only three instances (random and non-
random) where Gurobi is faster by more than a factor
of 4. Run times for random instances are competitive.
Gurobi is approximately 1.5 times faster on smaller
instances while we are consistently faster on instances
that take more than 30 minutes to solve. In total, there
are 8 instances that finish in the timeout only for our
solver. There are 2 instances that finish just for Gurobi.

Figure 3 shows the fraction of run time that is spent
in each step of the algorithm. As expected from the
asymptotic considerations in Section 3, the domination
rules dominate the run time although they are executed
last and thus avoided when possible. Random instances
spent most time in edge domination since they have
many edges and few vertices. Non-random instances
spend most time in vertex domination. Still, when
taking both classes of instances together, the total time
spent is spread over different subroutines and, in the
median, no individual task takes more than 20% of the
total time. Greedy, packing lower bound, and the costly
discard repack reduction rule show comparable times.
Although, the repack reduction essentially computes
three packings, it is processed later in the loop than
the packing lower bound, which explains why the rule
does not take three times as much time as the packing.
Finally note that the column for other is vanishingly
small. It includes, e.g., the instance manipulation and
rollbacks as well as logging, timing, and branching.

4.3 Solver Details. In this section we discuss the
effectiveness of lower bounds, upper bounds, and reduc-
tion rules in detail. Moreover, we provide experimental
grounds to argue in favor of our choices regarding the
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Figure 4: For each instance, the number breaks from the
reduction loop split by the responsible bound. Values
are relative to the total number of breaks for the
instance.

solver configuration. Specifically, we evaluate the set
and order of used lower bounds, the number of checked
vertices in the costly discard repack rule, the frequency
of greedy invocations, and the order in which reductions
are applied.

Lower Bound Effectiveness. Figure 4 counts
how often each bound was responsible for pruning a
branch in the search tree. For random instances, the
max-degree bound is sufficient and is responsible for
almost all prunes. Application instances make use of
several bounds. Max-degree still helps but, excluding a
few instances, accounts for less than 30%. The efficiency
and the packing bounds then catch branches that are
missed by the previous bounds with the packing bound
being significantly more successful than the efficiency
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Figure 5: Search space when only using a certain bound, relative to default settings. Note the logarithmic y-axis
with special handling for zero.

bound despite it being run after it.
For the efficiency bound, the outlier at 100% is due

to an instance with a trivial search space of one node
that is pruned by the efficiency bound. Still, there are
a few instances where the max-degree bound fails often
while the efficiency bound is responsible for 40% to 60%
of all prunes.

There are even more instances which almost exclu-
sively depend on the packing bound. This can be ex-
plained due to the packing bound representing a differ-
ent approach to obtain the lower bound than the max-
degree or efficiency bound and thus performs well on
a different kind of instances. The max-degree bound
performs well if the high degree vertices do not share
many edges, i.e., if the instance can be covered by select-
ing few high-degree vertices. On the other hand, many
edges containing multiple high-degree vertices makes it
possible to have many edges containing only vertices of
lower degree, which facilitates large packings.

Regarding the last bound, note that the sum-over-
packing bound rarely applies. However, Figure 3 shows
that its run time is negligible since the previously
computed packing is reused. For some instances the
bound actually prunes a significant number of branches.

With the question answered to what extent our
chosen lower bounds contribute to pruning, it remains
to show that it is their combination and not one bound
alone that is responsible for the overall performance.
Figure 5 shows the relative search space when using only
one bound compared to using our default configuration
for the solver. Max-degree, sum-degree, and efficiency
all behave similar, that is worse than with all bounds.
On the other hand, for random instances only using the
packing bound leads to significantly higher search space.
These instances, however, are solved easily when using
the sum-over-packing instead of the packing alone. In

fact, using only sum-over-packing is almost always as
good as using the combination of bounds. Nonetheless,
it still makes sense to use the other bounds before:
The packing bound is free as we have to compute a
packing anyway to apply sum-over-packing. Moreover,
the simpler bounds can be computed more quickly than
a packing (recall Figure 3) but are often sufficient as
can be seen in Figure 4.

As mentioned in Section 3.5, we implemented ver-
sions of the packing with local search and included them
in Figure 5. In the following we consider the influence
of adding local search to packing or sum-over-packing.
For application instances, adding the local search to the
packer or sum-over-packing bound results in a slight im-
provement over the combination of all other bounds.
However, preliminary testing showed local search to be
too computationally expensive to justify the reduction
in search space it yields. On random instances, adding
local search to packing does not change the search space,
while adding it to sum-over-packing surprisingly in-
creases the search space. Further investigation revealed
that a packing that was augmented with local search is
enlarged to the point that taking the highest degree ver-
tex of each edge in the packing constitutes for enough to-
tal degree to cover the whole instance. In this case, the
sum-over-packing bound is equal to the packing bound.

Upper Bound Effectiveness. The greedy upper
bound is used to initialize and, during a run, improve
the best solution found so far. Still, the solver could be
implemented without greedy at all. The upper bound
would then be initialized to contain all vertices in V
and updated when the branching reaches a hitting set.
Running the greedy subroutine has the benefit that it
helps to find solutions before reaching the associated leaf
in the search tree and thus facilitates earlier pruning.
In the following, we compare four different frequencies
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Figure 6: Run times of two non-default greedy modes
relative to the run time when using greedy once per
node in the search tree. Each instance is a data point.

of running greedy to recompute the upper bound. The
alternatives are to not use greedy at all, run greedy once
before the reduction loop (which is what we do in the
final configuration of our algorithm), run greedy every
iteration of the loop (i.e., as item zero in Section 3.1), or
to run it every loop just before the expensive reductions
(i.e., between items 7 and 8 in Section 3.1).

Figure 6 compares the latter three alternatives. The
baseline in the plot (and default configuration for the
solver) is to run it once before the loop. The axes show
the relative run time compared to this baseline. A point
in the lower left quadrant means that the baseline is
the worst out of the three; a point in the upper right
quadrant that it is best, while the rest ranks it in the
middle. Samples are concentrated in the center but
slightly tilted to the upper right. Additionally, there are
no outliers that favor running greedy every loop while
there are outliers that heavily slow down when deviating
from our baseline.

Figure 7 shows run times of all alternatives that use
greedy compared to not using greedy at all, that is, ini-
tializing the upper bound to V and find better solutions
only in leaf nodes while branching. Surprisingly, the me-
dian favors not using greedy at all but the outliers are
heavily in favor of using greedy. Running greedy once
before the reduction loop is never slower than 1.5 times
the run time of no greedy, 1.02 times slower in the me-
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Figure 7: Relative run time for all three greedy modes
compared to not using greedy upper bounds.

dian, and up to 600 times faster at best, which makes
it a good choice for the final configuration of our algo-
rithm. Note that the benefits of greedy are restricted to
application instances. On random instances there are
no heavy outliers in favor of any configuration.

Reduction Effectiveness. Before we establish
how effective each specific reduction is, we first inves-
tigate how often each reduction is actually reached in
the reduction loop as shown in Figure 8. Differences
between two adjacent reductions express the success
rate of the left one. Random instances, again, behave
completely different than application specific instances.
They almost always execute all reductions, because all
reductions before the last one are unsuccessful. For ap-
plication instances, all rules contribute somewhat. Al-
though the domination rules have the highest run time
share (recall Figure 3) they are only executed in 20–
30% of loop iterations for most instances. The most
frequent end to an iteration are a successful costly dis-
card rule with packing updates or repacking. These
rules are reached in more than 80% of iterations for
most instances and the next rule (vertex domination) is
checked 30% of the time in the median. Note that an it-
eration only ends in the repack step if the costly discard
rule was unsuccessfully checked with a packing update
before succeeding through a repack, giving evidence to
the usefulness of repacking.

Figure 9 compares the effectiveness of the reduc-
tions that force a vertex to be included in the solution.
The effectiveness is measured by the number of forced
vertices. The unit edge rule and the costly discard rule
with the efficiency bound catch almost no vertices com-
pared to the two packing rules. Since they are very
easy to compute and find a good amount of application
on some instances they are nonetheless worth trying.
Above 80% of forced vertices in application instances
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Figure 9: For each instance, the number of found forced
vertices by reduction rule. Values are relative to the
total number of forced vertices for the instance.

are found with the costly discard packing update rule.
This constitutes no contradiction to Figure 8 because,
although the repack rule is applicable as often, the pack-
ing update rule can find multiple forced vertices at once.
The fact that the repack rule still finds a large amount of
all forced vertices while being applied only after packing
update failed to find anything, again, emphasizes that
the updated packings are not as good as the packings
that are constructed from scratch. The results for ran-
dom instances are less expressive because only a small
number of reductions are applicable, as established in
the previous paragraph. Nevertheless, they follow the
same trend as the other instances but rate packing up-
date lower and packing repack higher.

One degree of freedom for the repacking is the num-
ber of vertices for which we apply it. Recall from Sec-
tion 3.1 that we repack for the c = 3 vertices of maxi-
mum degree in our final configuration. Figure 10 shows
the run time for different values of c relative to the
run time when not repacking. One can make two main
observations. First, for random instances, the cost of
repacking outweighs the gain leading to slightly increas-
ing median run times for increasing c. Second, repacking
helps significantly on non-random instances but there is
no additional gain in repacking more than three times,
which has the lowest median. Thus, by using c = 3,
we obtain a good balance between increasing run time
for random instances only slightly while obtaining big
speedups for some application instances.

5 Conclusion

We provide a fast branch-and-bound solver that beats
a modern ILP solver, which is the state-of-the-art
for solving the minimum hitting set problem. Our
implementation provides a baseline for future work in
this direction. We explain the basic building blocks
of our algorithm — which are lower bounds, upper
bounds, and reduction rules — and experimentally
evaluate their run time and efficiency to find a good
configuration of used rules and bounds. We confirm
the effectiveness of Weihes reduction rules noted in
previous works. Another crucial part of the algorithm
turns out to be the quality of lower bounds. The
parameter-dependent Costly Discard Rule builds upon
lower and upper bounds and contributes significantly to
the performance of our algorithm. Lastly, we find that
the algorithm behaves differently on random inputs. In
the future, it would be interesting to determine why
non-random instances are easier for our solver than
random instances and if their structure can be exploited
to design even faster algorithms for practical instances.

References



1 3 5 7 9 11 13 15 17 19

#Nodes checked

0

1

2

3

R
u

n
ti

m
e

(r
el

.
to

w
/o

ru
le

) appl

rnd

Figure 10: Run time when using different settings for the costly discard packing from scratch rule. All values are
relative to the run time when that rule is disabled.

[1] Faisal N. Abu-Khzam. A kernelization algorithm for d-
hitting set. Journal of Computer and System Sciences,
76(7):524–531, 2010. doi:10.1016/j.jcss.2009.09.

002.
[2] Diogo V Andrade, Mauricio GC Resende, and Re-

nato F Werneck. Fast local search for the maxi-
mum independent set problem. Journal of Heuristics,
18(4):525–547, 2012.

[3] Johann Birnick, Thomas Bläsius, Tobias Friedrich, Fe-
lix Naumann, Thorsten Papenbrock, and Martin Schir-
neck. Hitting set enumeration with partial informa-
tion for unique column combination discovery. Pro-
ceedings of the VLDB Endowment, 13(12):2270–2283,
2020. doi:10.14778/3407790.3407824.

[4] Thomas Bläsius, Philipp Fischbeck, Tobias Friedrich,
and Martin Schirneck. Understanding the effectiveness
of data reduction in public transportation networks.
In Algorithms and Models for the Web Graph, pages
87–101. Springer International Publishing, 2019. doi:

10.1007/978-3-030-25070-6_7.
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A Missing Proofs from Section 2

Lemma 2.1. The sum-over-packing dominates the sum-
degree and the packing bound. The sum-degree bound
dominates the max-degree bound and is dominated by
the efficiency bound.

Proof. We first show that the sum-over-packing bound
dominates the sum-degree, and the packing bound. The
packing bound cannot be larger because the sum-over-
packing bound adds a non-negative number to it. Also
the sum-over-packing bound over an empty packing is
exactly the sum-degree bound.

The max-degree bound can be expressed as the
smallest k for which

∑k
i=1 d1 ≥ |F| showing that the

sum-degree bound dominates the max-degree bound.
It remains to show that the efficiency bound dom-

inates the sum-degree bound. The sum-degree bound
is given by the k highest degree vertices whose degrees
sum up to just above |F|. Let v1, . . . , vk be these ver-
tices sorted descending by degree. We partition the
edges of F into k sets E1, . . . , Ek with the following
two properties. First, |Ei| = deg(vi) for i < k and
1 ≤ |Ek| ≤ deg(vk). Second, the maximum vertex de-
gree for every edge in Ei is at most deg(vi). Such a par-
tition can be achieved as follows. Assign to E1 all edges
containing v1. For larger i, assign to Ei all edges that
contain vi that have not yet been assigned. Moreover,
add further edges arbitrarily, until Ei contains deg(vi)
edges. The first property, concerning the sizes of Ei,
clearly holds. For the second property, observe that in
step i, all edges containing vertices v1, . . . , vi−1 have al-
ready been assigned. Thus, all unassigned edges, and
thereby all edges ending up in Ei, only contain vertices
of degree at most deg(vi).

With this partition, we get that the efficiency bound
is larger than k − 1, because

∑
F∈F

min
v∈F

1

deg(v)
=

k∑
i=1

∑
F∈Ei

min
v∈F

1

deg(v)

≥
k∑

i=1

∑
F∈Ei

1

deg(vi)

= k − 1 +
|Ek|

deg(vk)
> k − 1,

and thus the rounded-up efficiency bound is at least as
high as the sum-degree bound.

Lemma 2.2. The packing bound is incomparable with
the max-degree, sum-degree, and efficiency bound. The
efficiency bound is incomparable with the sum-over-
packing bound.

n
k

k

(
kn
2

)

Figure 11: Instance family represented as a bipartite
graph. The sum-over-packing bound is worse than
efficiency for k = 2 and efficiency < packing for k = 1.
Edges are blue and vertices are orange.

Proof. We give examples of instances where (1) pack-
ing < max-degree, (2) efficiency < packing, and (3)
sum-over-packing < efficiency; see Figure 1. With the
domination relations from Lemma 2.1, the incompara-
bility of the packing bound follows from the instances
where packing <(1) max-degree ≤ sum-degree ≤ effi-
ciency <(2) packing. Similarly, the second part of the
lemma follows from the instances where efficiency <(2)
packing ≤ sum-over-packing <(3) efficiency.

In the example for (1), there are three vertices a, b, c
and three edges {a, b}, {a, c}, {b, c}. Every packing
contains at most one edge. In contrast the max-degree
bound is d3/2e = 2.

We give a parametrized example for (2) and (3).
The construction is shown in Figure 11. There are three
types of edges. In the center, there are n disjoined
edges, the center edges, that constitute a maximum
packing. To the right there are n edges, the right edges,
that share n vertices. To the left are k · n edges, the
left edges, that pairwise share a vertex of degree two.
Each of the center edges contains one of n high degree
vertices shared by the right edges. Each center edge also
contains k vertices of degree two that are also contained
in one of the k · n left edges.

For k = 1, the efficiency bound is (for edges from
left to right) n/2 + n/(n+ 1) + n/(n+ 1) < n while the
largest packing, e.g., the center edges, has size n. Thus,
the efficiency bound can be smaller than the largest
packing showing (2).

For k = 2 the efficiency bound is 2n/2 + n/(n +
1) + n/(n + 1) > n. To prove (3), it remains to show
that the sum-over-packing bound is at most n for each
possible packing. Note that the argument must hold for
each packing and not just maximum packings because



a maximum packing does not necessarily lead to the
highest sum-over-packing bound. If a packing includes
a right edge, this prevents the inclusion of all other
right edges and all center edges. If a packing includes
a left edge, this prevents the inclusion of all other left
edges and exactly one center edge. The only disjoined
packings possible are either only center edges, one left
edge and the rest center edges, or one left and one right
edge. Thus, each packing P has size at most n and
contains at least |P |−2 center edges, which have vertices
of degree n + 1.

Now we show that the sum-over-packing bound is
either constant or limited by the packing size. For
sufficiently large n and any packing S that is larger
than six, the packing contains at least four center edges.
The sum-over-packing bound adds nothing to the size
of the packing because the maximum degrees of the
vertices in four center edges add up to more than |F|.
That is, the sum-over-packing bound is |S|, because∑

F∈S maxv∈F deg(v) > 4n = |F|. For any packing S
smaller than six, the remaining instance after deleting
S and its max-degree vertices still contains Ω(n) nodes
of degree at least n. Four of them suffice to obtain a
degree sum larger than |F|. Therefore the sum-over-
packing bound is at most |S| + 4 ≤ 10. In each case,
the sum-over-packing bound is at most n, thus smaller
than the efficiency bound.

B Additional Evaluation Results

This section contains additional evaluation results that
have been cut from the main paper due to space
constraints.

B.1 Search Space and Bounds. Figure 12 shows
the size of the search space depending on the instance
size and the difference between the initial upper and
lower bound. The lack of samples with low search space
and instance size is an artifact due to the exclusion of
instances that are solved in less than a second.

There appears to be no clear correlation to indicat-
ing that instance size reflect difficulty. On the other
hand, the bound gap is usually a good estimate for the
difficulty of an instance to a given branch-and-bound
solver, because the solver lowers this gap during execu-
tion and is finished if the difference reaches zero. The
random instances exhibit a distinct exponential growth
in search space with growing gap.

Figure 13 further explores the difference between
lower and upper bounds. The initial upper bounds are
already close to the optimum with all but three being
less than 1.3 times the optimum. Lower bounds are
spread out more. Some instances have lower bounds
that are not even a third of the optimum. Interestingly,

the instance with with worst upper bound has a perfect
lower bound.

Figure 14 shows the progression and gradual lower-
ing of the upper bound during execution. Each individ-
ual instance starts in the lower left corner at (0,0) and
progresses to the upper right corner at (100,100). Under
the assumption that this progression is linear we would
get white above and black below the main diagonal.
However, the plot can be better described as growing
darker from left to right. This verticality means that
during a run, upper bounds progress is often achieved
all at once. Also the upper bound is surprisingly good
with more than 40% of the instances already having a
perfect upper bound to start with. After 25% of the run
time the optimum has been found (100% progress) for
more than 60% of instances. The remaining 75% of the
run time are used for proving its optimality.
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Figure 12: Search space compared to instance size (left) and difference between upper and lower bound (right).
Each instance represents one sample. The y-axis is logarithmic with special handling for zero.
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Figure 13: The plot shows the initial lower bound
relative to opt on the x-axis and the upper bound
relative to opt on the y-axis. Each instance represents
one sample.
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Figure 14: For a given run time and a given amount of
progress from the initial upper bound towards opt, how
many instances have reached that progress at that time.
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